The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationError
Exception: ArrowInvalid
Message: JSON parse error: The document is empty.
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 174, in _generate_tables
df = pandas_read_json(f)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
return pd.read_json(path_or_buf, **kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 791, in read_json
json_reader = JsonReader(
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 905, in __init__
self.data = self._preprocess_data(data)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 917, in _preprocess_data
data = data.read()
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 813, in read_with_retries
out = read(*args, **kwargs)
File "/usr/local/lib/python3.9/codecs.py", line 322, in decode
(result, consumed) = self._buffer_decode(data, self.errors, final)
UnicodeDecodeError: 'utf-8' codec can't decode byte 0x80 in position 55: invalid start byte
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1815, in _prepare_split_single
for _, table in generator:
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 692, in wrapped
for item in generator(*args, **kwargs):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 177, in _generate_tables
raise e
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 151, in _generate_tables
pa_table = paj.read_json(
File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json
File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: JSON parse error: The document is empty.
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1451, in compute_config_parquet_and_info_response
parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 994, in stream_convert_to_parquet
builder._prepare_split(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1858, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.exceptions.DatasetGenerationError: An error occurred while generating the datasetNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
video
string | segment
string | class
string | question
string | options
dict | id
string |
|---|---|---|---|---|---|
0SIK_5qpD70
|
0SIK_5qpD70_183.3_225.5.mp4
|
background_perception
|
What is the main background in the video?
|
{
"A": "restaurant",
"B": "hallway",
"C": "grassland",
"D": "wood"
}
|
1cad95c1-d13a-4ef0-b1c1-f7e753b5122f
|
0SIK_5qpD70
|
0SIK_5qpD70_183.3_225.5.mp4
|
background_perception
|
What is the main background in the video?
|
{
"A": "gas station",
"B": "snow-covered forest",
"C": "cemetery",
"D": "wooden cabin"
}
|
4bc6c552-c3d4-417a-80b2-4765b9d1b3a1
|
0Tv_3H07I_A
|
0Tv_3H07I_A_686.5_748.3.mp4
|
background_perception
|
Identify the background shown in the video.
|
{
"A": "wood",
"B": "garage",
"C": "restaurant",
"D": "snow-covered landscape"
}
|
2dda2f99-e630-41c8-a3c1-c5e1fc4b777b
|
0Tv_3H07I_A
|
0Tv_3H07I_A_686.5_748.3.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "mountain",
"B": "gas station",
"C": "sea",
"D": "road"
}
|
f3605276-d759-41fb-a5a2-1c0f2f5da101
|
0ezUzigjn9M
|
0ezUzigjn9M_569.6_594.2.mp4
|
background_perception
|
If you watched the video, which background would you most likely see?
|
{
"A": "traditional Japanese",
"B": "happiness",
"C": "park",
"D": "gas station"
}
|
d5bd4522-4971-45c8-92f9-e5500efb8edc
|
0fS-ess5_j4
|
0fS-ess5_j4_334.8_358.8.mp4
|
background_perception
|
If you watched the video, which background would you most likely see?
|
{
"A": "lakeside",
"B": "snow-covered landscape",
"C": "wood",
"D": "grassland"
}
|
15f8bb98-35bd-4c87-a9bc-8878e529dc63
|
0fS-ess5_j4
|
0fS-ess5_j4_334.8_358.8.mp4
|
background_perception
|
What background is depicted in the video?
|
{
"A": "traditional Chinese interior",
"B": "room",
"C": "park",
"D": "cemetery"
}
|
8243d98b-47cf-4123-8e37-06c304948e0a
|
0gGpl10yTC4
|
0gGpl10yTC4_647.0_651.8.mp4
|
background_perception
|
If you watched the video, which background would you most likely see?
|
{
"A": "traditional Japanese",
"B": "ship",
"C": "grassland",
"D": "room"
}
|
7f517862-f383-407d-8434-038f0dff11b5
|
1BrPvIFGgLs
|
1BrPvIFGgLs_307.7_333.7.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "room",
"B": "snow-covered forest",
"C": "club",
"D": "mountain"
}
|
ec4eb3dc-834c-437d-b789-bb8448f54144
|
1NoRo-Yn5Lg
|
1NoRo-Yn5Lg_1031.0_1068.7.mp4
|
background_perception
|
Identify the background shown in the video.
|
{
"A": "beach",
"B": "gas station",
"C": "happiness",
"D": "traditional Japanese"
}
|
46b26188-471f-412b-9505-3edf53320902
|
1NoRo-Yn5Lg
|
1NoRo-Yn5Lg_1031.0_1068.7.mp4
|
background_perception
|
What is the main background in the video?
|
{
"A": "street",
"B": "anger",
"C": "room",
"D": "hospital"
}
|
a2ae0a4d-8bc2-48ff-bd0e-2a1d755b9f1c
|
1NoRo-Yn5Lg
|
1NoRo-Yn5Lg_1031.0_1068.7.mp4
|
background_perception
|
If you watched the video, which background would you most likely see?
|
{
"A": "park",
"B": "snow-covered landscape",
"C": "sea",
"D": "restaurant"
}
|
df1434c1-b697-482a-8f79-92c8b1c45335
|
1WxdMR-DPKE
|
1WxdMR-DPKE_467.8_504.6.mp4
|
background_perception
|
Identify the background shown in the video.
|
{
"A": "house",
"B": "wooden cabin",
"C": "anger",
"D": "snow-covered landscape"
}
|
c4673b5e-f4bb-4d29-8159-739905bc86e3
|
1WxdMR-DPKE
|
1WxdMR-DPKE_467.8_504.6.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "mountain",
"B": "gas station",
"C": "bus",
"D": "traditional Japanese"
}
|
fcb73b5f-59cc-4b62-a2bd-7ece5d80ccd5
|
1WxdMR-DPKE
|
1WxdMR-DPKE_467.8_504.6.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "traditional Chinese interior",
"B": "room",
"C": "snow-covered forest",
"D": "street"
}
|
1c571182-aa42-424a-8817-168d5c3f3da1
|
1a8l3g29pDI
|
1a8l3g29pDI_410.6_433.9.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "snow-covered landscape",
"B": "road",
"C": "anger",
"D": "house"
}
|
53f97a78-2d43-4c60-a0bf-7fd97ab43101
|
1a8l3g29pDI
|
1a8l3g29pDI_410.6_433.9.mp4
|
background_perception
|
If you watched the video, which background would you most likely see?
|
{
"A": "house",
"B": "wood",
"C": "sea",
"D": "hospital"
}
|
347c04d1-52d2-492d-ba94-ebd05258a638
|
1b5_v1mo_RU
|
1b5_v1mo_RU_409.4_434.2.mp4
|
background_perception
|
Identify the background shown in the video.
|
{
"A": "street",
"B": "grassland",
"C": "wooden cabin",
"D": "mountain"
}
|
21293e29-267d-4aa0-b621-e64809c8c00e
|
1b5_v1mo_RU
|
1b5_v1mo_RU_409.4_434.2.mp4
|
background_perception
|
What is the main background in the video?
|
{
"A": "wood",
"B": "wooden cabin",
"C": "room",
"D": "sea"
}
|
cf22cc51-7d8a-4d89-984f-36427cd24489
|
1nUZ7oa0gac
|
1nUZ7oa0gac_386.1_407.7.mp4
|
background_perception
|
Identify the background shown in the video.
|
{
"A": "room",
"B": "ancient ruin",
"C": "stone walls",
"D": "anger"
}
|
454fbc53-167f-4882-8964-62682d950000
|
2HnjL8xjgDg
|
2HnjL8xjgDg_592.7_622.1.mp4
|
background_perception
|
What is the main background in the video?
|
{
"A": "room",
"B": "construction site",
"C": "bus",
"D": "ship"
}
|
69ddbcd7-cf59-4167-ad4b-41b8bc1d1d05
|
2IA3AXpAdEg
|
2IA3AXpAdEg_279.6_301.5.mp4
|
background_perception
|
What is the main background in the video?
|
{
"A": "bus",
"B": "anger",
"C": "snow-covered forest",
"D": "club"
}
|
3e7ee337-e09b-45e6-b133-958f888e639e
|
2IA3AXpAdEg
|
2IA3AXpAdEg_279.6_301.5.mp4
|
background_perception
|
What is the main background in the video?
|
{
"A": "grassland",
"B": "bus",
"C": "happiness",
"D": "ship"
}
|
7277d7f3-a161-48ee-8c8f-61fbb8917747
|
2IMX7cClIlM
|
2IMX7cClIlM_908.3_933.2.mp4
|
background_perception
|
What background is depicted in the video?
|
{
"A": "gas station",
"B": "club",
"C": "room",
"D": "traditional Japanese"
}
|
4a9f54c2-5a25-415f-9161-3274cf706430
|
2utkDaK0Ki0
|
2utkDaK0Ki0_408.6_434.6.mp4
|
background_perception
|
If you watched the video, which background would you most likely see?
|
{
"A": "wooden cabin",
"B": "traditional Japanese",
"C": "gas station",
"D": "road"
}
|
b9cd3a07-bb24-4dcd-86c7-28b5f17f895c
|
2utkDaK0Ki0
|
2utkDaK0Ki0_408.6_434.6.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "house",
"B": "park",
"C": "beach",
"D": "wood"
}
|
bbff7735-3b7c-4a5f-bf56-20e348864a8e
|
2utkDaK0Ki0
|
2utkDaK0Ki0_408.6_434.6.mp4
|
background_perception
|
What background is depicted in the video?
|
{
"A": "room",
"B": "hallway",
"C": "gas station",
"D": "beach"
}
|
0b8193d2-9e0a-4703-bc49-95c8d2613768
|
2vycPw7vwjE
|
2vycPw7vwjE_862.6_894.8.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "room",
"B": "traditional Chinese interior",
"C": "snow-covered forest",
"D": "house"
}
|
37691ff2-b701-4f85-b015-379a57f56a6f
|
3DvMcq-YfIw
|
3DvMcq-YfIw_754.2_798.3.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "room",
"B": "mountain",
"C": "road",
"D": "traditional Japanese"
}
|
ad249cfc-26c6-4f2a-a2b6-0633b80f6ecb
|
3DvMcq-YfIw
|
3DvMcq-YfIw_754.2_798.3.mp4
|
background_perception
|
What background is depicted in the video?
|
{
"A": "house",
"B": "street",
"C": "restaurant",
"D": "traditional Chinese interior"
}
|
80dbb332-887b-4910-9916-3d69b53072e2
|
3HxMFKnB3eA
|
3HxMFKnB3eA_171.3_205.6.mp4
|
background_perception
|
If you watched the video, which background would you most likely see?
|
{
"A": "bus",
"B": "ancient ruin",
"C": "hallway",
"D": "traditional Chinese interior"
}
|
e18f7751-30e4-4053-bcc5-3aa4a1faf688
|
3HxMFKnB3eA
|
3HxMFKnB3eA_171.3_205.6.mp4
|
background_perception
|
Identify the background shown in the video.
|
{
"A": "room",
"B": "garage",
"C": "restaurant",
"D": "sea"
}
|
642ad95a-242d-4603-8628-eb0b7214d376
|
3NX988kYR80
|
3NX988kYR80_584.4_625.2.mp4
|
background_perception
|
What is the main background in the video?
|
{
"A": "beach",
"B": "park",
"C": "ancient ruin",
"D": "gas station"
}
|
d13813ce-f209-4875-b881-c8b2a6255142
|
3NX988kYR80
|
3NX988kYR80_584.4_625.2.mp4
|
background_perception
|
Identify the background shown in the video.
|
{
"A": "stone walls",
"B": "wooden cabin",
"C": "park",
"D": "snow-covered landscape"
}
|
f542c88d-92a4-46df-8d30-32ed7ad804b3
|
3NX988kYR80
|
3NX988kYR80_584.4_625.2.mp4
|
background_perception
|
Identify the background shown in the video.
|
{
"A": "hospital",
"B": "room",
"C": "wooden cabin",
"D": "park"
}
|
5d9ebc68-ffe2-4384-af9c-513e2cbcd463
|
3OED5hnqohY
|
3OED5hnqohY_694.9_722.3.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "construction site",
"B": "room",
"C": "street",
"D": "wood"
}
|
39f3c9ae-0ad6-4266-9b5f-c44b9c420bd7
|
3OED5hnqohY
|
3OED5hnqohY_694.9_722.3.mp4
|
background_perception
|
What background is depicted in the video?
|
{
"A": "wooden cabin",
"B": "house",
"C": "gas station",
"D": "construction site"
}
|
4c29dd2e-099d-4963-a847-54bc6d30b116
|
3OED5hnqohY
|
3OED5hnqohY_694.9_722.3.mp4
|
background_perception
|
If you watched the video, which background would you most likely see?
|
{
"A": "wooden cabin",
"B": "hospital",
"C": "garage",
"D": "snow-covered forest"
}
|
eeb0919f-46ef-44e6-8262-6c18d0cb3534
|
3OED5hnqohY
|
3OED5hnqohY_694.9_722.3.mp4
|
background_perception
|
What background is depicted in the video?
|
{
"A": "street",
"B": "construction site",
"C": "snow-covered forest",
"D": "road"
}
|
6004d231-6cdc-40f3-a972-dc9faf2a1295
|
3OED5hnqohY
|
3OED5hnqohY_694.9_722.3.mp4
|
background_perception
|
Identify the background shown in the video.
|
{
"A": "mountain",
"B": "club",
"C": "room",
"D": "snow-covered landscape"
}
|
092381c9-6e62-46a2-a79f-7994d880ef5b
|
3XYiJ4lOvno
|
3XYiJ4lOvno_551.4_573.5.mp4
|
background_perception
|
What background is depicted in the video?
|
{
"A": "club",
"B": "hospital",
"C": "traditional Japanese",
"D": "garage"
}
|
ee6a2db6-9e61-4445-87b2-f3c4ed7a0b29
|
3XYiJ4lOvno
|
3XYiJ4lOvno_551.4_573.5.mp4
|
background_perception
|
What is the main background in the video?
|
{
"A": "park",
"B": "street",
"C": "sea",
"D": "construction site"
}
|
bf4edbde-97db-4448-b6c4-fcc79a1dbf9d
|
3XYiJ4lOvno
|
3XYiJ4lOvno_551.4_573.5.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "hallway",
"B": "wooden cabin",
"C": "ship",
"D": "stone walls"
}
|
d822a4eb-87fb-415d-b96f-024778cc44ec
|
3XYiJ4lOvno
|
3XYiJ4lOvno_551.4_573.5.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "gas station",
"B": "bus",
"C": "stone walls",
"D": "cemetery"
}
|
051d8be1-4dbe-42ac-8827-29b83d18d218
|
3_bGBtBzLh8
|
3_bGBtBzLh8_366.4_398.8.mp4
|
background_perception
|
If you watched the video, which background would you most likely see?
|
{
"A": "hospital",
"B": "ship",
"C": "wood",
"D": "beach"
}
|
d5bc31c3-304c-4547-a5ce-749282a62299
|
3_bGBtBzLh8
|
3_bGBtBzLh8_366.4_398.8.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "house",
"B": "sea",
"C": "room",
"D": "ship"
}
|
28809473-a5f7-441f-8b53-e28abcd55d56
|
3et3W58mCqE
|
3et3W58mCqE_247.6_279.7.mp4
|
background_perception
|
What is the main background in the video?
|
{
"A": "traditional Japanese",
"B": "room",
"C": "cemetery",
"D": "garage"
}
|
044e3af6-4da4-45ef-af80-0b442890ee53
|
3izdurhIYAQ
|
3izdurhIYAQ_408.4_432.0.mp4
|
background_perception
|
What is the main background in the video?
|
{
"A": "beach",
"B": "restaurant",
"C": "bus",
"D": "street"
}
|
23995585-698f-4503-8b08-12d94b736be0
|
3izdurhIYAQ
|
3izdurhIYAQ_408.4_432.0.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "anger",
"B": "wooden cabin",
"C": "mountain",
"D": "hallway"
}
|
0d036a94-9e7f-418b-9a2d-9841952bfbec
|
3uLTVntlV_Q
|
3uLTVntlV_Q_0.3_9.0.mp4
|
background_perception
|
What is the main background in the video?
|
{
"A": "mountain",
"B": "beach",
"C": "restaurant",
"D": "sea"
}
|
58555850-2335-427a-9617-1f278abe5fe3
|
3yEhgfR0_eI
|
3yEhgfR0_eI_67.7_106.2.mp4
|
background_perception
|
If you watched the video, which background would you most likely see?
|
{
"A": "gas station",
"B": "construction site",
"C": "hallway",
"D": "mountain"
}
|
27de32bf-8990-41ab-be5c-6f01e9f83007
|
3yEhgfR0_eI
|
3yEhgfR0_eI_67.7_106.2.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "street",
"B": "hallway",
"C": "house",
"D": "grassland"
}
|
d36ce96f-b698-4fd1-a38c-83133c64edde
|
3yEhgfR0_eI
|
3yEhgfR0_eI_67.7_106.2.mp4
|
background_perception
|
What background is depicted in the video?
|
{
"A": "room",
"B": "traditional Chinese interior",
"C": "ancient ruin",
"D": "sea"
}
|
08432430-c267-4b2e-96c6-0fa123caf731
|
3zpf1GTL_xE
|
3zpf1GTL_xE_316.6_339.1.mp4
|
background_perception
|
Identify the background shown in the video.
|
{
"A": "ancient ruin",
"B": "park",
"C": "club",
"D": "bus"
}
|
00956eee-c1fc-41a0-bdbf-e0b2e4977235
|
3zpf1GTL_xE
|
3zpf1GTL_xE_316.6_339.1.mp4
|
background_perception
|
In the video, what is the most likely background?
|
{
"A": "room",
"B": "stone walls",
"C": "club",
"D": "cemetery"
}
|
82dd0e51-24f0-471a-b0fe-79fd1806971e
|
3zpf1GTL_xE
|
3zpf1GTL_xE_316.6_339.1.mp4
|
background_perception
|
What background is depicted in the video?
|
{
"A": "gas station",
"B": "sea",
"C": "street",
"D": "grassland"
}
|
81c8c355-bac2-49dd-87b9-13b85ad23f1e
|
4-l9wAgvAis
|
4-l9wAgvAis_20.8_42.1.mp4
|
background_perception
|
What is the main background in the video?
|
{
"A": "happiness",
"B": "room",
"C": "mountain",
"D": "gas station"
}
|
7c01743a-cb86-45ab-9bfd-5c0fafc7af8c
|
4-l9wAgvAis
|
4-l9wAgvAis_20.8_42.1.mp4
|
background_perception
|
Identify the background shown in the video.
|
{
"A": "park",
"B": "road",
"C": "wood",
"D": "hospital"
}
|
1d67c7bb-73a5-499c-b3d3-eb881c7ecb13
|
4-l9wAgvAis
|
4-l9wAgvAis_20.8_42.1.mp4
|
background_perception
|
If you watched the video, which background would you most likely see?
|
{
"A": "wooden cabin",
"B": "hallway",
"C": "construction site",
"D": "traditional Chinese interior"
}
|
bef7ec7b-c506-4dec-a6cc-8f0d9f09ade4
|
4NlTRzKQUXs
|
4NlTRzKQUXs_246.6_276.5.mp4
|
background_perception
|
Identify the background shown in the video.
|
{
"A": "ship",
"B": "wooden cabin",
"C": "traditional Chinese interior",
"D": "house"
}
|
a159adf0-8d57-42b0-a9c4-0cb6e352111e
|
4NlTRzKQUXs
|
4NlTRzKQUXs_246.6_276.5.mp4
|
background_perception
|
If you watched the video, which background would you most likely see?
|
{
"A": "club",
"B": "hallway",
"C": "snow-covered landscape",
"D": "hall"
}
|
409f53a6-a60b-4b76-b184-17256fc16c3f
|
4OviDC5JXLc
|
4OviDC5JXLc_450.5_499.6.mp4
|
background_perception
|
Identify the background shown in the video.
|
{
"A": "snow-covered forest",
"B": "grassland",
"C": "hospital",
"D": "club"
}
|
64855e2d-bb8d-4e9e-9953-60f0accdeeba
|
4OviDC5JXLc
|
4OviDC5JXLc_450.5_499.6.mp4
|
background_perception
|
Identify the background shown in the video.
|
{
"A": "club",
"B": "park",
"C": "cemetery",
"D": "room"
}
|
a924406d-1a6d-48db-a55e-d1005bb6e273
|
4OviDC5JXLc
|
4OviDC5JXLc_450.5_499.6.mp4
|
background_perception
|
What background is depicted in the video?
|
{
"A": "restaurant",
"B": "bus",
"C": "house",
"D": "snow-covered landscape"
}
|
a8181d44-30b9-4b39-aa22-eb2451afdce7
|
4SNM4n6Z8Y8
|
4SNM4n6Z8Y8_86.5_112.3.mp4
|
background_perception
|
What is the main background in the video?
|
{
"A": "street",
"B": "road",
"C": "cemetery",
"D": "room"
}
|
296b723e-9eb6-4b77-a01d-2fe9079b6dc9
|
0SIK_5qpD70
|
0SIK_5qpD70_183.3_225.5.mp4
|
CMP_perception
|
Which prop stood out in the scene?
|
{
"A": "alcohol bottle",
"B": "gun",
"C": "umbrella",
"D": "torch"
}
|
bc9b4df4-6bff-41b2-901f-1ff7fcd1f9c9
|
1b5_v1mo_RU
|
1b5_v1mo_RU_409.4_434.2.mp4
|
CMP_perception
|
What prop existed in the segment?
|
{
"A": "vehicle",
"B": "ring",
"C": "mirror",
"D": "cigarette"
}
|
91341081-bfe7-4e13-aa3a-7b6aeeca0ee0
|
0q7nKjcm-0c
|
0q7nKjcm-0c_731.8_755.5.mp4
|
CMP_perception
|
What prop is present in the segment??
|
{
"A": "cigarette",
"B": "chainsaw",
"C": "vehicle",
"D": "mobile phone"
}
|
2855b9ce-e0ec-4c88-9e58-29c1da73c650
|
0ezUzigjn9M
|
0ezUzigjn9M_569.6_594.2.mp4
|
CMP_perception
|
which prop is part of the scene?
|
{
"A": "gasolin",
"B": "sword",
"C": "gun",
"D": "bone"
}
|
e541f7c6-21f6-4114-bbbc-ac331254173c
|
0gGx-P9mRT8
|
0gGx-P9mRT8_27.1_42.4.mp4
|
CMP_perception
|
which prop is part of the scene?
|
{
"A": "bike",
"B": "torch",
"C": "umbrella",
"D": "spade"
}
|
4f1a1de7-e9e2-4148-acf1-bacaa99d4627
|
1BrPvIFGgLs
|
1BrPvIFGgLs_307.7_333.7.mp4
|
CMP_perception
|
What prop existed in the segment?
|
{
"A": "torch",
"B": "watch",
"C": "vehicle",
"D": "gun"
}
|
62e8c3e7-9bec-4a91-8d01-93914708bcfe
|
1WgP7dt5WBM
|
1WgP7dt5WBM_628.3_652.4.mp4
|
CMP_perception
|
What prop existed in the segment?
|
{
"A": "eye glasses",
"B": "watch",
"C": "cigarette",
"D": "sword"
}
|
43768ec7-ed91-4e5b-8473-f85f51e98927
|
1WxdMR-DPKE
|
1WxdMR-DPKE_467.8_504.6.mp4
|
CMP_perception
|
which kind of props is not present in the scene?
|
{
"A": "hammer",
"B": "vehicle",
"C": "gun",
"D": "watch"
}
|
b0c22671-89bf-4f8e-bb5a-d56882bae5ef
|
1nUZ7oa0gac
|
1nUZ7oa0gac_386.1_407.7.mp4
|
CMP_perception
|
which kind of prop exists in the scene?
|
{
"A": "lamp",
"B": "watch",
"C": "gun",
"D": "eye glasses"
}
|
1592dca4-9c03-484d-991a-4c44034b73f9
|
2vycPw7vwjE
|
2vycPw7vwjE_862.6_894.8.mp4
|
CMP_perception
|
Which prop is present in the segment?
|
{
"A": "cash",
"B": "lighter",
"C": "mirror",
"D": "map"
}
|
028b9708-90ca-47a0-a32e-784c6c26cf9e
|
7Fs1pRcLx5Y
|
7Fs1pRcLx5Y_163.0_179.1.mp4
|
CMP_perception
|
Which prop is present in the segment?
|
{
"A": "sword",
"B": "cash",
"C": "lighter",
"D": "mug"
}
|
5593b9f6-c579-475b-9519-0e94e6cfe14d
|
7zH_X_5m6WU
|
7zH_X_5m6WU_162.9_199.0.mp4
|
CMP_perception
|
What kind of prop is present in the scene?
|
{
"A": "mask",
"B": "toothbrush",
"C": "hammer",
"D": "cigarette"
}
|
4c72aead-4858-4603-a2ed-c74afaf5f3ca
|
8NYDjU2qfL4
|
8NYDjU2qfL4_511.4_544.6.mp4
|
CMP_perception
|
What kind of prop did not exist in the scene?
|
{
"A": "toothbrush",
"B": "cigarette",
"C": "mobile phone",
"D": "table"
}
|
0a347cd9-90a3-4fd2-bd30-316a33e8b6f1
|
8XkbzNFSXMQ
|
8XkbzNFSXMQ_250.1_280.0.mp4
|
CMP_perception
|
What kind of prop exists in the scene??
|
{
"A": "ring",
"B": "hammer",
"C": "gun",
"D": "cigarette"
}
|
c84c0a94-9a2f-433c-bc42-e9453ce82b2e
|
9AGnLhspslM
|
9AGnLhspslM_278.4_312.4.mp4
|
CMP_perception
|
which prop is part of the scene?
|
{
"A": "watch",
"B": "clock",
"C": "wine bottle",
"D": "sword"
}
|
176dcf26-2acf-4412-8711-6490c44e4929
|
2utkDaK0Ki0
|
2utkDaK0Ki0_408.6_434.6.mp4
|
CMP_perception
|
What kinds of apparel is present in the movie?
|
{
"A": "slipper",
"B": "cowboy_hat",
"C": "jeans",
"D": "shirt"
}
|
200cc716-c1e8-4ba1-b2d4-85e1e4f2f862
|
0gGpl10yTC4
|
0gGpl10yTC4_647.0_651.8.mp4
|
CMP_perception
|
What kind of cloth is present in the segment?
|
{
"A": "suit",
"B": "skirt",
"C": "cargo pant",
"D": "caftan"
}
|
13a5a468-c15e-4597-9a3c-3d617e69fcac
|
1nUZ7oa0gac
|
1nUZ7oa0gac_386.1_407.7.mp4
|
CMP_perception
|
What kinds of clothes are present in the segment?
|
{
"A": "denim jacket",
"B": "shirt",
"C": "blouse",
"D": "All of the above"
}
|
7e665dec-9fe2-4eca-8ae3-441fa56b5611
|
2vycPw7vwjE
|
2vycPw7vwjE_862.6_894.8.mp4
|
CMP_perception
|
Which option below is not part of the outfits in the segment?
|
{
"A": "suit",
"B": "sneakers",
"C": "shirt",
"D": "leather shoes"
}
|
9e1608c7-fdf6-405a-a822-f070beb1e7b4
|
3DvMcq-YfIw
|
3DvMcq-YfIw_754.2_798.3.mp4
|
CMP_perception
|
Which option below is not part of the outfits?
|
{
"A": "shirt",
"B": "suit",
"C": "tie",
"D": "sweatpants"
}
|
6d07cbd8-d5bb-4adf-8e8a-5fa81b5e318e
|
3zpf1GTL_xE
|
3zpf1GTL_xE_316.6_339.1.mp4
|
CMP_perception
|
Identify the parts of the outfit shown in the video.
|
{
"A": "hats",
"B": "T-shirt",
"C": "shirt",
"D": "All of above"
}
|
0c73535a-fe9c-4642-9d51-f64df7c1ae4c
|
4SNM4n6Z8Y8
|
4SNM4n6Z8Y8_86.5_112.3.mp4
|
CMP_perception
|
Identify the parts of the outfit not shown in the video.
|
{
"A": "shirt",
"B": "jacket",
"C": "sports top",
"D": "rings"
}
|
d24da0bc-dcc3-4300-bbb2-3be391b8dd36
|
4XxTXjrS8-s
|
4XxTXjrS8-s_576.3_602.9.mp4
|
CMP_perception
|
Which kind of costumes exists in the segment?
|
{
"A": "sweater",
"B": "sports top",
"C": "sweatpants",
"D": "jeans"
}
|
83f9ab9e-901f-4757-ad47-cf25279170f5
|
4pmfU5bLQm0
|
4pmfU5bLQm0_190.4_209.8.mp4
|
CMP_perception
|
Which part of outfits did not exist in the segment?
|
{
"A": "T-shirt",
"B": "vest",
"C": "suit",
"D": "sunglasses"
}
|
82475011-f034-411b-8884-c09b23d1bf82
|
4zgMrFCHjV0
|
4zgMrFCHjV0_553.7_586.8.mp4
|
CMP_perception
|
Which part of outfits did not exist in the segment?
|
{
"A": "hats",
"B": "hoodie",
"C": "suit",
"D": "eyeglasses"
}
|
3a17de0c-d059-42ac-8600-0cf0e2ab51ab
|
5YCnATdh45Q
|
5YCnATdh45Q_510.9_545.6.mp4
|
CMP_perception
|
What kind of makeup is present in the segment?
|
{
"A": "dirty camouflage makeup",
"B": "pin-up makeup",
"C": "glam makeup",
"D": "dewy makeup"
}
|
73e06337-89b6-494d-a2d5-5b1226237c1e
|
6Asx_XhPH80
|
6Asx_XhPH80_134.3_161.4.mp4
|
CMP_perception
|
What kind of makeup is present in the segment?
|
{
"A": "smoky eye makeup",
"B": "grunge makeup",
"C": "pin-up makeup",
"D": "natural makeup"
}
|
d2e7aa6b-7f99-4b3e-8a40-b020824f2d5e
|
8XkbzNFSXMQ
|
8XkbzNFSXMQ_250.1_280.0.mp4
|
CMP_perception
|
What kind of makeup is present in the segment?
|
{
"A": "grunge makeup",
"B": "camouflage makeup",
"C": "glam makeup",
"D": "gothic makeup"
}
|
177ae29f-8c0e-477a-8f5d-5bb1fab651ee
|
9oy1BKR0XHE
|
9oy1BKR0XHE_627.8_643.3.mp4
|
CMP_perception
|
What kind of makeup is present in the segment?
|
{
"A": "camouflage makeup",
"B": "gothic makeup",
"C": "avant-garde makeup",
"D": "natural makeup"
}
|
983d3ff8-09dd-4c89-8131-176980017646
|
9i9io_n3W7w
|
9i9io_n3W7w_5.6_35.4.mp4
|
CMP_perception
|
Indentify makeup types not present in the movie
|
{
"A": "e-boy makeup",
"B": "camouflage makeup",
"C": "fairy makeup",
"D": "All of above"
}
|
970d293f-4bf9-434a-9e7d-19ad5ad89495
|
0Qch0d93Sr4
|
0Qch0d93Sr4_508.2_578.0.mp4
|
scene_counting
|
What is the total number of scenes in the video?
|
{
"A": "15",
"B": "17",
"C": "11",
"D": "21"
}
|
eec7353e-3784-4b5a-9ad5-75f1ab11ff0f
|
0SIK_5qpD70
|
0SIK_5qpD70_183.3_225.5.mp4
|
scene_counting
|
Identify the number of scenes shown in the video.
|
{
"A": "2",
"B": "6",
"C": "10",
"D": "4"
}
|
646e630b-f24d-4c38-8c56-460b9e8ea55f
|
0Tv_3H07I_A
|
0Tv_3H07I_A_686.5_748.3.mp4
|
scene_counting
|
What is the number of different scenes in the video?
|
{
"A": "9",
"B": "11",
"C": "5",
"D": "7"
}
|
ea2f752b-c82d-43d1-8a65-948f22d2ff6a
|
0ezUzigjn9M
|
0ezUzigjn9M_569.6_594.2.mp4
|
scene_counting
|
What is the total number of scenes in the video?
|
{
"A": "8",
"B": "6",
"C": "4",
"D": "2"
}
|
ecf5a76d-63e8-435b-a8a1-2000224fe56d
|
0fS-ess5_j4
|
0fS-ess5_j4_334.8_358.8.mp4
|
scene_counting
|
How many distinct scenes are present in the video?
|
{
"A": "8",
"B": "6",
"C": "10",
"D": "4"
}
|
b065e211-4d63-4698-98ea-67d3e6480278
|
VidComposition Benchmark
π₯ Project Page | π Evaluation Space
The advancement of Multimodal Large Language Models (MLLMs) has enabled significant progress in multimodal understanding, expanding their capacity to analyze video content. However, existing evaluation benchmarks for MLLMs primarily focus on abstract video comprehension, lacking a detailed assessment of their ability to understand video compositions, the nuanced interpretation of how visual elements combine and interact within highly compiled video contexts. We introduce VidComposition, a new benchmark specifically designed to evaluate the video composition understanding capabilities of MLLMs using carefully curated compiled videos and cinematic-level annotations. VidComposition includes 982 videos with 1706 multiple-choice questions, covering various compositional aspects such as camera movement, angle, shot size, narrative structure, character actions and emotions, etc. Our comprehensive evaluation of 33 open-source and proprietary MLLMs reveals a significant performance gap between human and model capabilities. This highlights the limitations of current MLLMs in understanding complex, compiled video compositions and offers insights into areas for further improvement.
π Dataset Format
Each item in the dataset is a JSON object structured as follows [multi_choice.json]:
{
"video": "0SIK_5qpD70",
"segment": "0SIK_5qpD70_183.3_225.5.mp4",
"class": "background_perception",
"question": "What is the main background in the video?",
"options": {
"A": "restaurant",
"B": "hallway",
"C": "grassland",
"D": "wood"
},
"id": "1cad95c1-d13a-4ef0-b1c1-f7e753b5122f"
}
π§ͺ Evaluation
To evaluate your model on VidComposition, format your prediction file as follows:
[
{
"id": "1cad95c1-d13a-4ef0-b1c1-f7e753b5122f",
"model_answer": "A"
},
...
]
π Citation
If you like this dataset, please cite the following paper:
@article{tang2024vidcompostion,
title = {VidComposition: Can MLLMs Analyze Compositions in Compiled Videos?},
author = {Tang, Yunlong and Guo, Junjia and Hua, Hang and Liang, Susan and Feng, Mingqian and Li, Xinyang and Mao, Rui and Huang, Chao and Bi, Jing and Zhang, Zeliang and Fazli, Pooyan and Xu, Chenliang},
journal = {arXiv preprint arXiv:2411.10979},
year = {2024}
}
- Downloads last month
- 64