id
stringlengths
14
16
text
stringlengths
29
2.31k
source
stringlengths
57
122
4f8716b18c33-1
la programmation.", additional_kwargs={}) previous Azure next PromptLayer ChatOpenAI By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/chat/integrations/openai.html
72a630025726-0
.ipynb .pdf How to stream responses How to stream responses# This notebook goes over how to use streaming with a chat model. from langchain.chat_models import ChatOpenAI from langchain.schema import ( HumanMessage, ) from langchain.callbacks.base import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler chat = ChatOpenAI(streaming=True, callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]), verbose=True, temperature=0) resp = chat([HumanMessage(content="Write me a song about sparkling water.")]) Verse 1: Bubbles rising to the top A refreshing drink that never stops Clear and crisp, it's pure delight A taste that's sure to excite Chorus: Sparkling water, oh so fine A drink that's always on my mind With every sip, I feel alive Sparkling water, you're my vibe Verse 2: No sugar, no calories, just pure bliss A drink that's hard to resist It's the perfect way to quench my thirst A drink that always comes first Chorus: Sparkling water, oh so fine A drink that's always on my mind With every sip, I feel alive Sparkling water, you're my vibe Bridge: From the mountains to the sea Sparkling water, you're the key To a healthy life, a happy soul A drink that makes me feel whole Chorus: Sparkling water, oh so fine A drink that's always on my mind With every sip, I feel alive Sparkling water, you're my vibe Outro: Sparkling water, you're the one A drink that's always so much fun I'll never let you go, my friend Sparkling previous How to use few shot examples next Integrations By Harrison Chase
https:///langchain-cn.readthedocs.io/en/latest/modules/models/chat/examples/streaming.html
72a630025726-1
use few shot examples next Integrations By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/chat/examples/streaming.html
b804a0f1377a-0
.ipynb .pdf How to use few shot examples Contents Alternating Human/AI messages System Messages How to use few shot examples# This notebook covers how to use few shot examples in chat models. There does not appear to be solid consensus on how best to do few shot prompting. As a result, we are not solidifying any abstractions around this yet but rather using existing abstractions. Alternating Human/AI messages# The first way of doing few shot prompting relies on using alternating human/ai messages. See an example of this below. from langchain.chat_models import ChatOpenAI from langchain import PromptTemplate, LLMChain from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) chat = ChatOpenAI(temperature=0) template="You are a helpful assistant that translates english to pirate." system_message_prompt = SystemMessagePromptTemplate.from_template(template) example_human = HumanMessagePromptTemplate.from_template("Hi") example_ai = AIMessagePromptTemplate.from_template("Argh me mateys") human_template="{text}" human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, example_human, example_ai, human_message_prompt]) chain = LLMChain(llm=chat, prompt=chat_prompt) # get a chat completion from the formatted messages chain.run("I love programming.") "I be lovin' programmin', me hearty!" System Messages# OpenAI provides an optional name parameter that they also recommend using in conjunction with system messages to do few shot prompting. Here is an example of how to do that below. template="You are a helpful assistant that translates english to
https:///langchain-cn.readthedocs.io/en/latest/modules/models/chat/examples/few_shot_examples.html
b804a0f1377a-1
an example of how to do that below. template="You are a helpful assistant that translates english to pirate." system_message_prompt = SystemMessagePromptTemplate.from_template(template) example_human = SystemMessagePromptTemplate.from_template("Hi", additional_kwargs={"name": "example_user"}) example_ai = SystemMessagePromptTemplate.from_template("Argh me mateys", additional_kwargs={"name": "example_assistant"}) human_template="{text}" human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, example_human, example_ai, human_message_prompt]) chain = LLMChain(llm=chat, prompt=chat_prompt) # get a chat completion from the formatted messages chain.run("I love programming.") "I be lovin' programmin', me hearty." previous How-To Guides next How to stream responses Contents Alternating Human/AI messages System Messages By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/chat/examples/few_shot_examples.html
c8692420d21b-0
.rst .pdf 通用功能 通用功能# 一系列关于如何使用LLM模型的例子。 如何使用 LLM 的异步 API 如何写一个自定义的LLM包装器 How (and why) to use the fake LLM How to cache LLM calls How to serialize LLM classes 如何实现 LLM 和 Chat Model 的流式响应 How to track token usage previous Getting Started next 如何使用 LLM 的异步 API By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/how_to_guides.html
d94811d654d5-0
.ipynb .pdf Getting Started Getting Started# 这篇笔记将介绍如何使用 LangChain 中的 LLM 类。 LLM 类是专门用于与 LLM(linguistic language model)进行接口交互的类。存在许多 LLM 供应商(例如 OpenAI、Cohere、Hugging Face 等),这个类旨在提供一个通用的标准接口。在文档的这一部分,我们将重点介绍通用 LLM 功能。有关使用特定 LLM 包装器的示例的详细信息,请参见 [How-To 部分]。(how_to_guides.rst). 这篇笔记中,我们将使用 OpenAI 的 LLM 包装器,尽管突出显示的所有功能对于所有 LLM 类型都是通用的。 from langchain.llms import OpenAI llm = OpenAI(model_name="text-ada-001", n=2, best_of=2) Generate Text: LLM 的最基本功能就是能够调用它,传入一个字符串并返回一个字符串。 llm("Tell me a joke") '\n\nWhy did the chicken cross the road?\n\nTo get to the other side.' Generate: 更广义地说,您可以使用输入列表调用它,返回比仅文本更完整的响应。这种完整的响应包括多个高排名的响应,以及 LLM 提供者特定的信息。 llm_result = llm.generate(["Tell me a joke", "Tell me a
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/getting_started.html
d94811d654d5-1
= llm.generate(["Tell me a joke", "Tell me a poem"]*15) len(llm_result.generations) 30 llm_result.generations[0] [Generation(text='\n\nWhy did the chicken cross the road?\n\nTo get to the other side!'), Generation(text='\n\nWhy did the chicken cross the road?\n\nTo get to the other side.')] llm_result.generations[-1] [Generation(text="\n\nWhat if love neverspeech\n\nWhat if love never ended\n\nWhat if love was only a feeling\n\nI'll never know this love\n\nIt's not a feeling\n\nBut it's what we have for each other\n\nWe just know that love is something strong\n\nAnd we can't help but be happy\n\nWe just feel what love is for us\n\nAnd we love each other with all our heart\n\nWe just don't know how\n\nHow it will go\n\nBut we know that love is something strong\n\nAnd we'll always have each other\n\nIn our lives."), Generation(text='\n\nOnce upon a time\n\nThere was a love so pure and true\n\nIt lasted for centuries\n\nAnd never became stale or dry\n\nIt was moving and alive\n\nAnd the heart of the love-ick\n\nIs still beating strong and true.')] 您还可以访问返回的特定于提供者的信息。这些信息在提供者之间并没有标准化。 llm_result.llm_output {'token_usage': {'completion_tokens': 3903, 'total_tokens': 4023, 'prompt_tokens': 120}} Number of Tokens:
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/getting_started.html
d94811d654d5-2
'total_tokens': 4023, 'prompt_tokens': 120}} Number of Tokens: 您还可以估计一个文本在该模型中有多少令牌。这是有用的,因为模型具有上下文长度(并且令牌越多越昂贵),这意味着您需要知道您要传递的文本有多长。 请注意,默认情况下,使用 tiktoken 估计令牌 (除了<3.8的版本以外,均使用HuggingFace令牌处理器) llm.get_num_tokens("what a joke") 3 previous LLMs (大语言模型) next 通用功能 By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/getting_started.html
1a85013e365f-0
.rst .pdf Integrations Integrations# The examples here are all “how-to” guides for how to integrate with various LLM providers. AI21 Aleph Alpha Anthropic Azure OpenAI LLM Example Banana CerebriumAI LLM Example Cohere DeepInfra LLM Example ForefrontAI LLM Example GooseAI LLM Example GPT4All Hugging Face Hub Llama-cpp Manifest Modal OpenAI Petals LLM Example PromptLayer OpenAI Replicate SageMakerEndpoint Self-Hosted Models via Runhouse StochasticAI Writer previous How to track token usage next AI21 By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations.html
c2793d9c47dd-0
.ipynb .pdf Hugging Face Hub Hugging Face Hub# This example showcases how to connect to the Hugging Face Hub. from langchain import PromptTemplate, HuggingFaceHub, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature":0, "max_length":64})) question = "Who won the FIFA World Cup in the year 1994? " print(llm_chain.run(question)) The FIFA World Cup is a football tournament that is played every 4 years. The year 1994 was the 44th FIFA World Cup. The final answer: Brazil. previous GPT4All next Llama-cpp By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/huggingface_hub.html
329c1321d18e-0
.ipynb .pdf Writer Writer# This example goes over how to use LangChain to interact with Writer models from langchain.llms import Writer from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = Writer() llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous StochasticAI next LLMs By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/writer.html
7aa888cfceca-0
.ipynb .pdf Manifest Contents Compare HF Models Manifest# This notebook goes over how to use Manifest and LangChain. For more detailed information on manifest, and how to use it with local hugginface models like in this example, see https://github.com/HazyResearch/manifest from manifest import Manifest from langchain.llms.manifest import ManifestWrapper manifest = Manifest( client_name = "huggingface", client_connection = "http://127.0.0.1:5000" ) print(manifest.client.get_model_params()) {'model_name': 'bigscience/T0_3B', 'model_path': 'bigscience/T0_3B'} llm = ManifestWrapper(client=manifest, llm_kwargs={"temperature": 0.001, "max_tokens": 256}) # Map reduce example from langchain import PromptTemplate from langchain.text_splitter import CharacterTextSplitter from langchain.chains.mapreduce import MapReduceChain _prompt = """Write a concise summary of the following: {text} CONCISE SUMMARY:""" prompt = PromptTemplate(template=_prompt, input_variables=["text"]) text_splitter = CharacterTextSplitter() mp_chain = MapReduceChain.from_params(llm, prompt, text_splitter) with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() mp_chain.run(state_of_the_union) 'President Obama delivered his annual State of the Union address on Tuesday night, laying out his priorities for the coming year. Obama said the government will provide free flu vaccines to all Americans, ending the government shutdown and allowing businesses to reopen. The president also said that the government will continue to send vaccines to 112 countries, more than any other nation. "We have lost so much to COVID-19," Trump said. "Time with one another. And worst of all, so much loss of
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/manifest.html
7aa888cfceca-1
Trump said. "Time with one another. And worst of all, so much loss of life." He said the CDC is working on a vaccine for kids under 5, and that the government will be ready with plenty of vaccines when they are available. Obama says the new guidelines are a "great step forward" and that the virus is no longer a threat. He says the government is launching a "Test to Treat" initiative that will allow people to get tested at a pharmacy and get antiviral pills on the spot at no cost. Obama says the new guidelines are a "great step forward" and that the virus is no longer a threat. He says the government will continue to send vaccines to 112 countries, more than any other nation. "We are coming for your' Compare HF Models# from langchain.model_laboratory import ModelLaboratory manifest1 = ManifestWrapper( client=Manifest( client_name="huggingface", client_connection="http://127.0.0.1:5000" ), llm_kwargs={"temperature": 0.01} ) manifest2 = ManifestWrapper( client=Manifest( client_name="huggingface", client_connection="http://127.0.0.1:5001" ), llm_kwargs={"temperature": 0.01} ) manifest3 = ManifestWrapper( client=Manifest( client_name="huggingface", client_connection="http://127.0.0.1:5002" ), llm_kwargs={"temperature": 0.01} ) llms = [manifest1, manifest2, manifest3] model_lab =
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/manifest.html
7aa888cfceca-2
= [manifest1, manifest2, manifest3] model_lab = ModelLaboratory(llms) model_lab.compare("What color is a flamingo?") Input: What color is a flamingo? ManifestWrapper Params: {'model_name': 'bigscience/T0_3B', 'model_path': 'bigscience/T0_3B', 'temperature': 0.01} pink ManifestWrapper Params: {'model_name': 'EleutherAI/gpt-neo-125M', 'model_path': 'EleutherAI/gpt-neo-125M', 'temperature': 0.01} A flamingo is a small, round ManifestWrapper Params: {'model_name': 'google/flan-t5-xl', 'model_path': 'google/flan-t5-xl', 'temperature': 0.01} pink previous Llama-cpp next Modal Contents Compare HF Models By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/manifest.html
ed4f2c05b487-0
.ipynb .pdf ForefrontAI LLM Example Contents Imports Set the Environment API Key Create the ForefrontAI instance Create a Prompt Template Initiate the LLMChain Run the LLMChain ForefrontAI LLM Example# This notebook goes over how to use Langchain with ForefrontAI. Imports# import os from langchain.llms import ForefrontAI from langchain import PromptTemplate, LLMChain Set the Environment API Key# Make sure to get your API key from ForefrontAI. You are given a 5 day free trial to test different models. os.environ["FOREFRONTAI_API_KEY"] = "YOUR_KEY_HERE" Create the ForefrontAI instance# You can specify different parameters such as the model endpoint url, length, temperature, etc. You must provide an endpoint url. llm = ForefrontAI(endpoint_url="YOUR ENDPOINT URL HERE") Create a Prompt Template# We will create a prompt template for Question and Answer. template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) Initiate the LLMChain# llm_chain = LLMChain(prompt=prompt, llm=llm) Run the LLMChain# Provide a question and run the LLMChain. question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous DeepInfra LLM Example next GooseAI LLM Example Contents Imports Set the Environment API Key Create the ForefrontAI instance Create a Prompt Template Initiate the LLMChain Run the LLMChain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/forefrontai_example.html
85d2f7d338fd-0
.ipynb .pdf GPT4All Contents Specify Model GPT4All# This example goes over how to use LangChain to interact with GPT4All models %pip install pyllamacpp > /dev/null from langchain import PromptTemplate, LLMChain from langchain.llms import GPT4All from langchain.callbacks.base import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) Specify Model# To run locally, download a compatible ggml-formatted model. For more info, visit https://github.com/nomic-ai/pyllamacpp Note that new models are uploaded regularly - check the link above for the most recent .bin URL local_path = './models/gpt4all-lora-quantized-ggml.bin' # replace with your desired local file path Uncomment the below block to download a model. You may want to update url to a new version. # import requests # from pathlib import Path # from tqdm import tqdm # Path(local_path).parent.mkdir(parents=True, exist_ok=True) # # Example model. Check https://github.com/nomic-ai/pyllamacpp for the latest models. # url = 'https://the-eye.eu/public/AI/models/nomic-ai/gpt4all/gpt4all-lora-quantized-ggml.bin' # # send a GET request to the URL to download the file. Stream since it's large # response = requests.get(url, stream=True) # # open the file in binary mode and write the contents of the response to it in chunks # # This is a large file, so be prepared to wait. # with open(local_path, 'wb') as f: # for
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/gpt4all.html
85d2f7d338fd-1
wait. # with open(local_path, 'wb') as f: # for chunk in tqdm(response.iter_content(chunk_size=8192)): # if chunk: # f.write(chunk) # Callbacks support token-wise streaming callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) # Verbose is required to pass to the callback manager llm = GPT4All(model=local_path, callback_manager=callback_manager, verbose=True) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Bieber was born?" llm_chain.run(question) previous GooseAI LLM Example next Hugging Face Hub Contents Specify Model By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/gpt4all.html
63a74f0c74c4-0
.ipynb .pdf GooseAI LLM Example Contents Install openai Imports Set the Environment API Key Create the GooseAI instance Create a Prompt Template Initiate the LLMChain Run the LLMChain GooseAI LLM Example# This notebook goes over how to use Langchain with GooseAI. Install openai# The openai package is required to use the GooseAI API. Install openai using pip3 install openai. $ pip3 install openai Imports# import os from langchain.llms import GooseAI from langchain import PromptTemplate, LLMChain Set the Environment API Key# Make sure to get your API key from GooseAI. You are given $10 in free credits to test different models. os.environ["GOOSEAI_API_KEY"] = "YOUR_KEY_HERE" Create the GooseAI instance# You can specify different parameters such as the model name, max tokens generated, temperature, etc. llm = GooseAI() Create a Prompt Template# We will create a prompt template for Question and Answer. template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) Initiate the LLMChain# llm_chain = LLMChain(prompt=prompt, llm=llm) Run the LLMChain# Provide a question and run the LLMChain. question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous ForefrontAI LLM Example next GPT4All Contents Install openai Imports Set the Environment API Key Create the GooseAI instance Create a Prompt Template Initiate the LLMChain Run the LLMChain By Harrison Chase © Copyright 2023, Harrison Chase.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/gooseai_example.html
63a74f0c74c4-1
© Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/gooseai_example.html
aa881f2cd67c-0
.ipynb .pdf StochasticAI StochasticAI# This example goes over how to use LangChain to interact with StochasticAI models from langchain.llms import StochasticAI from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = StochasticAI(api_url="YOUR_API_URL") llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous Self-Hosted Models via Runhouse next Writer By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/stochasticai.html
904e4c58ef46-0
.ipynb .pdf Cohere Cohere# This example goes over how to use LangChain to interact with Cohere models from langchain.llms import Cohere from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = Cohere() llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) " Let's start with the year that Justin Beiber was born. You know that he was born in 1994. We have to go back one year. 1993.\n\n1993 was the year that the Dallas Cowboys won the Super Bowl. They won over the Buffalo Bills in Super Bowl 26.\n\nNow, let's do it backwards. According to our information, the Green Bay Packers last won the Super Bowl in the 2010-2011 season. Now, we can't go back in time, so let's go from 2011 when the Packers won the Super Bowl, back to 1984. That is the year that the Packers won the Super Bowl over the Raiders.\n\nSo, we have the year that Justin Beiber was born, 1994, and the year that the Packers last won the Super Bowl, 2011, and now we have to go in the middle, 1986. That is the year that the New York Giants won the Super Bowl over the Denver Broncos. The Giants won Super Bowl 21.\n\nThe New York Giants won the Super Bowl in 1986. This means that the Green Bay Packers won the Super Bowl in 2011.\n\nDid you get it right? If you are still a bit confused, just try to go
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/cohere.html
904e4c58ef46-1
you get it right? If you are still a bit confused, just try to go back to the question again and review the answer" previous CerebriumAI LLM Example next DeepInfra LLM Example By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/cohere.html
5c1c7322a63d-0
.ipynb .pdf Aleph Alpha Aleph Alpha# This example goes over how to use LangChain to interact with Aleph Alpha models from langchain.llms import AlephAlpha from langchain import PromptTemplate, LLMChain template = """Q: {question} A:""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = AlephAlpha(model="luminous-extended", maximum_tokens=20, stop_sequences=["Q:"]) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What is AI?" llm_chain.run(question) ' Artificial Intelligence (AI) is the simulation of human intelligence processes by machines, especially computer systems.\n' previous AI21 next Anthropic By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/aleph_alpha.html
169fb959fdd0-0
.ipynb .pdf Self-Hosted Models via Runhouse Self-Hosted Models via Runhouse# This example goes over how to use LangChain and Runhouse to interact with models hosted on your own GPU, or on-demand GPUs on AWS, GCP, AWS, or Lambda. For more information, see Runhouse or the Runhouse docs. from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLM from langchain import PromptTemplate, LLMChain import runhouse as rh # For an on-demand A100 with GCP, Azure, or Lambda gpu = rh.cluster(name="rh-a10x", instance_type="A100:1", use_spot=False) # For an on-demand A10G with AWS (no single A100s on AWS) # gpu = rh.cluster(name='rh-a10x', instance_type='g5.2xlarge', provider='aws') # For an existing cluster # gpu = rh.cluster(ips=['<ip of the cluster>'], # ssh_creds={'ssh_user': '...', 'ssh_private_key':'<path_to_key>'}, # name='rh-a10x') template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = SelfHostedHuggingFaceLLM(model_id="gpt2", hardware=gpu, model_reqs=["pip:./", "transformers", "torch"]) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) INFO | 2023-02-17
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/self_hosted_examples.html
169fb959fdd0-1
Beiber was born?" llm_chain.run(question) INFO | 2023-02-17 05:42:23,537 | Running _generate_text via gRPC INFO | 2023-02-17 05:42:24,016 | Time to send message: 0.48 seconds "\n\nLet's say we're talking sports teams who won the Super Bowl in the year Justin Beiber" You can also load more custom models through the SelfHostedHuggingFaceLLM interface: llm = SelfHostedHuggingFaceLLM( model_id="google/flan-t5-small", task="text2text-generation", hardware=gpu, ) llm("What is the capital of Germany?") INFO | 2023-02-17 05:54:21,681 | Running _generate_text via gRPC INFO | 2023-02-17 05:54:21,937 | Time to send message: 0.25 seconds 'berlin' Using a custom load function, we can load a custom pipeline directly on the remote hardware: def load_pipeline(): from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Need to be inside the fn in notebooks model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) return pipe def inference_fn(pipeline, prompt, stop = None): return pipeline(prompt)[0]["generated_text"][len(prompt):] llm = SelfHostedHuggingFaceLLM(model_load_fn=load_pipeline,
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/self_hosted_examples.html
169fb959fdd0-2
= SelfHostedHuggingFaceLLM(model_load_fn=load_pipeline, hardware=gpu, inference_fn=inference_fn) llm("Who is the current US president?") INFO | 2023-02-17 05:42:59,219 | Running _generate_text via gRPC INFO | 2023-02-17 05:42:59,522 | Time to send message: 0.3 seconds 'john w. bush' You can send your pipeline directly over the wire to your model, but this will only work for small models (<2 Gb), and will be pretty slow: pipeline = load_pipeline() llm = SelfHostedPipeline.from_pipeline( pipeline=pipeline, hardware=gpu, model_reqs=model_reqs ) Instead, we can also send it to the hardware’s filesystem, which will be much faster. rh.blob(pickle.dumps(pipeline), path="models/pipeline.pkl").save().to(gpu, path="models") llm = SelfHostedPipeline.from_pipeline(pipeline="models/pipeline.pkl", hardware=gpu) previous SageMakerEndpoint next StochasticAI By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/self_hosted_examples.html
6307fa5fe2b3-0
.ipynb .pdf AI21 AI21# This example goes over how to use LangChain to interact with AI21 models from langchain.llms import AI21 from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = AI21() llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous Integrations next Aleph Alpha By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/ai21.html
4902faf3bc0f-0
.ipynb .pdf SageMakerEndpoint SageMakerEndpoint# This notebooks goes over how to use an LLM hosted on a SageMaker endpoint. !pip3 install langchain boto3 from langchain.docstore.document import Document example_doc_1 = """ Peter and Elizabeth took a taxi to attend the night party in the city. While in the party, Elizabeth collapsed and was rushed to the hospital. Since she was diagnosed with a brain injury, the doctor told Peter to stay besides her until she gets well. Therefore, Peter stayed with her at the hospital for 3 days without leaving. """ docs = [ Document( page_content=example_doc_1, ) ] from typing import Dict from langchain import PromptTemplate, SagemakerEndpoint from langchain.llms.sagemaker_endpoint import ContentHandlerBase from langchain.chains.question_answering import load_qa_chain import json query = """How long was Elizabeth hospitalized? """ prompt_template = """Use the following pieces of context to answer the question at the end. {context} Question: {question} Answer:""" PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) class ContentHandler(ContentHandlerBase): content_type = "application/json" accepts = "application/json" def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps({prompt: prompt, **model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> str: response_json = json.loads(output.read().decode("utf-8")) return
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/sagemaker.html
4902faf3bc0f-1
= json.loads(output.read().decode("utf-8")) return response_json[0]["generated_text"] content_handler = ContentHandler() chain = load_qa_chain( llm=SagemakerEndpoint( endpoint_name="endpoint-name", credentials_profile_name="credentials-profile-name", region_name="us-west-2", model_kwargs={"temperature":1e-10}, content_handler=content_handler ), prompt=PROMPT ) chain({"input_documents": docs, "question": query}, return_only_outputs=True) previous Replicate next Self-Hosted Models via Runhouse By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/sagemaker.html
f3640c0f0eae-0
.ipynb .pdf Llama-cpp Llama-cpp# This notebook goes over how to run llama-cpp within LangChain !pip install llama-cpp-python from langchain.llms import LlamaCpp from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = LlamaCpp(model_path="./ggml-model-q4_0.bin") llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Bieber was born?" llm_chain.run(question) '\n\nWe know that Justin Bieber is currently 25 years old and that he was born on March 1st, 1994 and that he is a singer and he has an album called Purpose, so we know that he was born when Super Bowl XXXVIII was played between Dallas and Seattle and that it took place February 1st, 2004 and that the Seattle Seahawks won 24-21, so Seattle is our answer!' previous Hugging Face Hub next Manifest By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/llamacpp.html
f537a12ae079-0
.ipynb .pdf Modal Modal# This example goes over how to use LangChain to interact with Modal models from langchain.llms import Modal from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = Modal(endpoint_url="YOUR_ENDPOINT_URL") llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous Manifest next OpenAI By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/modal.html
a26b3b3cba6d-0
.ipynb .pdf PromptLayer OpenAI Contents Install PromptLayer Imports Set the Environment API Key Use the PromptLayerOpenAI LLM like normal Using PromptLayer Track PromptLayer OpenAI# This example showcases how to connect to PromptLayer to start recording your OpenAI requests. Install PromptLayer# The promptlayer package is required to use PromptLayer with OpenAI. Install promptlayer using pip. pip install promptlayer Imports# import os from langchain.llms import PromptLayerOpenAI import promptlayer Set the Environment API Key# You can create a PromptLayer API Key at www.promptlayer.com by clicking the settings cog in the navbar. Set it as an environment variable called PROMPTLAYER_API_KEY. os.environ["PROMPTLAYER_API_KEY"] = "********" Use the PromptLayerOpenAI LLM like normal# You can optionally pass in pl_tags to track your requests with PromptLayer’s tagging feature. llm = PromptLayerOpenAI(pl_tags=["langchain"]) llm("I am a cat and I want") ' to go outside\n\nUnfortunately, cats cannot go outside without being supervised by a human. Going outside can be dangerous for cats, as they may come into contact with cars, other animals, or other dangers. If you want to go outside, ask your human to take you on a supervised walk or to a safe, enclosed outdoor space.' The above request should now appear on your PromptLayer dashboard. Using PromptLayer Track# If you would like to use any of the PromptLayer tracking features, you need to pass the argument return_pl_id when instantializing the PromptLayer LLM to get the request id. llm = PromptLayerOpenAI(return_pl_id=True) llm_results = llm.generate(["Tell me a joke"]) for res in llm_results.generations: pl_request_id = res[0].generation_info["pl_request_id"]
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/promptlayer_openai.html
a26b3b3cba6d-1
pl_request_id = res[0].generation_info["pl_request_id"] promptlayer.track.score(request_id=pl_request_id, score=100) Using this allows you to track the performance of your model in the PromptLayer dashboard. If you are using a prompt template, you can attach a template to a request as well. Overall, this gives you the opportunity to track the performance of different templates and models in the PromptLayer dashboard. previous Petals LLM Example next Replicate Contents Install PromptLayer Imports Set the Environment API Key Use the PromptLayerOpenAI LLM like normal Using PromptLayer Track By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/promptlayer_openai.html
192a4031979f-0
.ipynb .pdf DeepInfra LLM Example Contents Imports Set the Environment API Key Create the DeepInfra instance Create a Prompt Template Initiate the LLMChain Run the LLMChain DeepInfra LLM Example# This notebook goes over how to use Langchain with DeepInfra. Imports# import os from langchain.llms import DeepInfra from langchain import PromptTemplate, LLMChain Set the Environment API Key# Make sure to get your API key from DeepInfra. You are given a 1 hour free of serverless GPU compute to test different models. You can print your token with deepctl auth token os.environ["DEEPINFRA_API_TOKEN"] = "YOUR_KEY_HERE" Create the DeepInfra instance# Make sure to deploy your model first via deepctl deploy create -m google/flat-t5-xl (for example) llm = DeepInfra(model_id="DEPLOYED MODEL ID") Create a Prompt Template# We will create a prompt template for Question and Answer. template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) Initiate the LLMChain# llm_chain = LLMChain(prompt=prompt, llm=llm) Run the LLMChain# Provide a question and run the LLMChain. question = "What NFL team won the Super Bowl in 2015?" llm_chain.run(question) previous Cohere next ForefrontAI LLM Example Contents Imports Set the Environment API Key Create the DeepInfra instance Create a Prompt Template Initiate the LLMChain Run the LLMChain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18,
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/deepinfra_example.html
192a4031979f-1
Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/deepinfra_example.html
45880f4ababe-0
.ipynb .pdf Banana Banana# This example goes over how to use LangChain to interact with Banana models import os from langchain.llms import Banana from langchain import PromptTemplate, LLMChain os.environ["BANANA_API_KEY"] = "YOUR_API_KEY" template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = Banana(model_key="YOUR_MODEL_KEY") llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous Azure OpenAI LLM Example next CerebriumAI LLM Example By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/banana.html
70e17a7d0590-0
.ipynb .pdf Anthropic Anthropic# This example goes over how to use LangChain to interact with Anthropic models from langchain.llms import Anthropic from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = Anthropic() llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) " Step 1: Justin Beiber was born on March 1, 1994\nStep 2: The NFL season ends with the Super Bowl in January/February\nStep 3: Therefore, the Super Bowl that occurred closest to Justin Beiber's birth would be Super Bowl XXIX in 1995\nStep 4: The San Francisco 49ers won Super Bowl XXIX in 1995\n\nTherefore, the answer is the San Francisco 49ers won the Super Bowl in the year Justin Beiber was born." previous Aleph Alpha next Azure OpenAI LLM Example By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/anthropic_example.html
f968b900eed0-0
.ipynb .pdf OpenAI OpenAI# This example goes over how to use LangChain to interact with OpenAI models from langchain.llms import OpenAI from langchain import PromptTemplate, LLMChain template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = OpenAI() llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) ' Justin Bieber was born in 1994, so the NFL team that won the Super Bowl in that year was the Dallas Cowboys.' previous Modal next Petals LLM Example By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/openai.html
f142b8964d48-0
.ipynb .pdf CerebriumAI LLM Example Contents Install cerebrium Imports Set the Environment API Key Create the CerebriumAI instance Create a Prompt Template Initiate the LLMChain Run the LLMChain CerebriumAI LLM Example# This notebook goes over how to use Langchain with CerebriumAI. Install cerebrium# The cerebrium package is required to use the CerebriumAI API. Install cerebrium using pip3 install cerebrium. $ pip3 install cerebrium Imports# import os from langchain.llms import CerebriumAI from langchain import PromptTemplate, LLMChain Set the Environment API Key# Make sure to get your API key from CerebriumAI. You are given a 1 hour free of serverless GPU compute to test different models. os.environ["CEREBRIUMAI_API_KEY"] = "YOUR_KEY_HERE" Create the CerebriumAI instance# You can specify different parameters such as the model endpoint url, max length, temperature, etc. You must provide an endpoint url. llm = CerebriumAI(endpoint_url="YOUR ENDPOINT URL HERE") Create a Prompt Template# We will create a prompt template for Question and Answer. template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) Initiate the LLMChain# llm_chain = LLMChain(prompt=prompt, llm=llm) Run the LLMChain# Provide a question and run the LLMChain. question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous Banana next Cohere Contents Install cerebrium Imports Set the Environment API Key Create
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/cerebriumai_example.html
f142b8964d48-1
Contents Install cerebrium Imports Set the Environment API Key Create the CerebriumAI instance Create a Prompt Template Initiate the LLMChain Run the LLMChain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/cerebriumai_example.html
257f0c144e62-0
.ipynb .pdf Petals LLM Example Contents Install petals Imports Set the Environment API Key Create the Petals instance Create a Prompt Template Initiate the LLMChain Run the LLMChain Petals LLM Example# This notebook goes over how to use Langchain with Petals. Install petals# The petals package is required to use the Petals API. Install petals using pip3 install petals. $ pip3 install petals Imports# import os from langchain.llms import Petals from langchain import PromptTemplate, LLMChain Set the Environment API Key# Make sure to get your API key from Huggingface. os.environ["HUGGINGFACE_API_KEY"] = "YOUR_KEY_HERE" Create the Petals instance# You can specify different parameters such as the model name, max new tokens, temperature, etc. llm = Petals(model_name="bigscience/bloom-petals") Create a Prompt Template# We will create a prompt template for Question and Answer. template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["question"]) Initiate the LLMChain# llm_chain = LLMChain(prompt=prompt, llm=llm) Run the LLMChain# Provide a question and run the LLMChain. question = "What NFL team won the Super Bowl in the year Justin Beiber was born?" llm_chain.run(question) previous OpenAI next PromptLayer OpenAI Contents Install petals Imports Set the Environment API Key Create the Petals instance Create a Prompt Template Initiate the LLMChain Run the LLMChain By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/petals_example.html
257f0c144e62-1
Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/petals_example.html
87d29de4f56b-0
.ipynb .pdf Azure OpenAI LLM Example Contents API configuration Deployments Azure OpenAI LLM Example# This notebook goes over how to use Langchain with Azure OpenAI. The Azure OpenAI API is compatible with OpenAI’s API. The openai Python package makes it easy to use both OpenAI and Azure OpenAI. You can call Azure OpenAI the same way you call OpenAI with the exceptions noted below. API configuration# You can configure the openai package to use Azure OpenAI using environment variables. The following is for bash: # Set this to `azure` export OPENAI_API_TYPE=azure # The API version you want to use: set this to `2022-12-01` for the released version. export OPENAI_API_VERSION=2022-12-01 # The base URL for your Azure OpenAI resource. You can find this in the Azure portal under your Azure OpenAI resource. export OPENAI_API_BASE=https://your-resource-name.openai.azure.com # The API key for your Azure OpenAI resource. You can find this in the Azure portal under your Azure OpenAI resource. export OPENAI_API_KEY=<your Azure OpenAI API key> Alternatively, you can configure the API right within your running Python environment: import os os.environ["OPENAI_API_TYPE"] = "azure" ... Deployments# With Azure OpenAI, you set up your own deployments of the common GPT-3 and Codex models. When calling the API, you need to specify the deployment you want to use. Let’s say your deployment name is text-davinci-002-prod. In the openai Python API, you can specify this deployment with the engine parameter. For example: import openai response = openai.Completion.create( engine="text-davinci-002-prod", prompt="This is a
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/azure_openai_example.html
87d29de4f56b-1
engine="text-davinci-002-prod", prompt="This is a test", max_tokens=5 ) # Import Azure OpenAI from langchain.llms import AzureOpenAI # Create an instance of Azure OpenAI # Replace the deployment name with your own llm = AzureOpenAI(deployment_name="text-davinci-002-prod", model_name="text-davinci-002") # Run the LLM llm("Tell me a joke") '\n\nWhy did the chicken cross the road?\n\nTo get to the other side.' We can also print the LLM and see its custom print. print(llm) AzureOpenAI Params: {'deployment_name': 'text-davinci-002', 'model_name': 'text-davinci-002', 'temperature': 0.7, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1} previous Anthropic next Banana Contents API configuration Deployments By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/azure_openai_example.html
ae1494f30548-0
.ipynb .pdf Replicate Contents Setup Calling a model Chaining Calls Replicate# This example goes over how to use LangChain to interact with Replicate models import os from langchain.llms import Replicate from langchain import PromptTemplate, LLMChain os.environ["REPLICATE_API_TOKEN"] = "YOUR REPLICATE API TOKEN" Setup# To run this notebook, you’ll need to create a replicate account and install the replicate python client. Calling a model# Find a model on the replicate explore page, and then paste in the model name and version in this format: model_name/version For example, for this flan-t5 model, click on the API tab. The model name/version would be: daanelson/flan-t5:04e422a9b85baed86a4f24981d7f9953e20c5fd82f6103b74ebc431588e1cec8 Only the model param is required, but we can add other model params when initializing. For example, if we were running stable diffusion and wanted to change the image dimensions: Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", input={'image_dimensions': '512x512'}) Note that only the first output of a model will be returned. llm = Replicate(model="daanelson/flan-t5:04e422a9b85baed86a4f24981d7f9953e20c5fd82f6103b74ebc431588e1cec8") prompt = """ Answer the following yes/no question by reasoning step by step. Can a dog drive a car? """ llm(prompt) 'The legal
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/replicate.html
ae1494f30548-1
step by step. Can a dog drive a car? """ llm(prompt) 'The legal driving age of dogs is 2. Cars are designed for humans to drive. Therefore, the final answer is yes.' We can call any replicate model using this syntax. For example, we can call stable diffusion. text2image = Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf", input={'image_dimensions': '512x512'}) image_output = text2image("A cat riding a motorcycle by Picasso") image_output 'https://replicate.delivery/pbxt/Cf07B1zqzFQLOSBQcKG7m9beE74wf7kuip5W9VxHJFembefKE/out-0.png' The model spits out a URL. Let’s render it. from PIL import Image import requests from io import BytesIO response = requests.get(image_output) img = Image.open(BytesIO(response.content)) img Chaining Calls# The whole point of langchain is to… chain! Here’s an example of how do that. from langchain.chains import SimpleSequentialChain First, let’s define the LLM for this model as a flan-5, and text2image as a stable diffusion model. llm = Replicate(model="daanelson/flan-t5:04e422a9b85baed86a4f24981d7f9953e20c5fd82f6103b74ebc431588e1cec8") text2image =
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/replicate.html
ae1494f30548-2
= Replicate(model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf") First prompt in the chain prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) chain = LLMChain(llm=llm, prompt=prompt) Second prompt to get the logo for company description second_prompt = PromptTemplate( input_variables=["company_name"], template="Write a description of a logo for this company: {company_name}", ) chain_two = LLMChain(llm=llm, prompt=second_prompt) Third prompt, let’s create the image based on the description output from prompt 2 third_prompt = PromptTemplate( input_variables=["company_logo_description"], template="{company_logo_description}", ) chain_three = LLMChain(llm=text2image, prompt=third_prompt) Now let’s run it! # Run the chain specifying only the input variable for the first chain. overall_chain = SimpleSequentialChain(chains=[chain, chain_two, chain_three], verbose=True) catchphrase = overall_chain.run("colorful socks") print(catchphrase) > Entering new SimpleSequentialChain chain... novelty socks todd & co. https://replicate.delivery/pbxt/BedAP1PPBwXFfkmeD7xDygXO4BcvApp1uvWOwUdHM4tcQfvCB/out-0.png > Finished
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/replicate.html
ae1494f30548-3
Finished chain. https://replicate.delivery/pbxt/BedAP1PPBwXFfkmeD7xDygXO4BcvApp1uvWOwUdHM4tcQfvCB/out-0.png response = requests.get("https://replicate.delivery/pbxt/eq6foRJngThCAEBqse3nL3Km2MBfLnWQNd0Hy2SQRo2LuprCB/out-0.png") img = Image.open(BytesIO(response.content)) img previous PromptLayer OpenAI next SageMakerEndpoint Contents Setup Calling a model Chaining Calls By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/integrations/replicate.html
004bde5db0e5-0
.ipynb .pdf 如何使用 LLM 的异步 API 如何使用 LLM 的异步 API# LangChain 利用 asyncio 库为 LLM 提供了异步支持。 异步支持特别适用于同时调用多个 LLM,因为这些调用都是网络绑定的。目前,支持 OpenAI, PromptLayerOpenAI, ChatOpenAI 和 Anthropic,但将在未来实现其他 LLM 的异步支持。 您可以使用 agenerate 方法异步调用 OpenAI 的 LLM。 import time import asyncio from langchain.llms import OpenAI def generate_serially(): llm = OpenAI(temperature=0.9) for _ in range(10): resp = llm.generate(["Hello, how are you?"]) print(resp.generations[0][0].text) async def async_generate(llm): resp = await llm.agenerate(["Hello, how are you?"]) print(resp.generations[0][0].text) async def generate_concurrently(): llm = OpenAI(temperature=0.9) tasks = [async_generate(llm) for _ in range(10)] await asyncio.gather(*tasks) s = time.perf_counter() # If running this outside of Jupyter, use asyncio.run(generate_concurrently()) await generate_concurrently() elapsed = time.perf_counter() - s print('\033[1m' + f"Concurrent executed in {elapsed:0.2f} seconds." + '\033[0m') s = time.perf_counter() generate_serially() elapsed = time.perf_counter() - s print('\033[1m'
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/async_llm.html
004bde5db0e5-1
= time.perf_counter() - s print('\033[1m' + f"Serial executed in {elapsed:0.2f} seconds." + '\033[0m') I'm doing well, thank you. How about you? I'm doing well, thank you. How about you? I'm doing well, how about you? I'm doing well, thank you. How about you? I'm doing well, thank you. How about you? I'm doing well, thank you. How about yourself? I'm doing well, thank you! How about you? I'm doing well, thank you. How about you? I'm doing well, thank you! How about you? I'm doing well, thank you. How about you? Concurrent executed in 1.39 seconds. I'm doing well, thank you. How about you? I'm doing well, thank you. How about you? I'm doing well, thank you. How about you? I'm doing well, thank you. How about you? I'm doing well, thank you. How about yourself? I'm doing well, thanks for asking. How about you? I'm doing well, thanks! How about you? I'm doing well, thank you. How about you? I'm doing well, thank you. How about yourself? I'm doing well, thanks for asking. How about you? Serial executed in 5.77 seconds. 这段代码展示了如何使用异步 API 来调用 OpenAI 的 LLM。 首先,定义了一个生成文本的函数 generate_serially,并进行了循环调用,依次生成文本。 接着,定义了一个异步函数 async_generate,该函数使用了 await 关键字,表示函数调用将异步执行。 该函数调用了 OpenAI 的 agenerate 方法来生成文本,生成的文本通过
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/async_llm.html
004bde5db0e5-2
OpenAI 的 agenerate 方法来生成文本,生成的文本通过 print() 输出。 最后,定义了一个并发生成的 generate_concurrently 函数,它与 async_generate 函数结合起来使用,用于并发地调用 LLM 来生成文本。 在主函数运行时, 首先调用了异步函数 await generate_concurrently(),并计算了执行该函数所需的时间,以便与后续序列执行函数的时间进行比较。 然后,调用了序列执行函数 generate_serially(),并计算了它的执行时间。 由于异步 API 可以同时调用多个 LLM,所以并发执行函数的执行时间应该比序列执行函数的执行时间更短。 tasks = [async_generate(llm) for _ in range(10)] await asyncio.gather(*tasks) 这是 Python 中的列表解析语法,用于创建一个包含多个异步生成器对象的列表,其中 _ 表示一个无关紧要的变量,而 range(10) 表示循环 10 次。 在 asyncio.gather(*tasks) 中,星号运算符 * 用于解包 tasks 列表,将其作为单独的参数列表传递给 asyncio.gather() 函数。这样,每个 async_generate(llm) 函数就会以并发方式执行,从而加速整个过程。最终结果是,由 async_generate(llm) 函数生成的文本数据会返回一个包含在 gather()
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/async_llm.html
004bde5db0e5-3
async_generate(llm) 函数生成的文本数据会返回一个包含在 gather() 函数返回值的列表中,该列表包含了所有并发执行的结果。 previous 通用功能 next 如何写一个自定义的LLM包装器 By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/async_llm.html
c44bb7a6b526-0
.ipynb .pdf 如何写一个自定义的LLM包装器 如何写一个自定义的LLM包装器# 这个notebook将介绍如何创建一个自定义的LLM包装器,以便您可以使用自己的LLM或与LangChain支持的不同包装器。自定义LLM只需要实现一个必需的方法: _call 方法,它接受一个字符串输入和一个可选的停用词列表,并返回一个字符串结果。 也可以实现一个可选的方法: _identifying_params 属性,用于帮助打印该类。应返回一个字典。 我们来实现一个非常简单的自定义LLM,它只返回输入文本的前N个字符。 from langchain.llms.base import LLM from typing import Optional, List, Mapping, Any class CustomLLM(LLM): n: int @property def _llm_type(self) -> str: return "custom" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: if stop is not None: raise ValueError("stop kwargs are not permitted.") return prompt[:self.n] @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {"n":
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/custom_llm.html
c44bb7a6b526-1
"""Get the identifying parameters.""" return {"n": self.n} 我们现在可以像使用任何其他LLM那样使用这个自定义的LLM了。 llm = CustomLLM(n=10) llm("This is a foobar thing") 'This is a ' 我们还可以打印这个LLM并查看自定义的打印效果。 print(llm) CustomLLM Params: {'n': 10} previous 如何使用 LLM 的异步 API next How (and why) to use the fake LLM By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/custom_llm.html
f0161e6baec1-0
.ipynb .pdf 如何实现 LLM 和 Chat Model 的流式响应 如何实现 LLM 和 Chat Model 的流式响应# LangChain为LLMs提供了流式支持。目前,我们支持使用OpenAI,ChatOpenAI和Anthropic实现进行流式传输,在路线图中也计划为其他LLM实现提供流式支持。要使用流式传输,需要实现on_llm_new_token的CallbackHandler 。在这个例子中,我们使用StreamingStdOutCallbackHandler。 from langchain.llms import OpenAI, Anthropic from langchain.chat_models import ChatOpenAI from langchain.callbacks.base import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.schema import HumanMessage llm = OpenAI(streaming=True, callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]), verbose=True, temperature=0) resp = llm("Write me a song about sparkling water.") Verse 1 I'm sippin' on sparkling water, It's so refreshing and light, It's the perfect way to quench my thirst On a hot summer night. Chorus Sparkling water, sparkling water, It's the best way to stay hydrated, It's so crisp and so clean, It's the perfect way to stay refreshed. Verse 2 I'm sippin' on sparkling water, It's so bubbly and bright, It's the perfect way to cool me down On a hot summer night. Chorus Sparkling water, sparkling water, It's the best way to stay hydrated, It's so crisp and so clean, It's the perfect way to stay refreshed. Verse 3 I'm sippin' on sparkling water, It's so light and so clear, It's the perfect way to
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/streaming_llm.html
f0161e6baec1-1
on sparkling water, It's so light and so clear, It's the perfect way to keep me cool On a hot summer night. Chorus Sparkling water, sparkling water, It's the best way to stay hydrated, It's so crisp and so clean, It's the perfect way to stay refreshed. 使用 generate 结束的时候,我们仍然可以访问的 LLMResult。但是,对于流式传输,token_usage目前则无法支持。 llm.generate(["Tell me a joke."]) Q: What did the fish say when it hit the wall? A: Dam! LLMResult(generations=[[Generation(text='\n\nQ: What did the fish say when it hit the wall?\nA: Dam!', generation_info={'finish_reason': None, 'logprobs': None})]], llm_output={'token_usage': {}, 'model_name': 'text-davinci-003'}) 基于 ChatOpenAI 聊天模型的示例: chat = ChatOpenAI(streaming=True, callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]), verbose=True, temperature=0) resp = chat([HumanMessage(content="Write me a song about sparkling water.")]) Verse 1: Bubbles rising to the top A refreshing drink that never stops Clear and crisp, it's oh so pure Sparkling water, I can't ignore Chorus: Sparkling water, oh how you shine A taste so clean, it's simply divine You quench my thirst, you make me feel alive Sparkling water, you're my favorite vibe Verse 2: No sugar, no calories, just H2O A drink that's good for me, don't you know With lemon or lime, you're even better Sparkling water, you're my forever Chorus: Sparkling water, oh how you
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/streaming_llm.html
f0161e6baec1-2
water, you're my forever Chorus: Sparkling water, oh how you shine A taste so clean, it's simply divine You quench my thirst, you make me feel alive Sparkling water, you're my favorite vibe Bridge: You're my go-to drink, day or night You make me feel so light I'll never give you up, you're my true love Sparkling water, you're sent from above Chorus: Sparkling water, oh how you shine A taste so clean, it's simply divine You quench my thirst, you make me feel alive Sparkling water, you're my favorite vibe Outro: Sparkling water, you're the one for me I'll never let you go, can't you see You're my drink of choice, forevermore Sparkling water, I adore. 使用 claude模型Anthropic LLM 示例: llm = Anthropic(streaming=True, callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]), verbose=True, temperature=0) llm("Write me a song about sparkling water.") Sparkling water, bubbles so bright, Fizzing and popping in the light. No sugar or calories, a healthy delight, Sparkling water, refreshing and light. Carbonation that tickles the tongue, In flavors of lemon and lime unsung. Sparkling water, a drink quite all right, Bubbles sparkling in the light. '\nSparkling water, bubbles so bright,\n\nFizzing and popping in the light.\n\nNo sugar or calories, a healthy delight,\n\nSparkling water, refreshing and light.\n\nCarbonation that tickles the tongue,\n\nIn flavors of lemon and lime unsung.\n\nSparkling water, a drink quite all right,\n\nBubbles sparkling in the light.' previous How to serialize LLM classes next How to track token usage By
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/streaming_llm.html
f0161e6baec1-3
light.' previous How to serialize LLM classes next How to track token usage By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/streaming_llm.html
0d7165e2153f-0
.ipynb .pdf How to serialize LLM classes Contents Loading Saving How to serialize LLM classes# This notebook walks through how to write and read an LLM Configuration to and from disk. This is useful if you want to save the configuration for a given LLM (e.g., the provider, the temperature, etc). from langchain.llms import OpenAI from langchain.llms.loading import load_llm Loading# First, lets go over loading an LLM from disk. LLMs can be saved on disk in two formats: json or yaml. No matter the extension, they are loaded in the same way. !cat llm.json { "model_name": "text-davinci-003", "temperature": 0.7, "max_tokens": 256, "top_p": 1.0, "frequency_penalty": 0.0, "presence_penalty": 0.0, "n": 1, "best_of": 1, "request_timeout": null, "_type": "openai" } llm = load_llm("llm.json") !cat llm.yaml _type: openai best_of: 1 frequency_penalty: 0.0 max_tokens: 256 model_name: text-davinci-003 n: 1 presence_penalty: 0.0 request_timeout: null temperature: 0.7 top_p: 1.0 llm = load_llm("llm.yaml") Saving# If you want to go from an LLM in memory to a serialized version of it, you can do so easily by calling the .save method. Again, this supports both json and
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/llm_serialization.html
0d7165e2153f-1
you can do so easily by calling the .save method. Again, this supports both json and yaml. llm.save("llm.json") llm.save("llm.yaml") previous How to cache LLM calls next 如何实现 LLM 和 Chat Model 的流式响应 Contents Loading Saving By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/llm_serialization.html
4bbb011e6dbc-0
.ipynb .pdf How (and why) to use the fake LLM How (and why) to use the fake LLM# We expose a fake LLM class that can be used for testing. This allows you to mock out calls to the LLM and simulate what would happen if the LLM responded in a certain way. In this notebook we go over how to use this. We start this with using the FakeLLM in an agent. from langchain.llms.fake import FakeListLLM from langchain.agents import load_tools from langchain.agents import initialize_agent from langchain.agents import AgentType tools = load_tools(["python_repl"]) responses=[ "Action: Python REPL\nAction Input: print(2 + 2)", "Final Answer: 4" ] llm = FakeListLLM(responses=responses) agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True) agent.run("whats 2 + 2") > Entering new AgentExecutor chain... Action: Python REPL Action Input: print(2 + 2) Observation: 4 Thought:Final Answer: 4 > Finished chain. '4' previous 如何写一个自定义的LLM包装器 next How to cache LLM calls By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/fake_llm.html
0c8b8103bedc-0
.ipynb .pdf How to cache LLM calls Contents In Memory Cache SQLite Cache Redis Cache GPTCache SQLAlchemy Cache Custom SQLAlchemy Schemas Optional Caching Optional Caching in Chains How to cache LLM calls# This notebook covers how to cache results of individual LLM calls. from langchain.llms import OpenAI In Memory Cache# import langchain from langchain.cache import InMemoryCache langchain.llm_cache = InMemoryCache() # To make the caching really obvious, lets use a slower model. llm = OpenAI(model_name="text-davinci-002", n=2, best_of=2) %%time # The first time, it is not yet in cache, so it should take longer llm("Tell me a joke") CPU times: user 14.2 ms, sys: 4.9 ms, total: 19.1 ms Wall time: 1.1 s '\n\nWhy did the chicken cross the road?\n\nTo get to the other side.' %%time # The second time it is, so it goes faster llm("Tell me a joke") CPU times: user 162 µs, sys: 7 µs, total: 169 µs Wall time: 175 µs '\n\nWhy did the chicken cross the road?\n\nTo get to the other side.' SQLite Cache# !rm .langchain.db # We can do the same thing with a SQLite cache from langchain.cache import SQLiteCache langchain.llm_cache = SQLiteCache(database_path=".langchain.db") %%time # The first time, it is not yet in cache, so it should take longer llm("Tell me a joke") CPU times: user 17 ms, sys: 9.76 ms, total: 26.7 ms Wall
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/llm_caching.html
0c8b8103bedc-1
ms, sys: 9.76 ms, total: 26.7 ms Wall time: 825 ms '\n\nWhy did the chicken cross the road?\n\nTo get to the other side.' %%time # The second time it is, so it goes faster llm("Tell me a joke") CPU times: user 2.46 ms, sys: 1.23 ms, total: 3.7 ms Wall time: 2.67 ms '\n\nWhy did the chicken cross the road?\n\nTo get to the other side.' Redis Cache# # We can do the same thing with a Redis cache # (make sure your local Redis instance is running first before running this example) from redis import Redis from langchain.cache import RedisCache langchain.llm_cache = RedisCache(redis_=Redis()) %%time # The first time, it is not yet in cache, so it should take longer llm("Tell me a joke") %%time # The second time it is, so it goes faster llm("Tell me a joke") GPTCache# We can use GPTCache for exact match caching OR to cache results based on semantic similarity Let’s first start with an example of exact match import gptcache from gptcache.processor.pre import get_prompt from gptcache.manager.factory import get_data_manager from langchain.cache import GPTCache # Avoid multiple caches using the same file, causing different llm model caches to affect each other i = 0 file_prefix = "data_map" def init_gptcache_map(cache_obj: gptcache.Cache): global i cache_path = f'{file_prefix}_{i}.txt' cache_obj.init( pre_embedding_func=get_prompt,
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/llm_caching.html
0c8b8103bedc-2
pre_embedding_func=get_prompt, data_manager=get_data_manager(data_path=cache_path), ) i += 1 langchain.llm_cache = GPTCache(init_gptcache_map) %%time # The first time, it is not yet in cache, so it should take longer llm("Tell me a joke") CPU times: user 8.6 ms, sys: 3.82 ms, total: 12.4 ms Wall time: 881 ms '\n\nWhy did the chicken cross the road?\n\nTo get to the other side.' %%time # The second time it is, so it goes faster llm("Tell me a joke") CPU times: user 286 µs, sys: 21 µs, total: 307 µs Wall time: 316 µs '\n\nWhy did the chicken cross the road?\n\nTo get to the other side.' Let’s now show an example of similarity caching import gptcache from gptcache.processor.pre import get_prompt from gptcache.manager.factory import get_data_manager from langchain.cache import GPTCache from gptcache.manager import get_data_manager, CacheBase, VectorBase from gptcache import Cache from gptcache.embedding import Onnx from gptcache.similarity_evaluation.distance import SearchDistanceEvaluation # Avoid multiple caches using the same file, causing different llm model caches to affect each other i = 0 file_prefix = "data_map" llm_cache = Cache() def init_gptcache_map(cache_obj: gptcache.Cache): global i cache_path = f'{file_prefix}_{i}.txt' onnx = Onnx() cache_base = CacheBase('sqlite')
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/llm_caching.html
0c8b8103bedc-3
onnx = Onnx() cache_base = CacheBase('sqlite') vector_base = VectorBase('faiss', dimension=onnx.dimension) data_manager = get_data_manager(cache_base, vector_base, max_size=10, clean_size=2) cache_obj.init( pre_embedding_func=get_prompt, embedding_func=onnx.to_embeddings, data_manager=data_manager, similarity_evaluation=SearchDistanceEvaluation(), ) i += 1 langchain.llm_cache = GPTCache(init_gptcache_map) %%time # The first time, it is not yet in cache, so it should take longer llm("Tell me a joke") CPU times: user 1.01 s, sys: 153 ms, total: 1.16 s Wall time: 2.49 s '\n\nWhy did the chicken cross the road?\n\nTo get to the other side.' %%time # This is an exact match, so it finds it in the cache llm("Tell me a joke") CPU times: user 745 ms, sys: 13.2 ms, total: 758 ms Wall time: 136 ms '\n\nWhy did the chicken cross the road?\n\nTo get to the other side.' %%time # This is not an exact match, but semantically within distance so it hits! llm("Tell me joke") CPU times: user 737 ms, sys: 7.79 ms, total: 745 ms Wall time: 135 ms '\n\nWhy did the chicken cross the road?\n\nTo get to the other side.' SQLAlchemy Cache# # You can use SQLAlchemyCache to cache with any SQL database supported by
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/llm_caching.html
0c8b8103bedc-4
side.' SQLAlchemy Cache# # You can use SQLAlchemyCache to cache with any SQL database supported by SQLAlchemy. # from langchain.cache import SQLAlchemyCache # from sqlalchemy import create_engine # engine = create_engine("postgresql://postgres:postgres@localhost:5432/postgres") # langchain.llm_cache = SQLAlchemyCache(engine) Custom SQLAlchemy Schemas# # You can define your own declarative SQLAlchemyCache child class to customize the schema used for caching. For example, to support high-speed fulltext prompt indexing with Postgres, use: from sqlalchemy import Column, Integer, String, Computed, Index, Sequence from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy_utils import TSVectorType from langchain.cache import SQLAlchemyCache Base = declarative_base() class FulltextLLMCache(Base): # type: ignore """Postgres table for fulltext-indexed LLM Cache""" __tablename__ = "llm_cache_fulltext" id = Column(Integer, Sequence('cache_id'), primary_key=True) prompt = Column(String, nullable=False) llm = Column(String, nullable=False) idx = Column(Integer) response = Column(String) prompt_tsv = Column(TSVectorType(), Computed("to_tsvector('english', llm || ' ' || prompt)", persisted=True)) __table_args__ = ( Index("idx_fulltext_prompt_tsv", prompt_tsv, postgresql_using="gin"), ) engine = create_engine("postgresql://postgres:postgres@localhost:5432/postgres") langchain.llm_cache = SQLAlchemyCache(engine, FulltextLLMCache) Optional Caching# You can also turn off caching for specific LLMs should you choose. In the example below, even though global caching is
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/llm_caching.html
0c8b8103bedc-5
caching for specific LLMs should you choose. In the example below, even though global caching is enabled, we turn it off for a specific LLM llm = OpenAI(model_name="text-davinci-002", n=2, best_of=2, cache=False) %%time llm("Tell me a joke") CPU times: user 5.8 ms, sys: 2.71 ms, total: 8.51 ms Wall time: 745 ms '\n\nWhy did the chicken cross the road?\n\nTo get to the other side!' %%time llm("Tell me a joke") CPU times: user 4.91 ms, sys: 2.64 ms, total: 7.55 ms Wall time: 623 ms '\n\nTwo guys stole a calendar. They got six months each.' Optional Caching in Chains# You can also turn off caching for particular nodes in chains. Note that because of certain interfaces, its often easier to construct the chain first, and then edit the LLM afterwards. As an example, we will load a summarizer map-reduce chain. We will cache results for the map-step, but then not freeze it for the combine step. llm = OpenAI(model_name="text-davinci-002") no_cache_llm = OpenAI(model_name="text-davinci-002", cache=False) from langchain.text_splitter import CharacterTextSplitter from langchain.chains.mapreduce import MapReduceChain text_splitter = CharacterTextSplitter() with open('../../../state_of_the_union.txt') as f: state_of_the_union = f.read() texts = text_splitter.split_text(state_of_the_union) from langchain.docstore.document import Document docs = [Document(page_content=t) for t in texts[:3]] from langchain.chains.summarize import
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/llm_caching.html
0c8b8103bedc-6
for t in texts[:3]] from langchain.chains.summarize import load_summarize_chain chain = load_summarize_chain(llm, chain_type="map_reduce", reduce_llm=no_cache_llm) %%time chain.run(docs) CPU times: user 452 ms, sys: 60.3 ms, total: 512 ms Wall time: 5.09 s '\n\nPresident Biden is discussing the American Rescue Plan and the Bipartisan Infrastructure Law, which will create jobs and help Americans. He also talks about his vision for America, which includes investing in education and infrastructure. In response to Russian aggression in Ukraine, the United States is joining with European allies to impose sanctions and isolate Russia. American forces are being mobilized to protect NATO countries in the event that Putin decides to keep moving west. The Ukrainians are bravely fighting back, but the next few weeks will be hard for them. Putin will pay a high price for his actions in the long run. Americans should not be alarmed, as the United States is taking action to protect its interests and allies.' When we run it again, we see that it runs substantially faster but the final answer is different. This is due to caching at the map steps, but not at the reduce step. %%time chain.run(docs) CPU times: user 11.5 ms, sys: 4.33 ms, total: 15.8 ms Wall time: 1.04 s '\n\nPresident Biden is discussing the American Rescue Plan and the Bipartisan Infrastructure Law, which will create jobs and help Americans. He also talks about his vision for America, which includes investing in education and infrastructure.' previous How (and why) to use the fake LLM next How to serialize LLM classes Contents In Memory Cache SQLite Cache Redis Cache GPTCache SQLAlchemy Cache Custom SQLAlchemy Schemas Optional
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/llm_caching.html
0c8b8103bedc-7
Cache Redis Cache GPTCache SQLAlchemy Cache Custom SQLAlchemy Schemas Optional Caching Optional Caching in Chains By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/llm_caching.html
46253102c963-0
.ipynb .pdf How to track token usage How to track token usage# This notebook goes over how to track your token usage for specific calls. It is currently only implemented for the OpenAI API. Let’s first look at an extremely simple example of tracking token usage for a single LLM call. from langchain.llms import OpenAI from langchain.callbacks import get_openai_callback llm = OpenAI(model_name="text-davinci-002", n=2, best_of=2) with get_openai_callback() as cb: result = llm("Tell me a joke") print(cb) Tokens Used: 42 Prompt Tokens: 4 Completion Tokens: 38 Successful Requests: 1 Total Cost (USD): $0.00084 Anything inside the context manager will get tracked. Here’s an example of using it to track multiple calls in sequence. with get_openai_callback() as cb: result = llm("Tell me a joke") result2 = llm("Tell me a joke") print(cb.total_tokens) 91 If a chain or agent with multiple steps in it is used, it will track all those steps. from langchain.agents import load_tools from langchain.agents import initialize_agent from langchain.agents import AgentType from langchain.llms import OpenAI llm = OpenAI(temperature=0) tools = load_tools(["serpapi", "llm-math"], llm=llm) agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True) with get_openai_callback() as cb: response = agent.run("Who is Olivia Wilde's boyfriend? What is his current age raised to the 0.23 power?") print(f"Total Tokens:
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/token_usage_tracking.html
46253102c963-1
current age raised to the 0.23 power?") print(f"Total Tokens: {cb.total_tokens}") print(f"Prompt Tokens: {cb.prompt_tokens}") print(f"Completion Tokens: {cb.completion_tokens}") print(f"Total Cost (USD): ${cb.total_cost}") > Entering new AgentExecutor chain... I need to find out who Olivia Wilde's boyfriend is and then calculate his age raised to the 0.23 power. Action: Search Action Input: "Olivia Wilde boyfriend" Observation: Sudeikis and Wilde's relationship ended in November 2020. Wilde was publicly served with court documents regarding child custody while she was presenting Don't Worry Darling at CinemaCon 2022. In January 2021, Wilde began dating singer Harry Styles after meeting during the filming of Don't Worry Darling. Thought: I need to find out Harry Styles' age. Action: Search Action Input: "Harry Styles age" Observation: 29 years Thought: I need to calculate 29 raised to the 0.23 power. Action: Calculator Action Input: 29^0.23 Observation: Answer: 2.169459462491557 Thought: I now know the final answer. Final Answer: Harry Styles, Olivia Wilde's boyfriend, is 29 years old and his age raised to the 0.23 power is 2.169459462491557. > Finished chain. Total Tokens: 1506 Prompt Tokens: 1350 Completion Tokens: 156 Total Cost (USD): $0.03012 previous 如何实现 LLM 和 Chat Model 的流式响应 next Integrations By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/token_usage_tracking.html
46253102c963-2
© Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/models/llms/examples/token_usage_tracking.html
83eb9b665e77-0
.rst .pdf Example Selectors Example Selectors# Note Conceptual Guide If you have a large number of examples, you may need to select which ones to include in the prompt. The ExampleSelector is the class responsible for doing so. The base interface is defined as below: class BaseExampleSelector(ABC): """Interface for selecting examples to include in prompts.""" @abstractmethod def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: """Select which examples to use based on the inputs.""" The only method it needs to expose is a select_examples method. This takes in the input variables and then returns a list of examples. It is up to each specific implementation as to how those examples are selected. Let’s take a look at some below. See below for a list of example selectors. How to create a custom example selector LengthBased ExampleSelector Maximal Marginal Relevance ExampleSelector NGram Overlap ExampleSelector Similarity ExampleSelector previous Chat Prompt Template next How to create a custom example selector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/example_selectors.html
ff11f5a98dbc-0
.rst .pdf Output Parsers Output Parsers# Note Conceptual Guide Language models output text. But many times you may want to get more structured information than just text back. This is where output parsers come in. Output parsers are classes that help structure language model responses. There are two main methods an output parser must implement: get_format_instructions() -> str: A method which returns a string containing instructions for how the output of a language model should be formatted. parse(str) -> Any: A method which takes in a string (assumed to be the response from a language model) and parses it into some structure. And then one optional one: parse_with_prompt(str) -> Any: A method which takes in a string (assumed to be the response from a language model) and a prompt (assumed to the prompt that generated such a response) and parses it into some structure. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. To start, we recommend familiarizing yourself with the Getting Started section Output Parsers After that, we provide deep dives on all the different types of output parsers. CommaSeparatedListOutputParser OutputFixingParser PydanticOutputParser RetryOutputParser Structured Output Parser previous Similarity ExampleSelector next Output Parsers By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/output_parsers.html
46a5337f2274-0
.rst .pdf Prompt Templates Prompt Templates# Note Conceptual Guide Language models take text as input - that text is commonly referred to as a prompt. Typically this is not simply a hardcoded string but rather a combination of a template, some examples, and user input. LangChain provides several classes and functions to make constructing and working with prompts easy. The following sections of documentation are provided: Getting Started: An overview of all the functionality LangChain provides for working with and constructing prompts. How-To Guides: A collection of how-to guides. These highlight how to accomplish various objectives with our prompt class. Reference: API reference documentation for all prompt classes. previous Prompts next Getting Started By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/prompt_templates.html
8ff445c9d6a7-0
.ipynb .pdf Chat Prompt Template Chat Prompt Template# Chat Models takes a list of chat messages as input - this list commonly referred to as a prompt. Typically this is not simply a hardcoded list of messages but rather a combination of a template, some examples, and user input. LangChain provides several classes and functions to make constructing and working with prompts easy. from langchain.prompts import ( ChatPromptTemplate, PromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) You can make use of templating by using a MessagePromptTemplate. You can build a ChatPromptTemplate from one or more MessagePromptTemplates. You can use ChatPromptTemplate’s format_prompt – this returns a PromptValue, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model. For convenience, there is a from_template method exposed on the template. If you were to use this template, this is what it would look like: template="You are a helpful assistant that translates {input_language} to {output_language}." system_message_prompt = SystemMessagePromptTemplate.from_template(template) human_template="{text}" human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt]) # get a chat completion from the formatted messages chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages() [SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}), HumanMessage(content='I love programming.', additional_kwargs={})] If you wanted to construct the MessagePromptTemplate more directly, you could create a
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/chat_prompt_template.html
8ff445c9d6a7-1
you wanted to construct the MessagePromptTemplate more directly, you could create a PromptTemplate outside and then pass it in, eg: prompt=PromptTemplate( template="You are a helpful assistant that translates {input_language} to {output_language}.", input_variables=["input_language", "output_language"], ) system_message_prompt = SystemMessagePromptTemplate(prompt=prompt) previous Example Selector next Example Selectors By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/chat_prompt_template.html
0e5f54ad4fa6-0
.ipynb .pdf Similarity ExampleSelector Similarity ExampleSelector# The SemanticSimilarityExampleSelector selects examples based on which examples are most similar to the inputs. It does this by finding the examples with the embeddings that have the greatest cosine similarity with the inputs. from langchain.prompts.example_selector import SemanticSimilarityExampleSelector from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import FewShotPromptTemplate, PromptTemplate example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) # These are a lot of examples of a pretend task of creating antonyms. examples = [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, {"input": "energetic", "output": "lethargic"}, {"input": "sunny", "output": "gloomy"}, {"input": "windy", "output": "calm"}, ] example_selector = SemanticSimilarityExampleSelector.from_examples( # This is the list of examples available to select from. examples, # This is the embedding class used to produce embeddings which are used to measure semantic similarity. OpenAIEmbeddings(), # This is the VectorStore class that is used to store the embeddings and do a similarity search over. Chroma, # This is the number of examples to produce. k=1 ) similar_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt,
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/example_selectors/examples/similarity.html
0e5f54ad4fa6-1
example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input", suffix="Input: {adjective}\nOutput:", input_variables=["adjective"], ) Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient. # Input is a feeling, so should select the happy/sad example print(similar_prompt.format(adjective="worried")) Give the antonym of every input Input: happy Output: sad Input: worried Output: # Input is a measurement, so should select the tall/short example print(similar_prompt.format(adjective="fat")) Give the antonym of every input Input: happy Output: sad Input: fat Output: # You can add new examples to the SemanticSimilarityExampleSelector as well similar_prompt.example_selector.add_example({"input": "enthusiastic", "output": "apathetic"}) print(similar_prompt.format(adjective="joyful")) Give the antonym of every input Input: happy Output: sad Input: joyful Output: previous NGram Overlap ExampleSelector next Output Parsers By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/example_selectors/examples/similarity.html
7baaaefc9c55-0
.ipynb .pdf Maximal Marginal Relevance ExampleSelector Maximal Marginal Relevance ExampleSelector# The MaxMarginalRelevanceExampleSelector selects examples based on a combination of which examples are most similar to the inputs, while also optimizing for diversity. It does this by finding the examples with the embeddings that have the greatest cosine similarity with the inputs, and then iteratively adding them while penalizing them for closeness to already selected examples. from langchain.prompts.example_selector import MaxMarginalRelevanceExampleSelector from langchain.vectorstores import FAISS from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import FewShotPromptTemplate, PromptTemplate example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) # These are a lot of examples of a pretend task of creating antonyms. examples = [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, {"input": "energetic", "output": "lethargic"}, {"input": "sunny", "output": "gloomy"}, {"input": "windy", "output": "calm"}, ] example_selector = MaxMarginalRelevanceExampleSelector.from_examples( # This is the list of examples available to select from. examples, # This is the embedding class used to produce embeddings which are used to measure semantic similarity. OpenAIEmbeddings(), # This is the VectorStore class that is used to store the embeddings and do a similarity search over. FAISS, # This is the number of examples to produce. k=2 ) mmr_prompt
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/example_selectors/examples/mmr.html
7baaaefc9c55-1
This is the number of examples to produce. k=2 ) mmr_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input", suffix="Input: {adjective}\nOutput:", input_variables=["adjective"], ) # Input is a feeling, so should select the happy/sad example as the first one print(mmr_prompt.format(adjective="worried")) Give the antonym of every input Input: happy Output: sad Input: windy Output: calm Input: worried Output: # Let's compare this to what we would just get if we went solely off of similarity similar_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input", suffix="Input: {adjective}\nOutput:", input_variables=["adjective"], ) similar_prompt.example_selector.k = 2 print(similar_prompt.format(adjective="worried")) Give the antonym of every input Input: happy Output: sad Input: windy Output: calm Input: worried Output: previous LengthBased ExampleSelector next NGram Overlap ExampleSelector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/example_selectors/examples/mmr.html
99b38fa2faf2-0
.ipynb .pdf LengthBased ExampleSelector LengthBased ExampleSelector# This ExampleSelector selects which examples to use based on length. This is useful when you are worried about constructing a prompt that will go over the length of the context window. For longer inputs, it will select fewer examples to include, while for shorter inputs it will select more. from langchain.prompts import PromptTemplate from langchain.prompts import FewShotPromptTemplate from langchain.prompts.example_selector import LengthBasedExampleSelector # These are a lot of examples of a pretend task of creating antonyms. examples = [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, {"input": "energetic", "output": "lethargic"}, {"input": "sunny", "output": "gloomy"}, {"input": "windy", "output": "calm"}, ] example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) example_selector = LengthBasedExampleSelector( # These are the examples it has available to choose from. examples=examples, # This is the PromptTemplate being used to format the examples. example_prompt=example_prompt, # This is the maximum length that the formatted examples should be. # Length is measured by the get_text_length function below. max_length=25, # This is the function used to get the length of a string, which is used # to determine which examples to include. It is commented out because # it is provided as a default value if none is specified. #
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/example_selectors/examples/length_based.html
99b38fa2faf2-1
# it is provided as a default value if none is specified. # get_text_length: Callable[[str], int] = lambda x: len(re.split("\n| ", x)) ) dynamic_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input", suffix="Input: {adjective}\nOutput:", input_variables=["adjective"], ) # An example with small input, so it selects all examples. print(dynamic_prompt.format(adjective="big")) Give the antonym of every input Input: happy Output: sad Input: tall Output: short Input: energetic Output: lethargic Input: sunny Output: gloomy Input: windy Output: calm Input: big Output: # An example with long input, so it selects only one example. long_string = "big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else" print(dynamic_prompt.format(adjective=long_string)) Give the antonym of every input Input: happy Output: sad Input: big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else Output: # You can add an example to an example selector as well. new_example = {"input": "big", "output": "small"} dynamic_prompt.example_selector.add_example(new_example) print(dynamic_prompt.format(adjective="enthusiastic")) Give the antonym of every input Input: happy Output: sad Input: tall Output: short Input: energetic Output: lethargic Input: sunny Output: gloomy Input: windy Output: calm Input: big Output:
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/example_selectors/examples/length_based.html
99b38fa2faf2-2
gloomy Input: windy Output: calm Input: big Output: small Input: enthusiastic Output: previous How to create a custom example selector next Maximal Marginal Relevance ExampleSelector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/example_selectors/examples/length_based.html
6fa2d45fa87a-0
.ipynb .pdf NGram Overlap ExampleSelector NGram Overlap ExampleSelector# The NGramOverlapExampleSelector selects and orders examples based on which examples are most similar to the input, according to an ngram overlap score. The ngram overlap score is a float between 0.0 and 1.0, inclusive. The selector allows for a threshold score to be set. Examples with an ngram overlap score less than or equal to the threshold are excluded. The threshold is set to -1.0, by default, so will not exclude any examples, only reorder them. Setting the threshold to 0.0 will exclude examples that have no ngram overlaps with the input. from langchain.prompts import PromptTemplate from langchain.prompts.example_selector.ngram_overlap import NGramOverlapExampleSelector from langchain.prompts import FewShotPromptTemplate, PromptTemplate example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) # These are a lot of examples of a pretend task of creating antonyms. examples = [ {"input": "happy", "output": "sad"}, {"input": "tall", "output": "short"}, {"input": "energetic", "output": "lethargic"}, {"input": "sunny", "output": "gloomy"}, {"input": "windy", "output": "calm"}, ] # These are examples of a fictional translation task. examples = [ {"input": "See Spot run.", "output": "Ver correr a Spot."}, {"input": "My dog barks.", "output": "Mi perro ladra."}, {"input": "Spot can run.", "output": "Spot puede
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html
6fa2d45fa87a-1
ladra."}, {"input": "Spot can run.", "output": "Spot puede correr."}, ] example_prompt = PromptTemplate( input_variables=["input", "output"], template="Input: {input}\nOutput: {output}", ) example_selector = NGramOverlapExampleSelector( # These are the examples it has available to choose from. examples=examples, # This is the PromptTemplate being used to format the examples. example_prompt=example_prompt, # This is the threshold, at which selector stops. # It is set to -1.0 by default. threshold=-1.0, # For negative threshold: # Selector sorts examples by ngram overlap score, and excludes none. # For threshold greater than 1.0: # Selector excludes all examples, and returns an empty list. # For threshold equal to 0.0: # Selector sorts examples by ngram overlap score, # and excludes those with no ngram overlap with input. ) dynamic_prompt = FewShotPromptTemplate( # We provide an ExampleSelector instead of examples. example_selector=example_selector, example_prompt=example_prompt, prefix="Give the Spanish translation of every input", suffix="Input: {sentence}\nOutput:", input_variables=["sentence"], ) # An example input with large ngram overlap with "Spot can run." # and no overlap with "My dog barks." print(dynamic_prompt.format(sentence="Spot can run fast.")) Give the Spanish translation of every input Input: Spot can run. Output: Spot puede correr. Input: See Spot run. Output: Ver correr a Spot. Input: My
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html
6fa2d45fa87a-2
correr. Input: See Spot run. Output: Ver correr a Spot. Input: My dog barks. Output: Mi perro ladra. Input: Spot can run fast. Output: # You can add examples to NGramOverlapExampleSelector as well. new_example = {"input": "Spot plays fetch.", "output": "Spot juega a buscar."} example_selector.add_example(new_example) print(dynamic_prompt.format(sentence="Spot can run fast.")) Give the Spanish translation of every input Input: Spot can run. Output: Spot puede correr. Input: See Spot run. Output: Ver correr a Spot. Input: Spot plays fetch. Output: Spot juega a buscar. Input: My dog barks. Output: Mi perro ladra. Input: Spot can run fast. Output: # You can set a threshold at which examples are excluded. # For example, setting threshold equal to 0.0 # excludes examples with no ngram overlaps with input. # Since "My dog barks." has no ngram overlaps with "Spot can run fast." # it is excluded. example_selector.threshold=0.0 print(dynamic_prompt.format(sentence="Spot can run fast.")) Give the Spanish translation of every input Input: Spot can run. Output: Spot puede correr. Input: See Spot run. Output: Ver correr a Spot. Input: Spot plays fetch. Output: Spot juega a buscar. Input: Spot can run fast. Output: # Setting small nonzero threshold example_selector.threshold=0.09 print(dynamic_prompt.format(sentence="Spot can play fetch.")) Give the Spanish translation of every input Input: Spot can run. Output: Spot puede correr. Input: Spot plays fetch. Output: Spot juega a buscar. Input: Spot can play fetch. Output: # Setting threshold greater than
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html
6fa2d45fa87a-3
Spot juega a buscar. Input: Spot can play fetch. Output: # Setting threshold greater than 1.0 example_selector.threshold=1.0+1e-9 print(dynamic_prompt.format(sentence="Spot can play fetch.")) Give the Spanish translation of every input Input: Spot can play fetch. Output: previous Maximal Marginal Relevance ExampleSelector next Similarity ExampleSelector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/example_selectors/examples/ngram_overlap.html
9fe7a3ea6f9d-0
.md .pdf How to create a custom example selector Contents Implement custom example selector Use custom example selector How to create a custom example selector# In this tutorial, we’ll create a custom example selector that selects every alternate example from a given list of examples. An ExampleSelector must implement two methods: An add_example method which takes in an example and adds it into the ExampleSelector A select_examples method which takes in input variables (which are meant to be user input) and returns a list of examples to use in the few shot prompt. Let’s implement a custom ExampleSelector that just selects two examples at random. Note Take a look at the current set of example selector implementations supported in LangChain here. Implement custom example selector# from langchain.prompts.example_selector.base import BaseExampleSelector from typing import Dict, List import numpy as np class CustomExampleSelector(BaseExampleSelector): def __init__(self, examples: List[Dict[str, str]]): self.examples = examples def add_example(self, example: Dict[str, str]) -> None: """Add new example to store for a key.""" self.examples.append(example) def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: """Select which examples to use based on the inputs.""" return np.random.choice(self.examples, size=2, replace=False) Use custom example selector# examples = [ {"foo": "1"}, {"foo": "2"}, {"foo": "3"} ] # Initialize example selector. example_selector = CustomExampleSelector(examples) # Select examples example_selector.select_examples({"foo": "foo"}) # ->
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/example_selectors/examples/custom_example_selector.html
9fe7a3ea6f9d-1
Select examples example_selector.select_examples({"foo": "foo"}) # -> array([{'foo': '2'}, {'foo': '3'}], dtype=object) # Add new example to the set of examples example_selector.add_example({"foo": "4"}) example_selector.examples # -> [{'foo': '1'}, {'foo': '2'}, {'foo': '3'}, {'foo': '4'}] # Select examples example_selector.select_examples({"foo": "foo"}) # -> array([{'foo': '1'}, {'foo': '4'}], dtype=object) previous Example Selectors next LengthBased ExampleSelector Contents Implement custom example selector Use custom example selector By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/example_selectors/examples/custom_example_selector.html
cdd9ced1eea9-0
.ipynb .pdf Output Parsers Output Parsers# Language models output text. But many times you may want to get more structured information than just text back. This is where output parsers come in. Output parsers are classes that help structure language model responses. There are two main methods an output parser must implement: get_format_instructions() -> str: A method which returns a string containing instructions for how the output of a language model should be formatted. parse(str) -> Any: A method which takes in a string (assumed to be the response from a language model) and parses it into some structure. And then one optional one: parse_with_prompt(str) -> Any: A method which takes in a string (assumed to be the response from a language model) and a prompt (assumed to the prompt that generated such a response) and parses it into some structure. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Below we go over the main type of output parser, the PydanticOutputParser. See the examples folder for other options. from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI from langchain.output_parsers import PydanticOutputParser from pydantic import BaseModel, Field, validator from typing import List model_name = 'text-davinci-003' temperature = 0.0 model = OpenAI(model_name=model_name, temperature=temperature) # Define your desired data structure. class Joke(BaseModel): setup: str = Field(description="question to set up a joke") punchline: str = Field(description="answer to resolve the joke") # You can add custom validation logic easily with
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/output_parsers/getting_started.html
cdd9ced1eea9-1
resolve the joke") # You can add custom validation logic easily with Pydantic. @validator('setup') def question_ends_with_question_mark(cls, field): if field[-1] != '?': raise ValueError("Badly formed question!") return field # Set up a parser + inject instructions into the prompt template. parser = PydanticOutputParser(pydantic_object=Joke) prompt = PromptTemplate( template="Answer the user query.\n{format_instructions}\n{query}\n", input_variables=["query"], partial_variables={"format_instructions": parser.get_format_instructions()} ) # And a query intented to prompt a language model to populate the data structure. joke_query = "Tell me a joke." _input = prompt.format_prompt(query=joke_query) output = model(_input.to_string()) parser.parse(output) Joke(setup='Why did the chicken cross the road?', punchline='To get to the other side!') previous Output Parsers next CommaSeparatedListOutputParser By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/output_parsers/getting_started.html
1cd857bb4421-0
.ipynb .pdf RetryOutputParser RetryOutputParser# While in some cases it is possible to fix any parsing mistakes by only looking at the output, in other cases it can’t. An example of this is when the output is not just in the incorrect format, but is partially complete. Consider the below example. from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI from langchain.output_parsers import PydanticOutputParser, OutputFixingParser, RetryOutputParser from pydantic import BaseModel, Field, validator from typing import List template = """Based on the user question, provide an Action and Action Input for what step should be taken. {format_instructions} Question: {query} Response:""" class Action(BaseModel): action: str = Field(description="action to take") action_input: str = Field(description="input to the action") parser = PydanticOutputParser(pydantic_object=Action) prompt = PromptTemplate( template="Answer the user query.\n{format_instructions}\n{query}\n", input_variables=["query"], partial_variables={"format_instructions": parser.get_format_instructions()} ) prompt_value = prompt.format_prompt(query="who is leo di caprios gf?") bad_response = '{"action": "search"}' If we try to parse this response as is, we will get an error parser.parse(bad_response) --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) File ~/workplace/langchain/langchain/output_parsers/pydantic.py:24, in PydanticOutputParser.parse(self, text)
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/output_parsers/examples/retry.html
1cd857bb4421-1
in PydanticOutputParser.parse(self, text) 23 json_object = json.loads(json_str) ---> 24 return self.pydantic_object.parse_obj(json_object) 26 except (json.JSONDecodeError, ValidationError) as e: File ~/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/pydantic/main.py:527, in pydantic.main.BaseModel.parse_obj() File ~/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/pydantic/main.py:342, in pydantic.main.BaseModel.__init__() ValidationError: 1 validation error for Action action_input field required (type=value_error.missing) During handling of the above exception, another exception occurred: OutputParserException Traceback (most recent call last) Cell In[6], line 1 ----> 1 parser.parse(bad_response) File ~/workplace/langchain/langchain/output_parsers/pydantic.py:29, in PydanticOutputParser.parse(self, text) 27 name = self.pydantic_object.__name__ 28 msg = f"Failed to parse {name} from completion {text}. Got: {e}" ---> 29 raise OutputParserException(msg) OutputParserException: Failed to parse Action from completion {"action": "search"}. Got: 1 validation error for Action action_input field required (type=value_error.missing) If we try to use the OutputFixingParser to fix this error, it will be confused - namely, it doesn’t know what to actually put for action input. fix_parser = OutputFixingParser.from_llm(parser=parser,
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/output_parsers/examples/retry.html
1cd857bb4421-2
actually put for action input. fix_parser = OutputFixingParser.from_llm(parser=parser, llm=ChatOpenAI()) fix_parser.parse(bad_response) Action(action='search', action_input='') Instead, we can use the RetryOutputParser, which passes in the prompt (as well as the original output) to try again to get a better response. from langchain.output_parsers import RetryWithErrorOutputParser retry_parser = RetryWithErrorOutputParser.from_llm(parser=parser, llm=OpenAI(temperature=0)) retry_parser.parse_with_prompt(bad_response, prompt_value) Action(action='search', action_input='who is leo di caprios gf?') previous PydanticOutputParser next Structured Output Parser By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/output_parsers/examples/retry.html
2d06dc6c018b-0
.ipynb .pdf OutputFixingParser OutputFixingParser# This output parser wraps another output parser and tries to fix any mmistakes The Pydantic guardrail simply tries to parse the LLM response. If it does not parse correctly, then it errors. But we can do other things besides throw errors. Specifically, we can pass the misformatted output, along with the formatted instructions, to the model and ask it to fix it. For this example, we’ll use the above OutputParser. Here’s what happens if we pass it a result that does not comply with the schema: from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI from langchain.output_parsers import PydanticOutputParser from pydantic import BaseModel, Field, validator from typing import List class Actor(BaseModel): name: str = Field(description="name of an actor") film_names: List[str] = Field(description="list of names of films they starred in") actor_query = "Generate the filmography for a random actor." parser = PydanticOutputParser(pydantic_object=Actor) misformatted = "{'name': 'Tom Hanks', 'film_names': ['Forrest Gump']}" parser.parse(misformatted) --------------------------------------------------------------------------- JSONDecodeError Traceback (most recent call last) File ~/workplace/langchain/langchain/output_parsers/pydantic.py:23, in PydanticOutputParser.parse(self, text) 22 json_str = match.group() ---> 23 json_object = json.loads(json_str) 24 return
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/output_parsers/examples/output_fixing_parser.html
2d06dc6c018b-1
23 json_object = json.loads(json_str) 24 return self.pydantic_object.parse_obj(json_object) File ~/.pyenv/versions/3.9.1/lib/python3.9/json/__init__.py:346, in loads(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 343 if (cls is None and object_hook is None and 344 parse_int is None and parse_float is None and 345 parse_constant is None and object_pairs_hook is None and not kw): --> 346 return _default_decoder.decode(s) 347 if cls is None: File ~/.pyenv/versions/3.9.1/lib/python3.9/json/decoder.py:337, in JSONDecoder.decode(self, s, _w) 333 """Return the Python representation of ``s`` (a ``str`` instance 334 containing a JSON document). 335 336 """ --> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end()) 338 end = _w(s, end).end() File ~/.pyenv/versions/3.9.1/lib/python3.9/json/decoder.py:353, in JSONDecoder.raw_decode(self, s, idx) 352 try: --> 353 obj, end = self.scan_once(s, idx) 354 except StopIteration as err: JSONDecodeError: Expecting property name enclosed in double quotes: line 1 column 2 (char 1) During handling of the above exception, another exception occurred: OutputParserException
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/output_parsers/examples/output_fixing_parser.html
2d06dc6c018b-2
handling of the above exception, another exception occurred: OutputParserException Traceback (most recent call last) Cell In[6], line 1 ----> 1 parser.parse(misformatted) File ~/workplace/langchain/langchain/output_parsers/pydantic.py:29, in PydanticOutputParser.parse(self, text) 27 name = self.pydantic_object.__name__ 28 msg = f"Failed to parse {name} from completion {text}. Got: {e}" ---> 29 raise OutputParserException(msg) OutputParserException: Failed to parse Actor from completion {'name': 'Tom Hanks', 'film_names': ['Forrest Gump']}. Got: Expecting property name enclosed in double quotes: line 1 column 2 (char 1) Now we can construct and use a OutputFixingParser. This output parser takes as an argument another output parser but also an LLM with which to try to correct any formatting mistakes. from langchain.output_parsers import OutputFixingParser new_parser = OutputFixingParser.from_llm(parser=parser, llm=ChatOpenAI()) new_parser.parse(misformatted) Actor(name='Tom Hanks', film_names=['Forrest Gump']) previous CommaSeparatedListOutputParser next PydanticOutputParser By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/output_parsers/examples/output_fixing_parser.html
6cb4cbfb28f1-0
.ipynb .pdf CommaSeparatedListOutputParser CommaSeparatedListOutputParser# Here’s another parser strictly less powerful than Pydantic/JSON parsing. from langchain.output_parsers import CommaSeparatedListOutputParser from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI output_parser = CommaSeparatedListOutputParser() format_instructions = output_parser.get_format_instructions() prompt = PromptTemplate( template="List five {subject}.\n{format_instructions}", input_variables=["subject"], partial_variables={"format_instructions": format_instructions} ) model = OpenAI(temperature=0) _input = prompt.format(subject="ice cream flavors") output = model(_input) output_parser.parse(output) ['Vanilla', 'Chocolate', 'Strawberry', 'Mint Chocolate Chip', 'Cookies and Cream'] previous Output Parsers next OutputFixingParser By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/prompts/output_parsers/examples/comma_separated.html