id
int64 0
499
| hr_path
stringlengths 93
95
| lr_path
stringlengths 93
95
|
---|---|---|
0 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_0.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_0.npy
|
1 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_1.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_1.npy
|
2 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_10.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_10.npy
|
3 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_100.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_100.npy
|
4 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_101.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_101.npy
|
5 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_102.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_102.npy
|
6 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_103.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_103.npy
|
7 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_104.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_104.npy
|
8 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_105.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_105.npy
|
9 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_106.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_106.npy
|
10 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_107.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_107.npy
|
11 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_108.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_108.npy
|
12 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_109.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_109.npy
|
13 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_11.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_11.npy
|
14 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_110.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_110.npy
|
15 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_111.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_111.npy
|
16 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_112.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_112.npy
|
17 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_113.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_113.npy
|
18 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_114.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_114.npy
|
19 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_115.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_115.npy
|
20 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_116.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_116.npy
|
21 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_117.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_117.npy
|
22 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_118.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_118.npy
|
23 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_119.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_119.npy
|
24 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_12.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_12.npy
|
25 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_120.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_120.npy
|
26 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_121.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_121.npy
|
27 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_122.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_122.npy
|
28 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_123.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_123.npy
|
29 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_124.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_124.npy
|
30 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_125.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_125.npy
|
31 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_126.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_126.npy
|
32 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_127.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_127.npy
|
33 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_128.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_128.npy
|
34 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_129.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_129.npy
|
35 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_13.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_13.npy
|
36 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_130.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_130.npy
|
37 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_131.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_131.npy
|
38 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_132.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_132.npy
|
39 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_133.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_133.npy
|
40 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_134.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_134.npy
|
41 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_135.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_135.npy
|
42 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_136.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_136.npy
|
43 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_137.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_137.npy
|
44 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_138.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_138.npy
|
45 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_139.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_139.npy
|
46 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_14.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_14.npy
|
47 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_140.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_140.npy
|
48 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_141.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_141.npy
|
49 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_142.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_142.npy
|
50 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_143.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_143.npy
|
51 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_144.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_144.npy
|
52 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_145.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_145.npy
|
53 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_146.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_146.npy
|
54 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_147.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_147.npy
|
55 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_148.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_148.npy
|
56 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_149.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_149.npy
|
57 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_15.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_15.npy
|
58 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_150.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_150.npy
|
59 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_151.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_151.npy
|
60 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_152.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_152.npy
|
61 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_153.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_153.npy
|
62 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_154.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_154.npy
|
63 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_155.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_155.npy
|
64 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_156.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_156.npy
|
65 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_157.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_157.npy
|
66 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_158.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_158.npy
|
67 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_159.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_159.npy
|
68 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_16.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_16.npy
|
69 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_160.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_160.npy
|
70 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_161.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_161.npy
|
71 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_162.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_162.npy
|
72 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_163.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_163.npy
|
73 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_164.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_164.npy
|
74 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_165.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_165.npy
|
75 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_166.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_166.npy
|
76 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_167.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_167.npy
|
77 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_168.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_168.npy
|
78 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_169.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_169.npy
|
79 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_17.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_17.npy
|
80 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_170.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_170.npy
|
81 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_171.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_171.npy
|
82 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_172.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_172.npy
|
83 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_173.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_173.npy
|
84 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_174.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_174.npy
|
85 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_175.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_175.npy
|
86 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_176.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_176.npy
|
87 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_177.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_177.npy
|
88 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_178.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_178.npy
|
89 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_179.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_179.npy
|
90 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_18.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_18.npy
|
91 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_180.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_180.npy
|
92 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_181.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_181.npy
|
93 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_182.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_182.npy
|
94 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_183.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_183.npy
|
95 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_184.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_184.npy
|
96 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_185.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_185.npy
|
97 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_186.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_186.npy
|
98 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_187.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_187.npy
|
99 |
sampled_data/x2/train_hr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_hr_patch_188.npy
|
sampled_data/x2/train_lr_patch/hst_10152_05_acs_wfc_f814w_j90i05_drc_padded_hr_lr_patch_188.npy
|
STAR Dataset (Super-Resolution for Astronomical Star Fields)
The STAR dataset is a large-scale benchmark for developing field-level super-resolution models in astronomy. It contains 54,738 flux-consistent image pairs derived from Hubble Space Telescope (HST) high-resolution observations and physically faithful low-resolution counterparts.
π Key Features
- Flux Consistency: Ensures consistent flux using a flux-preserving data generation pipeline
- Object-Crop Configuration: Strategically samples patches across diverse celestial regions
- Data Diversity: Covers dense star clusters, sparse galactic fields, and regions with varying background noise
π Dataset Structure
KUOCHENG/STAR/
βββ sampled_data/x2/ # β οΈ SAMPLE ONLY - For testing/exploration(600 samples). You can get started quickly with the data here.
β βββ train_hr_patch/ # 500 HR training patches (.npy files)
β βββ train_lr_patch/ # 500 LR training patches (.npy files)
β βββ eval_hr_patch/ # 100 HR validation patches (.npy files)
β βββ eval_lr_patch/ # 100 LR validation patches (.npy files)
β βββ train_metadata.jsonl # Training pairs metadata
β βββ validation_metadata.jsonl # Validation pairs metadata
βββ data/
βββ x2/x2.tar.gz # Full x2 dataset (33GB)
βββ x4/x4.tar.gz # Full x4 dataset (29GB)
β οΈ Important Note: The sampled_data/ directory contains only a small subset (600 pairs) for quick testing and understanding the data structure. For actual training and research, please use the full datasets in data/ directory.
π Quick Start
Loading the Dataset
from datasets import load_dataset
import numpy as np
# Load metadata
dataset = load_dataset("KUOCHENG/STAR")
# Access a sample
sample = dataset['train'][0]
hr_path = sample['hr_path'] # Path to HR .npy file
lr_path = sample['lr_path'] # Path to LR .npy file
# Load actual data
hr_data = np.load(hr_path, allow_pickle=True).item()
lr_data = np.load(lr_path, allow_pickle=True).item()
Understanding the Data Format
Each .npy
file contains a dictionary with the following structure:
High-Resolution (HR) Data
- Shape:
(256, 256)
for all HR patches - Access Keys:
hr_data['image'] # The actual grayscale astronomical image hr_data['mask'] # Binary mask (True = valid/accessible pixels) hr_data['attn_map'] # Attention map from star finder (detected astronomical sources) hr_data['coord'] # Coordinate information (if available)
Low-Resolution (LR) Data
- Shape: Depends on the super-resolution scale
- For x2:
(128, 128)
- For x4:
(64, 64)
- For x2:
- Access Keys: Same as HR data
lr_data['image'] # Downsampled grayscale image lr_data['mask'] # Downsampled mask lr_data['attn_map'] # Downsampled attention map lr_data['coord'] # Coordinate information
Data Fields Explanation
Field | Description | Type | Usage |
---|---|---|---|
image |
Raw astronomical observation data | np.ndarray (float32) |
Main input for super-resolution |
mask |
Valid pixel indicator | np.ndarray (bool) |
Identifies accessible regions (True = valid) |
attn_map |
Star finder output | np.ndarray (float32) |
Highlights detected astronomical sources (stars, galaxies) |
coord |
Spatial coordinates | np.ndarray |
Position information for patch alignment |
π» Usage Examples
Basic Training Loop
β οΈNOTE: Complete training and testing code/framework, please see github.
import numpy as np
from datasets import load_dataset
import torch
from torch.utils.data import DataLoader
# Load dataset
dataset = load_dataset("KUOCHENG/STAR")
class STARDataset(torch.utils.data.Dataset):
def __init__(self, hf_dataset):
self.dataset = hf_dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
sample = self.dataset[idx]
# Load .npy files
hr_data = np.load(sample['hr_path'], allow_pickle=True).item()
lr_data = np.load(sample['lr_path'], allow_pickle=True).item()
# Extract images
hr_image = hr_data['image'].astype(np.float32)
lr_image = lr_data['image'].astype(np.float32)
# Extract masks for loss computation
hr_mask = hr_data['mask'].astype(np.float32)
lr_mask = lr_data['mask'].astype(np.float32)
# Convert to tensors
return {
'lr_image': torch.from_numpy(lr_image).unsqueeze(0), # Add channel dim
'hr_image': torch.from_numpy(hr_image).unsqueeze(0),
'hr_mask': torch.from_numpy(hr_mask).unsqueeze(0),
'lr_mask': torch.from_numpy(lr_mask).unsqueeze(0),
}
# Create PyTorch dataset and dataloader
train_dataset = STARDataset(dataset['train'])
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# Training loop example
for batch in train_loader:
lr_images = batch['lr_image'] # [B, 1, 128, 128] for x2
hr_images = batch['hr_image'] # [B, 1, 256, 256]
masks = batch['hr_mask'] # [B, 1, 256, 256]
# Your training code here
# pred = model(lr_images)
# loss = criterion(pred * masks, hr_images * masks) # Apply mask to focus on valid regions
Visualization
π Astronomical Image Visualization
Astronomical images have extreme dynamic ranges with both very bright stars and faint background features. Direct visualization often shows only the brightest sources. We need special normalization techniques for proper visualization.
import matplotlib.pyplot as plt
import numpy as np
from astropy.visualization import ZScaleInterval, ImageNormalize
# If astropy is not installed: pip install astropy
def z_scale_normalize(image, contrast=0.25):
"""
Apply Z-scale normalization for astronomical images.
This technique enhances faint features while preventing bright stars from saturating.
Args:
image: Input astronomical image
contrast: Contrast parameter (default 0.25, lower = more contrast)
Returns:
Normalized image suitable for visualization
"""
# Remove NaN and Inf values
image_clean = np.nan_to_num(image, nan=0.0, posinf=0.0, neginf=0.0)
interval = ZScaleInterval(contrast=contrast)
vmin, vmax = interval.get_limits(image_clean)
norm = ImageNormalize(vmin=vmin, vmax=vmax)
return norm(image_clean)
def visualize_sample(hr_path, lr_path):
# Load data
hr_data = np.load(hr_path, allow_pickle=True).item()
lr_data = np.load(lr_path, allow_pickle=True).item()
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
hr_image_vis = z_scale_normalize(hr_data)
lr_image_vis = z_scale_normalize(lr_data)
# HR visualizations
axes[0, 0].imshow(hr_data['image'], cmap='gray')
axes[0, 0].set_title('HR Image (256x256)')
axes[0, 1].imshow(hr_data['mask'], cmap='binary')
axes[0, 1].set_title('HR Mask (Valid Regions)')
axes[0, 2].imshow(hr_data['attn_map'], cmap='hot')
axes[0, 2].set_title('HR Attention Map (Detected Sources)')
# LR visualizations
axes[1, 0].imshow(lr_data['image'], cmap='gray')
axes[1, 0].set_title(f'LR Image ({lr_data["image"].shape[0]}x{lr_data["image"].shape[1]})')
axes[1, 1].imshow(lr_data['mask'], cmap='binary')
axes[1, 1].set_title('LR Mask')
axes[1, 2].imshow(lr_data['attn_map'], cmap='hot')
axes[1, 2].set_title('LR Attention Map')
plt.tight_layout()
plt.show()
# Visualize a sample
sample = dataset['train'][0]
visualize_sample(sample['hr_path'], sample['lr_path'])
π File Naming Convention
- HR files:
*_hr_hr_patch_*.npy
- LR files:
*_hr_lr_patch_*.npy
Files are paired by replacing _hr_hr_patch_
with _hr_lr_patch_
in the filename.
π Full Dataset Access
For the complete dataset (54,738 pairs), download the compressed files:
# Manual download and extraction
import tarfile
# Extract x2 dataset
with tarfile.open('data/x2/x2.tar.gz', 'r:gz') as tar:
tar.extractall('data/x2/')
# The extracted structure will be:
# data/x2/
# βββ train_hr_patch/ # ~45,000 HR patches
# βββ train_lr_patch/ # ~45,000 LR patches
# βββ eval_hr_patch/ # ~9,000 HR patches
# βββ eval_lr_patch/ # ~9,000 LR patches
# βββ dataload_filename/
# β βββ train_dataloader.txt # Training pairs list
# β βββ eval_dataloader.txt # Evaluation pairs list
# βββ psf_hr/, psf_lr/ # Original unpatched data
π― Model Evaluation Metrics
When evaluating super-resolution models on STAR, consider:
- Masked PSNR/SSIM: Only compute metrics on valid pixels (where mask=True)
- Source Detection F1: Evaluate if astronomical sources are preserved
- Flux Preservation: Check if total flux is maintained (important for astronomy, see the paper for details)
π Citation
If you use the STAR dataset in your research, please cite:
@article{wu2025star,
title={STAR: A Benchmark for Astronomical Star Fields Super-Resolution},
author={Wu, Kuo-Cheng and Zhuang, Guohang and Huang, Jinyang and Zhang, Xiang and Ouyang, Wanli and Lu, Yan},
journal={arXiv preprint arXiv:2507.16385},
year={2025},
url={https://arxiv.org/abs/2507.16385}
}
π License
This dataset is released under the MIT License.
π€ Contact
For questions or issues, please open an issue on the dataset repository. Also can see github
- Downloads last month
- 439