subject_motion / README.md
Minusone's picture
README
b726383
---
language:
- en
license: mit
multimodality:
- text
- image
- video
tags:
- text-to-video
- personalization
- motion-customization
- subject-customization
task_categories:
- text-to-image
- text-to-video
size_categories:
- n<1K
---
# Subject Motion Dataset
A dataset for personalized text-to-video generation, supporting subject customization, motion customization, and subject-motion combination customization.
## Dataset Description
Subject Motion Dataset is a images and videos dataset specifically designed for personalized text-to-video generation tasks. The dataset consists of two main components:
- **Subject**: 16 different subjects, each containing 4-6 high-quality images
- **Motion**: 10 different motion videos covering various dynamic behaviors
## Dataset Structure
```
subject_motion/
β”œβ”€β”€ subject/
β”‚ β”œβ”€β”€ Terracotta_Warriors/
β”‚ β”œβ”€β”€ red_cartoon/
β”‚ β”œβ”€β”€ cat3D/
β”‚ β”œβ”€β”€ wolf_plushie/
β”‚ β”œβ”€β”€ grey_sloth_plushie/
β”‚ β”œβ”€β”€ cat2/
β”‚ β”œβ”€β”€ stitch/
β”‚ β”œβ”€β”€ dog2/
β”‚ β”œβ”€β”€ porcupine/
β”‚ β”œβ”€β”€ monster_toy/
β”‚ β”œβ”€β”€ dog/
β”‚ β”œβ”€β”€ robot_toy/
β”‚ β”œβ”€β”€ pig/
β”‚ β”œβ”€β”€ bear_plushie/
β”‚ β”œβ”€β”€ dog6/
β”‚ └── cat/
└── motion/
β”œβ”€β”€ Cycling/
β”œβ”€β”€ diving/
β”œβ”€β”€ ski/
β”œβ”€β”€ dog_skateboard/
β”œβ”€β”€ surf/
β”œβ”€β”€ man_skateboard/
β”œβ”€β”€ ride/
β”œβ”€β”€ rotating/
β”œβ”€β”€ play_guitar/
└── horse_running/
```
## Data Sources
### Subject Data
Subject images are sourced from three channels:
- **DreamBooth**: Based on the paper [DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation](https://arxiv.org/abs/2208.12242)
- **The Chosen One**: Based on the paper [The Chosen One: Consistent Characters in Text-to-Image Diffusion Models](https://arxiv.org/abs/2311.10093)
- **Web Collection**: High-quality subject images collected from the web
### Motion Data
All motion videos are collected from the web, carefully curated to ensure quality and diversity.
## Applications
This dataset is primarily used for three types of customization generation:
1. **Subject Customization**: Using specific subject images for personalized subject generation
2. **Motion Customization**: Learning motion styles based on specific motion videos
3. **Subject-Motion Combination Customization**: Combining specific subjects with specific motions to generate personalized subject-motion combinations
## Technical Features
- **High Quality**: All images and videos are quality-filtered
- **Diversity**: Covers various subject types and motion types
- **Standardization**: Unified data format and naming conventions
- **Extensibility**: Supports adding new subjects and motions
## Citation
If you use this dataset in your research, please cite this dataset and the related papers:
```bibtex
@misc{sun2025,
author = {Chenhao Sun},
title = {Subject Motion Dataset},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/datasets/Minusone/subject_motion}},
note = {Accessed: 2025-07-20}
}
@inproceedings{ruiz2023dreambooth,
title={Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation},
author={Ruiz, Nataniel and Li, Yuanzhen and Jampani, Varun and Pritch, Yael and Rubinstein, Michael and Aberman, Kfir},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={22500--22510},
year={2023}
}
@article{Avrahami_Hertz_Vinker_Arar_Fruchter_Fried_Cohen-Or_Lischinski,
title={The Chosen One: Consistent Characters in Text-to-Image Diffusion Models},
author={Avrahami, Omri and Hertz, Amir and Vinker, Yael and Arar, Moab and Fruchter, Shlomi and Fried, Ohad and Cohen-Or, Daniel and Lischinski, Dani},
language={en-US}
}
```
## License
This dataset is licensed under the MIT License.
## Contributing
We welcome issues and pull requests to improve this dataset.
## Contact
For questions or suggestions, please contact us through GitHub Issues.