Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Job manager crashed while running this job (missing heartbeats).
Error code: JobManagerCrashedError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
image
image |
|---|
End of preview.
UniCTokens Dataset
Version · 2025-10-24
1 Data Overview
| Item | Description |
|---|---|
| Total concepts | 20 (Human × 10 · Animal × 5 · Object × 5) |
| Images per concept | N ≈ 10 – 15 (already split into train / test) |
| Negative samples | random_images/ (100 random irrelevant images) + negative_example/ (hard negatives) |
2 Benchmark Tasks
2.1 MMU (Multi-Modal Understanding)
| Sub-task | Source files | Evaluation focus |
|---|---|---|
| Text-Only QA | test/<concept>/text_only.json |
Check whether the model remembers concept knowledge (no image) |
| VQA | test/<concept>/vqa.json + image |
Visual question answering about the concept image |
| Rec | test/*.png |
Pure visual recognition capability |
2.2 T2I (Text-to-Image Generation)
| Mode | Input | Metrics |
|---|---|---|
| Vanilla generation | Prompts from the DreamBooth Dataset → target-concept images | CLIP-I / CLIP-T · ArcFace similarity |
| Personalized knowledge-driven | t2i_conditions.json |
Combined T2I-Score: must satisfy both visual & textual attributes |
3 Directory Structure
UniCTokens/
├── black_512x512.png # Pure black placeholder
├── concepts_list.json # List of 20 concept names
├── template.json # Template for generating training data
├── random_images/ # 100 simple negative samples for training
│ ├── 0.png
│ └── … 99.png
├── concept/ # 🔑 Concept data (train / test)
│ ├── train/
│ │ └── <concept_name>/ # 20 folders
│ │ ├── 0.png … N.png # Original training images
│ │ ├── cropped/ # Cropped regions
│ │ ├── info.json # Concept profile & extra info
│ │ ├── conversations.json # Training dialogues
│ │ ├── positive_recognitions.json # Positive QA pairs
│ │ ├── random_recognitions.json # Negative QA pairs
│ │ └── negative_example/ # Hard negatives + score.json
│ └── test/
│ └── <concept_name>/
│ ├── 0.png … 4.png
│ ├── text_only.json # Text-only QA
│ ├── vqa.json # VQA pairs
│ └── t2i_conditions.json # Conditions for knowledge-driven T2I
├── gen_showo_training_data.py # Script to create Stage-1/2/3 training files
├── gen_test_data.py # Script to create all evaluation files
└── README.md
4 Quick Start
Set the dataset root Open
gen_showo_training_data.pyandgen_test_data.py, changeDATA_ROOT = "/path/to/UniCTokens_Dataset"to the actual dataset path.
Generate data
# Create Stage-1/2/3 training samples python gen_showo_training_data.py # Create MMU & T2I evaluation samples python gen_test_data.py
5 License
The dataset is released under CC-BY-NC 4.0 and is intended for academic research only. Commercial use is not permitted.
6 Citation
@article{an2025unictokens,
title={UniCTokens: Boosting Personalized Understanding and Generation via Unified Concept Tokens},
author={An, Ruichuan and Yang, Sihan and Zhang, Renrui and Shen, Zijun and Lu, Ming and Dai, Gaole and Liang, Hao and Guo, Ziyu and Yan, Shilin and Luo, Yulin and others},
journal={arXiv preprint arXiv:2505.14671},
year={2025}
}
7 Contact
- GitHub Issues: https://github.com/arctanxarc/UniCTokens/issues
- Email: [email protected]
- Downloads last month
- 12