text
stringlengths 0
1.46k
|
---|
Exposes custom classes/functions to Keras deserialization internals.
|
Under a scope with custom_object_scope(objects_dict), Keras methods such as tf.keras.models.load_model or tf.keras.models.model_from_config will be able to deserialize any custom object referenced by a saved config (e.g. a custom layer or metric).
|
Example
|
Consider a custom regularizer my_regularizer:
|
layer = Dense(3, kernel_regularizer=my_regularizer)
|
config = layer.get_config() # Config contains a reference to `my_regularizer`
|
...
|
# Later:
|
with custom_object_scope({'my_regularizer': my_regularizer}):
|
layer = Dense.from_config(config)
|
Arguments
|
*args: Dictionary or dictionaries of {name: object} pairs.
|
get_custom_objects function
|
tf.keras.utils.get_custom_objects()
|
Retrieves a live reference to the global dictionary of custom objects.
|
Updating and clearing custom objects using custom_object_scope is preferred, but get_custom_objects can be used to directly access the current collection of custom objects.
|
Example
|
get_custom_objects().clear()
|
get_custom_objects()['MyObject'] = MyObject
|
Returns
|
Global dictionary of names to classes (_GLOBAL_CUSTOM_OBJECTS).
|
register_keras_serializable function
|
tf.keras.utils.register_keras_serializable(package="Custom", name=None)
|
Registers an object with the Keras serialization framework.
|
This decorator injects the decorated class or function into the Keras custom object dictionary, so that it can be serialized and deserialized without needing an entry in the user-provided custom object dict. It also injects a function that Keras will call to get the object's serializable string key.
|
Note that to be serialized and deserialized, classes must implement the get_config() method. Functions do not have this requirement.
|
The object will be registered under the key 'package>name' where name, defaults to the object name if not passed.
|
Arguments
|
package: The package that this class belongs to.
|
name: The name to serialize this class under in this package. If None, the class' name will be used.
|
Returns
|
A decorator that registers the decorated class with the passed names.
|
serialize_keras_object function
|
tf.keras.utils.serialize_keras_object(instance)
|
Serialize a Keras object into a JSON-compatible representation.
|
Calls to serialize_keras_object while underneath the SharedObjectSavingScope context manager will cause any objects re-used across multiple layers to be saved with a special shared object ID. This allows the network to be re-created properly during deserialization.
|
Arguments
|
instance: The object to serialize.
|
Returns
|
A dict-like, JSON-compatible representation of the object's config.
|
deserialize_keras_object function
|
tf.keras.utils.deserialize_keras_object(
|
identifier, module_objects=None, custom_objects=None, printable_module_name="object"
|
)
|
Turns the serialized form of a Keras object back into an actual object.
|
This function is for mid-level library implementers rather than end users.
|
Importantly, this utility requires you to provide the dict of module_objects to use for looking up the object config; this is not populated by default. If you need a deserialization utility that has preexisting knowledge of built-in Keras objects, use e.g. keras.layers.deserialize(config), keras.metrics.deserialize(config), etc.
|
Calling deserialize_keras_object while underneath the SharedObjectLoadingScope context manager will cause any already-seen shared objects to be returned as-is rather than creating a new object.
|
Arguments
|
identifier: the serialized form of the object.
|
module_objects: A dictionary of built-in objects to look the name up in. Generally, module_objects is provided by midlevel library implementers.
|
custom_objects: A dictionary of custom objects to look the name up in. Generally, custom_objects is provided by the end user.
|
printable_module_name: A human-readable string representing the type of the object. Printed in case of exception.
|
Returns
|
The deserialized object.
|
Example
|
A mid-level library implementer might want to implement a utility for retrieving an object from its config, as such:
|
def deserialize(config, custom_objects=None):
|
return deserialize_keras_object(
|
identifier,
|
module_objects=globals(),
|
custom_objects=custom_objects,
|
name="MyObjectType",
|
)
|
This is how e.g. keras.layers.deserialize() is implemented.Python & NumPy utilities
|
to_categorical function
|
tf.keras.utils.to_categorical(y, num_classes=None, dtype="float32")
|
Converts a class vector (integers) to binary class matrix.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.