HankYang428 commited on
Commit
332df6e
·
verified ·
1 Parent(s): b597fe9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md CHANGED
@@ -1,3 +1,115 @@
1
  ---
2
  license: mit
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ task_categories:
4
+ - image-to-text
5
+ - text-to-image
6
+ language:
7
+ - en
8
  ---
9
+ # UniCTokens Dataset
10
+
11
+ *Version · 2025-10-24*
12
+
13
+
14
+ ## 1 Data Overview
15
+
16
+ | Item | Description |
17
+ | ---------------------- | -------------------------------------------------------------------------------------- |
18
+ | **Total concepts** | 20 (Human × 10 · Animal × 5 · Object × 5) |
19
+ | **Images per concept** | **N ≈ 10 – 15** (already split into *train* / *test*) |
20
+ | **Negative samples** | `random_images/` (100 random irrelevant images) + `negative_example/` (hard negatives) |
21
+
22
+
23
+ ## 2 Benchmark Tasks
24
+
25
+ ### 2.1 MMU (Multi-Modal Understanding)
26
+
27
+ | Sub-task | Source files | Evaluation focus |
28
+ | ---------------- | --------------------------------- | ---------------------------------------------------------------- |
29
+ | **Text-Only QA** | `test/<concept>/text_only.json` | Check whether the model remembers concept knowledge (no image) |
30
+ | **VQA** | `test/<concept>/vqa.json` + image | Visual question answering about the concept image |
31
+ | **Rec** | `test/*.png` | Pure visual recognition capability |
32
+
33
+ ### 2.2 T2I (Text-to-Image Generation)
34
+
35
+ | Mode | Input | Metrics |
36
+ | --------------------------------- | --------------------------------------------------------------- | ----------------------------------------------------------------- |
37
+ | **Vanilla generation** | Prompts from the DreamBooth Dataset → target-concept images | CLIP-I / CLIP-T · ArcFace similarity |
38
+ | **Personalized knowledge-driven** | `t2i_conditions.json` | Combined T2I-Score: must satisfy both visual & textual attributes |
39
+
40
+
41
+ ## 3 Directory Structure
42
+
43
+ ```text
44
+ UniCTokens/
45
+ ├── black_512x512.png # Pure black placeholder
46
+ ├── concepts_list.json # List of 20 concept names
47
+ ├── template.json # Template for generating training data
48
+ ├── random_images/ # 100 simple negative samples for training
49
+ │ ├── 0.png
50
+ │ └── … 99.png
51
+ ├── concept/ # 🔑 Concept data (train / test)
52
+ │ ├── train/
53
+ │ │ └── <concept_name>/ # 20 folders
54
+ │ │ ├── 0.png … N.png # Original training images
55
+ │ │ ├── cropped/ # Cropped regions
56
+ │ │ ├── info.json # Concept profile & extra info
57
+ │ │ ├── conversations.json # Training dialogues
58
+ │ │ ├── positive_recognitions.json # Positive QA pairs
59
+ │ │ ├── random_recognitions.json # Negative QA pairs
60
+ │ │ └── negative_example/ # Hard negatives + score.json
61
+ │ └── test/
62
+ │ └── <concept_name>/
63
+ │ ├── 0.png … 4.png
64
+ │ ├── text_only.json # Text-only QA
65
+ │ ├── vqa.json # VQA pairs
66
+ │ └── t2i_conditions.json # Conditions for knowledge-driven T2I
67
+ ├── gen_showo_training_data.py # Script to create Stage-1/2/3 training files
68
+ ├── gen_test_data.py # Script to create all evaluation files
69
+ └── README.md
70
+ ```
71
+
72
+
73
+ ## 4 Quick Start
74
+
75
+ 1. **Set the dataset root**
76
+ Open `gen_showo_training_data.py` and `gen_test_data.py`, change
77
+
78
+ ```python
79
+ DATA_ROOT = "/path/to/UniCTokens_Dataset"
80
+ ```
81
+
82
+ to the actual dataset path.
83
+
84
+ 2. **Generate data**
85
+
86
+ ```bash
87
+ # Create Stage-1/2/3 training samples
88
+ python gen_showo_training_data.py
89
+
90
+ # Create MMU & T2I evaluation samples
91
+ python gen_test_data.py
92
+ ```
93
+
94
+
95
+ ## 5 License
96
+
97
+ The dataset is released under **CC-BY-NC 4.0** and is intended for academic research **only**. Commercial use is not permitted.
98
+
99
+
100
+ ## 6 Citation
101
+
102
+ ```bibtex
103
+ @article{an2025unictokens,
104
+ title={UniCTokens: Boosting Personalized Understanding and Generation via Unified Concept Tokens},
105
+ author={An, Ruichuan and Yang, Sihan and Zhang, Renrui and Shen, Zijun and Lu, Ming and Dai, Gaole and Liang, Hao and Guo, Ziyu and Yan, Shilin and Luo, Yulin and others},
106
+ journal={arXiv preprint arXiv:2505.14671},
107
+ year={2025}
108
+ }
109
+ ```
110
+
111
+
112
+ ## 7 Contact
113
+
114
+ * GitHub Issues: [https://github.com/arctanxarc/UniCTokens/issues](https://github.com/arctanxarc/UniCTokens/issues)
115
+ * Email: [[email protected]](mailto:[email protected])