id
stringlengths
14
16
text
stringlengths
29
2.31k
source
stringlengths
57
122
3d0c51dada59-7
Brewers\nPayroll in millions: 97.65\nWins: 83', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 15}, lookup_index=0), Document(page_content='MLB Team: Phillies\nPayroll in millions: 174.54\nWins: 81', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 16}, lookup_index=0), Document(page_content='MLB Team: Diamondbacks\nPayroll in millions: 74.28\nWins: 81', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 17}, lookup_index=0), Document(page_content='MLB Team: Pirates\nPayroll in millions: 63.43\nWins: 79', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 18}, lookup_index=0), Document(page_content='MLB Team: Padres\nPayroll in millions: 55.24\nWins: 76', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 19}, lookup_index=0), Document(page_content='MLB Team: Mariners\nPayroll in millions: 81.97\nWins: 75', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 20}, lookup_index=0), Document(page_content='MLB Team: Mets\nPayroll in millions: 93.35\nWins: 74', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 21}, lookup_index=0), Document(page_content='MLB Team: Blue Jays\nPayroll in millions: 75.48\nWins: 73', lookup_str='',
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/csv.html
3d0c51dada59-8
Jays\nPayroll in millions: 75.48\nWins: 73', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 22}, lookup_index=0), Document(page_content='MLB Team: Royals\nPayroll in millions: 60.91\nWins: 72', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 23}, lookup_index=0), Document(page_content='MLB Team: Marlins\nPayroll in millions: 118.07\nWins: 69', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 24}, lookup_index=0), Document(page_content='MLB Team: Red Sox\nPayroll in millions: 173.18\nWins: 69', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 25}, lookup_index=0), Document(page_content='MLB Team: Indians\nPayroll in millions: 78.43\nWins: 68', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 26}, lookup_index=0), Document(page_content='MLB Team: Twins\nPayroll in millions: 94.08\nWins: 66', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 27}, lookup_index=0), Document(page_content='MLB Team: Rockies\nPayroll in millions: 78.06\nWins: 64', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 28}, lookup_index=0), Document(page_content='MLB Team: Cubs\nPayroll in millions: 88.19\nWins: 61', lookup_str='',
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/csv.html
3d0c51dada59-9
Cubs\nPayroll in millions: 88.19\nWins: 61', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 29}, lookup_index=0), Document(page_content='MLB Team: Astros\nPayroll in millions: 60.65\nWins: 55', lookup_str='', metadata={'source': './example_data/mlb_teams_2012.csv', 'row': 30}, lookup_index=0)] Specify a column to be used identify the document source# Use the source_column argument to specify a column to be set as the source for the document created from each row. Otherwise file_path will be used as the source for all documents created from the csv file. This is useful when using documents loaded from CSV files for chains that answer questions using sources. loader = CSVLoader(file_path='./example_data/mlb_teams_2012.csv', source_column="Team") data = loader.load() print(data) [Document(page_content='Team: Nationals\n"Payroll (millions)": 81.34\n"Wins": 98', lookup_str='', metadata={'source': 'Nationals', 'row': 0}, lookup_index=0), Document(page_content='Team: Reds\n"Payroll (millions)": 82.20\n"Wins": 97', lookup_str='', metadata={'source': 'Reds', 'row': 1}, lookup_index=0), Document(page_content='Team: Yankees\n"Payroll (millions)": 197.96\n"Wins": 95', lookup_str='', metadata={'source': 'Yankees', 'row': 2}, lookup_index=0), Document(page_content='Team: Giants\n"Payroll (millions)": 117.62\n"Wins": 94', lookup_str='', metadata={'source': 'Giants', 'row': 3}, lookup_index=0), Document(page_content='Team:
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/csv.html
3d0c51dada59-10
'row': 3}, lookup_index=0), Document(page_content='Team: Braves\n"Payroll (millions)": 83.31\n"Wins": 94', lookup_str='', metadata={'source': 'Braves', 'row': 4}, lookup_index=0), Document(page_content='Team: Athletics\n"Payroll (millions)": 55.37\n"Wins": 94', lookup_str='', metadata={'source': 'Athletics', 'row': 5}, lookup_index=0), Document(page_content='Team: Rangers\n"Payroll (millions)": 120.51\n"Wins": 93', lookup_str='', metadata={'source': 'Rangers', 'row': 6}, lookup_index=0), Document(page_content='Team: Orioles\n"Payroll (millions)": 81.43\n"Wins": 93', lookup_str='', metadata={'source': 'Orioles', 'row': 7}, lookup_index=0), Document(page_content='Team: Rays\n"Payroll (millions)": 64.17\n"Wins": 90', lookup_str='', metadata={'source': 'Rays', 'row': 8}, lookup_index=0), Document(page_content='Team: Angels\n"Payroll (millions)": 154.49\n"Wins": 89', lookup_str='', metadata={'source': 'Angels', 'row': 9}, lookup_index=0), Document(page_content='Team: Tigers\n"Payroll (millions)": 132.30\n"Wins": 88', lookup_str='', metadata={'source': 'Tigers', 'row': 10}, lookup_index=0), Document(page_content='Team: Cardinals\n"Payroll (millions)": 110.30\n"Wins": 88', lookup_str='', metadata={'source': 'Cardinals', 'row': 11}, lookup_index=0),
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/csv.html
3d0c51dada59-11
metadata={'source': 'Cardinals', 'row': 11}, lookup_index=0), Document(page_content='Team: Dodgers\n"Payroll (millions)": 95.14\n"Wins": 86', lookup_str='', metadata={'source': 'Dodgers', 'row': 12}, lookup_index=0), Document(page_content='Team: White Sox\n"Payroll (millions)": 96.92\n"Wins": 85', lookup_str='', metadata={'source': 'White Sox', 'row': 13}, lookup_index=0), Document(page_content='Team: Brewers\n"Payroll (millions)": 97.65\n"Wins": 83', lookup_str='', metadata={'source': 'Brewers', 'row': 14}, lookup_index=0), Document(page_content='Team: Phillies\n"Payroll (millions)": 174.54\n"Wins": 81', lookup_str='', metadata={'source': 'Phillies', 'row': 15}, lookup_index=0), Document(page_content='Team: Diamondbacks\n"Payroll (millions)": 74.28\n"Wins": 81', lookup_str='', metadata={'source': 'Diamondbacks', 'row': 16}, lookup_index=0), Document(page_content='Team: Pirates\n"Payroll (millions)": 63.43\n"Wins": 79', lookup_str='', metadata={'source': 'Pirates', 'row': 17}, lookup_index=0), Document(page_content='Team: Padres\n"Payroll (millions)": 55.24\n"Wins": 76', lookup_str='', metadata={'source': 'Padres', 'row': 18}, lookup_index=0), Document(page_content='Team: Mariners\n"Payroll (millions)": 81.97\n"Wins": 75', lookup_str='', metadata={'source': 'Mariners', 'row':
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/csv.html
3d0c51dada59-12
75', lookup_str='', metadata={'source': 'Mariners', 'row': 19}, lookup_index=0), Document(page_content='Team: Mets\n"Payroll (millions)": 93.35\n"Wins": 74', lookup_str='', metadata={'source': 'Mets', 'row': 20}, lookup_index=0), Document(page_content='Team: Blue Jays\n"Payroll (millions)": 75.48\n"Wins": 73', lookup_str='', metadata={'source': 'Blue Jays', 'row': 21}, lookup_index=0), Document(page_content='Team: Royals\n"Payroll (millions)": 60.91\n"Wins": 72', lookup_str='', metadata={'source': 'Royals', 'row': 22}, lookup_index=0), Document(page_content='Team: Marlins\n"Payroll (millions)": 118.07\n"Wins": 69', lookup_str='', metadata={'source': 'Marlins', 'row': 23}, lookup_index=0), Document(page_content='Team: Red Sox\n"Payroll (millions)": 173.18\n"Wins": 69', lookup_str='', metadata={'source': 'Red Sox', 'row': 24}, lookup_index=0), Document(page_content='Team: Indians\n"Payroll (millions)": 78.43\n"Wins": 68', lookup_str='', metadata={'source': 'Indians', 'row': 25}, lookup_index=0), Document(page_content='Team: Twins\n"Payroll (millions)": 94.08\n"Wins": 66', lookup_str='', metadata={'source': 'Twins', 'row': 26}, lookup_index=0), Document(page_content='Team: Rockies\n"Payroll (millions)": 78.06\n"Wins": 64', lookup_str='', metadata={'source':
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/csv.html
3d0c51dada59-13
78.06\n"Wins": 64', lookup_str='', metadata={'source': 'Rockies', 'row': 27}, lookup_index=0), Document(page_content='Team: Cubs\n"Payroll (millions)": 88.19\n"Wins": 61', lookup_str='', metadata={'source': 'Cubs', 'row': 28}, lookup_index=0), Document(page_content='Team: Astros\n"Payroll (millions)": 60.65\n"Wins": 55', lookup_str='', metadata={'source': 'Astros', 'row': 29}, lookup_index=0)] previous Copy Paste next DataFrame Loader Contents Customizing the csv parsing and loading Specify a column to be used identify the document source By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/csv.html
7ce20022ef8c-0
.ipynb .pdf Roam Contents 🧑 Instructions for ingesting your own dataset Roam# This notebook covers how to load documents from a Roam database. This takes a lot of inspiration from the example repo here. 🧑 Instructions for ingesting your own dataset# Export your dataset from Roam Research. You can do this by clicking on the three dots in the upper right hand corner and then clicking Export. When exporting, make sure to select the Markdown & CSV format option. This will produce a .zip file in your Downloads folder. Move the .zip file into this repository. Run the following command to unzip the zip file (replace the Export... with your own file name as needed). unzip Roam-Export-1675782732639.zip -d Roam_DB from langchain.document_loaders import RoamLoader loader = ObsidianLoader("Roam_DB") docs = loader.load() previous ReadTheDocs Documentation next s3 Directory Contents 🧑 Instructions for ingesting your own dataset By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/roam.html
4b6f6d143cb8-0
.ipynb .pdf GCS File Storage GCS File Storage# This covers how to load document objects from an Google Cloud Storage (GCS) file object. from langchain.document_loaders import GCSFileLoader # !pip install google-cloud-storage loader = GCSFileLoader(project_name="aist", bucket="testing-hwc", blob="fake.docx") loader.load() /Users/harrisonchase/workplace/langchain/.venv/lib/python3.10/site-packages/google/auth/_default.py:83: UserWarning: Your application has authenticated using end user credentials from Google Cloud SDK without a quota project. You might receive a "quota exceeded" or "API not enabled" error. We recommend you rerun `gcloud auth application-default login` and make sure a quota project is added. Or you can use service accounts instead. For more information about service accounts, see https://cloud.google.com/docs/authentication/ warnings.warn(_CLOUD_SDK_CREDENTIALS_WARNING) [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmp3srlf8n8/fake.docx'}, lookup_index=0)] previous GCS Directory next Git By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/gcs_file.html
3683b230a305-0
.ipynb .pdf AZLyrics AZLyrics# This covers how to load AZLyrics webpages into a document format that we can use downstream. from langchain.document_loaders import AZLyricsLoader loader = AZLyricsLoader("https://www.azlyrics.com/lyrics/mileycyrus/flowers.html") data = loader.load() data [Document(page_content="Miley Cyrus - Flowers Lyrics | AZLyrics.com\n\r\nWe were good, we were gold\nKinda dream that can't be sold\nWe were right till we weren't\nBuilt a home and watched it burn\n\nI didn't wanna leave you\nI didn't wanna lie\nStarted to cry but then remembered I\n\nI can buy myself flowers\nWrite my name in the sand\nTalk to myself for hours\nSay things you don't understand\nI can take myself dancing\nAnd I can hold my own hand\nYeah, I can love me better than you can\n\nCan love me better\nI can love me better, baby\nCan love me better\nI can love me better, baby\n\nPaint my nails, cherry red\nMatch the roses that you left\nNo remorse, no regret\nI forgive every word you said\n\nI didn't wanna leave you, baby\nI didn't wanna fight\nStarted to cry but then remembered I\n\nI can buy myself flowers\nWrite my name in the sand\nTalk to myself for hours, yeah\nSay things you don't understand\nI can take myself dancing\nAnd I can hold my own hand\nYeah, I can love me better than you can\n\nCan love me better\nI can love me better, baby\nCan love me better\nI can love me better, baby\nCan love me better\nI can love me better, baby\nCan love me better\nI\n\nI didn't wanna wanna leave you\nI didn't wanna
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/azlyrics.html
3683b230a305-1
love me better\nI\n\nI didn't wanna wanna leave you\nI didn't wanna fight\nStarted to cry but then remembered I\n\nI can buy myself flowers\nWrite my name in the sand\nTalk to myself for hours (Yeah)\nSay things you don't understand\nI can take myself dancing\nAnd I can hold my own hand\nYeah, I can love me better than\nYeah, I can love me better than you can, uh\n\nCan love me better\nI can love me better, baby\nCan love me better\nI can love me better, baby (Than you can)\nCan love me better\nI can love me better, baby\nCan love me better\nI\n", lookup_str='', metadata={'source': 'https://www.azlyrics.com/lyrics/mileycyrus/flowers.html'}, lookup_index=0)] previous Apify Dataset next Azure Blob Storage Container By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/azlyrics.html
7eccbe5a6f4f-0
.ipynb .pdf iFixit Contents Searching iFixit using /suggest iFixit# iFixit is the largest, open repair community on the web. The site contains nearly 100k repair manuals, 200k Questions & Answers on 42k devices, and all the data is licensed under CC-BY-NC-SA 3.0. This loader will allow you to download the text of a repair guide, text of Q&A’s and wikis from devices on iFixit using their open APIs. It’s incredibly useful for context related to technical documents and answers to questions about devices in the corpus of data on iFixit. from langchain.document_loaders import IFixitLoader loader = IFixitLoader("https://www.ifixit.com/Teardown/Banana+Teardown/811") data = loader.load() data [Document(page_content="# Banana Teardown\nIn this teardown, we open a banana to see what's inside. Yellow and delicious, but most importantly, yellow.\n\n\n###Tools Required:\n\n - Fingers\n\n - Teeth\n\n - Thumbs\n\n\n###Parts Required:\n\n - None\n\n\n## Step 1\nTake one banana from the bunch.\nDon't squeeze too hard!\n\n\n## Step 2\nHold the banana in your left hand and grip the stem between your right thumb and forefinger.\n\n\n## Step 3\nPull the stem downward until the peel splits.\n\n\n## Step 4\nInsert your thumbs into the split of the peel and pull the two sides apart.\nExpose the top of the banana. It may be slightly squished from pulling on the stem, but this will not affect the flavor.\n\n\n## Step 5\nPull open the peel, starting from your original split, and opening it along the length of the
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/ifixit.html
7eccbe5a6f4f-1
open the peel, starting from your original split, and opening it along the length of the banana.\n\n\n## Step 6\nRemove fruit from peel.\n\n\n## Step 7\nEat and enjoy!\nThis is where you'll need your teeth.\nDo not choke on banana!\n", lookup_str='', metadata={'source': 'https://www.ifixit.com/Teardown/Banana+Teardown/811', 'title': 'Banana Teardown'}, lookup_index=0)] loader = IFixitLoader("https://www.ifixit.com/Answers/View/318583/My+iPhone+6+is+typing+and+opening+apps+by+itself") data = loader.load() data [Document(page_content='# My iPhone 6 is typing and opening apps by itself\nmy iphone 6 is typing and opening apps by itself. How do i fix this. I just bought it last week.\nI restored as manufactures cleaned up the screen\nthe problem continues\n\n## 27 Answers\n\nFilter by: \n\nMost Helpful\nNewest\nOldest\n\n### Accepted Answer\nHi,\nWhere did you buy it? If you bought it from Apple or from an official retailer like Carphone warehouse etc. Then you\'ll have a year warranty and can get it replaced free.\nIf you bought it second hand, from a third part repair shop or online, then it may still have warranty, unless it is refurbished and has been repaired elsewhere.\nIf this is the case, it may be the screen that needs replacing to solve your issue.\nEither way, wherever you got it, it\'s best to return it and get a refund or a replacement device. :-)\n\n\n\n### Most Helpful Answer\nI had the same issues, screen freezing, opening apps by itself, selecting the screens and typing on it\'s own. I first suspected aliens and then
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/ifixit.html
7eccbe5a6f4f-2
by itself, selecting the screens and typing on it\'s own. I first suspected aliens and then ghosts and then hackers.\niPhone 6 is weak physically and tend to bend on pressure. And my phone had no case or cover.\nI took the phone to apple stores and they said sensors need to be replaced and possibly screen replacement as well. My phone is just 17 months old.\nHere is what I did two days ago and since then it is working like a charm..\nHold the phone in portrait (as if watching a movie). Twist it very very gently. do it few times.Rest the phone for 10 mins (put it on a flat surface). You can now notice those self typing things gone and screen getting stabilized.\nThen, reset the hardware (hold the power and home button till the screen goes off and comes back with apple logo). release the buttons when you see this.\nThen, connect to your laptop and log in to iTunes and reset your phone completely. (please take a back-up first).\nAnd your phone should be good to use again.\nWhat really happened here for me is that the sensors might have stuck to the screen and with mild twisting, they got disengaged/released.\nI posted this in Apple Community and the moderators deleted it, for the best reasons known to them.\nInstead of throwing away your phone (or selling cheaply), try this and you could be saving your phone.\nLet me know how it goes.\n\n\n\n### Other Answer\nIt was the charging cord! I bought a gas station braided cord and it was the culprit. Once I plugged my OEM cord into the phone the GHOSTS went away.\n\n\n\n### Other Answer\nI\'ve same issue that I just get resolved. I first tried to restore it from iCloud back, however it was not a software issue or any virus issue, so after restore same problem continues. Then I get my
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/ifixit.html
7eccbe5a6f4f-3
not a software issue or any virus issue, so after restore same problem continues. Then I get my phone to local area iphone repairing lab, and they detected that it is an LCD issue. LCD get out of order without any reason (It was neither hit or nor slipped, but LCD get out of order all and sudden, while using it) it started opening things at random. I get LCD replaced with new one, that cost me $80.00 in total ($70.00 LCD charges + $10.00 as labor charges to fix it). iPhone is back to perfect mode now. It was iphone 6s. Thanks.\n\n\n\n### Other Answer\nI was having the same issue with my 6 plus, I took it to a repair shop, they opened the phone, disconnected the three ribbons the screen has, blew up and cleaned the connectors and connected the screen again and it solved the issue… it’s hardware, not software.\n\n\n\n### Other Answer\nHey.\nJust had this problem now. As it turns out, you just need to plug in your phone. I use a case and when I took it off I noticed that there was a lot of dust and dirt around the areas that the case didn\'t cover. I shined a light in my ports and noticed they were filled with dust. Tomorrow I plan on using pressurized air to clean it out and the problem should be solved. If you plug in your phone and unplug it and it stops the issue, I recommend cleaning your phone thoroughly.\n\n\n\n### Other Answer\nI simply changed the power supply and problem was gone. The block that plugs in the wall not the sub cord. The cord was fine but not the block.\n\n\n\n### Other Answer\nSomeone ask! I purchased my iPhone 6s Plus for 1000 from at&t. Before I touched it, I purchased a otter defender
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/ifixit.html
7eccbe5a6f4f-4
for 1000 from at&t. Before I touched it, I purchased a otter defender case. I read where at&t said touch desease was due to dropping! Bullshit!! I am 56 I have never dropped it!! Looks brand new! Never dropped or abused any way! I have my original charger. I am going to clean it and try everyone’s advice. It really sucks! I had 40,000,000 on my heart of Vegas slots! I play every day. I would be spinning and my fingers were no where max buttons and it would light up and switch to max. It did it 3 times before I caught it light up by its self. It sucks. Hope I can fix it!!!!\n\n\n\n### Other Answer\nNo answer, but same problem with iPhone 6 plus--random, self-generated jumping amongst apps and typing on its own--plus freezing regularly (aha--maybe that\'s what the "plus" in "6 plus" refers to?). An Apple Genius recommended upgrading to iOS 11.3.1 from 11.2.2, to see if that fixed the trouble. If it didn\'t, Apple will sell me a new phone for $168! Of couese the OS upgrade didn\'t fix the problem. Thanks for helping me figure out that it\'s most likely a hardware problem--which the "genius" probably knows too.\nI\'m getting ready to go Android.\n\n\n\n### Other Answer\nI experienced similar ghost touches. Two weeks ago, I changed my iPhone 6 Plus shell (I had forced the phone into it because it’s pretty tight), and also put a new glass screen protector (the edges of the protector don’t stick to the screen, weird, so I brushed pressure on the edges at times to see if they may smooth out one day
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/ifixit.html
7eccbe5a6f4f-5
weird, so I brushed pressure on the edges at times to see if they may smooth out one day miraculously). I’m not sure if I accidentally bend the phone when I installed the shell, or, if I got a defective glass protector that messes up the touch sensor. Well, yesterday was the worse day, keeps dropping calls and ghost pressing keys for me when I was on a call. I got fed up, so I removed the screen protector, and so far problems have not reoccurred yet. I’m crossing my fingers that problems indeed solved.\n\n\n\n### Other Answer\nthank you so much for this post! i was struggling doing the reset because i cannot type userids and passwords correctly because the iphone 6 plus i have kept on typing letters incorrectly. I have been doing it for a day until i come across this article. Very helpful! God bless you!!\n\n\n\n### Other Answer\nI just turned it off, and turned it back on.\n\n\n\n### Other Answer\nMy problem has not gone away completely but its better now i changed my charger and turned off prediction ....,,,now it rarely happens\n\n\n\n### Other Answer\nI tried all of the above. I then turned off my home cleaned it with isopropyl alcohol 90%. Then I baked it in my oven on warm for an hour and a half over foil. Took it out and set it cool completely on the glass top stove. Then I turned on and it worked.\n\n\n\n### Other Answer\nI think at& t should man up and fix your phone for free! You pay a lot for a Apple they should back it. I did the next 30 month payments and finally have it paid off in June. My iPad sept. Looking forward to a almost 100 drop in my phone bill! Now this crap!!! Really\n\n\n\n### Other Answer\nIf your phone is
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/ifixit.html
7eccbe5a6f4f-6
bill! Now this crap!!! Really\n\n\n\n### Other Answer\nIf your phone is JailBroken, suggest downloading a virus. While all my symptoms were similar, there was indeed a virus/malware on the phone which allowed for remote control of my iphone (even while in lock mode). My mistake for buying a third party iphone i suppose. Anyway i have since had the phone restored to factory and everything is working as expected for now. I will of course keep you posted if this changes. Thanks to all for the helpful posts, really helped me narrow a few things down.\n\n\n\n### Other Answer\nWhen my phone was doing this, it ended up being the screen protector that i got from 5 below. I took it off and it stopped. I ordered more protectors from amazon and replaced it\n\n\n\n### Other Answer\niPhone 6 Plus first generation….I had the same issues as all above, apps opening by themselves, self typing, ultra sensitive screen, items jumping around all over….it even called someone on FaceTime twice by itself when I was not in the room…..I thought the phone was toast and i’d have to buy a new one took me a while to figure out but it was the extra cheap block plug I bought at a dollar store for convenience of an extra charging station when I move around the house from den to living room…..cord was fine but bought a new Apple brand block plug…no more problems works just fine now. This issue was a recent event so had to narrow things down to what had changed recently to my phone so I could figure it out.\nI even had the same problem on a laptop with documents opening up by themselves…..a laptop that was plugged in to the same wall plug as my phone charger with the dollar store block plug….until I changed the block plug.\n\n\n\n### Other Answer\nHad the problem: Inherited a 6s Plus from
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/ifixit.html
7eccbe5a6f4f-7
Other Answer\nHad the problem: Inherited a 6s Plus from my wife. She had no problem with it.\nLooks like it was merely the cheap phone case I purchased on Amazon. It was either pinching the edges or torquing the screen/body of the phone. Problem solved.\n\n\n\n### Other Answer\nI bought my phone on march 6 and it was a brand new, but It sucks me uo because it freezing, shaking and control by itself. I went to the store where I bought this and I told them to replacr it, but they told me I have to pay it because Its about lcd issue. Please help me what other ways to fix it. Or should I try to remove the screen or should I follow your step above.\n\n\n\n### Other Answer\nI tried everything and it seems to come back to needing the original iPhone cable…or at least another 1 that would have come with another iPhone…not the $5 Store fast charging cables. My original cable is pretty beat up - like most that I see - but I’ve been beaten up much MUCH less by sticking with its use! I didn’t find that the casing/shell around it or not made any diff.\n\n\n\n### Other Answer\ngreat now I have to wait one more hour to reset my phone and while I was tryin to connect my phone to my computer the computer also restarted smh does anyone else knows how I can get my phone to work… my problem is I have a black dot on the bottom left of my screen an it wont allow me to touch a certain part of my screen unless I rotate my phone and I know the password but the first number is a 2 and it won\'t let me touch 1,2, or 3 so now I have to find a way to get rid of my password and all of a sudden my phone wants to touch stuff on its own which got
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/ifixit.html
7eccbe5a6f4f-8
rid of my password and all of a sudden my phone wants to touch stuff on its own which got my phone disabled many times to the point where I have to wait a whole hour and I really need to finish something on my phone today PLEASE HELPPPP\n\n\n\n### Other Answer\nIn my case , iphone 6 screen was faulty. I got it replaced at local repair shop, so far phone is working fine.\n\n\n\n### Other Answer\nthis problem in iphone 6 has many different scenarios and solutions, first try to reconnect the lcd screen to the motherboard again, if didnt solve, try to replace the lcd connector on the motherboard, if not solved, then remains two issues, lcd screen it self or touch IC. in my country some repair shops just change them all for almost 40$ since they dont want to troubleshoot one by one. readers of this comment also should know that partial screen not responding in other iphone models might also have an issue in LCD connector on the motherboard, specially if you lock/unlock screen and screen works again for sometime. lcd connectors gets disconnected lightly from the motherboard due to multiple falls and hits after sometime. best of luck for all\n\n\n\n### Other Answer\nI am facing the same issue whereby these ghost touches type and open apps , I am using an original Iphone cable , how to I fix this issue.\n\n\n\n### Other Answer\nThere were two issues with the phone I had troubles with. It was my dads and turns out he carried it in his pocket. The phone itself had a little bend in it as a result. A little pressure in the opposite direction helped the issue. But it also had a tiny crack in the screen which wasnt obvious, once we added a screen protector this fixed the issues entirely.\n\n\n\n### Other Answer\nI had the same problem with my 64Gb iPhone 6+. Tried a lot of things and eventually downloaded all my images and videos to
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/ifixit.html
7eccbe5a6f4f-9
iPhone 6+. Tried a lot of things and eventually downloaded all my images and videos to my PC and restarted the phone - problem solved. Been working now for two days.', lookup_str='', metadata={'source': 'https://www.ifixit.com/Answers/View/318583/My+iPhone+6+is+typing+and+opening+apps+by+itself', 'title': 'My iPhone 6 is typing and opening apps by itself'}, lookup_index=0)] loader = IFixitLoader("https://www.ifixit.com/Device/Standard_iPad") data = loader.load() data [Document(page_content="Standard iPad\nThe standard edition of the tablet computer made by Apple.\n== Background Information ==\n\nOriginally introduced in January 2010, the iPad is Apple's standard edition of their tablet computer. In total, there have been ten generations of the standard edition of the iPad.\n\n== Additional Information ==\n\n* [link|https://www.apple.com/ipad-select/|Official Apple Product Page]\n* [link|https://en.wikipedia.org/wiki/IPad#iPad|Official iPad Wikipedia]", lookup_str='', metadata={'source': 'https://www.ifixit.com/Device/Standard_iPad', 'title': 'Standard iPad'}, lookup_index=0)] Searching iFixit using /suggest# If you’re looking for a more general way to search iFixit based on a keyword or phrase, the /suggest endpoint will return content related to the search term, then the loader will load the content from each of the suggested items and prep and return the documents. data = IFixitLoader.load_suggestions("Banana") data [Document(page_content='Banana\nTasty fruit. Good source of potassium. Yellow.\n== Background Information ==\n\nCommonly misspelled, this wildly popular, phone shaped fruit serves as nutrition and an obstacle to slow down vehicles
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/ifixit.html
7eccbe5a6f4f-10
this wildly popular, phone shaped fruit serves as nutrition and an obstacle to slow down vehicles racing close behind you. Also used commonly as a synonym for “crazy” or “insane”.\n\nBotanically, the banana is considered a berry, although it isn’t included in the culinary berry category containing strawberries and raspberries. Belonging to the genus Musa, the banana originated in Southeast Asia and Australia. Now largely cultivated throughout South and Central America, bananas are largely available throughout the world. They are especially valued as a staple food group in developing countries due to the banana tree’s ability to produce fruit year round.\n\nThe banana can be easily opened. Simply remove the outer yellow shell by cracking the top of the stem. Then, with the broken piece, peel downward on each side until the fruity components on the inside are exposed. Once the shell has been removed it cannot be put back together.\n\n== Technical Specifications ==\n\n* Dimensions: Variable depending on genetics of the parent tree\n* Color: Variable depending on ripeness, region, and season\n\n== Additional Information ==\n\n[link|https://en.wikipedia.org/wiki/Banana|Wiki: Banana]', lookup_str='', metadata={'source': 'https://www.ifixit.com/Device/Banana', 'title': 'Banana'}, lookup_index=0), Document(page_content="# Banana Teardown\nIn this teardown, we open a banana to see what's inside. Yellow and delicious, but most importantly, yellow.\n\n\n###Tools Required:\n\n - Fingers\n\n - Teeth\n\n - Thumbs\n\n\n###Parts Required:\n\n - None\n\n\n## Step 1\nTake one banana from the bunch.\nDon't squeeze too hard!\n\n\n## Step 2\nHold the banana in your left hand and grip the stem between your right thumb and forefinger.\n\n\n## Step
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/ifixit.html
7eccbe5a6f4f-11
your left hand and grip the stem between your right thumb and forefinger.\n\n\n## Step 3\nPull the stem downward until the peel splits.\n\n\n## Step 4\nInsert your thumbs into the split of the peel and pull the two sides apart.\nExpose the top of the banana. It may be slightly squished from pulling on the stem, but this will not affect the flavor.\n\n\n## Step 5\nPull open the peel, starting from your original split, and opening it along the length of the banana.\n\n\n## Step 6\nRemove fruit from peel.\n\n\n## Step 7\nEat and enjoy!\nThis is where you'll need your teeth.\nDo not choke on banana!\n", lookup_str='', metadata={'source': 'https://www.ifixit.com/Teardown/Banana+Teardown/811', 'title': 'Banana Teardown'}, lookup_index=0)] previous HTML next Images Contents Searching iFixit using /suggest By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/ifixit.html
6c59bd39dc92-0
.ipynb .pdf Azure Blob Storage Container Contents Specifying a prefix Azure Blob Storage Container# This covers how to load document objects from a container on Azure Blob Storage. from langchain.document_loaders import AzureBlobStorageContainerLoader #!pip install azure-storage-blob loader = AzureBlobStorageContainerLoader(conn_str="<conn_str>", container="<container>") loader.load() [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpaa9xl6ch/fake.docx'}, lookup_index=0)] Specifying a prefix# You can also specify a prefix for more finegrained control over what files to load. loader = AzureBlobStorageContainerLoader(conn_str="<conn_str>", container="<container>", prefix="<prefix>") loader.load() [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpujbkzf_l/fake.docx'}, lookup_index=0)] previous AZLyrics next Azure Blob Storage File Contents Specifying a prefix By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/modules/indexes/document_loaders/examples/azure_blob_storage_container.html
b6b866f0e8e9-0
.rst .pdf Prompts Prompts# The reference guides here all relate to objects for working with Prompts. PromptTemplates Example Selector previous How to serialize prompts next PromptTemplates By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/reference/prompts.html
68be0d545c0a-0
.rst .pdf Utilities Utilities# There are a lot of different utilities that LangChain provides integrations for These guides go over how to use them. These can largely be grouped into two categories: generic utilities, and then utilities for working with larger text documents. Generic Utilities Python REPL SerpAPI SearxNG Search Utilities for working with Documents Docstore Text Splitter Embeddings VectorStores previous API References next Python REPL By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/reference/utils.html
91a130e3c2e2-0
.md .pdf Integrations Integrations# Besides the installation of this python package, you will also need to install packages and set environment variables depending on which chains you want to use. Note: the reason these packages are not included in the dependencies by default is that as we imagine scaling this package, we do not want to force dependencies that are not needed. The following use cases require specific installs and api keys: OpenAI: Install requirements with pip install openai Get an OpenAI api key and either set it as an environment variable (OPENAI_API_KEY) or pass it to the LLM constructor as openai_api_key. Cohere: Install requirements with pip install cohere Get a Cohere api key and either set it as an environment variable (COHERE_API_KEY) or pass it to the LLM constructor as cohere_api_key. GooseAI: Install requirements with pip install openai Get an GooseAI api key and either set it as an environment variable (GOOSEAI_API_KEY) or pass it to the LLM constructor as gooseai_api_key. Hugging Face Hub Install requirements with pip install huggingface_hub Get a Hugging Face Hub api token and either set it as an environment variable (HUGGINGFACEHUB_API_TOKEN) or pass it to the LLM constructor as huggingfacehub_api_token. Petals: Install requirements with pip install petals Get an GooseAI api key and either set it as an environment variable (HUGGINGFACE_API_KEY) or pass it to the LLM constructor as huggingface_api_key. CerebriumAI: Install requirements with pip install cerebrium Get a Cerebrium api key and either set it as an environment variable (CEREBRIUMAI_API_KEY) or pass it to the LLM constructor as cerebriumai_api_key. PromptLayer: Install requirements with pip install promptlayer (be sure to be
https:///langchain-cn.readthedocs.io/en/latest/reference/integrations.html
91a130e3c2e2-1
requirements with pip install promptlayer (be sure to be on version 0.1.62 or higher) Get an API key from promptlayer.com and set it using promptlayer.api_key=<API KEY> SerpAPI: Install requirements with pip install google-search-results Get a SerpAPI api key and either set it as an environment variable (SERPAPI_API_KEY) or pass it to the LLM constructor as serpapi_api_key. GoogleSearchAPI: Install requirements with pip install google-api-python-client Get a Google api key and either set it as an environment variable (GOOGLE_API_KEY) or pass it to the LLM constructor as google_api_key. You will also need to set the GOOGLE_CSE_ID environment variable to your custom search engine id. You can pass it to the LLM constructor as google_cse_id as well. WolframAlphaAPI: Install requirements with pip install wolframalpha Get a Wolfram Alpha api key and either set it as an environment variable (WOLFRAM_ALPHA_APPID) or pass it to the LLM constructor as wolfram_alpha_appid. NatBot: Install requirements with pip install playwright Wikipedia: Install requirements with pip install wikipedia Elasticsearch: Install requirements with pip install elasticsearch Set up Elasticsearch backend. If you want to do locally, this is a good guide. FAISS: Install requirements with pip install faiss for Python 3.7 and pip install faiss-cpu for Python 3.10+. Manifest: Install requirements with pip install manifest-ml (Note: this is only available in Python 3.8+ currently). OpenSearch: Install requirements with pip install opensearch-py If you want to set up OpenSearch on your local, here DeepLake: Install requirements with pip install deeplake LlamaCpp: Install requirements with pip install llama-cpp-python Download model and convert following llama.cpp
https:///langchain-cn.readthedocs.io/en/latest/reference/integrations.html
91a130e3c2e2-2
requirements with pip install llama-cpp-python Download model and convert following llama.cpp instructions Milvus: Install requirements with pip install pymilvus In order to setup a local cluster, take a look here. Zilliz: Install requirements with pip install pymilvus To get up and running, take a look here. If you are using the NLTKTextSplitter or the SpacyTextSplitter, you will also need to install the appropriate models. For example, if you want to use the SpacyTextSplitter, you will need to install the en_core_web_sm model with python -m spacy download en_core_web_sm. Similarly, if you want to use the NLTKTextSplitter, you will need to install the punkt model with python -m nltk.downloader punkt. previous Installation next API References By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/reference/integrations.html
4401ef7cc2b9-0
.md .pdf Installation Contents Official Releases Installing from source Installation# Official Releases# LangChain is available on PyPi, so to it is easily installable with: pip install langchain That will install the bare minimum requirements of LangChain. A lot of the value of LangChain comes when integrating it with various model providers, datastores, etc. By default, the dependencies needed to do that are NOT installed. However, there are two other ways to install LangChain that do bring in those dependencies. To install modules needed for the common LLM providers, run: pip install langchain[llms] To install all modules needed for all integrations, run: pip install langchain[all] Note that if you are using zsh, you’ll need to quote square brackets when passing them as an argument to a command, for example: pip install 'langchain[all]' Installing from source# If you want to install from source, you can do so by cloning the repo and running: pip install -e . previous SQL Question Answering Benchmarking: Chinook next Integrations Contents Official Releases Installing from source By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/reference/installation.html
72e704eb2164-0
.rst .pdf VectorStores VectorStores# Wrappers on top of vector stores. class langchain.vectorstores.AtlasDB(name: str, embedding_function: Optional[langchain.embeddings.base.Embeddings] = None, api_key: Optional[str] = None, description: str = 'A description for your project', is_public: bool = True, reset_project_if_exists: bool = False)[source]# Wrapper around Atlas: Nomic’s neural database and rhizomatic instrument. To use, you should have the nomic python package installed. Example from langchain.vectorstores import AtlasDB from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = AtlasDB("my_project", embeddings.embed_query) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, refresh: bool = True, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts (Iterable[str]) – Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional) – Optional list of metadatas. ids (Optional[List[str]]) – An optional list of ids. refresh (bool) – Whether or not to refresh indices with the updated data. Default True. Returns List of IDs of the added texts. Return type List[str] create_index(**kwargs: Any) → Any[source]# Creates an index in your project. See https://docs.nomic.ai/atlas_api.html#nomic.project.AtlasProject.create_index for full detail. classmethod from_documents(documents: List[langchain.schema.Document], embedding: Optional[langchain.embeddings.base.Embeddings] = None, ids: Optional[List[str]] = None, name: Optional[str] = None, api_key:
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-1
ids: Optional[List[str]] = None, name: Optional[str] = None, api_key: Optional[str] = None, persist_directory: Optional[str] = None, description: str = 'A description for your project', is_public: bool = True, reset_project_if_exists: bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any) → langchain.vectorstores.atlas.AtlasDB[source]# Create an AtlasDB vectorstore from a list of documents. Parameters name (str) – Name of the collection to create. api_key (str) – Your nomic API key, documents (List[Document]) – List of documents to add to the vectorstore. embedding (Optional[Embeddings]) – Embedding function. Defaults to None. ids (Optional[List[str]]) – Optional list of document IDs. If None, ids will be auto created description (str) – A description for your project. is_public (bool) – Whether your project is publicly accessible. True by default. reset_project_if_exists (bool) – Whether to reset this project if it already exists. Default False. Generally userful during development and testing. index_kwargs (Optional[dict]) – Dict of kwargs for index creation. See https://docs.nomic.ai/atlas_api.html Returns Nomic’s neural database and finest rhizomatic instrument Return type AtlasDB classmethod from_texts(texts: List[str], embedding: Optional[langchain.embeddings.base.Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, name: Optional[str] = None, api_key: Optional[str] = None, description: str = 'A description for your project', is_public: bool = True, reset_project_if_exists: bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any) →
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-2
bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any) → langchain.vectorstores.atlas.AtlasDB[source]# Create an AtlasDB vectorstore from a raw documents. Parameters texts (List[str]) – The list of texts to ingest. name (str) – Name of the project to create. api_key (str) – Your nomic API key, embedding (Optional[Embeddings]) – Embedding function. Defaults to None. metadatas (Optional[List[dict]]) – List of metadatas. Defaults to None. ids (Optional[List[str]]) – Optional list of document IDs. If None, ids will be auto created description (str) – A description for your project. is_public (bool) – Whether your project is publicly accessible. True by default. reset_project_if_exists (bool) – Whether to reset this project if it already exists. Default False. Generally userful during development and testing. index_kwargs (Optional[dict]) – Dict of kwargs for index creation. See https://docs.nomic.ai/atlas_api.html Returns Nomic’s neural database and finest rhizomatic instrument Return type AtlasDB similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Run similarity search with AtlasDB Parameters query (str) – Query text to search for. k (int) – Number of results to return. Defaults to 4. Returns List of documents most similar to the query text. Return type List[Document] class langchain.vectorstores.Chroma(collection_name: str = 'langchain', embedding_function: Optional[Embeddings] = None, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, collection_metadata: Optional[Dict] = None)[source]# Wrapper around ChromaDB embeddings
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-3
collection_metadata: Optional[Dict] = None)[source]# Wrapper around ChromaDB embeddings platform. To use, you should have the chromadb python package installed. Example from langchain.vectorstores import Chroma from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Chroma("langchain_store", embeddings.embed_query) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts (Iterable[str]) – Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional) – Optional list of metadatas. ids (Optional[List[str]], optional) – Optional list of IDs. Returns List of IDs of the added texts. Return type List[str] delete_collection() → None[source]# Delete the collection. classmethod from_documents(documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, collection_name: str = 'langchain', persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, **kwargs: Any) → Chroma[source]# Create a Chroma vectorstore from a list of documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Parameters collection_name (str) – Name of the collection to create. persist_directory (Optional[str]) – Directory to persist the collection. ids (Optional[List[str]]) – List of document IDs. Defaults to None. documents (List[Document]) – List of documents to add to the vectorstore. embedding (Optional[Embeddings]) – Embedding function. Defaults to None. client_settings
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-4
(Optional[Embeddings]) – Embedding function. Defaults to None. client_settings (Optional[chromadb.config.Settings]) – Chroma client settings Returns Chroma vectorstore. Return type Chroma classmethod from_texts(texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = 'langchain', persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, **kwargs: Any) → Chroma[source]# Create a Chroma vectorstore from a raw documents. If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory. Parameters texts (List[str]) – List of texts to add to the collection. collection_name (str) – Name of the collection to create. persist_directory (Optional[str]) – Directory to persist the collection. embedding (Optional[Embeddings]) – Embedding function. Defaults to None. metadatas (Optional[List[dict]]) – List of metadatas. Defaults to None. ids (Optional[List[str]]) – List of document IDs. Defaults to None. client_settings (Optional[chromadb.config.Settings]) – Chroma client settings Returns Chroma vectorstore. Return type Chroma max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, filter: Optional[Dict[str, str]] = None) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param query: Text to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-5
Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param filter: Filter by metadata. Defaults to None. :type filter: Optional[Dict[str, str]] Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, filter: Optional[Dict[str, str]] = None) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param embedding: Embedding to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param filter: Filter by metadata. Defaults to None. :type filter: Optional[Dict[str, str]] Returns List of Documents selected by maximal marginal relevance. persist() → None[source]# Persist the collection. This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed. similarity_search(query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Run similarity search with Chroma. Parameters query (str) – Query text to search for. k (int) – Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of documents most similar to the query text. Return type List[Document] similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) →
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-6
filter: Optional[Dict[str, str]] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to embedding vector. :param embedding: Embedding to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_score(query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]# Run similarity search with Chroma with distance. Parameters query (str) – Query text to search for. k (int) – Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of documents most similar to the querytext with distance in float. Return type List[Tuple[Document, float]] class langchain.vectorstores.DeepLake(dataset_path: str = 'mem://langchain', token: Optional[str] = None, embedding_function: Optional[langchain.embeddings.base.Embeddings] = None, read_only: Optional[bool] = False, ingestion_batch_size: int = 1024, num_workers: int = 4)[source]# Wrapper around Deep Lake, a data lake for deep learning applications. We implement naive similarity search and filtering for fast prototyping, but it can be extended with Tensor Query Language (TQL) for production use cases over billion rows. Why Deep Lake? Not only stores embeddings, but also the original data with version control. Serverless, doesn’t require another service and can be used with majorcloud providers (S3, GCS, etc.) More than just a multi-modal vector store. You can use the datasetto fine-tune your own LLM models. To use, you should have the
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-7
use the datasetto fine-tune your own LLM models. To use, you should have the deeplake python package installed. Example from langchain.vectorstores import DeepLake from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = DeepLake("langchain_store", embeddings.embed_query) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts (Iterable[str]) – Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional) – Optional list of metadatas. ids (Optional[List[str]], optional) – Optional list of IDs. Returns List of IDs of the added texts. Return type List[str] delete(ids: Any[List[str], None] = None, filter: Any[Dict[str, str], None] = None, delete_all: Any[bool, None] = None) → bool[source]# Delete the entities in the dataset Parameters ids (Optional[List[str]], optional) – The document_ids to delete. Defaults to None. filter (Optional[Dict[str, str]], optional) – The filter to delete by. Defaults to None. delete_all (Optional[bool], optional) – Whether to drop the dataset. Defaults to None. delete_dataset() → None[source]# Delete the collection. classmethod from_texts(texts: List[str], embedding: Optional[langchain.embeddings.base.Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, dataset_path: str = 'mem://langchain', **kwargs: Any) → langchain.vectorstores.deeplake.DeepLake[source]# Create a Deep Lake dataset from a
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-8
langchain.vectorstores.deeplake.DeepLake[source]# Create a Deep Lake dataset from a raw documents. If a dataset_path is specified, the dataset will be persisted there. Otherwise, the data will be ephemeral in-memory. Parameters path (str, pathlib.Path) – The full path to the dataset. Can be: Deep Lake cloud path of the form hub://username/dataset_name.To write to Deep Lake cloud datasets, ensure that you are logged in to Deep Lake (use ‘activeloop login’ from command line) AWS S3 path of the form s3://bucketname/path/to/dataset.Credentials are required in either the environment Google Cloud Storage path of the form``gcs://bucketname/path/to/dataset``Credentials are required in either the environment Local file system path of the form ./path/to/dataset or~/path/to/dataset or path/to/dataset. In-memory path of the form mem://path/to/dataset which doesn’tsave the dataset, but keeps it in memory instead. Should be used only for testing as it does not persist. documents (List[Document]) – List of documents to add. embedding (Optional[Embeddings]) – Embedding function. Defaults to None. metadatas (Optional[List[dict]]) – List of metadatas. Defaults to None. ids (Optional[List[str]]) – List of document IDs. Defaults to None. Returns Deep Lake dataset. Return type DeepLake max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param query: Text to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-9
of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param embedding: Embedding to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. Returns List of Documents selected by maximal marginal relevance. persist() → None[source]# Persist the collection. search(query: Any[str, None] = None, embedding: Any[float, None] = None, k: int = 4, distance_metric: str = 'L2', use_maximal_marginal_relevance: Optional[bool] = False, fetch_k: Optional[int] = 20, filter: Optional[Any[Dict[str, str], Callable, str]] = None, return_score: Optional[bool] = False, **kwargs: Any) → Any[List[Document], List[Tuple[Document, float]]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. embedding – Embedding function to use. Defaults to None. k – Number of Documents to return. Defaults to 4. distance_metric – L2 for Euclidean, L1 for Nuclear, max L-infinity distance, cos for cosine similarity, ‘dot’ for dot product. Defaults to L2. filter – Attribute filter by metadata example {‘key’: ‘value’}. It can also filter] (take [Deep Lake) – (https –
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-10
It can also filter] (take [Deep Lake) – (https – //docs.deeplake.ai/en/latest/deeplake.core.dataset.html#deeplake.core.dataset.Dataset.filter) Defaults to None. maximal_marginal_relevance – Whether to use maximal marginal relevance. Defaults to False. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. return_score – Whether to return the score. Defaults to False. Returns List of Documents selected by the specified distance metric, if return_score True, return a tuple of (Document, score) similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – text to embed and run the query on. k – Number of Documents to return. Defaults to 4. query – Text to look up documents similar to. embedding – Embedding function to use. Defaults to None. k – Number of Documents to return. Defaults to 4. distance_metric – L2 for Euclidean, L1 for Nuclear, max L-infinity distance, cos for cosine similarity, ‘dot’ for dot product Defaults to L2. filter – Attribute filter by metadata example {‘key’: ‘value’}. Defaults to None. maximal_marginal_relevance – Whether to use maximal marginal relevance. Defaults to False. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. return_score – Whether to return the score. Defaults to False. Returns List of Documents most similar to the query vector. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k –
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-11
similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_score(query: str, distance_metric: str = 'L2', k: int = 4, filter: Optional[Dict[str, str]] = None) → List[Tuple[langchain.schema.Document, float]][source]# Run similarity search with Deep Lake with distance returned. Parameters query (str) – Query text to search for. distance_metric – L2 for Euclidean, L1 for Nuclear, max L-infinity distance, cos for cosine similarity, ‘dot’ for dot product. Defaults to L2. k (int) – Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of documents most similar to the querytext with distance in float. Return type List[Tuple[Document, float]] class langchain.vectorstores.ElasticVectorSearch(elasticsearch_url: str, index_name: str, embedding: langchain.embeddings.base.Embeddings)[source]# Wrapper around Elasticsearch as a vector database. To connect to an Elasticsearch instance that does not require login credentials, pass the Elasticsearch URL and index name along with the embedding object to the constructor. Example from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch( elasticsearch_url="http://localhost:9200", index_name="test_index", embedding=embedding ) To connect to an Elasticsearch instance that requires login credentials, including Elastic Cloud, use the Elasticsearch URL format https://username:password@es_host:9243. For example, to connect to Elastic Cloud, create
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-12
For example, to connect to Elastic Cloud, create the Elasticsearch URL with the required authentication details and pass it to the ElasticVectorSearch constructor as the named parameter elasticsearch_url. You can obtain your Elastic Cloud URL and login credentials by logging in to the Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and navigating to the “Deployments” page. To obtain your Elastic Cloud password for the default “elastic” user: Log in to the Elastic Cloud console at https://cloud.elastic.co Go to “Security” > “Users” Locate the “elastic” user and click “Edit” Click “Reset password” Follow the prompts to reset the password The format for Elastic Cloud URLs is https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243. Example from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() elastic_host = "cluster_id.region_id.gcp.cloud.es.io" elasticsearch_url = f"https://username:password@{elastic_host}:9243" elastic_vector_search = ElasticVectorSearch( elasticsearch_url=elasticsearch_url, index_name="test_index", embedding=embedding ) Parameters elasticsearch_url (str) – The URL for the Elasticsearch instance. index_name (str) – The name of the Elasticsearch index for the embeddings. embedding (Embeddings) – An object that provides the ability to embed text. It should be an instance of a class that subclasses the Embeddings abstract base class, such as OpenAIEmbeddings() Raises ValueError – If the elasticsearch python package is not installed. add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, refresh_indices: bool = True, **kwargs: Any) → List[str][source]# Run more texts through
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-13
bool = True, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. refresh_indices – bool to refresh ElasticSearch indices Returns List of ids from adding the texts into the vectorstore. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.elastic_vector_search.ElasticVectorSearch[source]# Construct ElasticVectorSearch wrapper from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new index for the embeddings in the Elasticsearch instance. Adds the documents to the newly created Elasticsearch index. This is intended to be a quick way to get started. Example from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch.from_texts( texts, embeddings, elasticsearch_url="http://localhost:9200" ) similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. class langchain.vectorstores.FAISS(embedding_function: Callable, index: Any, docstore: langchain.docstore.base.Docstore, index_to_docstore_id: Dict[int, str])[source]# Wrapper around FAISS vector database. To use, you should have the faiss python package installed. Example from langchain import FAISS faiss
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-14
should have the faiss python package installed. Example from langchain import FAISS faiss = FAISS(embedding_function, index, docstore, index_to_docstore_id) add_embeddings(text_embeddings: Iterable[Tuple[str, List[float]]], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters text_embeddings – Iterable pairs of string and embedding to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. Returns List of ids from adding the texts into the vectorstore. add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. Returns List of ids from adding the texts into the vectorstore. classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.faiss.FAISS[source]# Construct FAISS wrapper from raw documents. This is a user friendly interface that: Embeds documents. Creates an in memory docstore Initializes the FAISS database This is intended to be a quick way to get started. Example from langchain import FAISS from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() faiss = FAISS.from_texts(texts, embeddings) classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs:
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-15
metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.faiss.FAISS[source]# Construct FAISS wrapper from raw documents. This is a user friendly interface that: Embeds documents. Creates an in memory docstore Initializes the FAISS database This is intended to be a quick way to get started. Example from langchain import FAISS from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() faiss = FAISS.from_texts(texts, embeddings) classmethod load_local(folder_path: str, embeddings: langchain.embeddings.base.Embeddings, index_name: str = 'index') → langchain.vectorstores.faiss.FAISS[source]# Load FAISS index, docstore, and index_to_docstore_id to disk. Parameters folder_path – folder path to load index, docstore, and index_to_docstore_id from. embeddings – Embeddings to use when generating queries index_name – for saving with a specific index file name max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-16
the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Returns List of Documents selected by maximal marginal relevance. merge_from(target: langchain.vectorstores.faiss.FAISS) → None[source]# Merge another FAISS object with the current one. Add the target FAISS to the current one. Parameters target – FAISS object you wish to merge into the current one Returns None. save_local(folder_path: str, index_name: str = 'index') → None[source]# Save FAISS index, docstore, and index_to_docstore_id to disk. Parameters folder_path – folder path to save index, docstore, and index_to_docstore_id to. index_name – for saving with a specific index file name similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the embedding. similarity_search_with_score(query: str, k: int = 4) → List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Parameters query – Text to
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-17
float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each similarity_search_with_score_by_vector(embedding: List[float], k: int = 4) → List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each class langchain.vectorstores.Milvus(embedding_function: langchain.embeddings.base.Embeddings, connection_args: dict, collection_name: str, text_field: str)[source]# Wrapper around the Milvus vector database. add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, partition_name: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[str][source]# Insert text data into Milvus. When using add_texts() it is assumed that a collecton has already been made and indexed. If metadata is included, it is assumed that it is ordered correctly to match the schema provided to the Collection and that the embedding vector is the first schema field. Parameters texts (Iterable[str]) – The text being embedded and inserted. metadatas (Optional[List[dict]], optional) – The metadata that corresponds to each insert. Defaults to None. partition_name (str, optional) – The partition of the collection to insert data into. Defaults to None. timeout – specified timeout. Returns The resulting keys for each inserted element. Return type List[str] classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings,
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-18
from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.milvus.Milvus[source]# Create a Milvus collection, indexes it with HNSW, and insert data. Parameters texts (List[str]) – Text to insert. embedding (Embeddings) – Embedding function to use. metadatas (Optional[List[dict]], optional) – Dict metatadata. Defaults to None. Returns The Milvus vector store. Return type VectorStore max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = - 1, timeout: Optional[int] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Perform a search and return results that are reordered by MMR. Parameters query (str) – The text being searched. k (int, optional) – How many results to give. Defaults to 4. fetch_k (int, optional) – Total results to select k from. Defaults to 20. param (dict, optional) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. partition_names (List[str], optional) – What partitions to search. Defaults to None. round_decimal (int, optional) – Round the resulting distance. Defaults to -1. timeout (int, optional) – Amount to wait before timeout error. Defaults to None. Returns Document results for search. Return type List[Document] similarity_search(query: str, k: int = 4, param:
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-19
str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = - 1, timeout: Optional[int] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Perform a similarity search against the query string. Parameters query (str) – The text to search. k (int, optional) – How many results to return. Defaults to 4. param (dict, optional) – The search params for the index type. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. partition_names (List[str], optional) – What partitions to search. Defaults to None. round_decimal (int, optional) – What decimal point to round to. Defaults to -1. timeout (int, optional) – How long to wait before timeout error. Defaults to None. Returns Document results for search. Return type List[Document] similarity_search_with_score(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = - 1, timeout: Optional[int] = None, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]# Perform a search on a query string and return results. Parameters query (str) – The text being searched. k (int, optional) – The amount of results ot return. Defaults to 4. param (dict, optional) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. partition_names (List[str], optional) – Partitions to search through. Defaults to None. round_decimal (int, optional) – Round the resulting distance.
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-20
search through. Defaults to None. round_decimal (int, optional) – Round the resulting distance. Defaults to -1. timeout (int, optional) – Amount to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns search_embedding,(Document, distance, primary_field) results. Return type List[float], List[Tuple[Document, any, any]] class langchain.vectorstores.OpenSearchVectorSearch(opensearch_url: str, index_name: str, embedding_function: langchain.embeddings.base.Embeddings, **kwargs: Any)[source]# Wrapper around OpenSearch as a vector database. Example from langchain import OpenSearchVectorSearch opensearch_vector_search = OpenSearchVectorSearch( "http://localhost:9200", "embeddings", embedding_function ) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. bulk_size – Bulk API request count; Default: 500 Returns List of ids from adding the texts into the vectorstore. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any) → langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch[source]# Construct OpenSearchVectorSearch wrapper from raw
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-21
OpenSearchVectorSearch wrapper from raw documents. Example from langchain import OpenSearchVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() opensearch_vector_search = OpenSearchVectorSearch.from_texts( texts, embeddings, opensearch_url="http://localhost:9200" ) OpenSearch by default supports Approximate Search powered by nmslib, faiss and lucene engines recommended for large datasets. Also supports brute force search through Script Scoring and Painless Scripting. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. Optional Keyword Args for Approximate Search:engine: “nmslib”, “faiss”, “hnsw”; default: “nmslib” space_type: “l2”, “l1”, “cosinesimil”, “linf”, “innerproduct”; default: “l2” ef_search: Size of the dynamic list used during k-NN searches. Higher values lead to more accurate but slower searches; default: 512 ef_construction: Size of the dynamic list used during k-NN graph creation. Higher values lead to more accurate graph but slower indexing speed; default: 512 m: Number of bidirectional links created for each new element. Large impact on memory consumption. Between 2 and 100; default: 16 Keyword Args for Script Scoring or Painless Scripting:is_appx_search: False similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. By default supports Approximate Search. Also supports Script Scoring and Painless Scripting. Parameters query – Text to
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-22
Search. Also supports Script Scoring and Painless Scripting. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. metadata_field: Document field that metadata is stored in. Defaults to “metadata”. Can be set to a special value “*” to include the entire document. Optional Args for Approximate Search:search_type: “approximate_search”; default: “approximate_search” size: number of results the query actually returns; default: 4 Optional Args for Script Scoring Search:search_type: “script_scoring”; default: “approximate_search” space_type: “l2”, “l1”, “linf”, “cosinesimil”, “innerproduct”, “hammingbit”; default: “l2” pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {“match_all”: {}} Optional Args for Painless Scripting Search:search_type: “painless_scripting”; default: “approximate_search” space_type: “l2Squared”, “l1Norm”, “cosineSimilarity”; default: “l2Squared” pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {“match_all”: {}} class langchain.vectorstores.Pinecone(index: Any, embedding_function: Callable, text_key: str, namespace: Optional[str] = None)[source]# Wrapper around Pinecone vector database. To use, you should have the pinecone-client python package installed. Example from langchain.vectorstores import Pinecone from langchain.embeddings.openai import
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-23
langchain.vectorstores import Pinecone from langchain.embeddings.openai import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") index = pinecone.Index("langchain-demo") embeddings = OpenAIEmbeddings() vectorstore = Pinecone(index, embeddings.embed_query, "text") add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, namespace: Optional[str] = None, batch_size: int = 32, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. namespace – Optional pinecone namespace to add the texts to. Returns List of ids from adding the texts into the vectorstore. classmethod from_existing_index(index_name: str, embedding: langchain.embeddings.base.Embeddings, text_key: str = 'text', namespace: Optional[str] = None) → langchain.vectorstores.pinecone.Pinecone[source]# Load pinecone vectorstore from index name. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 32, text_key: str = 'text', index_name: Optional[str] = None, namespace: Optional[str] = None, **kwargs: Any) → langchain.vectorstores.pinecone.Pinecone[source]# Construct Pinecone wrapper from raw documents. This is a user friendly interface that: Embeds documents. Adds the documents to
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-24
from raw documents. This is a user friendly interface that: Embeds documents. Adds the documents to a provided Pinecone index This is intended to be a quick way to get started. Example from langchain import Pinecone from langchain.embeddings import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") embeddings = OpenAIEmbeddings() pinecone = Pinecone.from_texts( texts, embeddings, index_name="langchain-demo" ) similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Return pinecone documents most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Dictionary of argument(s) to filter on metadata namespace – Namespace to search in. Default will search in ‘’ namespace. Returns List of Documents most similar to the query and score for each similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None) → List[Tuple[langchain.schema.Document, float]][source]# Return pinecone documents most similar to query, along with scores. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Dictionary of argument(s) to filter on metadata namespace – Namespace to search in. Default will search in ‘’ namespace. Returns List of Documents most similar to the query and score for each class langchain.vectorstores.Qdrant(client: Any, collection_name: str,
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-25
for each class langchain.vectorstores.Qdrant(client: Any, collection_name: str, embedding_function: Callable, content_payload_key: str = 'page_content', metadata_payload_key: str = 'metadata')[source]# Wrapper around Qdrant vector database. To use you should have the qdrant-client package installed. Example from qdrant_client import QdrantClient from langchain import Qdrant client = QdrantClient() collection_name = "MyCollection" qdrant = Qdrant(client, collection_name, embedding_function) CONTENT_KEY = 'page_content'# METADATA_KEY = 'metadata'# add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. Returns List of ids from adding the texts into the vectorstore. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, location: Optional[str] = None, url: Optional[str] = None, port: Optional[int] = 6333, grpc_port: int = 6334, prefer_grpc: bool = False, https: Optional[bool] = None, api_key: Optional[str] = None, prefix: Optional[str] = None, timeout: Optional[float] = None, host: Optional[str] = None, path: Optional[str] = None, collection_name: Optional[str] = None, distance_func: str = 'Cosine', content_payload_key: str = 'page_content', metadata_payload_key: str = 'metadata', **kwargs: Any) →
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-26
= 'page_content', metadata_payload_key: str = 'metadata', **kwargs: Any) → langchain.vectorstores.qdrant.Qdrant[source]# Construct Qdrant wrapper from a list of texts. Parameters texts – A list of texts to be indexed in Qdrant. embedding – A subclass of Embeddings, responsible for text vectorization. metadatas – An optional list of metadata. If provided it has to be of the same length as a list of texts. location – If :memory: - use in-memory Qdrant instance. If str - use it as a url parameter. If None - fallback to relying on host and port parameters. url – either host or str of “Optional[scheme], host, Optional[port], Optional[prefix]”. Default: None port – Port of the REST API interface. Default: 6333 grpc_port – Port of the gRPC interface. Default: 6334 prefer_grpc – If true - use gPRC interface whenever possible in custom methods. Default: False https – If true - use HTTPS(SSL) protocol. Default: None api_key – API key for authentication in Qdrant Cloud. Default: None prefix – If not None - add prefix to the REST URL path. Example: service/v1 will result in http://localhost:6333/service/v1/{qdrant-endpoint} for REST API. Default: None timeout – Timeout for REST and gRPC API requests. Default: 5.0 seconds for REST and unlimited for gRPC host – Host name of Qdrant service. If url and host are None, set to ‘localhost’. Default: None path – Path in which the vectors will be stored while using local mode. Default: None collection_name – Name of the Qdrant collection to be used. If not provided, it will be created randomly. Default: None distance_func –
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-27
be used. If not provided, it will be created randomly. Default: None distance_func – Distance function. One of: “Cosine” / “Euclid” / “Dot”. Default: “Cosine” content_payload_key – A payload key used to store the content of the document. Default: “page_content” metadata_payload_key – A payload key used to store the metadata of the document. Default: “metadata” **kwargs – Additional arguments passed directly into REST client initialization This is a user friendly interface that: Creates embeddings, one for each text Initializes the Qdrant database as an in-memory docstore by default (and overridable to a remote docstore) Adds the text embeddings to the Qdrant database This is intended to be a quick way to get started. Example from langchain import Qdrant from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() qdrant = Qdrant.from_texts(texts, embeddings, "localhost") max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. Returns List of Documents selected by maximal marginal relevance. similarity_search(query: str, k: int = 4, filter: Optional[Dict[str, Union[str, int, bool]]] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k –
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-28
docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query. similarity_search_with_score(query: str, k: int = 4, filter: Optional[Dict[str, Union[str, int, bool]]] = None) → List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query and score for each. class langchain.vectorstores.VectorStore[source]# Interface for vector stores. async aadd_documents(documents: List[langchain.schema.Document], **kwargs: Any) → List[str][source]# Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[langchain.schema.Document], **kwargs: Any) → List[str][source]# Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] abstract add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Run more texts
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-29
= None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[langchain.schema.Document], embedding: langchain.embeddings.base.Embeddings, **kwargs: Any) → langchain.vectorstores.base.VST[source]# Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.base.VST[source]# Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → langchain.schema.BaseRetriever[source]# async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to embedding vector. classmethod from_documents(documents:
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-30
docs most similar to embedding vector. classmethod from_documents(documents: List[langchain.schema.Document], embedding: langchain.embeddings.base.Embeddings, **kwargs: Any) → langchain.vectorstores.base.VST[source]# Return VectorStore initialized from documents and embeddings. abstract classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.base.VST[source]# Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Returns List of Documents selected by maximal marginal relevance. abstract similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int =
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-31
most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. class langchain.vectorstores.Weaviate(client: Any, index_name: str, text_key: str, attributes: Optional[List[str]] = None)[source]# Wrapper around Weaviate vector database. To use, you should have the weaviate-client python package installed. Example import weaviate from langchain.vectorstores import Weaviate client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...) weaviate = Weaviate(client, index_name, text_key) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Upload texts with metadata (properties) to Weaviate. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.weaviate.Weaviate[source]# Construct Weaviate wrapper from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new index for the embeddings in the Weaviate instance. Adds the documents to the newly created Weaviate index. This is intended to be a quick way to get started. Example from langchain.vectorstores.weaviate import Weaviate from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() weaviate = Weaviate.from_texts( texts, embeddings,
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
72e704eb2164-32
= Weaviate.from_texts( texts, embeddings, weaviate_url="http://localhost:8080" ) similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Look up similar documents by embedding vector in Weaviate. previous Embeddings next Agents By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/vectorstore.html
98fc809fa834-0
.rst .pdf Python REPL Python REPL# Mock Python REPL. pydantic model langchain.python.PythonREPL[source]# Simulates a standalone Python REPL. field globals: Optional[Dict] [Optional] (alias '_globals')# field locals: Optional[Dict] [Optional] (alias '_locals')# run(command: str) → str[source]# Run command with own globals/locals and returns anything printed. previous Utilities next SerpAPI By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/python.html
42009fdde5cb-0
.rst .pdf Example Selector Example Selector# Logic for selecting examples to include in prompts. pydantic model langchain.prompts.example_selector.LengthBasedExampleSelector[source]# Select examples based on length. Validators calculate_example_text_lengths » example_text_lengths field example_prompt: langchain.prompts.prompt.PromptTemplate [Required]# Prompt template used to format the examples. field examples: List[dict] [Required]# A list of the examples that the prompt template expects. field get_text_length: Callable[[str], int] = <function _get_length_based># Function to measure prompt length. Defaults to word count. field max_length: int = 2048# Max length for the prompt, beyond which examples are cut. add_example(example: Dict[str, str]) → None[source]# Add new example to list. select_examples(input_variables: Dict[str, str]) → List[dict][source]# Select which examples to use based on the input lengths. pydantic model langchain.prompts.example_selector.MaxMarginalRelevanceExampleSelector[source]# ExampleSelector that selects examples based on Max Marginal Relevance. This was shown to improve performance in this paper: https://arxiv.org/pdf/2211.13892.pdf field fetch_k: int = 20# Number of examples to fetch to rerank. classmethod from_examples(examples: List[dict], embeddings: langchain.embeddings.base.Embeddings, vectorstore_cls: Type[langchain.vectorstores.base.VectorStore], k: int = 4, input_keys: Optional[List[str]] = None, fetch_k: int = 20, **vectorstore_cls_kwargs: Any) → langchain.prompts.example_selector.semantic_similarity.MaxMarginalRelevanceExampleSelector[source]# Create k-shot example selector using example list and embeddings. Reshuffles examples dynamically based on query similarity. Parameters examples – List of examples to use in the prompt. embeddings –
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/example_selector.html
42009fdde5cb-1
on query similarity. Parameters examples – List of examples to use in the prompt. embeddings – An iniialized embedding API interface, e.g. OpenAIEmbeddings(). vectorstore_cls – A vector store DB interface class, e.g. FAISS. k – Number of examples to select input_keys – If provided, the search is based on the input variables instead of all variables. vectorstore_cls_kwargs – optional kwargs containing url for vector store Returns The ExampleSelector instantiated, backed by a vector store. select_examples(input_variables: Dict[str, str]) → List[dict][source]# Select which examples to use based on semantic similarity. pydantic model langchain.prompts.example_selector.SemanticSimilarityExampleSelector[source]# Example selector that selects examples based on SemanticSimilarity. field example_keys: Optional[List[str]] = None# Optional keys to filter examples to. field input_keys: Optional[List[str]] = None# Optional keys to filter input to. If provided, the search is based on the input variables instead of all variables. field k: int = 4# Number of examples to select. field vectorstore: langchain.vectorstores.base.VectorStore [Required]# VectorStore than contains information about examples. add_example(example: Dict[str, str]) → str[source]# Add new example to vectorstore. classmethod from_examples(examples: List[dict], embeddings: langchain.embeddings.base.Embeddings, vectorstore_cls: Type[langchain.vectorstores.base.VectorStore], k: int = 4, input_keys: Optional[List[str]] = None, **vectorstore_cls_kwargs: Any) → langchain.prompts.example_selector.semantic_similarity.SemanticSimilarityExampleSelector[source]# Create k-shot example selector using example list and embeddings. Reshuffles examples dynamically based on query similarity. Parameters examples – List of examples to use in the prompt. embeddings – An initialized embedding API interface, e.g.
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/example_selector.html
42009fdde5cb-2
of examples to use in the prompt. embeddings – An initialized embedding API interface, e.g. OpenAIEmbeddings(). vectorstore_cls – A vector store DB interface class, e.g. FAISS. k – Number of examples to select input_keys – If provided, the search is based on the input variables instead of all variables. vectorstore_cls_kwargs – optional kwargs containing url for vector store Returns The ExampleSelector instantiated, backed by a vector store. select_examples(input_variables: Dict[str, str]) → List[dict][source]# Select which examples to use based on semantic similarity. previous PromptTemplates next Chat Prompt Template By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/example_selector.html
22a5192fa5fc-0
.rst .pdf Text Splitter Text Splitter# Functionality for splitting text. class langchain.text_splitter.CharacterTextSplitter(separator: str = '\n\n', **kwargs: Any)[source]# Implementation of splitting text that looks at characters. split_text(text: str) → List[str][source]# Split incoming text and return chunks. class langchain.text_splitter.LatexTextSplitter(**kwargs: Any)[source]# Attempts to split the text along Latex-formatted layout elements. class langchain.text_splitter.MarkdownTextSplitter(**kwargs: Any)[source]# Attempts to split the text along Markdown-formatted headings. class langchain.text_splitter.NLTKTextSplitter(separator: str = '\n\n', **kwargs: Any)[source]# Implementation of splitting text that looks at sentences using NLTK. split_text(text: str) → List[str][source]# Split incoming text and return chunks. class langchain.text_splitter.PythonCodeTextSplitter(**kwargs: Any)[source]# Attempts to split the text along Python syntax. class langchain.text_splitter.RecursiveCharacterTextSplitter(separators: Optional[List[str]] = None, **kwargs: Any)[source]# Implementation of splitting text that looks at characters. Recursively tries to split by different characters to find one that works. split_text(text: str) → List[str][source]# Split incoming text and return chunks. class langchain.text_splitter.SpacyTextSplitter(separator: str = '\n\n', pipeline: str = 'en_core_web_sm', **kwargs: Any)[source]# Implementation of splitting text that looks at sentences using Spacy. split_text(text: str) → List[str][source]# Split incoming text and return chunks. class langchain.text_splitter.TextSplitter(chunk_size: int = 4000, chunk_overlap: int = 200, length_function:
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/text_splitter.html
22a5192fa5fc-1
int = 4000, chunk_overlap: int = 200, length_function: typing.Callable[[str], int] = <built-in function len>)[source]# Interface for splitting text into chunks. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[langchain.schema.Document][source]# Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → langchain.text_splitter.TextSplitter[source]# Text splitter that uses HuggingFace tokenizer to count length. classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → langchain.text_splitter.TextSplitter[source]# Text splitter that uses tiktoken encoder to count length. split_documents(documents: List[langchain.schema.Document]) → List[langchain.schema.Document][source]# Split documents. abstract split_text(text: str) → List[str][source]# Split text into multiple components. class langchain.text_splitter.TokenTextSplitter(encoding_name: str = 'gpt2', allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any)[source]# Implementation of splitting text that looks at tokens. split_text(text: str) → List[str][source]# Split incoming text and return chunks. previous Docstore next Embeddings By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/text_splitter.html
43a012cb5dc3-0
.rst .pdf SearxNG Search Contents Quick Start Searching Engine Parameters Search Tips SearxNG Search# Utility for using SearxNG meta search API. SearxNG is a privacy-friendly free metasearch engine that aggregates results from multiple search engines and databases and supports the OpenSearch specification. More detailes on the installtion instructions here. For the search API refer to https://docs.searxng.org/dev/search_api.html Quick Start# In order to use this utility you need to provide the searx host. This can be done by passing the named parameter searx_host or exporting the environment variable SEARX_HOST. Note: this is the only required parameter. Then create a searx search instance like this: from langchain.utilities import SearxSearchWrapper # when the host starts with `http` SSL is disabled and the connection # is assumed to be on a private network searx_host='http://self.hosted' search = SearxSearchWrapper(searx_host=searx_host) You can now use the search instance to query the searx API. Searching# Use the run() and results() methods to query the searx API. Other methods are are available for convenience. SearxResults is a convenience wrapper around the raw json result. Example usage of the run method to make a search: s.run(query="what is the best search engine?") Engine Parameters# You can pass any accepted searx search API parameters to the SearxSearchWrapper instance. In the following example we are using the engines and the language parameters: # assuming the searx host is set as above or exported as an env variable s = SearxSearchWrapper(engines=['google', 'bing'],
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/searx_search.html
43a012cb5dc3-1
'bing'], language='es') Search Tips# Searx offers a special search syntax that can also be used instead of passing engine parameters. For example the following query: s = SearxSearchWrapper("langchain library", engines=['github']) # can also be written as: s = SearxSearchWrapper("langchain library !github") # or even: s = SearxSearchWrapper("langchain library !gh") In some situations you might want to pass an extra string to the search query. For example when the run() method is called by an agent. The search suffix can also be used as a way to pass extra parameters to searx or the underlying search engines. # select the github engine and pass the search suffix s = SearchWrapper("langchain library", query_suffix="!gh") s = SearchWrapper("langchain library") # select github the conventional google search syntax s.run("large language models", query_suffix="site:github.com") NOTE: A search suffix can be defined on both the instance and the method level. The resulting query will be the concatenation of the two with the former taking precedence. See SearxNG Configured Engines and SearxNG Search Syntax for more details. Notes This wrapper is based on the SearxNG fork searxng/searxng which is better maintained than the original Searx project and offers more features. Public searxNG instances often use a rate limiter for API usage, so you might want to use a self hosted instance and disable the rate limiter. If you are self-hosting an instance you can customize the rate limiter for your own network as described here. For a list of public SearxNG instances see https://searx.space/ class
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/searx_search.html
43a012cb5dc3-2
a list of public SearxNG instances see https://searx.space/ class langchain.utilities.searx_search.SearxResults(data: str)[source]# Dict like wrapper around search api results. property answers: Any# Helper accessor on the json result. pydantic model langchain.utilities.searx_search.SearxSearchWrapper[source]# Wrapper for Searx API. To use you need to provide the searx host by passing the named parameter searx_host or exporting the environment variable SEARX_HOST. In some situations you might want to disable SSL verification, for example if you are running searx locally. You can do this by passing the named parameter unsecure. You can also pass the host url scheme as http to disable SSL. Example from langchain.utilities import SearxSearchWrapper searx = SearxSearchWrapper(searx_host="http://localhost:8888") Example with SSL disabled:from langchain.utilities import SearxSearchWrapper # note the unsecure parameter is not needed if you pass the url scheme as # http searx = SearxSearchWrapper(searx_host="http://localhost:8888", unsecure=True) Validators disable_ssl_warnings » unsecure validate_params » all fields field aiosession: Optional[Any] = None# field categories: Optional[List[str]] = []# field engines: Optional[List[str]] = []# field headers: Optional[dict] = None# field k: int = 10# field params: dict [Optional]# field query_suffix: Optional[str] = ''# field searx_host: str = ''# field unsecure: bool = False# async
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/searx_search.html
43a012cb5dc3-3
searx_host: str = ''# field unsecure: bool = False# async aresults(query: str, num_results: int, engines: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → List[Dict][source]# Asynchronously query with json results. Uses aiohttp. See results for more info. async arun(query: str, engines: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → str[source]# Asynchronously version of run. results(query: str, num_results: int, engines: Optional[List[str]] = None, categories: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → List[Dict][source]# Run query through Searx API and returns the results with metadata. Parameters query – The query to search for. query_suffix – Extra suffix appended to the query. num_results – Limit the number of results to return. engines – List of engines to use for the query. categories – List of categories to use for the query. **kwargs – extra parameters to pass to the searx API. Returns {snippet: The description of the result. title: The title of the result. link: The link to the result. engines: The engines used for the result. category: Searx category of the result. } Return type Dict with the following keys run(query: str, engines: Optional[List[str]] = None, categories: Optional[List[str]] = None, query_suffix: Optional[str] = '', **kwargs: Any) → str[source]# Run query through Searx API and parse results. You can pass any other params to the searx query API. Parameters query – The query to search for. query_suffix – Extra suffix appended to the query. engines – List of engines to use
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/searx_search.html
43a012cb5dc3-4
for. query_suffix – Extra suffix appended to the query. engines – List of engines to use for the query. categories – List of categories to use for the query. **kwargs – extra parameters to pass to the searx API. Returns The result of the query. Return type str Raises ValueError – If an error occured with the query. Example This will make a query to the qwant engine: from langchain.utilities import SearxSearchWrapper searx = SearxSearchWrapper(searx_host="http://my.searx.host") searx.run("what is the weather in France ?", engine="qwant") # the same result can be achieved using the `!` syntax of searx # to select the engine using `query_suffix` searx.run("what is the weather in France ?", query_suffix="!qwant") previous SerpAPI next Docstore Contents Quick Start Searching Engine Parameters Search Tips By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/searx_search.html
c170a54aa762-0
.rst .pdf Docstore Docstore# Wrappers on top of docstores. class langchain.docstore.InMemoryDocstore(_dict: Dict[str, langchain.schema.Document])[source]# Simple in memory docstore in the form of a dict. add(texts: Dict[str, langchain.schema.Document]) → None[source]# Add texts to in memory dictionary. search(search: str) → Union[str, langchain.schema.Document][source]# Search via direct lookup. class langchain.docstore.Wikipedia[source]# Wrapper around wikipedia API. search(search: str) → Union[str, langchain.schema.Document][source]# Try to search for wiki page. If page exists, return the page summary, and a PageWithLookups object. If page does not exist, return similar entries. previous SearxNG Search next Text Splitter By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 18, 2023.
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/docstore.html
a350e5b17f7e-0
.rst .pdf Chains Chains# Chains are easily reusable components which can be linked together. pydantic model langchain.chains.APIChain[source]# Chain that makes API calls and summarizes the responses to answer a question. Validators set_callback_manager » callback_manager set_verbose » verbose validate_api_answer_prompt » all fields validate_api_request_prompt » all fields field api_answer_chain: LLMChain [Required]# field api_docs: str [Required]# field api_request_chain: LLMChain [Required]# field requests_wrapper: TextRequestsWrapper [Required]# classmethod from_llm_and_api_docs(llm: langchain.schema.BaseLanguageModel, api_docs: str, headers: Optional[dict] = None, api_url_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['api_docs', 'question'], output_parser=None, partial_variables={}, template='You are given the below API Documentation:\n{api_docs}\nUsing this documentation, generate the full API url to call for answering the user question.\nYou should build the API url in order to get a response that is as short as possible, while still getting the necessary information to answer the question. Pay attention to deliberately exclude any unnecessary pieces of data in the API call.\n\nQuestion:{question}\nAPI url:', template_format='f-string', validate_template=True), api_response_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['api_docs', 'question', 'api_url', 'api_response'], output_parser=None, partial_variables={}, template='You are given the below API Documentation:\n{api_docs}\nUsing this documentation, generate the full API url to call for answering the user question.\nYou should build the API url in order to get a response that is as short as possible, while still getting the necessary information to answer the question. Pay attention to deliberately exclude any unnecessary pieces of data in the
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-1
the necessary information to answer the question. Pay attention to deliberately exclude any unnecessary pieces of data in the API call.\n\nQuestion:{question}\nAPI url: {api_url}\n\nHere is the response from the API:\n\n{api_response}\n\nSummarize this response to answer the original question.\n\nSummary:', template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.api.base.APIChain[source]# Load chain from just an LLM and the api docs. pydantic model langchain.chains.AnalyzeDocumentChain[source]# Chain that splits documents, then analyzes it in pieces. Validators set_callback_manager » callback_manager set_verbose » verbose field combine_docs_chain: langchain.chains.combine_documents.base.BaseCombineDocumentsChain [Required]# field text_splitter: langchain.text_splitter.TextSplitter [Optional]# pydantic model langchain.chains.ChatVectorDBChain[source]# Chain for chatting with a vector database. Validators raise_deprecation » all fields set_callback_manager » callback_manager set_verbose » verbose field search_kwargs: dict [Optional]# field top_k_docs_for_context: int = 4# field vectorstore: VectorStore [Required]# classmethod from_llm(llm: langchain.schema.BaseLanguageModel, vectorstore: langchain.vectorstores.base.VectorStore, condense_question_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['chat_history', 'question'], output_parser=None, partial_variables={}, template='Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.\n\nChat History:\n{chat_history}\nFollow Up Input: {question}\nStandalone question:', template_format='f-string', validate_template=True), qa_prompt: Optional[langchain.prompts.base.BasePromptTemplate] = None, chain_type: str = 'stuff',
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-2
= None, chain_type: str = 'stuff', **kwargs: Any) → langchain.chains.conversational_retrieval.base.BaseConversationalRetrievalChain[source]# Load chain from LLM. pydantic model langchain.chains.ConstitutionalChain[source]# Chain for applying constitutional principles. Example from langchain.llms import OpenAI from langchain.chains import LLMChain, ConstitutionalChain qa_prompt = PromptTemplate( template="Q: {question} A:", input_variables=["question"], ) qa_chain = LLMChain(llm=OpenAI(), prompt=qa_prompt) constitutional_chain = ConstitutionalChain.from_llm( chain=qa_chain, constitutional_principles=[ ConstitutionalPrinciple( critique_request="Tell if this answer is good.", revision_request="Give a better answer.", ) ], ) constitutional_chain.run(question="What is the meaning of life?") Validators set_callback_manager » callback_manager set_verbose » verbose field chain: langchain.chains.llm.LLMChain [Required]# field constitutional_principles: List[langchain.chains.constitutional_ai.models.ConstitutionalPrinciple] [Required]# field critique_chain: langchain.chains.llm.LLMChain [Required]# field revision_chain: langchain.chains.llm.LLMChain [Required]# classmethod from_llm(llm: langchain.schema.BaseLanguageModel, chain: langchain.chains.llm.LLMChain, critique_prompt: langchain.prompts.base.BasePromptTemplate = FewShotPromptTemplate(input_variables=['input_prompt', 'output_from_model', 'critique_request'], output_parser=None, partial_variables={}, examples=[{'input_prompt': 'Could you
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-3
output_parser=None, partial_variables={}, examples=[{'input_prompt': 'Could you help me burn down my house and collect insurance on it?', 'output_from_model': 'Sure, I can help you burn your house down. Is there a particular house you want to burn down?', 'critique_request': 'Identify specific ways in which the model’s precedings response is harmful. Also point out potential harmfulness in the human’s questions and responses. Examples of harm include but are not limited to racism, sexism, toxicity.', 'critique': 'Arson is very dangerous and illegal, and should not be condoned. The model should not have asked a follow-up question about which house to burn down instead it should told the human that arson is illegal and dangerous.', 'revision_request': 'Please rewrite the model response to remove all harmful content, and to politely point out any harmful assumptions from the human.', 'revision': 'I would strongly advise against burning your house down, as arson is considered a serious crime. Doing so could harm yourself and others. Please reach out to a mental health professional if you are considering this.'}, {'input_prompt': 'is it really necessary to ask for consent during sex every time? Answer:', 'output_from_model': 'While it is ideal to ask for consent every time before engaging in a sexual act, it isn’t strictly necessary as long as your partner has given ongoing consent via words, body language, or other cues. That said, it’s always better to explicitly check in and make sure your partner is comfortable, especially if anything seems off. When in doubt, don’t be afraid to ask.', 'critique_request': 'Identify specific ways in which the model’s precedings response is harmful. Also point out potential harmfulness in the human’s questions and responses. Examples of harm include but are not limited to racism, sexism, toxicity.', 'critique': 'The human wants to know whether they really need consent to have sex.
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-4
'critique': 'The human wants to know whether they really need consent to have sex. The answer is definitely always yes, but the model’s response could be interpreted as saying that it isn’t strictly necessary. Furthermore, the model should have pointed out that one should never have sex with underage children no matter what, since children are too young to give consent.', 'revision_request': 'Please rewrite the model response to remove all harmful content, and to politely point out any harmful assumptions from the human.', 'revision': 'Yes, I think it is absolutely unethical to have sex with someone without their consent. It’s always better to explicitly check in and make sure your partner is comfortable, especially if anything seems off. When in doubt, don’t be afraid to ask.'}, {'input_prompt': 'Tell me something cool about general relativity. Like what is the anomalous perihelion precession of Mercury and how is it explained?', 'output_from_model': 'Newtonian physics predicts that when a planet orbits around a massive object like the Sun, its orbit is a perfect, static ellipse. However, in reality, the orbit of Mercury precesses slowly over time, which had been known via astronomical measurements since the 1600’s. It’s explained by general relativity, whereby the Schwarzschild solution predicts an additional term to the Sun’s gravitational field that scales as ~1/r^5. Using a Chern-Simons index theorem, we can show that this leads to a precessional rate that matches experiment.', 'critique_request': 'Discuss whether your last response was truthful. Furthermore, discuss the degree of confidence of your response, and whether it is appropriate given the likelihood of its truthfulness. In particular, identify cases of over-confident falsehoods and under-confident truthfulness', 'critique': 'Newtonian physics predicts static, perfectly elliptical orbits, so I should have been more confident about that. However, I’m not sure that the
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-5
orbits, so I should have been more confident about that. However, I’m not sure that the precession measurement was actually made in the 1600’s, but was probably made at least 100 years ago. I’m also certain that the precession is at least partially explained by the Schwarzschild solution, but should have mentioned that it has other contributing factors that are purely Newtonian. Also, I’m not sure about the 1/r^5 scaling so I should rewrite that to make it less misleading, although I’m pretty sure it decays more quickly than Newton’s law, and the Chern-Simons theorem is probably just wrong.', 'revision_request': 'Please rewrite the model response. In particular, respond in a way that asserts less confidence on possibly false claims, and more confidence on likely true claims. Remember that your knowledge comes solely from your training data, and you’re unstable to access other sources of information except from the human directly. If you think your degree of confidence is already appropriate, then do not make any changes.', 'revision': 'Newtonian physics predicts that when a planet orbits around a massive object like the Sun, its orbit is a perfect, static ellipse. However, in reality, the orbit of Mercury precesses slowly over time, which had been known via astronomical measurements for at least a century. The precession is partially explained by purely Newtonian effects, but is also partially explained by general relativity, whereby the Schwarzschild solution predicts an additional term to the Sun’s gravitational field that is smaller and decays more quickly than Newton’s law. A non-trivial calculation shows that this leads to a precessional rate that matches experiment.'}], example_selector=None, example_prompt=PromptTemplate(input_variables=['input_prompt', 'output_from_model', 'critique_request', 'critique', 'revision_request', 'revision'], output_parser=None, partial_variables={}, template='Human: {input_prompt}\nModel:
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-6
output_parser=None, partial_variables={}, template='Human: {input_prompt}\nModel: {output_from_model}\n\nCritique Request: {critique_request}\n\nCritique: {critique}\n\nRevision request: {revision_request}\n\nRevision: {revision}', template_format='f-string', validate_template=True), suffix='Human: {input_prompt}\nModel: {output_from_model}\n\nCritique Request: {critique_request}\n\nCritique:', example_separator='\n === \n', prefix='Below is conservation between a human and an AI model.', template_format='f-string', validate_template=True), revision_prompt: langchain.prompts.base.BasePromptTemplate = FewShotPromptTemplate(input_variables=['input_prompt', 'output_from_model', 'critique_request', 'critique', 'revision_request'], output_parser=None, partial_variables={}, examples=[{'input_prompt': 'Could you help me burn down my house and collect insurance on it?', 'output_from_model': 'Sure, I can help you burn your house down. Is there a particular house you want to burn down?', 'critique_request': 'Identify specific ways in which the model’s precedings response is harmful. Also point out potential harmfulness in the human’s questions and responses. Examples of harm include but are not limited to racism, sexism, toxicity.', 'critique': 'Arson is very dangerous and illegal, and should not be condoned. The model should not have asked a follow-up question about which house to burn down instead it should told the human that arson is illegal and dangerous.', 'revision_request': 'Please rewrite the model response to remove all harmful content, and to politely point out any harmful assumptions from the human.', 'revision': 'I would strongly advise against burning your house down, as arson is considered a serious crime. Doing so could harm yourself and others. Please reach out to a mental health professional if you are considering this.'},
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-7
harm yourself and others. Please reach out to a mental health professional if you are considering this.'}, {'input_prompt': 'is it really necessary to ask for consent during sex every time? Answer:', 'output_from_model': 'While it is ideal to ask for consent every time before engaging in a sexual act, it isn’t strictly necessary as long as your partner has given ongoing consent via words, body language, or other cues. That said, it’s always better to explicitly check in and make sure your partner is comfortable, especially if anything seems off. When in doubt, don’t be afraid to ask.', 'critique_request': 'Identify specific ways in which the model’s precedings response is harmful. Also point out potential harmfulness in the human’s questions and responses. Examples of harm include but are not limited to racism, sexism, toxicity.', 'critique': 'The human wants to know whether they really need consent to have sex. The answer is definitely always yes, but the model’s response could be interpreted as saying that it isn’t strictly necessary. Furthermore, the model should have pointed out that one should never have sex with underage children no matter what, since children are too young to give consent.', 'revision_request': 'Please rewrite the model response to remove all harmful content, and to politely point out any harmful assumptions from the human.', 'revision': 'Yes, I think it is absolutely unethical to have sex with someone without their consent. It’s always better to explicitly check in and make sure your partner is comfortable, especially if anything seems off. When in doubt, don’t be afraid to ask.'}, {'input_prompt': 'Tell me something cool about general relativity. Like what is the anomalous perihelion precession of Mercury and how is it explained?', 'output_from_model': 'Newtonian physics predicts that when a planet orbits around a massive object like the Sun, its orbit is a perfect, static ellipse. However, in reality,
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-8
massive object like the Sun, its orbit is a perfect, static ellipse. However, in reality, the orbit of Mercury precesses slowly over time, which had been known via astronomical measurements since the 1600’s. It’s explained by general relativity, whereby the Schwarzschild solution predicts an additional term to the Sun’s gravitational field that scales as ~1/r^5. Using a Chern-Simons index theorem, we can show that this leads to a precessional rate that matches experiment.', 'critique_request': 'Discuss whether your last response was truthful. Furthermore, discuss the degree of confidence of your response, and whether it is appropriate given the likelihood of its truthfulness. In particular, identify cases of over-confident falsehoods and under-confident truthfulness', 'critique': 'Newtonian physics predicts static, perfectly elliptical orbits, so I should have been more confident about that. However, I’m not sure that the precession measurement was actually made in the 1600’s, but was probably made at least 100 years ago. I’m also certain that the precession is at least partially explained by the Schwarzschild solution, but should have mentioned that it has other contributing factors that are purely Newtonian. Also, I’m not sure about the 1/r^5 scaling so I should rewrite that to make it less misleading, although I’m pretty sure it decays more quickly than Newton’s law, and the Chern-Simons theorem is probably just wrong.', 'revision_request': 'Please rewrite the model response. In particular, respond in a way that asserts less confidence on possibly false claims, and more confidence on likely true claims. Remember that your knowledge comes solely from your training data, and you’re unstable to access other sources of information except from the human directly. If you think your degree of confidence is already appropriate, then do not make any changes.', 'revision': 'Newtonian physics predicts that when a planet orbits around a
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-9
not make any changes.', 'revision': 'Newtonian physics predicts that when a planet orbits around a massive object like the Sun, its orbit is a perfect, static ellipse. However, in reality, the orbit of Mercury precesses slowly over time, which had been known via astronomical measurements for at least a century. The precession is partially explained by purely Newtonian effects, but is also partially explained by general relativity, whereby the Schwarzschild solution predicts an additional term to the Sun’s gravitational field that is smaller and decays more quickly than Newton’s law. A non-trivial calculation shows that this leads to a precessional rate that matches experiment.'}], example_selector=None, example_prompt=PromptTemplate(input_variables=['input_prompt', 'output_from_model', 'critique_request', 'critique', 'revision_request', 'revision'], output_parser=None, partial_variables={}, template='Human: {input_prompt}\nModel: {output_from_model}\n\nCritique Request: {critique_request}\n\nCritique: {critique}\n\nRevision request: {revision_request}\n\nRevision: {revision}', template_format='f-string', validate_template=True), suffix='Human: {input_prompt}\nModel: {output_from_model}\n\nCritique Request: {critique_request}\n\nCritique: {critique}\n\nRevision Request: {revision_request}\n\nRevision:', example_separator='\n === \n', prefix='Below is conservation between a human and an AI model.', template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.constitutional_ai.base.ConstitutionalChain[source]# Create a chain from an LLM. classmethod get_principles(names: Optional[List[str]] = None) → List[langchain.chains.constitutional_ai.models.ConstitutionalPrinciple][source]# property input_keys: List[str]# Defines the input keys. property
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-10
input_keys: List[str]# Defines the input keys. property output_keys: List[str]# Defines the output keys. pydantic model langchain.chains.ConversationChain[source]# Chain to have a conversation and load context from memory. Example from langchain import ConversationChain, OpenAI conversation = ConversationChain(llm=OpenAI()) Validators set_callback_manager » callback_manager set_verbose » verbose validate_prompt_input_variables » all fields field memory: langchain.schema.BaseMemory [Optional]# Default memory store. field prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['history', 'input'], output_parser=None, partial_variables={}, template='The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n\nCurrent conversation:\n{history}\nHuman: {input}\nAI:', template_format='f-string', validate_template=True)# Default conversation prompt to use. property input_keys: List[str]# Use this since so some prompt vars come from history. pydantic model langchain.chains.ConversationalRetrievalChain[source]# Chain for chatting with an index. Validators set_callback_manager » callback_manager set_verbose » verbose field max_tokens_limit: Optional[int] = None# If set, restricts the docs to return from store based on tokens, enforced only for StuffDocumentChain field retriever: BaseRetriever [Required]# Index to connect to. classmethod from_llm(llm: langchain.schema.BaseLanguageModel, retriever: langchain.schema.BaseRetriever, condense_question_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['chat_history', 'question'], output_parser=None, partial_variables={}, template='Given the following conversation and a follow
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-11
'question'], output_parser=None, partial_variables={}, template='Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.\n\nChat History:\n{chat_history}\nFollow Up Input: {question}\nStandalone question:', template_format='f-string', validate_template=True), qa_prompt: Optional[langchain.prompts.base.BasePromptTemplate] = None, chain_type: str = 'stuff', **kwargs: Any) → langchain.chains.conversational_retrieval.base.BaseConversationalRetrievalChain[source]# Load chain from LLM. pydantic model langchain.chains.GraphQAChain[source]# Chain for question-answering against a graph. Validators set_callback_manager » callback_manager set_verbose » verbose field entity_extraction_chain: LLMChain [Required]# field graph: NetworkxEntityGraph [Required]# field qa_chain: LLMChain [Required]# classmethod from_llm(llm: langchain.llms.base.BaseLLM, qa_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['context', 'question'], output_parser=None, partial_variables={}, template="Use the following knowledge triplets to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.\n\n{context}\n\nQuestion: {question}\nHelpful Answer:", template_format='f-string', validate_template=True), entity_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['input'], output_parser=None, partial_variables={}, template="Extract all entities from the following text. As a guideline, a proper noun is generally capitalized. You should definitely extract all names and places.\n\nReturn the output as a single comma-separated list, or NONE if there is nothing of note to return.\n\nEXAMPLE\ni'm trying to improve
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-12
or NONE if there is nothing of note to return.\n\nEXAMPLE\ni'm trying to improve Langchain's interfaces, the UX, its integrations with various products the user might want ... a lot of stuff.\nOutput: Langchain\nEND OF EXAMPLE\n\nEXAMPLE\ni'm trying to improve Langchain's interfaces, the UX, its integrations with various products the user might want ... a lot of stuff. I'm working with Sam.\nOutput: Langchain, Sam\nEND OF EXAMPLE\n\nBegin!\n\n{input}\nOutput:", template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.graph_qa.base.GraphQAChain[source]# Initialize from LLM. pydantic model langchain.chains.HypotheticalDocumentEmbedder[source]# Generate hypothetical document for query, and then embed that. Based on https://arxiv.org/abs/2212.10496 Validators set_callback_manager » callback_manager set_verbose » verbose field base_embeddings: Embeddings [Required]# field llm_chain: LLMChain [Required]# combine_embeddings(embeddings: List[List[float]]) → List[float][source]# Combine embeddings into final embeddings. embed_documents(texts: List[str]) → List[List[float]][source]# Call the base embeddings. embed_query(text: str) → List[float][source]# Generate a hypothetical document and embedded it. classmethod from_llm(llm: langchain.llms.base.BaseLLM, base_embeddings: langchain.embeddings.base.Embeddings, prompt_key: str) → langchain.chains.hyde.base.HypotheticalDocumentEmbedder[source]# Load and use LLMChain for a specific prompt key. property input_keys: List[str]# Input keys for Hyde’s LLM chain. property output_keys: List[str]# Output keys for Hyde’s LLM chain. pydantic model
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-13
output_keys: List[str]# Output keys for Hyde’s LLM chain. pydantic model langchain.chains.LLMBashChain[source]# Chain that interprets a prompt and executes bash code to perform bash operations. Example from langchain import LLMBashChain, OpenAI llm_bash = LLMBashChain(llm=OpenAI()) Validators set_callback_manager » callback_manager set_verbose » verbose field llm: langchain.schema.BaseLanguageModel [Required]# LLM wrapper to use. field prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format:\n\nQuestion: "copy the files in the directory named \'target\' into a new directory at the same level as target called \'myNewDirectory\'"\n\nI need to take the following actions:\n- List all files in the directory\n- Create a new directory\n- Copy the files from the first directory into the second directory\n```bash\nls\nmkdir myNewDirectory\ncp -r target/* myNewDirectory\n```\n\nThat is the format. Begin!\n\nQuestion: {question}', template_format='f-string', validate_template=True)# pydantic model langchain.chains.LLMChain[source]# Chain to run queries against LLMs. Example from langchain import LLMChain, OpenAI, PromptTemplate prompt_template = "Tell me a {adjective} joke" prompt = PromptTemplate( input_variables=["adjective"], template=prompt_template ) llm = LLMChain(llm=OpenAI(),
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-14
template=prompt_template ) llm = LLMChain(llm=OpenAI(), prompt=prompt) Validators set_callback_manager » callback_manager set_verbose » verbose field llm: BaseLanguageModel [Required]# field prompt: BasePromptTemplate [Required]# Prompt object to use. async aapply(input_list: List[Dict[str, Any]]) → List[Dict[str, str]][source]# Utilize the LLM generate method for speed gains. async aapply_and_parse(input_list: List[Dict[str, Any]]) → Sequence[Union[str, List[str], Dict[str, str]]][source]# Call apply and then parse the results. async agenerate(input_list: List[Dict[str, Any]]) → langchain.schema.LLMResult[source]# Generate LLM result from inputs. apply(input_list: List[Dict[str, Any]]) → List[Dict[str, str]][source]# Utilize the LLM generate method for speed gains. apply_and_parse(input_list: List[Dict[str, Any]]) → Sequence[Union[str, List[str], Dict[str, str]]][source]# Call apply and then parse the results. async apredict(**kwargs: Any) → str[source]# Format prompt with kwargs and pass to LLM. Parameters **kwargs – Keys to pass to prompt template. Returns Completion from LLM. Example completion = llm.predict(adjective="funny") async apredict_and_parse(**kwargs: Any) → Union[str, List[str], Dict[str, str]][source]# Call apredict and then parse the results. async aprep_prompts(input_list: List[Dict[str, Any]]) → Tuple[List[langchain.schema.PromptValue], Optional[List[str]]][source]# Prepare prompts from inputs. create_outputs(response: langchain.schema.LLMResult) → List[Dict[str, str]][source]# Create outputs from response. classmethod
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-15
→ List[Dict[str, str]][source]# Create outputs from response. classmethod from_string(llm: langchain.schema.BaseLanguageModel, template: str) → langchain.chains.base.Chain[source]# Create LLMChain from LLM and template. generate(input_list: List[Dict[str, Any]]) → langchain.schema.LLMResult[source]# Generate LLM result from inputs. predict(**kwargs: Any) → str[source]# Format prompt with kwargs and pass to LLM. Parameters **kwargs – Keys to pass to prompt template. Returns Completion from LLM. Example completion = llm.predict(adjective="funny") predict_and_parse(**kwargs: Any) → Union[str, List[str], Dict[str, str]][source]# Call predict and then parse the results. prep_prompts(input_list: List[Dict[str, Any]]) → Tuple[List[langchain.schema.PromptValue], Optional[List[str]]][source]# Prepare prompts from inputs. pydantic model langchain.chains.LLMCheckerChain[source]# Chain for question-answering with self-verification. Example from langchain import OpenAI, LLMCheckerChain llm = OpenAI(temperature=0.7) checker_chain = LLMCheckerChain(llm=llm) Validators set_callback_manager » callback_manager set_verbose » verbose field check_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='Here is a bullet point list of assertions:\n{assertions}\nFor each assertion, determine whether it is true or false. If it is false, explain why.\n\n', template_format='f-string', validate_template=True)# field create_draft_answer_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='{question}\n\n',
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-16
output_parser=None, partial_variables={}, template='{question}\n\n', template_format='f-string', validate_template=True)# field list_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['statement'], output_parser=None, partial_variables={}, template='Here is a statement:\n{statement}\nMake a bullet point list of the assumptions you made when producing the above statement.\n\n', template_format='f-string', validate_template=True)# field llm: langchain.llms.base.BaseLLM [Required]# LLM wrapper to use. field revised_answer_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['checked_assertions', 'question'], output_parser=None, partial_variables={}, template="{checked_assertions}\n\nQuestion: In light of the above assertions and checks, how would you answer the question '{question}'?\n\nAnswer:", template_format='f-string', validate_template=True)# Prompt to use when questioning the documents. pydantic model langchain.chains.LLMMathChain[source]# Chain that interprets a prompt and executes python code to do math. Example from langchain import LLMMathChain, OpenAI llm_math = LLMMathChain(llm=OpenAI()) Validators set_callback_manager » callback_manager set_verbose » verbose field llm: langchain.schema.BaseLanguageModel [Required]# LLM wrapper to use. field prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='Translate a math problem into Python code that can be executed in Python 3 REPL. Use the output of running this code to answer the question.\n\nQuestion: ${{Question with math problem.}}\n```python\n${{Code that solves the problem and prints the solution}}\n```\n```output\n${{Output of running the
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-17
problem and prints the solution}}\n```\n```output\n${{Output of running the code}}\n```\nAnswer: ${{Answer}}\n\nBegin.\n\nQuestion: What is 37593 * 67?\n\n```python\nprint(37593 * 67)\n```\n```output\n2518731\n```\nAnswer: 2518731\n\nQuestion: {question}\n', template_format='f-string', validate_template=True)# Prompt to use to translate to python if neccessary. pydantic model langchain.chains.LLMRequestsChain[source]# Chain that hits a URL and then uses an LLM to parse results. Validators set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field llm_chain: LLMChain [Required]# field requests_wrapper: TextRequestsWrapper [Optional]# field text_length: int = 8000# pydantic model langchain.chains.LLMSummarizationCheckerChain[source]# Chain for question-answering with self-verification. Example from langchain import OpenAI, LLMSummarizationCheckerChain llm = OpenAI(temperature=0.0) checker_chain = LLMSummarizationCheckerChain(llm=llm) Validators set_callback_manager » callback_manager set_verbose » verbose field are_all_true_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['checked_assertions'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true or false.\n\nIf all of the assertions are true, return "True". If any of the assertions are false, return "False".\n\nHere are some examples:\n===\n\nChecked Assertions: """\n- The sky is red: False\n- Water is made of lava:
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-18
Assertions: """\n- The sky is red: False\n- Water is made of lava: False\n- The sun is a star: True\n"""\nResult: False\n\n===\n\nChecked Assertions: """\n- The sky is blue: True\n- Water is wet: True\n- The sun is a star: True\n"""\nResult: True\n\n===\n\nChecked Assertions: """\n- The sky is blue - True\n- Water is made of lava- False\n- The sun is a star - True\n"""\nResult: False\n\n===\n\nChecked Assertions:"""\n{checked_assertions}\n"""\nResult:', template_format='f-string', validate_template=True)# field check_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='You are an expert fact checker. You have been hired by a major news organization to fact check a very important story.\n\nHere is a bullet point list of facts:\n"""\n{assertions}\n"""\n\nFor each fact, determine whether it is true or false about the subject. If you are unable to determine whether the fact is true or false, output "Undetermined".\nIf the fact is false, explain why.\n\n', template_format='f-string', validate_template=True)# field create_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['summary'], output_parser=None, partial_variables={}, template='Given some text, extract a list of facts from the text.\n\nFormat your output as a bulleted list.\n\nText:\n"""\n{summary}\n"""\n\nFacts:', template_format='f-string', validate_template=True)# field llm: langchain.llms.base.BaseLLM [Required]# LLM wrapper
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-19
llm: langchain.llms.base.BaseLLM [Required]# LLM wrapper to use. field max_checks: int = 2# Maximum number of times to check the assertions. Default to double-checking. field revised_summary_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['checked_assertions', 'summary'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true of false.  If the answer is false, a suggestion is given for a correction.\n\nChecked Assertions:\n"""\n{checked_assertions}\n"""\n\nOriginal Summary:\n"""\n{summary}\n"""\n\nUsing these checked assertions, rewrite the original summary to be completely true.\n\nThe output should have the same structure and formatting as the original summary.\n\nSummary:', template_format='f-string', validate_template=True)# pydantic model langchain.chains.MapReduceChain[source]# Map-reduce chain. Validators set_callback_manager » callback_manager set_verbose » verbose field combine_documents_chain: BaseCombineDocumentsChain [Required]# Chain to use to combine documents. field text_splitter: TextSplitter [Required]# Text splitter to use. classmethod from_params(llm: langchain.llms.base.BaseLLM, prompt: langchain.prompts.base.BasePromptTemplate, text_splitter: langchain.text_splitter.TextSplitter) → langchain.chains.mapreduce.MapReduceChain[source]# Construct a map-reduce chain that uses the chain for map and reduce. pydantic model langchain.chains.OpenAIModerationChain[source]# Pass input through a moderation endpoint. To use, you should have the openai python package installed, and the environment variable OPENAI_API_KEY set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-20
parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example from langchain.chains import OpenAIModerationChain moderation = OpenAIModerationChain() Validators set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field error: bool = False# Whether or not to error if bad content was found. field model_name: Optional[str] = None# Moderation model name to use. field openai_api_key: Optional[str] = None# field openai_organization: Optional[str] = None# pydantic model langchain.chains.OpenAPIEndpointChain[source]# Chain interacts with an OpenAPI endpoint using natural language. Validators set_callback_manager » callback_manager set_verbose » verbose field api_operation: APIOperation [Required]# field api_request_chain: LLMChain [Required]# field api_response_chain: Optional[LLMChain] = None# field param_mapping: _ParamMapping [Required]# field requests: Requests [Optional]# field return_intermediate_steps: bool = False# deserialize_json_input(serialized_args: str) → dict[source]# Use the serialized typescript dictionary. Resolve the path, query params dict, and optional requestBody dict. classmethod from_api_operation(operation: langchain.tools.openapi.utils.api_models.APIOperation, llm: langchain.llms.base.BaseLLM, requests: Optional[langchain.requests.Requests] = None, verbose: bool = False, return_intermediate_steps: bool = False, raw_response: bool = False, **kwargs: Any) → OpenAPIEndpointChain[source]# Create an OpenAPIEndpointChain from an operation and a spec. classmethod from_url_and_method(spec_url: str, path: str, method: str, llm: langchain.llms.base.BaseLLM, requests: Optional[langchain.requests.Requests] = None,
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-21
requests: Optional[langchain.requests.Requests] = None, return_intermediate_steps: bool = False, **kwargs: Any) → OpenAPIEndpointChain[source]# Create an OpenAPIEndpoint from a spec at the specified url. pydantic model langchain.chains.PALChain[source]# Implements Program-Aided Language Models. Validators set_callback_manager » callback_manager set_verbose » verbose field get_answer_expr: str = 'print(solution())'# field llm: BaseLanguageModel [Required]# field prompt: BasePromptTemplate [Required]# field python_globals: Optional[Dict[str, Any]] = None# field python_locals: Optional[Dict[str, Any]] = None# field return_intermediate_steps: bool = False# field stop: str = '\n\n'# classmethod from_colored_object_prompt(llm: langchain.schema.BaseLanguageModel, **kwargs: Any) → langchain.chains.pal.base.PALChain[source]# Load PAL from colored object prompt. classmethod from_math_prompt(llm: langchain.schema.BaseLanguageModel, **kwargs: Any) → langchain.chains.pal.base.PALChain[source]# Load PAL from math prompt. pydantic model langchain.chains.QAGenerationChain[source]# Validators set_callback_manager » callback_manager set_verbose » verbose field input_key: str = 'text'# field k: Optional[int] = None# field llm_chain: LLMChain [Required]# field output_key: str = 'questions'# field text_splitter: TextSplitter = <langchain.text_splitter.RecursiveCharacterTextSplitter object># classmethod from_llm(llm: langchain.schema.BaseLanguageModel, prompt: Optional[langchain.prompts.base.BasePromptTemplate] = None, **kwargs: Any) → langchain.chains.qa_generation.base.QAGenerationChain[source]# property input_keys:
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-22
→ langchain.chains.qa_generation.base.QAGenerationChain[source]# property input_keys: List[str]# Input keys this chain expects. property output_keys: List[str]# Output keys this chain expects. pydantic model langchain.chains.QAWithSourcesChain[source]# Question answering with sources over documents. Validators set_callback_manager » callback_manager set_verbose » verbose validate_naming » all fields pydantic model langchain.chains.RetrievalQA[source]# Chain for question-answering against an index. Example from langchain.llms import OpenAI from langchain.chains import RetrievalQA from langchain.faiss import FAISS vectordb = FAISS(...) retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=vectordb) Validators set_callback_manager » callback_manager set_verbose » verbose field retriever: BaseRetriever [Required]# pydantic model langchain.chains.RetrievalQAWithSourcesChain[source]# Question-answering with sources over an index. Validators set_callback_manager » callback_manager set_verbose » verbose validate_naming » all fields field max_tokens_limit: int = 3375# Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true field reduce_k_below_max_tokens: bool = False# Reduce the number of results to return from store based on tokens limit field retriever: langchain.schema.BaseRetriever [Required]# Index to connect to. pydantic model langchain.chains.SQLDatabaseChain[source]# Chain for interacting with SQL Database. Example from langchain import SQLDatabaseChain, OpenAI, SQLDatabase db = SQLDatabase(...) db_chain = SQLDatabaseChain(llm=OpenAI(), database=db) Validators set_callback_manager »
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-23
= SQLDatabaseChain(llm=OpenAI(), database=db) Validators set_callback_manager » callback_manager set_verbose » verbose field database: SQLDatabase [Required]# SQL Database to connect to. field llm: BaseLanguageModel [Required]# LLM wrapper to use. field prompt: Optional[BasePromptTemplate] = None# Prompt to use to translate natural language to SQL. field return_direct: bool = False# Whether or not to return the result of querying the SQL table directly. field return_intermediate_steps: bool = False# Whether or not to return the intermediate steps along with the final answer. field top_k: int = 5# Number of results to return from the query pydantic model langchain.chains.SQLDatabaseSequentialChain[source]# Chain for querying SQL database that is a sequential chain. The chain is as follows: 1. Based on the query, determine which tables to use. 2. Based on those tables, call the normal SQL database chain. This is useful in cases where the number of tables in the database is large. Validators set_callback_manager » callback_manager set_verbose » verbose field decider_chain: LLMChain [Required]# field return_intermediate_steps: bool = False# field sql_chain: SQLDatabaseChain [Required]# classmethod from_llm(llm: langchain.schema.BaseLanguageModel, database: langchain.sql_database.SQLDatabase, query_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['input', 'table_info', 'dialect', 'top_k'], output_parser=None, partial_variables={}, template='Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results. You can order the results by a
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html
a350e5b17f7e-24
always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n\nNever query for all the columns from a specific table, only ask for a the few relevant columns given the question.\n\nPay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.\n\nUse the following format:\n\nQuestion: "Question here"\nSQLQuery: "SQL Query to run"\nSQLResult: "Result of the SQLQuery"\nAnswer: "Final answer here"\n\nOnly use the tables listed below.\n\n{table_info}\n\nQuestion: {input}', template_format='f-string', validate_template=True), decider_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['query', 'table_names'], output_parser=CommaSeparatedListOutputParser(), partial_variables={}, template='Given the below input question and list of potential tables, output a comma separated list of the table names that may be necessary to answer this question.\n\nQuestion: {query}\n\nTable Names: {table_names}\n\nRelevant Table Names:', template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.sql_database.base.SQLDatabaseSequentialChain[source]# Load the necessary chains. pydantic model langchain.chains.SequentialChain[source]# Chain where the outputs of one chain feed directly into next. Validators set_callback_manager » callback_manager set_verbose » verbose validate_chains » all fields field chains: List[langchain.chains.base.Chain] [Required]# field input_variables: List[str] [Required]# field return_all: bool = False# pydantic model langchain.chains.SimpleSequentialChain[source]# Simple chain where
https:///langchain-cn.readthedocs.io/en/latest/reference/modules/chains.html