Datasets:
metadata
license: cc-by-nc-nd-4.0
task_categories:
- question-answering
language:
- en
- ko
tags:
- social-reasoning
- dialogue
- conversation-analysis
size_categories:
- n<1K
Official dataset for Are they lovers or friends? Evaluating LLMs' Social Reasoning in English and Korean Dialogues.
Dataset Description
SCRIPTS is a bilingual dialogue dataset for evaluating social reasoning capabilities of Large Language Models. The dataset contains dialogues with rich annotations about relationships, social dimensions, and demographic attributes.
Dataset Splits
en: 580 English dialoguesko: 567 Korean dialogues
Languages
- English
- Korean (ํ๊ตญ์ด)
Dataset Structure
Data Fields
Each example contains the following fields:
Core Fields
scene_id(string): Unique identifier for each dialoguedialogue(string): Conversation text with speaker markers[A]:and[B]:
Social Relation
relation_high_probable_gold(string): Ground truth high-probability social relationrelation_impossible_gold(string): Relations annotated as impossible/unlikelyhigh_probable_agreement(string): Inter-annotator agreement level
Social Dimensions
intimacy_gold(string): Intimacy level (intimate, not intimate, neutral, unknown)intimacy_agreement(float): Inter-annotator agreement scoreformality_gold(string): Formality/task orientation (formal, informal, neutral, unknown)formality_agreement(float): Inter-annotator agreement scorehierarchy_gold(string): Power dynamics (equal, hierarchical, unknown)hierarchy_agreement(float): Inter-annotator agreement score
Demographics
age-a_gold(string): Age category for speaker Aage-b_gold(string): Age category for speaker Bage_diff_gold(string): Age comparison (A>B, A<B, A=B, Unknown)gender-a_gold(string): Gender for speaker Agender-b_gold(string): Gender for speaker Bgender_diff_gold(string): Gender comparison (Same, Different, Unknown)
Data Example
English (en split):
{
'scene_id': 'scene300',
'dialogue': '[B]: [A], right? Happy to meet you.\n[A]: Officially almost human again...',
'relation_high_probable_gold': "{'rank1': {'Police-Victim': 0.67, 'Police officer-Civilian': 0.33}, ...}",
'intimacy_gold': 'Unintimate',
'formality_gold': 'Task-oriented',
'hierarchy_gold': 'A<B',
'age-a_gold': "['(20โ35) Young adult']",
'gender-a_gold': "['Cannot be determined']",
...
}
Korean (ko split):
{
'scene_id': '0',
'dialogue': 'B: ๋๊น ์ ๋๋ฆฌ๋ฉด ๋ฝ์์ ๊ณจํ๊ณต์ผ๋ก ์ด๋ค!...๊ณ ์์ผ๋ก ๋งํ์ต๋๋ค...',
'relation_high_probable_gold': "['์น๊ตฌ', '์ฑ์ง์-์ ๋', '์ง์ธ']",
'intimacy_gold': '์นํจ',
'formality_gold': '์ฆ๊ฑฐ์ ์ค์ฌ',
'hierarchy_gold': 'A=B',
'age-a_gold': "['๋ํ์(20-24)', '์ฒญ๋
(25-39)', '์ค์ฅ๋
(40-59)', '๋
ธ๋
(65-)']",
'gender-a_gold': "['๋จ์ฑ', '์ฌ์ฑ']",
...
}
Usage
Loading the Dataset
from datasets import load_dataset
# Load both splits
dataset = load_dataset('EunsuKim/SCRIPTS')
# Access English dialogues
en_data = dataset['en']
print(f"English samples: {len(en_data)}")
# Access Korean dialogues
ko_data = dataset['ko']
print(f"Korean samples: {len(ko_data)}")
# View a sample
print(en_data[0])
Loading Specific Split
# Load only English
en_dataset = load_dataset('EunsuKim/SCRIPTS', split='en')
# Load only Korean
ko_dataset = load_dataset('EunsuKim/SCRIPTS', split='ko')
Example: Filtering by Relation Type
from datasets import load_dataset
dataset = load_dataset('EunsuKim/SCRIPTS', split='en')
# Filter dialogues with high intimacy
intimate_dialogues = dataset.filter(lambda x: 'intimate' in x['intimacy_gold'].lower())
print(f"Found {len(intimate_dialogues)} intimate dialogues")
License
CC-BY-NC-ND 4.0 (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International)
Citation
@misc{kim2025loversfriendsevaluatingllms,
title={Are they lovers or friends? Evaluating LLMs' Social Reasoning in English and Korean Dialogues},
author={Eunsu Kim and Junyeong Park and Juhyun Oh and Kiwoong Park and Seyoung Song and A. Seza Dogruoz and Najoung Kim and Alice Oh},
year={2025},
eprint={2510.19028},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2510.19028},
}
Contact
For questions or issues, please: