Datasets:
				
			
			
	
			
			
	
		
		Dataset Viewer
	Search is not available for this dataset
| image
				 imagewidth (px) 32 32 | label
				 class label 10
				classes | 
|---|---|
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | |
| 00
 | 
End of preview. Expand
						in Data Studio
					
MNIST 32×32 RGB Dataset
A preprocessed version of the classic MNIST dataset with handwritten digits, upscaled to 32×32 pixels and converted to RGB format for enhanced deep learning applications.
Overview
This dataset takes the original MNIST handwritten digit dataset and transforms it for modern computer vision tasks:
- Original format: 28×28 grayscale images
- Enhanced format: 32×32 RGB images
- Digit labels: 0-9 (single-label classification)
- Image format: RGB PIL Images
Dataset Statistics
Training Set (60,000 samples)
| Digit | Count | Digit | Count | 
|---|---|---|---|
| 0 | 5,923 | 5 | 5,421 | 
| 1 | 6,742 | 6 | 5,918 | 
| 2 | 5,958 | 7 | 6,265 | 
| 3 | 6,131 | 8 | 5,851 | 
| 4 | 5,842 | 9 | 5,949 | 
Test Set (10,000 samples)
| Digit | Count | Digit | Count | 
|---|---|---|---|
| 0 | 980 | 5 | 892 | 
| 1 | 1,135 | 6 | 958 | 
| 2 | 1,032 | 7 | 1,028 | 
| 3 | 1,010 | 8 | 974 | 
| 4 | 982 | 9 | 1,009 | 
Directory Structure
mnist_32_c3/
├── README.md                               # This documentation
├── train-00000-of-00001.parquet            # Training data (Parquet format)
└── test-00000-of-00001.parquet             # Test data (Parquet format)
Key Features
- Upscaled Resolution: Enhanced from 28×28 to 32×32 pixels for better feature extraction
- RGB Format: Converted from grayscale to RGB (3-channel) format
- PIL Integration: Images loaded as PIL RGB objects ready for preprocessing
- Standard Splits: Maintains original MNIST train/test division
- HuggingFace Compatible: Full integration with datasets library
- Efficient Loading: Parquet format for fast columnar data access and compression
Usage
Loading with HuggingFace Datasets
from datasets import load_dataset
# Load the dataset using the custom script
dataset = load_dataset("FrankCCCCC/mnist_32_c3", trust_remote_code=True)
print(f"Train samples: {len(dataset['train'])}")
print(f"Test samples: {len(dataset['test'])}")
# Access a sample
sample = dataset['train'][0]
print(f"Image shape: {sample['image'].size}")    # (32, 32)
print(f"Image mode: {sample['image'].mode}")     # RGB
print(f"Label: {sample['label']}")               # Integer: 0-9
Transformations Applied
The dataset preprocessing pipeline includes:
- Format Conversion: IDX → Parquet
- Channel Expansion: Grayscale → RGB (L → RGB)
- Resolution Upscaling: 28×28 → 32×32 (using PIL resize)
- Data Storage: Parquet format for efficient storage and loading
- Data Type: PIL Image objects for easy integration
Dataset Format
Each sample contains:
{
    'image': PIL.Image,    # 32×32 RGB image
    'label': int,          # Digit class (0-9)
}
Technical Details
- Original Source: MNIST Database of Handwritten Digits
- Format: Parquet files for efficient columnar storage
- Preprocessing: Grayscale → RGB conversion, 28×28 → 32×32 upscaling
- Loading: HuggingFace Datasets with custom GeneratorBasedBuilder
- Compression: Parquet format provides built-in compression and fast access
Citation
@article{lecun1998mnist,
  title={The MNIST database of handwritten digits},
  author={LeCun, Yann and Bottou, L{\'e}on and Bengio, Yoshua and Haffner, Patrick},
  year={1998},
  url={http://yann.lecun.com/exdb/mnist/}
}
@misc{mnist32c3,
  title={MNIST 32×32 RGB Dataset},
  author={Enhanced MNIST for Modern Deep Learning},
  year={2024},
  note={Preprocessed version of original MNIST with RGB format and 32×32 resolution}
}
License
This dataset follows the same license as the original MNIST dataset. The original MNIST database is available under the Creative Commons Attribution-Share Alike 3.0 license.
Acknowledgments
- Based on the original MNIST dataset by Yann LeCun, Corinna Cortes, and Christopher J.C. Burges
- Enhanced for modern deep learning applications with RGB format and increased resolution
- Compatible with HuggingFace Datasets ecosystem for seamless integration
- Optimized for CNN architectures and transfer learning applications
- Downloads last month
- 14,307