Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ArrowInvalid
Message:      JSON parse error: The document is empty.
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 174, in _generate_tables
                  df = pandas_read_json(f)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
                  return pd.read_json(path_or_buf, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 791, in read_json
                  json_reader = JsonReader(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 905, in __init__
                  self.data = self._preprocess_data(data)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 917, in _preprocess_data
                  data = data.read()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 813, in read_with_retries
                  out = read(*args, **kwargs)
                File "/usr/local/lib/python3.9/codecs.py", line 322, in decode
                  (result, consumed) = self._buffer_decode(data, self.errors, final)
              UnicodeDecodeError: 'utf-8' codec can't decode byte 0x80 in position 55: invalid start byte
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1815, in _prepare_split_single
                  for _, table in generator:
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 692, in wrapped
                  for item in generator(*args, **kwargs):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 177, in _generate_tables
                  raise e
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 151, in _generate_tables
                  pa_table = paj.read_json(
                File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: JSON parse error: The document is empty.
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1451, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 994, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1858, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

video
string
segment
string
class
string
question
string
options
dict
id
string
0SIK_5qpD70
0SIK_5qpD70_183.3_225.5.mp4
background_perception
What is the main background in the video?
{ "A": "restaurant", "B": "hallway", "C": "grassland", "D": "wood" }
1cad95c1-d13a-4ef0-b1c1-f7e753b5122f
0SIK_5qpD70
0SIK_5qpD70_183.3_225.5.mp4
background_perception
What is the main background in the video?
{ "A": "gas station", "B": "snow-covered forest", "C": "cemetery", "D": "wooden cabin" }
4bc6c552-c3d4-417a-80b2-4765b9d1b3a1
0Tv_3H07I_A
0Tv_3H07I_A_686.5_748.3.mp4
background_perception
Identify the background shown in the video.
{ "A": "wood", "B": "garage", "C": "restaurant", "D": "snow-covered landscape" }
2dda2f99-e630-41c8-a3c1-c5e1fc4b777b
0Tv_3H07I_A
0Tv_3H07I_A_686.5_748.3.mp4
background_perception
In the video, what is the most likely background?
{ "A": "mountain", "B": "gas station", "C": "sea", "D": "road" }
f3605276-d759-41fb-a5a2-1c0f2f5da101
0ezUzigjn9M
0ezUzigjn9M_569.6_594.2.mp4
background_perception
If you watched the video, which background would you most likely see?
{ "A": "traditional Japanese", "B": "happiness", "C": "park", "D": "gas station" }
d5bd4522-4971-45c8-92f9-e5500efb8edc
0fS-ess5_j4
0fS-ess5_j4_334.8_358.8.mp4
background_perception
If you watched the video, which background would you most likely see?
{ "A": "lakeside", "B": "snow-covered landscape", "C": "wood", "D": "grassland" }
15f8bb98-35bd-4c87-a9bc-8878e529dc63
0fS-ess5_j4
0fS-ess5_j4_334.8_358.8.mp4
background_perception
What background is depicted in the video?
{ "A": "traditional Chinese interior", "B": "room", "C": "park", "D": "cemetery" }
8243d98b-47cf-4123-8e37-06c304948e0a
0gGpl10yTC4
0gGpl10yTC4_647.0_651.8.mp4
background_perception
If you watched the video, which background would you most likely see?
{ "A": "traditional Japanese", "B": "ship", "C": "grassland", "D": "room" }
7f517862-f383-407d-8434-038f0dff11b5
1BrPvIFGgLs
1BrPvIFGgLs_307.7_333.7.mp4
background_perception
In the video, what is the most likely background?
{ "A": "room", "B": "snow-covered forest", "C": "club", "D": "mountain" }
ec4eb3dc-834c-437d-b789-bb8448f54144
1NoRo-Yn5Lg
1NoRo-Yn5Lg_1031.0_1068.7.mp4
background_perception
Identify the background shown in the video.
{ "A": "beach", "B": "gas station", "C": "happiness", "D": "traditional Japanese" }
46b26188-471f-412b-9505-3edf53320902
1NoRo-Yn5Lg
1NoRo-Yn5Lg_1031.0_1068.7.mp4
background_perception
What is the main background in the video?
{ "A": "street", "B": "anger", "C": "room", "D": "hospital" }
a2ae0a4d-8bc2-48ff-bd0e-2a1d755b9f1c
1NoRo-Yn5Lg
1NoRo-Yn5Lg_1031.0_1068.7.mp4
background_perception
If you watched the video, which background would you most likely see?
{ "A": "park", "B": "snow-covered landscape", "C": "sea", "D": "restaurant" }
df1434c1-b697-482a-8f79-92c8b1c45335
1WxdMR-DPKE
1WxdMR-DPKE_467.8_504.6.mp4
background_perception
Identify the background shown in the video.
{ "A": "house", "B": "wooden cabin", "C": "anger", "D": "snow-covered landscape" }
c4673b5e-f4bb-4d29-8159-739905bc86e3
1WxdMR-DPKE
1WxdMR-DPKE_467.8_504.6.mp4
background_perception
In the video, what is the most likely background?
{ "A": "mountain", "B": "gas station", "C": "bus", "D": "traditional Japanese" }
fcb73b5f-59cc-4b62-a2bd-7ece5d80ccd5
1WxdMR-DPKE
1WxdMR-DPKE_467.8_504.6.mp4
background_perception
In the video, what is the most likely background?
{ "A": "traditional Chinese interior", "B": "room", "C": "snow-covered forest", "D": "street" }
1c571182-aa42-424a-8817-168d5c3f3da1
1a8l3g29pDI
1a8l3g29pDI_410.6_433.9.mp4
background_perception
In the video, what is the most likely background?
{ "A": "snow-covered landscape", "B": "road", "C": "anger", "D": "house" }
53f97a78-2d43-4c60-a0bf-7fd97ab43101
1a8l3g29pDI
1a8l3g29pDI_410.6_433.9.mp4
background_perception
If you watched the video, which background would you most likely see?
{ "A": "house", "B": "wood", "C": "sea", "D": "hospital" }
347c04d1-52d2-492d-ba94-ebd05258a638
1b5_v1mo_RU
1b5_v1mo_RU_409.4_434.2.mp4
background_perception
Identify the background shown in the video.
{ "A": "street", "B": "grassland", "C": "wooden cabin", "D": "mountain" }
21293e29-267d-4aa0-b621-e64809c8c00e
1b5_v1mo_RU
1b5_v1mo_RU_409.4_434.2.mp4
background_perception
What is the main background in the video?
{ "A": "wood", "B": "wooden cabin", "C": "room", "D": "sea" }
cf22cc51-7d8a-4d89-984f-36427cd24489
1nUZ7oa0gac
1nUZ7oa0gac_386.1_407.7.mp4
background_perception
Identify the background shown in the video.
{ "A": "room", "B": "ancient ruin", "C": "stone walls", "D": "anger" }
454fbc53-167f-4882-8964-62682d950000
2HnjL8xjgDg
2HnjL8xjgDg_592.7_622.1.mp4
background_perception
What is the main background in the video?
{ "A": "room", "B": "construction site", "C": "bus", "D": "ship" }
69ddbcd7-cf59-4167-ad4b-41b8bc1d1d05
2IA3AXpAdEg
2IA3AXpAdEg_279.6_301.5.mp4
background_perception
What is the main background in the video?
{ "A": "bus", "B": "anger", "C": "snow-covered forest", "D": "club" }
3e7ee337-e09b-45e6-b133-958f888e639e
2IA3AXpAdEg
2IA3AXpAdEg_279.6_301.5.mp4
background_perception
What is the main background in the video?
{ "A": "grassland", "B": "bus", "C": "happiness", "D": "ship" }
7277d7f3-a161-48ee-8c8f-61fbb8917747
2IMX7cClIlM
2IMX7cClIlM_908.3_933.2.mp4
background_perception
What background is depicted in the video?
{ "A": "gas station", "B": "club", "C": "room", "D": "traditional Japanese" }
4a9f54c2-5a25-415f-9161-3274cf706430
2utkDaK0Ki0
2utkDaK0Ki0_408.6_434.6.mp4
background_perception
If you watched the video, which background would you most likely see?
{ "A": "wooden cabin", "B": "traditional Japanese", "C": "gas station", "D": "road" }
b9cd3a07-bb24-4dcd-86c7-28b5f17f895c
2utkDaK0Ki0
2utkDaK0Ki0_408.6_434.6.mp4
background_perception
In the video, what is the most likely background?
{ "A": "house", "B": "park", "C": "beach", "D": "wood" }
bbff7735-3b7c-4a5f-bf56-20e348864a8e
2utkDaK0Ki0
2utkDaK0Ki0_408.6_434.6.mp4
background_perception
What background is depicted in the video?
{ "A": "room", "B": "hallway", "C": "gas station", "D": "beach" }
0b8193d2-9e0a-4703-bc49-95c8d2613768
2vycPw7vwjE
2vycPw7vwjE_862.6_894.8.mp4
background_perception
In the video, what is the most likely background?
{ "A": "room", "B": "traditional Chinese interior", "C": "snow-covered forest", "D": "house" }
37691ff2-b701-4f85-b015-379a57f56a6f
3DvMcq-YfIw
3DvMcq-YfIw_754.2_798.3.mp4
background_perception
In the video, what is the most likely background?
{ "A": "room", "B": "mountain", "C": "road", "D": "traditional Japanese" }
ad249cfc-26c6-4f2a-a2b6-0633b80f6ecb
3DvMcq-YfIw
3DvMcq-YfIw_754.2_798.3.mp4
background_perception
What background is depicted in the video?
{ "A": "house", "B": "street", "C": "restaurant", "D": "traditional Chinese interior" }
80dbb332-887b-4910-9916-3d69b53072e2
3HxMFKnB3eA
3HxMFKnB3eA_171.3_205.6.mp4
background_perception
If you watched the video, which background would you most likely see?
{ "A": "bus", "B": "ancient ruin", "C": "hallway", "D": "traditional Chinese interior" }
e18f7751-30e4-4053-bcc5-3aa4a1faf688
3HxMFKnB3eA
3HxMFKnB3eA_171.3_205.6.mp4
background_perception
Identify the background shown in the video.
{ "A": "room", "B": "garage", "C": "restaurant", "D": "sea" }
642ad95a-242d-4603-8628-eb0b7214d376
3NX988kYR80
3NX988kYR80_584.4_625.2.mp4
background_perception
What is the main background in the video?
{ "A": "beach", "B": "park", "C": "ancient ruin", "D": "gas station" }
d13813ce-f209-4875-b881-c8b2a6255142
3NX988kYR80
3NX988kYR80_584.4_625.2.mp4
background_perception
Identify the background shown in the video.
{ "A": "stone walls", "B": "wooden cabin", "C": "park", "D": "snow-covered landscape" }
f542c88d-92a4-46df-8d30-32ed7ad804b3
3NX988kYR80
3NX988kYR80_584.4_625.2.mp4
background_perception
Identify the background shown in the video.
{ "A": "hospital", "B": "room", "C": "wooden cabin", "D": "park" }
5d9ebc68-ffe2-4384-af9c-513e2cbcd463
3OED5hnqohY
3OED5hnqohY_694.9_722.3.mp4
background_perception
In the video, what is the most likely background?
{ "A": "construction site", "B": "room", "C": "street", "D": "wood" }
39f3c9ae-0ad6-4266-9b5f-c44b9c420bd7
3OED5hnqohY
3OED5hnqohY_694.9_722.3.mp4
background_perception
What background is depicted in the video?
{ "A": "wooden cabin", "B": "house", "C": "gas station", "D": "construction site" }
4c29dd2e-099d-4963-a847-54bc6d30b116
3OED5hnqohY
3OED5hnqohY_694.9_722.3.mp4
background_perception
If you watched the video, which background would you most likely see?
{ "A": "wooden cabin", "B": "hospital", "C": "garage", "D": "snow-covered forest" }
eeb0919f-46ef-44e6-8262-6c18d0cb3534
3OED5hnqohY
3OED5hnqohY_694.9_722.3.mp4
background_perception
What background is depicted in the video?
{ "A": "street", "B": "construction site", "C": "snow-covered forest", "D": "road" }
6004d231-6cdc-40f3-a972-dc9faf2a1295
3OED5hnqohY
3OED5hnqohY_694.9_722.3.mp4
background_perception
Identify the background shown in the video.
{ "A": "mountain", "B": "club", "C": "room", "D": "snow-covered landscape" }
092381c9-6e62-46a2-a79f-7994d880ef5b
3XYiJ4lOvno
3XYiJ4lOvno_551.4_573.5.mp4
background_perception
What background is depicted in the video?
{ "A": "club", "B": "hospital", "C": "traditional Japanese", "D": "garage" }
ee6a2db6-9e61-4445-87b2-f3c4ed7a0b29
3XYiJ4lOvno
3XYiJ4lOvno_551.4_573.5.mp4
background_perception
What is the main background in the video?
{ "A": "park", "B": "street", "C": "sea", "D": "construction site" }
bf4edbde-97db-4448-b6c4-fcc79a1dbf9d
3XYiJ4lOvno
3XYiJ4lOvno_551.4_573.5.mp4
background_perception
In the video, what is the most likely background?
{ "A": "hallway", "B": "wooden cabin", "C": "ship", "D": "stone walls" }
d822a4eb-87fb-415d-b96f-024778cc44ec
3XYiJ4lOvno
3XYiJ4lOvno_551.4_573.5.mp4
background_perception
In the video, what is the most likely background?
{ "A": "gas station", "B": "bus", "C": "stone walls", "D": "cemetery" }
051d8be1-4dbe-42ac-8827-29b83d18d218
3_bGBtBzLh8
3_bGBtBzLh8_366.4_398.8.mp4
background_perception
If you watched the video, which background would you most likely see?
{ "A": "hospital", "B": "ship", "C": "wood", "D": "beach" }
d5bc31c3-304c-4547-a5ce-749282a62299
3_bGBtBzLh8
3_bGBtBzLh8_366.4_398.8.mp4
background_perception
In the video, what is the most likely background?
{ "A": "house", "B": "sea", "C": "room", "D": "ship" }
28809473-a5f7-441f-8b53-e28abcd55d56
3et3W58mCqE
3et3W58mCqE_247.6_279.7.mp4
background_perception
What is the main background in the video?
{ "A": "traditional Japanese", "B": "room", "C": "cemetery", "D": "garage" }
044e3af6-4da4-45ef-af80-0b442890ee53
3izdurhIYAQ
3izdurhIYAQ_408.4_432.0.mp4
background_perception
What is the main background in the video?
{ "A": "beach", "B": "restaurant", "C": "bus", "D": "street" }
23995585-698f-4503-8b08-12d94b736be0
3izdurhIYAQ
3izdurhIYAQ_408.4_432.0.mp4
background_perception
In the video, what is the most likely background?
{ "A": "anger", "B": "wooden cabin", "C": "mountain", "D": "hallway" }
0d036a94-9e7f-418b-9a2d-9841952bfbec
3uLTVntlV_Q
3uLTVntlV_Q_0.3_9.0.mp4
background_perception
What is the main background in the video?
{ "A": "mountain", "B": "beach", "C": "restaurant", "D": "sea" }
58555850-2335-427a-9617-1f278abe5fe3
3yEhgfR0_eI
3yEhgfR0_eI_67.7_106.2.mp4
background_perception
If you watched the video, which background would you most likely see?
{ "A": "gas station", "B": "construction site", "C": "hallway", "D": "mountain" }
27de32bf-8990-41ab-be5c-6f01e9f83007
3yEhgfR0_eI
3yEhgfR0_eI_67.7_106.2.mp4
background_perception
In the video, what is the most likely background?
{ "A": "street", "B": "hallway", "C": "house", "D": "grassland" }
d36ce96f-b698-4fd1-a38c-83133c64edde
3yEhgfR0_eI
3yEhgfR0_eI_67.7_106.2.mp4
background_perception
What background is depicted in the video?
{ "A": "room", "B": "traditional Chinese interior", "C": "ancient ruin", "D": "sea" }
08432430-c267-4b2e-96c6-0fa123caf731
3zpf1GTL_xE
3zpf1GTL_xE_316.6_339.1.mp4
background_perception
Identify the background shown in the video.
{ "A": "ancient ruin", "B": "park", "C": "club", "D": "bus" }
00956eee-c1fc-41a0-bdbf-e0b2e4977235
3zpf1GTL_xE
3zpf1GTL_xE_316.6_339.1.mp4
background_perception
In the video, what is the most likely background?
{ "A": "room", "B": "stone walls", "C": "club", "D": "cemetery" }
82dd0e51-24f0-471a-b0fe-79fd1806971e
3zpf1GTL_xE
3zpf1GTL_xE_316.6_339.1.mp4
background_perception
What background is depicted in the video?
{ "A": "gas station", "B": "sea", "C": "street", "D": "grassland" }
81c8c355-bac2-49dd-87b9-13b85ad23f1e
4-l9wAgvAis
4-l9wAgvAis_20.8_42.1.mp4
background_perception
What is the main background in the video?
{ "A": "happiness", "B": "room", "C": "mountain", "D": "gas station" }
7c01743a-cb86-45ab-9bfd-5c0fafc7af8c
4-l9wAgvAis
4-l9wAgvAis_20.8_42.1.mp4
background_perception
Identify the background shown in the video.
{ "A": "park", "B": "road", "C": "wood", "D": "hospital" }
1d67c7bb-73a5-499c-b3d3-eb881c7ecb13
4-l9wAgvAis
4-l9wAgvAis_20.8_42.1.mp4
background_perception
If you watched the video, which background would you most likely see?
{ "A": "wooden cabin", "B": "hallway", "C": "construction site", "D": "traditional Chinese interior" }
bef7ec7b-c506-4dec-a6cc-8f0d9f09ade4
4NlTRzKQUXs
4NlTRzKQUXs_246.6_276.5.mp4
background_perception
Identify the background shown in the video.
{ "A": "ship", "B": "wooden cabin", "C": "traditional Chinese interior", "D": "house" }
a159adf0-8d57-42b0-a9c4-0cb6e352111e
4NlTRzKQUXs
4NlTRzKQUXs_246.6_276.5.mp4
background_perception
If you watched the video, which background would you most likely see?
{ "A": "club", "B": "hallway", "C": "snow-covered landscape", "D": "hall" }
409f53a6-a60b-4b76-b184-17256fc16c3f
4OviDC5JXLc
4OviDC5JXLc_450.5_499.6.mp4
background_perception
Identify the background shown in the video.
{ "A": "snow-covered forest", "B": "grassland", "C": "hospital", "D": "club" }
64855e2d-bb8d-4e9e-9953-60f0accdeeba
4OviDC5JXLc
4OviDC5JXLc_450.5_499.6.mp4
background_perception
Identify the background shown in the video.
{ "A": "club", "B": "park", "C": "cemetery", "D": "room" }
a924406d-1a6d-48db-a55e-d1005bb6e273
4OviDC5JXLc
4OviDC5JXLc_450.5_499.6.mp4
background_perception
What background is depicted in the video?
{ "A": "restaurant", "B": "bus", "C": "house", "D": "snow-covered landscape" }
a8181d44-30b9-4b39-aa22-eb2451afdce7
4SNM4n6Z8Y8
4SNM4n6Z8Y8_86.5_112.3.mp4
background_perception
What is the main background in the video?
{ "A": "street", "B": "road", "C": "cemetery", "D": "room" }
296b723e-9eb6-4b77-a01d-2fe9079b6dc9
0SIK_5qpD70
0SIK_5qpD70_183.3_225.5.mp4
CMP_perception
Which prop stood out in the scene?
{ "A": "alcohol bottle", "B": "gun", "C": "umbrella", "D": "torch" }
bc9b4df4-6bff-41b2-901f-1ff7fcd1f9c9
1b5_v1mo_RU
1b5_v1mo_RU_409.4_434.2.mp4
CMP_perception
What prop existed in the segment?
{ "A": "vehicle", "B": "ring", "C": "mirror", "D": "cigarette" }
91341081-bfe7-4e13-aa3a-7b6aeeca0ee0
0q7nKjcm-0c
0q7nKjcm-0c_731.8_755.5.mp4
CMP_perception
What prop is present in the segment??
{ "A": "cigarette", "B": "chainsaw", "C": "vehicle", "D": "mobile phone" }
2855b9ce-e0ec-4c88-9e58-29c1da73c650
0ezUzigjn9M
0ezUzigjn9M_569.6_594.2.mp4
CMP_perception
which prop is part of the scene?
{ "A": "gasolin", "B": "sword", "C": "gun", "D": "bone" }
e541f7c6-21f6-4114-bbbc-ac331254173c
0gGx-P9mRT8
0gGx-P9mRT8_27.1_42.4.mp4
CMP_perception
which prop is part of the scene?
{ "A": "bike", "B": "torch", "C": "umbrella", "D": "spade" }
4f1a1de7-e9e2-4148-acf1-bacaa99d4627
1BrPvIFGgLs
1BrPvIFGgLs_307.7_333.7.mp4
CMP_perception
What prop existed in the segment?
{ "A": "torch", "B": "watch", "C": "vehicle", "D": "gun" }
62e8c3e7-9bec-4a91-8d01-93914708bcfe
1WgP7dt5WBM
1WgP7dt5WBM_628.3_652.4.mp4
CMP_perception
What prop existed in the segment?
{ "A": "eye glasses", "B": "watch", "C": "cigarette", "D": "sword" }
43768ec7-ed91-4e5b-8473-f85f51e98927
1WxdMR-DPKE
1WxdMR-DPKE_467.8_504.6.mp4
CMP_perception
which kind of props is not present in the scene?
{ "A": "hammer", "B": "vehicle", "C": "gun", "D": "watch" }
b0c22671-89bf-4f8e-bb5a-d56882bae5ef
1nUZ7oa0gac
1nUZ7oa0gac_386.1_407.7.mp4
CMP_perception
which kind of prop exists in the scene?
{ "A": "lamp", "B": "watch", "C": "gun", "D": "eye glasses" }
1592dca4-9c03-484d-991a-4c44034b73f9
2vycPw7vwjE
2vycPw7vwjE_862.6_894.8.mp4
CMP_perception
Which prop is present in the segment?
{ "A": "cash", "B": "lighter", "C": "mirror", "D": "map" }
028b9708-90ca-47a0-a32e-784c6c26cf9e
7Fs1pRcLx5Y
7Fs1pRcLx5Y_163.0_179.1.mp4
CMP_perception
Which prop is present in the segment?
{ "A": "sword", "B": "cash", "C": "lighter", "D": "mug" }
5593b9f6-c579-475b-9519-0e94e6cfe14d
7zH_X_5m6WU
7zH_X_5m6WU_162.9_199.0.mp4
CMP_perception
What kind of prop is present in the scene?
{ "A": "mask", "B": "toothbrush", "C": "hammer", "D": "cigarette" }
4c72aead-4858-4603-a2ed-c74afaf5f3ca
8NYDjU2qfL4
8NYDjU2qfL4_511.4_544.6.mp4
CMP_perception
What kind of prop did not exist in the scene?
{ "A": "toothbrush", "B": "cigarette", "C": "mobile phone", "D": "table" }
0a347cd9-90a3-4fd2-bd30-316a33e8b6f1
8XkbzNFSXMQ
8XkbzNFSXMQ_250.1_280.0.mp4
CMP_perception
What kind of prop exists in the scene??
{ "A": "ring", "B": "hammer", "C": "gun", "D": "cigarette" }
c84c0a94-9a2f-433c-bc42-e9453ce82b2e
9AGnLhspslM
9AGnLhspslM_278.4_312.4.mp4
CMP_perception
which prop is part of the scene?
{ "A": "watch", "B": "clock", "C": "wine bottle", "D": "sword" }
176dcf26-2acf-4412-8711-6490c44e4929
2utkDaK0Ki0
2utkDaK0Ki0_408.6_434.6.mp4
CMP_perception
What kinds of apparel is present in the movie?
{ "A": "slipper", "B": "cowboy_hat", "C": "jeans", "D": "shirt" }
200cc716-c1e8-4ba1-b2d4-85e1e4f2f862
0gGpl10yTC4
0gGpl10yTC4_647.0_651.8.mp4
CMP_perception
What kind of cloth is present in the segment?
{ "A": "suit", "B": "skirt", "C": "cargo pant", "D": "caftan" }
13a5a468-c15e-4597-9a3c-3d617e69fcac
1nUZ7oa0gac
1nUZ7oa0gac_386.1_407.7.mp4
CMP_perception
What kinds of clothes are present in the segment?
{ "A": "denim jacket", "B": "shirt", "C": "blouse", "D": "All of the above" }
7e665dec-9fe2-4eca-8ae3-441fa56b5611
2vycPw7vwjE
2vycPw7vwjE_862.6_894.8.mp4
CMP_perception
Which option below is not part of the outfits in the segment?
{ "A": "suit", "B": "sneakers", "C": "shirt", "D": "leather shoes" }
9e1608c7-fdf6-405a-a822-f070beb1e7b4
3DvMcq-YfIw
3DvMcq-YfIw_754.2_798.3.mp4
CMP_perception
Which option below is not part of the outfits?
{ "A": "shirt", "B": "suit", "C": "tie", "D": "sweatpants" }
6d07cbd8-d5bb-4adf-8e8a-5fa81b5e318e
3zpf1GTL_xE
3zpf1GTL_xE_316.6_339.1.mp4
CMP_perception
Identify the parts of the outfit shown in the video.
{ "A": "hats", "B": "T-shirt", "C": "shirt", "D": "All of above" }
0c73535a-fe9c-4642-9d51-f64df7c1ae4c
4SNM4n6Z8Y8
4SNM4n6Z8Y8_86.5_112.3.mp4
CMP_perception
Identify the parts of the outfit not shown in the video.
{ "A": "shirt", "B": "jacket", "C": "sports top", "D": "rings" }
d24da0bc-dcc3-4300-bbb2-3be391b8dd36
4XxTXjrS8-s
4XxTXjrS8-s_576.3_602.9.mp4
CMP_perception
Which kind of costumes exists in the segment?
{ "A": "sweater", "B": "sports top", "C": "sweatpants", "D": "jeans" }
83f9ab9e-901f-4757-ad47-cf25279170f5
4pmfU5bLQm0
4pmfU5bLQm0_190.4_209.8.mp4
CMP_perception
Which part of outfits did not exist in the segment?
{ "A": "T-shirt", "B": "vest", "C": "suit", "D": "sunglasses" }
82475011-f034-411b-8884-c09b23d1bf82
4zgMrFCHjV0
4zgMrFCHjV0_553.7_586.8.mp4
CMP_perception
Which part of outfits did not exist in the segment?
{ "A": "hats", "B": "hoodie", "C": "suit", "D": "eyeglasses" }
3a17de0c-d059-42ac-8600-0cf0e2ab51ab
5YCnATdh45Q
5YCnATdh45Q_510.9_545.6.mp4
CMP_perception
What kind of makeup is present in the segment?
{ "A": "dirty camouflage makeup", "B": "pin-up makeup", "C": "glam makeup", "D": "dewy makeup" }
73e06337-89b6-494d-a2d5-5b1226237c1e
6Asx_XhPH80
6Asx_XhPH80_134.3_161.4.mp4
CMP_perception
What kind of makeup is present in the segment?
{ "A": "smoky eye makeup", "B": "grunge makeup", "C": "pin-up makeup", "D": "natural makeup" }
d2e7aa6b-7f99-4b3e-8a40-b020824f2d5e
8XkbzNFSXMQ
8XkbzNFSXMQ_250.1_280.0.mp4
CMP_perception
What kind of makeup is present in the segment?
{ "A": "grunge makeup", "B": "camouflage makeup", "C": "glam makeup", "D": "gothic makeup" }
177ae29f-8c0e-477a-8f5d-5bb1fab651ee
9oy1BKR0XHE
9oy1BKR0XHE_627.8_643.3.mp4
CMP_perception
What kind of makeup is present in the segment?
{ "A": "camouflage makeup", "B": "gothic makeup", "C": "avant-garde makeup", "D": "natural makeup" }
983d3ff8-09dd-4c89-8131-176980017646
9i9io_n3W7w
9i9io_n3W7w_5.6_35.4.mp4
CMP_perception
Indentify makeup types not present in the movie
{ "A": "e-boy makeup", "B": "camouflage makeup", "C": "fairy makeup", "D": "All of above" }
970d293f-4bf9-434a-9e7d-19ad5ad89495
0Qch0d93Sr4
0Qch0d93Sr4_508.2_578.0.mp4
scene_counting
What is the total number of scenes in the video?
{ "A": "15", "B": "17", "C": "11", "D": "21" }
eec7353e-3784-4b5a-9ad5-75f1ab11ff0f
0SIK_5qpD70
0SIK_5qpD70_183.3_225.5.mp4
scene_counting
Identify the number of scenes shown in the video.
{ "A": "2", "B": "6", "C": "10", "D": "4" }
646e630b-f24d-4c38-8c56-460b9e8ea55f
0Tv_3H07I_A
0Tv_3H07I_A_686.5_748.3.mp4
scene_counting
What is the number of different scenes in the video?
{ "A": "9", "B": "11", "C": "5", "D": "7" }
ea2f752b-c82d-43d1-8a65-948f22d2ff6a
0ezUzigjn9M
0ezUzigjn9M_569.6_594.2.mp4
scene_counting
What is the total number of scenes in the video?
{ "A": "8", "B": "6", "C": "4", "D": "2" }
ecf5a76d-63e8-435b-a8a1-2000224fe56d
0fS-ess5_j4
0fS-ess5_j4_334.8_358.8.mp4
scene_counting
How many distinct scenes are present in the video?
{ "A": "8", "B": "6", "C": "10", "D": "4" }
b065e211-4d63-4698-98ea-67d3e6480278
End of preview.

VidComposition Benchmark

πŸ–₯ Project Page | πŸš€ Evaluation Space

The advancement of Multimodal Large Language Models (MLLMs) has enabled significant progress in multimodal understanding, expanding their capacity to analyze video content. However, existing evaluation benchmarks for MLLMs primarily focus on abstract video comprehension, lacking a detailed assessment of their ability to understand video compositions, the nuanced interpretation of how visual elements combine and interact within highly compiled video contexts. We introduce VidComposition, a new benchmark specifically designed to evaluate the video composition understanding capabilities of MLLMs using carefully curated compiled videos and cinematic-level annotations. VidComposition includes 982 videos with 1706 multiple-choice questions, covering various compositional aspects such as camera movement, angle, shot size, narrative structure, character actions and emotions, etc. Our comprehensive evaluation of 33 open-source and proprietary MLLMs reveals a significant performance gap between human and model capabilities. This highlights the limitations of current MLLMs in understanding complex, compiled video compositions and offers insights into areas for further improvement.


πŸ“ Dataset Format

Each item in the dataset is a JSON object structured as follows [multi_choice.json]:

{
  "video": "0SIK_5qpD70",
  "segment": "0SIK_5qpD70_183.3_225.5.mp4",
  "class": "background_perception",
  "question": "What is the main background in the video?",
  "options": {
    "A": "restaurant",
    "B": "hallway",
    "C": "grassland",
    "D": "wood"
  },
  "id": "1cad95c1-d13a-4ef0-b1c1-f7e753b5122f"
}

πŸ§ͺ Evaluation

To evaluate your model on VidComposition, format your prediction file as follows:

[
  {
    "id": "1cad95c1-d13a-4ef0-b1c1-f7e753b5122f",
    "model_answer": "A"
  },
  ...
]

πŸ“š Citation

If you like this dataset, please cite the following paper:

@article{tang2024vidcompostion,
  title = {VidComposition: Can MLLMs Analyze Compositions in Compiled Videos?},
  author = {Tang, Yunlong and Guo, Junjia and Hua, Hang and Liang, Susan and Feng, Mingqian and Li, Xinyang and Mao, Rui and Huang, Chao and Bi, Jing and Zhang, Zeliang and Fazli, Pooyan and Xu, Chenliang},
  journal = {arXiv preprint arXiv:2411.10979},
  year = {2024}
}
Downloads last month
64