Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Job manager crashed while running this job (missing heartbeats).
Error code:   JobManagerCrashedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

image
image
label
class label
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
End of preview.

CIFAR-10 - Object Recognition in Images

Benchmark dataset for object classification.
🖼️ 60,000 32x32 color images
🏷️ 10 classes
📁 Format: PNG, CSV
📦 Files: 4
🧪 Subset of the 80 million tiny images dataset


Dataset Summary

CIFAR-10 is a widely used computer vision dataset consisting of 60,000 32x32 color images in 10 mutually exclusive classes. It was created by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The dataset is a labeled subset of the 80 million tiny images dataset and is often used as a benchmark for image classification tasks.

This Hugging Face version mirrors the original Kaggle competition structure, including additional junk test images to discourage cheating.


Dataset Structure

Files Included

File Description
train.7z Training images in PNG format (50,000 images)
test.7z Test images in PNG format (300,000 images incl. junk)
trainLabels.csv Training image labels
sampleSubmission.csv Sample format for submission predictions

Label Classes

Each image is labeled with one of the following 10 classes:

  • airplane
  • automobile
  • bird
  • cat
  • deer
  • dog
  • frog
  • horse
  • ship
  • truck

Note: "automobile" includes sedans and SUVs; "truck" includes large trucks only (not pickups).


Data Splits

Split Number of Images
Train 50,000
Test 10,000 (scored) + 290,000 (junk)

Total: 300,000 test image predictions are required, though only 10,000 are scored.


Usage Example

from torchvision.datasets import CIFAR10
import torchvision.transforms as transforms

transform = transforms.Compose([
    transforms.ToTensor()
])

trainset = CIFAR10(root='./data', train=True, download=True, transform=transform)
testset = CIFAR10(root='./data', train=False, download=True, transform=transform)

Citation

If you use this dataset, please cite the original technical report:

@techreport{Krizhevsky2009LearningML,
  title={Learning Multiple Layers of Features from Tiny Images},
  author={Alex Krizhevsky},
  year={2009},
  institution={University of Toronto},
  url={https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf}
}
Downloads last month
194