Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
32
32
label
class label
10 classes
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
End of preview. Expand in Data Studio

MNIST 32×32 RGB Dataset

A preprocessed version of the classic MNIST dataset with handwritten digits, upscaled to 32×32 pixels and converted to RGB format for enhanced deep learning applications.

Overview

This dataset takes the original MNIST handwritten digit dataset and transforms it for modern computer vision tasks:

  • Original format: 28×28 grayscale images
  • Enhanced format: 32×32 RGB images
  • Digit labels: 0-9 (single-label classification)
  • Image format: RGB PIL Images

Dataset Statistics

Training Set (60,000 samples)

Digit Count Digit Count
0 5,923 5 5,421
1 6,742 6 5,918
2 5,958 7 6,265
3 6,131 8 5,851
4 5,842 9 5,949

Test Set (10,000 samples)

Digit Count Digit Count
0 980 5 892
1 1,135 6 958
2 1,032 7 1,028
3 1,010 8 974
4 982 9 1,009

Directory Structure

mnist_32_c3/
├── README.md                               # This documentation
├── train-00000-of-00001.parquet            # Training data (Parquet format)
└── test-00000-of-00001.parquet             # Test data (Parquet format)

Key Features

  • Upscaled Resolution: Enhanced from 28×28 to 32×32 pixels for better feature extraction
  • RGB Format: Converted from grayscale to RGB (3-channel) format
  • PIL Integration: Images loaded as PIL RGB objects ready for preprocessing
  • Standard Splits: Maintains original MNIST train/test division
  • HuggingFace Compatible: Full integration with datasets library
  • Efficient Loading: Parquet format for fast columnar data access and compression

Usage

Loading with HuggingFace Datasets

from datasets import load_dataset

# Load the dataset using the custom script
dataset = load_dataset("FrankCCCCC/mnist_32_c3", trust_remote_code=True)

print(f"Train samples: {len(dataset['train'])}")
print(f"Test samples: {len(dataset['test'])}")

# Access a sample
sample = dataset['train'][0]
print(f"Image shape: {sample['image'].size}")    # (32, 32)
print(f"Image mode: {sample['image'].mode}")     # RGB
print(f"Label: {sample['label']}")               # Integer: 0-9

Transformations Applied

The dataset preprocessing pipeline includes:

  1. Format Conversion: IDX → Parquet
  2. Channel Expansion: Grayscale → RGB (L → RGB)
  3. Resolution Upscaling: 28×28 → 32×32 (using PIL resize)
  4. Data Storage: Parquet format for efficient storage and loading
  5. Data Type: PIL Image objects for easy integration

Dataset Format

Each sample contains:

{
    'image': PIL.Image,    # 32×32 RGB image
    'label': int,          # Digit class (0-9)
}

Technical Details

  • Original Source: MNIST Database of Handwritten Digits
  • Format: Parquet files for efficient columnar storage
  • Preprocessing: Grayscale → RGB conversion, 28×28 → 32×32 upscaling
  • Loading: HuggingFace Datasets with custom GeneratorBasedBuilder
  • Compression: Parquet format provides built-in compression and fast access

Citation

@article{lecun1998mnist,
  title={The MNIST database of handwritten digits},
  author={LeCun, Yann and Bottou, L{\'e}on and Bengio, Yoshua and Haffner, Patrick},
  year={1998},
  url={http://yann.lecun.com/exdb/mnist/}
}

@misc{mnist32c3,
  title={MNIST 32×32 RGB Dataset},
  author={Enhanced MNIST for Modern Deep Learning},
  year={2024},
  note={Preprocessed version of original MNIST with RGB format and 32×32 resolution}
}

License

This dataset follows the same license as the original MNIST dataset. The original MNIST database is available under the Creative Commons Attribution-Share Alike 3.0 license.

Acknowledgments

  • Based on the original MNIST dataset by Yann LeCun, Corinna Cortes, and Christopher J.C. Burges
  • Enhanced for modern deep learning applications with RGB format and increased resolution
  • Compatible with HuggingFace Datasets ecosystem for seamless integration
  • Optimized for CNN architectures and transfer learning applications
Downloads last month
14,307