id
stringlengths 14
16
| text
stringlengths 29
2.31k
| source
stringlengths 57
122
|
---|---|---|
3f3f9f4e9a2b-7
|
= datetime.datetime.now().timestamp()
generated_responses = await super()._agenerate(prompts, stop)
request_end_time = datetime.datetime.now().timestamp()
for i in range(len(prompts)):
prompt = prompts[i]
generation = generated_responses.generations[i][0]
resp = {
"text": generation.text,
"llm_output": generated_responses.llm_output,
}
pl_request_id = await promptlayer_api_request_async(
"langchain.PromptLayerOpenAIChat.async",
"langchain",
[prompt],
self._identifying_params,
self.pl_tags,
resp,
request_start_time,
request_end_time,
get_api_key(),
return_pl_id=self.return_pl_id,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/promptlayer_openai.html
|
3f3f9f4e9a2b-8
|
return_pl_id=self.return_pl_id,
)
if self.return_pl_id:
if generation.generation_info is None or not isinstance(
generation.generation_info, dict
):
generation.generation_info = {}
generation.generation_info["pl_request_id"] = pl_request_id
return generated_responses
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/promptlayer_openai.html
|
3f2a98548499-0
|
Source code for langchain.llms.anthropic
"""Wrapper around Anthropic APIs."""
import re
from typing import Any, Dict, Generator, List, Mapping, Optional
from pydantic import Extra, root_validator
from langchain.llms.base import LLM
from langchain.utils import get_from_dict_or_env
[docs]class Anthropic(LLM):
r"""Wrapper around Anthropic large language models.
To use, you should have the ``anthropic`` python package installed, and the
environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
import anthropic
from langchain.llms import Anthropic
model = Anthropic(model="<model_name>", anthropic_api_key="my-api-key")
# Simplest invocation, automatically wrapped with HUMAN_PROMPT
# and AI_PROMPT.
response = model("What are the biggest risks facing humanity?")
# Or if you want to use the chat mode, build a few-shot-prompt, or
# put words in the Assistant's mouth, use HUMAN_PROMPT and AI_PROMPT:
raw_prompt = "What are the biggest risks facing humanity?"
prompt = f"{anthropic.HUMAN_PROMPT}
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/anthropic.html
|
3f2a98548499-1
|
prompt = f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}"
response = model(prompt)
"""
client: Any #: :meta private:
model: str = "claude-v1"
"""Model name to use."""
max_tokens_to_sample: int = 256
"""Denotes the number of tokens to predict per generation."""
temperature: float = 1.0
"""A non-negative float that tunes the degree of randomness in generation."""
top_k: int = 0
"""Number of most likely tokens to consider at each step."""
top_p: float = 1
"""Total probability mass of tokens to consider at each step."""
streaming: bool = False
"""Whether to stream the results."""
anthropic_api_key: Optional[str] = None
HUMAN_PROMPT: Optional[str] = None
AI_PROMPT: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
anthropic_api_key = get_from_dict_or_env(
values, "anthropic_api_key", "ANTHROPIC_API_KEY"
)
try:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/anthropic.html
|
3f2a98548499-2
|
)
try:
import anthropic
values["client"] = anthropic.Client(anthropic_api_key)
values["HUMAN_PROMPT"] = anthropic.HUMAN_PROMPT
values["AI_PROMPT"] = anthropic.AI_PROMPT
except ImportError:
raise ValueError(
"Could not import anthropic python package. "
"Please install it with `pip install anthropic`."
)
return values
@property
def _default_params(self) -> Mapping[str, Any]:
"""Get the default parameters for calling Anthropic API."""
return {
"max_tokens_to_sample": self.max_tokens_to_sample,
"temperature": self.temperature,
"top_k": self.top_k,
"top_p": self.top_p,
}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model}, **self._default_params}
@property
def
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/anthropic.html
|
3f2a98548499-3
|
self.model}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "anthropic"
def _wrap_prompt(self, prompt: str) -> str:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if prompt.startswith(self.HUMAN_PROMPT):
return prompt # Already wrapped.
# Guard against common errors in specifying wrong number of newlines.
corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT, prompt)
if n_subs == 1:
return corrected_prompt
# As a last resort, wrap the prompt ourselves to emulate instruct-style.
return f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT} Sure, here you go:\n"
def _get_anthropic_stop(self, stop: Optional[List[str]] = None) -> List[str]:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if stop is None:
stop = []
# Never want model to invent new turns of Human / Assistant dialog.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/anthropic.html
|
3f2a98548499-4
|
# Never want model to invent new turns of Human / Assistant dialog.
stop.extend([self.HUMAN_PROMPT, self.AI_PROMPT])
return stop
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
r"""Call out to Anthropic's completion endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "What are the biggest risks facing humanity?"
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
response = model(prompt)
"""
stop = self._get_anthropic_stop(stop)
if self.streaming:
stream_resp = self.client.completion_stream(
model=self.model,
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/anthropic.html
|
3f2a98548499-5
|
stop_sequences=stop,
stream=True,
**self._default_params,
)
current_completion = ""
for data in stream_resp:
delta = data["completion"][len(current_completion) :]
current_completion = data["completion"]
self.callback_manager.on_llm_new_token(
delta, verbose=self.verbose, **data
)
return current_completion
response = self.client.completion(
model=self.model,
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**self._default_params,
)
return response["completion"]
async def _acall(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Call out to Anthropic's completion endpoint asynchronously."""
stop = self._get_anthropic_stop(stop)
if self.streaming:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/anthropic.html
|
3f2a98548499-6
|
self._get_anthropic_stop(stop)
if self.streaming:
stream_resp = await self.client.acompletion_stream(
model=self.model,
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**self._default_params,
)
current_completion = ""
async for data in stream_resp:
delta = data["completion"][len(current_completion) :]
current_completion = data["completion"]
if self.callback_manager.is_async:
await self.callback_manager.on_llm_new_token(
delta, verbose=self.verbose, **data
)
else:
self.callback_manager.on_llm_new_token(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/anthropic.html
|
3f2a98548499-7
|
delta, verbose=self.verbose, **data
)
return current_completion
response = await self.client.acompletion(
model=self.model,
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**self._default_params,
)
return response["completion"]
[docs] def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Generator:
r"""Call Anthropic completion_stream and return the resulting generator.
BETA: this is a beta feature while we figure out the right abstraction.
Once that happens, this interface could change.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/anthropic.html
|
3f2a98548499-8
|
= "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
return self.client.completion_stream(
model=self.model,
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**self._default_params,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/anthropic.html
|
eac71d76efcc-0
|
Source code for langchain.llms.openai
"""Wrapper around OpenAI APIs."""
from __future__ import annotations
import logging
import sys
import warnings
from typing import (
Any,
Callable,
Dict,
Generator,
List,
Mapping,
Optional,
Set,
Tuple,
Union,
)
from pydantic import Extra, Field, root_validator
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.llms.base import BaseLLM
from langchain.schema import Generation, LLMResult
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
def update_token_usage(
keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any]
) -> None:
"""Update token usage."""
_keys_to_use = keys.intersection(response["usage"])
for _key in _keys_to_use:
if _key not in token_usage:
token_usage[_key] = response["usage"][_key]
else:
token_usage[_key] += response["usage"][_key]
def _update_response(response: Dict[str, Any], stream_response: Dict[str, Any]) -> None:
"""Update response from the stream response."""
response["choices"][0]["text"] += stream_response["choices"][0]["text"]
response["choices"][0]["finish_reason"] = stream_response["choices"][0][
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-1
|
= stream_response["choices"][0][
"finish_reason"
]
response["choices"][0]["logprobs"] = stream_response["choices"][0]["logprobs"]
def _streaming_response_template() -> Dict[str, Any]:
return {
"choices": [
{
"text": "",
"finish_reason": None,
"logprobs": None,
}
]
}
def _create_retry_decorator(llm: Union[BaseOpenAI, OpenAIChat]) -> Callable[[Any], Any]:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(llm.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
|
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-2
|
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def completion_with_retry(llm: Union[BaseOpenAI, OpenAIChat], **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
def _completion_with_retry(**kwargs: Any) -> Any:
return llm.client.create(**kwargs)
return _completion_with_retry(**kwargs)
async def acompletion_with_retry(
llm: Union[BaseOpenAI, OpenAIChat], **kwargs: Any
) -> Any:
"""Use tenacity to retry the async completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
async def _completion_with_retry(**kwargs: Any) -> Any:
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
return await llm.client.acreate(**kwargs)
return await _completion_with_retry(**kwargs)
class BaseOpenAI(BaseLLM):
"""Wrapper around OpenAI large language models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-3
|
environment variable ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.llms import OpenAI
openai = OpenAI(model_name="text-davinci-003")
"""
client: Any #: :meta private:
model_name: str = "text-davinci-003"
"""Model name to use."""
temperature: float = 0.7
"""What sampling temperature to use."""
max_tokens: int = 256
"""The maximum number of tokens to generate in the completion.
-1 returns as many tokens as possible given the prompt and
the models maximal context size."""
top_p: float = 1
"""Total probability mass of tokens to consider at each step."""
frequency_penalty: float = 0
"""Penalizes repeated tokens according to frequency."""
presence_penalty: float = 0
"""Penalizes repeated tokens."""
n: int = 1
"""How many completions to generate for each prompt."""
best_of: int = 1
"""Generates best_of completions server-side and returns the "best"."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
openai_api_key:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-4
|
model parameters valid for `create` call not explicitly specified."""
openai_api_key: Optional[str] = None
openai_api_base: Optional[str] = None
openai_organization: Optional[str] = None
batch_size: int = 20
"""Batch size to use when passing multiple documents to generate."""
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""Timeout for requests to OpenAI completion API. Default is 600 seconds."""
logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict)
"""Adjust the probability of specific tokens being generated."""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
streaming: bool = False
"""Whether to stream the results or not."""
def __new__(cls, **data: Any) -> Union[OpenAIChat, BaseOpenAI]: # type: ignore
"""Initialize the OpenAI object."""
model_name = data.get("model_name", "")
if model_name.startswith("gpt-3.5-turbo") or model_name.startswith("gpt-4"):
warnings.warn(
"You are trying to use a chat model. This way of initializing it is "
"no longer supported. Instead, please use: "
"`from langchain.chat_models import ChatOpenAI`"
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-5
|
langchain.chat_models import ChatOpenAI`"
)
return OpenAIChat(**data)
return super().__new__(cls)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.ignore
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
logger.warning(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transfered to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-6
|
)
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
openai_api_key = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
openai_api_base = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
openai_organization = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
try:
import openai
openai.api_key = openai_api_key
if openai_api_base:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-7
|
if openai_api_base:
print("USING API_BASE: ")
print(openai_api_base)
openai.api_base = openai_api_base
if openai_organization:
print("USING ORGANIZATION: ")
print(openai_organization)
openai.organization = openai_organization
values["client"] = openai.Completion
except ImportError:
raise ValueError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
if values["streaming"] and values["n"] > 1:
raise ValueError("Cannot stream results when n > 1.")
if values["streaming"] and values["best_of"] > 1:
raise ValueError("Cannot stream results when best_of > 1.")
return values
@property
def _default_params(self) -> Dict[str, Any]:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-8
|
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
normal_params = {
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"n": self.n,
"best_of": self.best_of,
"request_timeout": self.request_timeout,
"logit_bias": self.logit_bias,
}
return {**normal_params, **self.model_kwargs}
def _generate(
self, prompts: List[str], stop: Optional[List[str]] = None
) -> LLMResult:
"""Call out to OpenAI's endpoint with k unique prompts.
Args:
prompts: The prompts to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The full LLM output.
Example:
.. code-block::
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-9
|
Example:
.. code-block:: python
response = openai.generate(["Tell me a joke."])
"""
# TODO: write a unit test for this
params = self._invocation_params
sub_prompts = self.get_sub_prompts(params, prompts, stop)
choices = []
token_usage: Dict[str, int] = {}
# Get the token usage from the response.
# Includes prompt, completion, and total tokens used.
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
for _prompts in sub_prompts:
if self.streaming:
if len(_prompts) > 1:
raise ValueError("Cannot stream results with multiple prompts.")
params["stream"] = True
response = _streaming_response_template()
for stream_resp in completion_with_retry(
self, prompt=_prompts, **params
):
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-10
|
):
self.callback_manager.on_llm_new_token(
stream_resp["choices"][0]["text"],
verbose=self.verbose,
logprobs=stream_resp["choices"][0]["logprobs"],
)
_update_response(response, stream_resp)
choices.extend(response["choices"])
else:
response = completion_with_retry(self, prompt=_prompts, **params)
choices.extend(response["choices"])
if not self.streaming:
# Can't update token usage if streaming
update_token_usage(_keys, response, token_usage)
return self.create_llm_result(choices, prompts, token_usage)
async def _agenerate(
self, prompts: List[str], stop: Optional[List[str]] = None
) -> LLMResult:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-11
|
Optional[List[str]] = None
) -> LLMResult:
"""Call out to OpenAI's endpoint async with k unique prompts."""
params = self._invocation_params
sub_prompts = self.get_sub_prompts(params, prompts, stop)
choices = []
token_usage: Dict[str, int] = {}
# Get the token usage from the response.
# Includes prompt, completion, and total tokens used.
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
for _prompts in sub_prompts:
if self.streaming:
if len(_prompts) > 1:
raise ValueError("Cannot stream results with multiple prompts.")
params["stream"] = True
response = _streaming_response_template()
async for stream_resp in await acompletion_with_retry(
self, prompt=_prompts, **params
):
if self.callback_manager.is_async:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-12
|
await self.callback_manager.on_llm_new_token(
stream_resp["choices"][0]["text"],
verbose=self.verbose,
logprobs=stream_resp["choices"][0]["logprobs"],
)
else:
self.callback_manager.on_llm_new_token(
stream_resp["choices"][0]["text"],
verbose=self.verbose,
logprobs=stream_resp["choices"][0]["logprobs"],
)
_update_response(response, stream_resp)
choices.extend(response["choices"])
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-13
|
choices.extend(response["choices"])
else:
response = await acompletion_with_retry(self, prompt=_prompts, **params)
choices.extend(response["choices"])
if not self.streaming:
# Can't update token usage if streaming
update_token_usage(_keys, response, token_usage)
return self.create_llm_result(choices, prompts, token_usage)
def get_sub_prompts(
self,
params: Dict[str, Any],
prompts: List[str],
stop: Optional[List[str]] = None,
) -> List[List[str]]:
"""Get the sub prompts for llm call."""
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
if params["max_tokens"] == -1:
if len(prompts) != 1:
raise ValueError(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-14
|
raise ValueError(
"max_tokens set to -1 not supported for multiple inputs."
)
params["max_tokens"] = self.max_tokens_for_prompt(prompts[0])
sub_prompts = [
prompts[i : i + self.batch_size]
for i in range(0, len(prompts), self.batch_size)
]
return sub_prompts
def create_llm_result(
self, choices: Any, prompts: List[str], token_usage: Dict[str, int]
) -> LLMResult:
"""Create the LLMResult from the choices and prompts."""
generations = []
for i, _ in enumerate(prompts):
sub_choices = choices[i * self.n : (i + 1) * self.n]
generations.append(
[
Generation(
text=choice["text"],
generation_info=dict(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-15
|
generation_info=dict(
finish_reason=choice.get("finish_reason"),
logprobs=choice.get("logprobs"),
),
)
for choice in sub_choices
]
)
llm_output = {"token_usage": token_usage, "model_name": self.model_name}
return LLMResult(generations=generations, llm_output=llm_output)
def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Generator:
"""Call OpenAI with streaming flag and return the resulting generator.
BETA: this is a beta feature while we figure out the right abstraction.
Once that happens, this interface could change.
Args:
prompt: The prompts to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from OpenAI.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-16
|
A generator representing the stream of tokens from OpenAI.
Example:
.. code-block:: python
generator = openai.stream("Tell me a joke.")
for token in generator:
yield token
"""
params = self.prep_streaming_params(stop)
generator = self.client.create(prompt=prompt, **params)
return generator
def prep_streaming_params(self, stop: Optional[List[str]] = None) -> Dict[str, Any]:
"""Prepare the params for streaming."""
params = self._invocation_params
if params["best_of"] != 1:
raise ValueError("OpenAI only supports best_of == 1 for streaming")
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
params["stream"] = True
return params
@property
def _invocation_params(self) -> Dict[str, Any]:
"""Get the parameters used
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-17
|
-> Dict[str, Any]:
"""Get the parameters used to invoke the model."""
return self._default_params
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "openai"
def get_num_tokens(self, text: str) -> int:
"""Calculate num tokens with tiktoken package."""
# tiktoken NOT supported for Python 3.8 or below
if sys.version_info[1] <= 8:
return super().get_num_tokens(text)
try:
import tiktoken
except ImportError:
raise ValueError(
"Could not import tiktoken python package. "
"This is needed in order to calculate get_num_tokens. "
"Please install it with `pip install tiktoken`."
)
encoder = "gpt2"
if self.model_name in
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-18
|
encoder = "gpt2"
if self.model_name in ("text-davinci-003", "text-davinci-002"):
encoder = "p50k_base"
if self.model_name.startswith("code"):
encoder = "p50k_base"
# create a GPT-3 encoder instance
enc = tiktoken.get_encoding(encoder)
# encode the text using the GPT-3 encoder
tokenized_text = enc.encode(text)
# calculate the number of tokens in the encoded text
return len(tokenized_text)
def modelname_to_contextsize(self, modelname: str) -> int:
"""Calculate the maximum number of tokens possible to generate for a model.
Args:
modelname: The modelname we want to know the context size for.
Returns:
The maximum context size
Example:
.. code-block:: python
max_tokens = openai.modelname_to_contextsize("text-davinci-003")
"""
model_token_mapping = {
"gpt-4": 8192,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-19
|
8192,
"gpt-4-0314": 8192,
"gpt-4-32k": 32768,
"gpt-4-32k-0314": 32768,
"gpt-3.5-turbo": 4096,
"gpt-3.5-turbo-0301": 4096,
"text-ada-001": 2049,
"ada": 2049,
"text-babbage-001": 2040,
"babbage": 2049,
"text-curie-001": 2049,
"curie": 2049,
"davinci": 2049,
"text-davinci-003": 4097,
"text-davinci-002": 4097,
"code-davinci-002": 8001,
"code-davinci-001": 8001,
"code-cushman-002": 2048,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-20
|
2048,
"code-cushman-001": 2048,
}
context_size = model_token_mapping.get(modelname, None)
if context_size is None:
raise ValueError(
f"Unknown model: {modelname}. Please provide a valid OpenAI model name."
"Known models are: " + ", ".join(model_token_mapping.keys())
)
return context_size
def max_tokens_for_prompt(self, prompt: str) -> int:
"""Calculate the maximum number of tokens possible to generate for a prompt.
Args:
prompt: The prompt to pass into the model.
Returns:
The maximum number of tokens to generate for a prompt.
Example:
.. code-block:: python
max_tokens = openai.max_token_for_prompt("Tell me a joke.")
"""
num_tokens = self.get_num_tokens(prompt)
# get max context size for model by name
max_size = self.modelname_to_contextsize(self.model_name)
return max_size - num_tokens
[docs]class
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-21
|
return max_size - num_tokens
[docs]class OpenAI(BaseOpenAI):
"""Generic OpenAI class that uses model name."""
@property
def _invocation_params(self) -> Dict[str, Any]:
return {**{"model": self.model_name}, **super()._invocation_params}
[docs]class AzureOpenAI(BaseOpenAI):
"""Azure specific OpenAI class that uses deployment name."""
deployment_name: str = ""
"""Deployment name to use."""
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {
**{"deployment_name": self.deployment_name},
**super()._identifying_params,
}
@property
def _invocation_params(self) -> Dict[str, Any]:
return {**{"engine": self.deployment_name}, **super()._invocation_params}
[docs]class OpenAIChat(BaseLLM):
"""Wrapper around OpenAI Chat large language models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.llms import OpenAIChat
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-22
|
langchain.llms import OpenAIChat
openaichat = OpenAIChat(model_name="gpt-3.5-turbo")
"""
client: Any #: :meta private:
model_name: str = "gpt-3.5-turbo"
"""Model name to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
openai_api_key: Optional[str] = None
openai_api_base: Optional[str] = None
max_retries: int = 6
"""Maximum number of retries to make when generating."""
prefix_messages: List = Field(default_factory=list)
"""Series of messages for Chat input."""
streaming: bool = False
"""Whether to stream the results or not."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.ignore
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-23
|
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
openai_api_key = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
openai_api_base = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
openai_organization = get_from_dict_or_env(
values, "openai_organization", "OPENAI_ORGANIZATION", default=""
)
try:
import openai
openai.api_key = openai_api_key
if openai_api_base:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-24
|
if openai_api_base:
openai.api_base = openai_api_base
if openai_organization:
openai.organization = openai_organization
except ImportError:
raise ValueError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
try:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
warnings.warn(
"You are trying to use a chat model. This way of initializing it is "
"no longer supported. Instead, please use: "
"`from langchain.chat_models import
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-25
|
"
"`from langchain.chat_models import ChatOpenAI`"
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return self.model_kwargs
def _get_chat_params(
self, prompts: List[str], stop: Optional[List[str]] = None
) -> Tuple:
if len(prompts) > 1:
raise ValueError(
f"OpenAIChat currently only supports single prompt, got {prompts}"
)
messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}]
params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params}
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
if params.get("max_tokens") == -1:
# for ChatGPT api, omitting max_tokens is equivalent to having no limit
del
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-26
|
is equivalent to having no limit
del params["max_tokens"]
return messages, params
def _generate(
self, prompts: List[str], stop: Optional[List[str]] = None
) -> LLMResult:
messages, params = self._get_chat_params(prompts, stop)
if self.streaming:
response = ""
params["stream"] = True
for stream_resp in completion_with_retry(self, messages=messages, **params):
token = stream_resp["choices"][0]["delta"].get("content", "")
response += token
self.callback_manager.on_llm_new_token(
token,
verbose=self.verbose,
)
return LLMResult(
generations=[[Generation(text=response)]],
)
else:
full_response = completion_with_retry(self, messages=messages, **params)
llm_output =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-27
|
**params)
llm_output = {
"token_usage": full_response["usage"],
"model_name": self.model_name,
}
return LLMResult(
generations=[
[Generation(text=full_response["choices"][0]["message"]["content"])]
],
llm_output=llm_output,
)
async def _agenerate(
self, prompts: List[str], stop: Optional[List[str]] = None
) -> LLMResult:
messages, params = self._get_chat_params(prompts, stop)
if self.streaming:
response = ""
params["stream"] = True
async for stream_resp in await acompletion_with_retry(
self, messages=messages, **params
):
token = stream_resp["choices"][0]["delta"].get("content", "")
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-28
|
"")
response += token
if self.callback_manager.is_async:
await self.callback_manager.on_llm_new_token(
token,
verbose=self.verbose,
)
else:
self.callback_manager.on_llm_new_token(
token,
verbose=self.verbose,
)
return LLMResult(
generations=[[Generation(text=response)]],
)
else:
full_response = await acompletion_with_retry(
self, messages=messages, **params
)
llm_output = {
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-29
|
llm_output = {
"token_usage": full_response["usage"],
"model_name": self.model_name,
}
return LLMResult(
generations=[
[Generation(text=full_response["choices"][0]["message"]["content"])]
],
llm_output=llm_output,
)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "openai-chat"
[docs] def get_num_tokens(self, text: str) -> int:
"""Calculate num tokens with tiktoken package."""
# tiktoken NOT supported for Python 3.8 or below
if sys.version_info[1] <= 8:
return super().get_num_tokens(text)
try:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
eac71d76efcc-30
|
super().get_num_tokens(text)
try:
import tiktoken
except ImportError:
raise ValueError(
"Could not import tiktoken python package. "
"This is needed in order to calculate get_num_tokens. "
"Please install it with `pip install tiktoken`."
)
# create a GPT-3.5-Turbo encoder instance
enc = tiktoken.encoding_for_model("gpt-3.5-turbo")
# encode the text using the GPT-3.5-Turbo encoder
tokenized_text = enc.encode(text)
# calculate the number of tokens in the encoded text
return len(tokenized_text)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/openai.html
|
d5929d963814-0
|
Source code for langchain.llms.huggingface_endpoint
"""Wrapper around HuggingFace APIs."""
from typing import Any, Dict, List, Mapping, Optional
import requests
from pydantic import Extra, root_validator
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utils import get_from_dict_or_env
VALID_TASKS = ("text2text-generation", "text-generation")
[docs]class HuggingFaceEndpoint(LLM):
"""Wrapper around HuggingFaceHub Inference Endpoints.
To use, you should have the ``huggingface_hub`` python package installed, and the
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
Only supports `text-generation` and `text2text-generation` for now.
Example:
.. code-block:: python
from langchain.llms import HuggingFaceEndpoint
endpoint_url = (
"https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud"
)
hf = HuggingFaceEndpoint(
endpoint_url=endpoint_url,
huggingfacehub_api_token="my-api-key"
)
"""
endpoint_url: str = ""
"""Endpoint URL to use."""
task:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/huggingface_endpoint.html
|
d5929d963814-1
|
endpoint_url: str = ""
"""Endpoint URL to use."""
task: Optional[str] = None
"""Task to call the model with. Should be a task that returns `generated_text`."""
model_kwargs: Optional[dict] = None
"""Key word arguments to pass to the model."""
huggingfacehub_api_token: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
huggingfacehub_api_token = get_from_dict_or_env(
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
)
try:
from huggingface_hub.hf_api import HfApi
try:
HfApi(
endpoint="https://huggingface.co", # Can be a Private Hub endpoint.
token=huggingfacehub_api_token,
).whoami()
except Exception as e:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/huggingface_endpoint.html
|
d5929d963814-2
|
except Exception as e:
raise ValueError(
"Could not authenticate with huggingface_hub. "
"Please check your API token."
) from e
except ImportError:
raise ValueError(
"Could not import huggingface_hub python package. "
"Please install it with `pip install huggingface_hub`."
)
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"endpoint_url": self.endpoint_url, "task": self.task},
**{"model_kwargs": _model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "huggingface_endpoint"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Call out to
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/huggingface_endpoint.html
|
d5929d963814-3
|
= None) -> str:
"""Call out to HuggingFace Hub's inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = hf("Tell me a joke.")
"""
_model_kwargs = self.model_kwargs or {}
# payload samples
parameter_payload = {"inputs": prompt, "parameters": _model_kwargs}
# HTTP headers for authorization
headers = {
"Authorization": f"Bearer {self.huggingfacehub_api_token}",
"Content-Type": "application/json",
}
# send request
try:
response = requests.post(
self.endpoint_url, headers=headers, json=parameter_payload
)
except requests.exceptions.RequestException as e: # This is the correct syntax
raise
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/huggingface_endpoint.html
|
d5929d963814-4
|
# This is the correct syntax
raise ValueError(f"Error raised by inference endpoint: {e}")
generated_text = response.json()
if "error" in generated_text:
raise ValueError(
f"Error raised by inference API: {generated_text['error']}"
)
if self.task == "text-generation":
# Text generation return includes the starter text.
text = generated_text[0]["generated_text"][len(prompt) :]
elif self.task == "text2text-generation":
text = generated_text[0]["generated_text"]
else:
raise ValueError(
f"Got invalid task {self.task}, "
f"currently only {VALID_TASKS} are supported"
)
if stop is not None:
# This is a bit hacky, but I can't figure out a better way to enforce
# stop tokens when making calls to huggingface_hub.
text = enforce_stop_tokens(text, stop)
return text
By Harrison
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/huggingface_endpoint.html
|
d5929d963814-5
|
= enforce_stop_tokens(text, stop)
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/huggingface_endpoint.html
|
2f03e25e3e0c-0
|
Source code for langchain.llms.rwkv
"""Wrapper for the RWKV model.
Based on https://github.com/saharNooby/rwkv.cpp/blob/master/rwkv/chat_with_bot.py
https://github.com/BlinkDL/ChatRWKV/blob/main/v2/chat.py
"""
from typing import Any, Dict, List, Mapping, Optional, Set
from pydantic import BaseModel, Extra, root_validator
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
[docs]class RWKV(LLM, BaseModel):
r"""Wrapper around RWKV language models.
To use, you should have the ``rwkv`` python package installed, the
pre-trained model file, and the model's config information.
Example:
.. code-block:: python
from langchain.llms import RWKV
model = RWKV(model="./models/rwkv-3b-fp16.bin", strategy="cpu fp32")
# Simplest invocation
response = model("Once upon a time, ")
"""
model: str
"""Path to the pre-trained RWKV model file."""
tokens_path: str
"""Path to the RWKV tokens file."""
strategy: str = "cpu fp32"
"""Token context window."""
rwkv_verbose: bool = True
"""Print debug information."""
temperature: float = 1.0
"""The temperature to use for sampling."""
top_p:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/rwkv.html
|
2f03e25e3e0c-1
|
"""The temperature to use for sampling."""
top_p: float = 0.5
"""The top-p value to use for sampling."""
penalty_alpha_frequency: float = 0.4
"""Positive values penalize new tokens based on their existing frequency
in the text so far, decreasing the model's likelihood to repeat the same
line verbatim.."""
penalty_alpha_presence: float = 0.4
"""Positive values penalize new tokens based on whether they appear
in the text so far, increasing the model's likelihood to talk about
new topics.."""
CHUNK_LEN: int = 256
"""Batch size for prompt processing."""
max_tokens_per_generation: int = 256
"""Maximum number of tokens to generate."""
client: Any = None #: :meta private:
tokenizer: Any = None #: :meta private:
pipeline: Any = None #: :meta private:
model_tokens: Any = None #: :meta private:
model_state: Any = None #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
"verbose": self.verbose,
"top_p": self.top_p,
"temperature": self.temperature,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/rwkv.html
|
2f03e25e3e0c-2
|
"temperature": self.temperature,
"penalty_alpha_frequency": self.penalty_alpha_frequency,
"penalty_alpha_presence": self.penalty_alpha_presence,
"CHUNK_LEN": self.CHUNK_LEN,
"max_tokens_per_generation": self.max_tokens_per_generation,
}
@staticmethod
def _rwkv_param_names() -> Set[str]:
"""Get the identifying parameters."""
return {
"verbose",
}
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in the environment."""
try:
import tokenizers
except ImportError:
raise ValueError(
"Could not import tokenizers python package. "
"Please install it with `pip install tokenizers`."
)
try:
from rwkv.model import RWKV as RWKVMODEL
from rwkv.utils import PIPELINE
values["tokenizer"] =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/rwkv.html
|
2f03e25e3e0c-3
|
import PIPELINE
values["tokenizer"] = tokenizers.Tokenizer.from_file(values["tokens_path"])
rwkv_keys = cls._rwkv_param_names()
model_kwargs = {k: v for k, v in values.items() if k in rwkv_keys}
model_kwargs["verbose"] = values["rwkv_verbose"]
values["client"] = RWKVMODEL(
values["model"], strategy=values["strategy"], **model_kwargs
)
values["pipeline"] = PIPELINE(values["client"], values["tokens_path"])
except ImportError:
raise ValueError(
"Could not import rwkv python package. "
"Please install it with `pip install rwkv`."
)
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model": self.model,
**self._default_params,
**{k: v for k, v in
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/rwkv.html
|
2f03e25e3e0c-4
|
**{k: v for k, v in self.__dict__.items() if k in RWKV._rwkv_param_names()},
}
@property
def _llm_type(self) -> str:
"""Return the type of llm."""
return "rwkv-4"
def run_rnn(self, _tokens: List[str], newline_adj: int = 0) -> Any:
AVOID_REPEAT_TOKENS = []
AVOID_REPEAT = ",:?!"
for i in AVOID_REPEAT:
dd = self.pipeline.encode(i)
assert len(dd) == 1
AVOID_REPEAT_TOKENS += dd
tokens = [int(x) for x in _tokens]
self.model_tokens += tokens
out: Any = None
while len(tokens) > 0:
out, self.model_state = self.client.forward(
tokens[: self.CHUNK_LEN], self.model_state
)
tokens = tokens[self.CHUNK_LEN :]
END_OF_LINE = 187
out[END_OF_LINE] += newline_adj # adjust \n probability
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/rwkv.html
|
2f03e25e3e0c-5
|
+= newline_adj # adjust \n probability
if self.model_tokens[-1] in AVOID_REPEAT_TOKENS:
out[self.model_tokens[-1]] = -999999999
return out
def rwkv_generate(self, prompt: str) -> str:
self.model_state = None
self.model_tokens = []
logits = self.run_rnn(self.tokenizer.encode(prompt).ids)
begin = len(self.model_tokens)
out_last = begin
occurrence: Dict = {}
decoded = ""
for i in range(self.max_tokens_per_generation):
for n in occurrence:
logits[n] -= (
self.penalty_alpha_presence
+ occurrence[n] * self.penalty_alpha_frequency
)
token = self.pipeline.sample_logits(
logits, temperature=self.temperature, top_p=self.top_p
)
END_OF_TEXT = 0
if token == END_OF_TEXT:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/rwkv.html
|
2f03e25e3e0c-6
|
if token == END_OF_TEXT:
break
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
logits = self.run_rnn([token])
xxx = self.tokenizer.decode(self.model_tokens[out_last:])
if "\ufffd" not in xxx: # avoid utf-8 display issues
decoded += xxx
out_last = begin + i + 1
if i >= self.max_tokens_per_generation - 100:
break
return decoded
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
r"""RWKV generation
Args:
prompt: The prompt to pass into the model.
stop: A list of strings to stop generation when encountered.
Returns:
The string generated by the model.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/rwkv.html
|
2f03e25e3e0c-7
|
The string generated by the model.
Example:
.. code-block:: python
prompt = "Once upon a time, "
response = model(prompt, n_predict=55)
"""
text = self.rwkv_generate(prompt)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/rwkv.html
|
491fff0ce8a4-0
|
Source code for langchain.llms.replicate
"""Wrapper around Replicate API."""
import logging
from typing import Any, Dict, List, Mapping, Optional
from pydantic import Extra, Field, root_validator
from langchain.llms.base import LLM
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
[docs]class Replicate(LLM):
"""Wrapper around Replicate models.
To use, you should have the ``replicate`` python package installed,
and the environment variable ``REPLICATE_API_TOKEN`` set with your API token.
You can find your token here: https://replicate.com/account
The model param is required, but any other model parameters can also
be passed in with the format input={model_param: value, ...}
Example:
.. code-block:: python
from langchain.llms import Replicate
replicate = Replicate(model="stability-ai/stable-diffusion: \
27b93a2413e7f36cd83da926f365628\
0b2931564ff050bf9575f1fdf9bcd7478",
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/replicate.html
|
491fff0ce8a4-1
|
input={"image_dimensions": "512x512"})
"""
model: str
input: Dict[str, Any] = Field(default_factory=dict)
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
replicate_api_token: Optional[str] = None
class Config:
"""Configuration for this pydantic config."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
logger.warning(
f"""{field_name} was transfered to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/replicate.html
|
491fff0ce8a4-2
|
)
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
replicate_api_token = get_from_dict_or_env(
values, "REPLICATE_API_TOKEN", "REPLICATE_API_TOKEN"
)
values["replicate_api_token"] = replicate_api_token
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"model_kwargs": self.model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of model."""
return "replicate"
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Call to replicate endpoint."""
try:
import replicate as replicate_python
except ImportError:
raise ValueError(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/replicate.html
|
491fff0ce8a4-3
|
raise ValueError(
"Could not import replicate python package. "
"Please install it with `pip install replicate`."
)
# get the model and version
model_str, version_str = self.model.split(":")
model = replicate_python.models.get(model_str)
version = model.versions.get(version_str)
# sort through the openapi schema to get the name of the first input
input_properties = sorted(
version.openapi_schema["components"]["schemas"]["Input"][
"properties"
].items(),
key=lambda item: item[1].get("x-order", 0),
)
first_input_name = input_properties[0][0]
inputs = {first_input_name: prompt, **self.input}
outputs = replicate_python.run(self.model, input={**inputs})
return outputs[0]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/llms/replicate.html
|
0c6acfea29dd-0
|
Source code for langchain.chains.llm_requests
"""Chain that hits a URL and then uses an LLM to parse results."""
from __future__ import annotations
from typing import Dict, List
from pydantic import Extra, Field, root_validator
from langchain.chains import LLMChain
from langchain.chains.base import Chain
from langchain.requests import TextRequestsWrapper
DEFAULT_HEADERS = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36" # noqa: E501
}
[docs]class LLMRequestsChain(Chain):
"""Chain that hits a URL and then uses an LLM to parse results."""
llm_chain: LLMChain
requests_wrapper: TextRequestsWrapper = Field(
default_factory=TextRequestsWrapper, exclude=True
)
text_length: int = 8000
requests_key: str = "requests_result" #: :meta private:
input_key: str = "url" #: :meta private:
output_key: str = "output" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return [self.input_key]
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/llm_requests.html
|
0c6acfea29dd-1
|
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
return [self.output_key]
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
try:
from bs4 import BeautifulSoup # noqa: F401
except ImportError:
raise ValueError(
"Could not import bs4 python package. "
"Please install it with `pip install bs4`."
)
return values
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
from bs4 import BeautifulSoup
# Other keys are assumed to be needed for LLM prediction
other_keys = {k: v for k, v in inputs.items() if k != self.input_key}
url = inputs[self.input_key]
res = self.requests_wrapper.get(url)
# extract the text from the html
soup = BeautifulSoup(res, "html.parser")
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/llm_requests.html
|
0c6acfea29dd-2
|
soup = BeautifulSoup(res, "html.parser")
other_keys[self.requests_key] = soup.get_text()[: self.text_length]
result = self.llm_chain.predict(**other_keys)
return {self.output_key: result}
@property
def _chain_type(self) -> str:
return "llm_requests_chain"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/llm_requests.html
|
d74756673c0d-0
|
Source code for langchain.chains.transform
"""Chain that runs an arbitrary python function."""
from typing import Callable, Dict, List
from langchain.chains.base import Chain
[docs]class TransformChain(Chain):
"""Chain transform chain output.
Example:
.. code-block:: python
from langchain import TransformChain
transform_chain = TransformChain(input_variables=["text"],
output_variables["entities"], transform=func())
"""
input_variables: List[str]
output_variables: List[str]
transform: Callable[[Dict[str, str]], Dict[str, str]]
@property
def input_keys(self) -> List[str]:
"""Expect input keys.
:meta private:
"""
return self.input_variables
@property
def output_keys(self) -> List[str]:
"""Return output keys.
:meta private:
"""
return self.output_variables
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
return self.transform(inputs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/transform.html
|
f688b4c96f7d-0
|
Source code for langchain.chains.mapreduce
"""Map-reduce chain.
Splits up a document, sends the smaller parts to the LLM with one prompt,
then combines the results with another one.
"""
from __future__ import annotations
from typing import Dict, List
from pydantic import Extra
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.docstore.document import Document
from langchain.llms.base import BaseLLM
from langchain.prompts.base import BasePromptTemplate
from langchain.text_splitter import TextSplitter
[docs]class MapReduceChain(Chain):
"""Map-reduce chain."""
combine_documents_chain: BaseCombineDocumentsChain
"""Chain to use to combine documents."""
text_splitter: TextSplitter
"""Text splitter to use."""
input_key: str = "input_text" #: :meta private:
output_key: str = "output_text" #: :meta private:
[docs] @classmethod
def from_params(
cls, llm: BaseLLM, prompt: BasePromptTemplate, text_splitter: TextSplitter
) -> MapReduceChain:
"""Construct a map-reduce chain that uses the chain for map and reduce."""
llm_chain = LLMChain(llm=llm, prompt=prompt)
reduce_chain = StuffDocumentsChain(llm_chain=llm_chain)
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/mapreduce.html
|
f688b4c96f7d-1
|
= StuffDocumentsChain(llm_chain=llm_chain)
combine_documents_chain = MapReduceDocumentsChain(
llm_chain=llm_chain, combine_document_chain=reduce_chain
)
return cls(
combine_documents_chain=combine_documents_chain, text_splitter=text_splitter
)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
# Split the larger text into smaller chunks.
texts = self.text_splitter.split_text(inputs[self.input_key])
docs = [Document(page_content=text) for text in texts]
outputs = self.combine_documents_chain.run(input_documents=docs)
return {self.output_key: outputs}
By Harrison Chase
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/mapreduce.html
|
f688b4c96f7d-2
|
return {self.output_key: outputs}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/mapreduce.html
|
7fa4c61f55a4-0
|
Source code for langchain.chains.moderation
"""Pass input through a moderation endpoint."""
from typing import Any, Dict, List, Optional
from pydantic import root_validator
from langchain.chains.base import Chain
from langchain.utils import get_from_dict_or_env
[docs]class OpenAIModerationChain(Chain):
"""Pass input through a moderation endpoint.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.chains import OpenAIModerationChain
moderation = OpenAIModerationChain()
"""
client: Any #: :meta private:
model_name: Optional[str] = None
"""Moderation model name to use."""
error: bool = False
"""Whether or not to error if bad content was found."""
input_key: str = "input" #: :meta private:
output_key: str = "output" #: :meta private:
openai_api_key: Optional[str] = None
openai_organization: Optional[str] = None
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
openai_api_key = get_from_dict_or_env(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/moderation.html
|
7fa4c61f55a4-1
|
openai_api_key = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
openai_organization = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
try:
import openai
openai.api_key = openai_api_key
if openai_organization:
openai.organization = openai_organization
values["client"] = openai.Moderation
except ImportError:
raise ValueError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
return values
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/moderation.html
|
7fa4c61f55a4-2
|
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
def _moderate(self, text: str, results: dict) -> str:
if results["flagged"]:
error_str = "Text was found that violates OpenAI's content policy."
if self.error:
raise ValueError(error_str)
else:
return error_str
return text
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
text = inputs[self.input_key]
results = self.client.create(text)
output = self._moderate(text, results["results"][0])
return {self.output_key: output}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/moderation.html
|
77eb846076b3-0
|
Source code for langchain.chains.sequential
"""Chain pipeline where the outputs of one step feed directly into next."""
from typing import Dict, List
from pydantic import Extra, root_validator
from langchain.chains.base import Chain
from langchain.input import get_color_mapping
[docs]class SequentialChain(Chain):
"""Chain where the outputs of one chain feed directly into next."""
chains: List[Chain]
input_variables: List[str]
output_variables: List[str] #: :meta private:
return_all: bool = False
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Return expected input keys to the chain.
:meta private:
"""
return self.input_variables
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return self.output_variables
@root_validator(pre=True)
def validate_chains(cls, values: Dict) -> Dict:
"""Validate that the correct inputs exist for all chains."""
chains = values["chains"]
input_variables = values["input_variables"]
memory_keys = list()
if "memory" in values and
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/sequential.html
|
77eb846076b3-1
|
memory_keys = list()
if "memory" in values and values["memory"] is not None:
"""Validate that prompt input variables are consistent."""
memory_keys = values["memory"].memory_variables
if set(input_variables).intersection(set(memory_keys)):
overlapping_keys = set(input_variables) & set(memory_keys)
raise ValueError(
f"The the input key(s) {''.join(overlapping_keys)} are found "
f"in the Memory keys ({memory_keys}) - please use input and "
f"memory keys that don't overlap."
)
known_variables = set(input_variables + memory_keys)
for chain in chains:
missing_vars = set(chain.input_keys).difference(known_variables)
if missing_vars:
raise ValueError(
f"Missing required input keys: {missing_vars}, "
f"only had {known_variables}"
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/sequential.html
|
77eb846076b3-2
|
f"only had {known_variables}"
)
overlapping_keys = known_variables.intersection(chain.output_keys)
if overlapping_keys:
raise ValueError(
f"Chain returned keys that already exist: {overlapping_keys}"
)
known_variables |= set(chain.output_keys)
if "output_variables" not in values:
if values.get("return_all", False):
output_keys = known_variables.difference(input_variables)
else:
output_keys = chains[-1].output_keys
values["output_variables"] = output_keys
else:
missing_vars = set(values["output_variables"]).difference(known_variables)
if missing_vars:
raise ValueError(
f"Expected output variables that were not found: {missing_vars}."
)
return values
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/sequential.html
|
77eb846076b3-3
|
)
return values
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
known_values = inputs.copy()
for i, chain in enumerate(self.chains):
outputs = chain(known_values, return_only_outputs=True)
known_values.update(outputs)
return {k: known_values[k] for k in self.output_variables}
[docs]class SimpleSequentialChain(Chain):
"""Simple chain where the outputs of one step feed directly into next."""
chains: List[Chain]
strip_outputs: bool = False
input_key: str = "input" #: :meta private:
output_key: str = "output" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
@root_validator()
def validate_chains(cls, values:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/sequential.html
|
77eb846076b3-4
|
@root_validator()
def validate_chains(cls, values: Dict) -> Dict:
"""Validate that chains are all single input/output."""
for chain in values["chains"]:
if len(chain.input_keys) != 1:
raise ValueError(
"Chains used in SimplePipeline should all have one input, got "
f"{chain} with {len(chain.input_keys)} inputs."
)
if len(chain.output_keys) != 1:
raise ValueError(
"Chains used in SimplePipeline should all have one output, got "
f"{chain} with {len(chain.output_keys)} outputs."
)
return values
def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:
_input = inputs[self.input_key]
color_mapping = get_color_mapping([str(i) for i in range(len(self.chains))])
for i, chain in enumerate(self.chains):
_input =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/sequential.html
|
77eb846076b3-5
|
in enumerate(self.chains):
_input = chain.run(_input)
if self.strip_outputs:
_input = _input.strip()
self.callback_manager.on_text(
_input, color=color_mapping[str(i)], end="\n", verbose=self.verbose
)
return {self.output_key: _input}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/sequential.html
|
1954af4c2268-0
|
Source code for langchain.chains.llm
"""Chain that just formats a prompt and calls an LLM."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
from pydantic import Extra
from langchain.chains.base import Chain
from langchain.input import get_colored_text
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import BaseLanguageModel, LLMResult, PromptValue
[docs]class LLMChain(Chain):
"""Chain to run queries against LLMs.
Example:
.. code-block:: python
from langchain import LLMChain, OpenAI, PromptTemplate
prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(
input_variables=["adjective"], template=prompt_template
)
llm = LLMChain(llm=OpenAI(), prompt=prompt)
"""
prompt: BasePromptTemplate
"""Prompt object to use."""
llm: BaseLanguageModel
output_key: str = "text" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/llm.html
|
1954af4c2268-1
|
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
return [self.output_key]
def _call(self, inputs: Dict[str, Any]) -> Dict[str, str]:
return self.apply([inputs])[0]
[docs] def generate(self, input_list: List[Dict[str, Any]]) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = self.prep_prompts(input_list)
return self.llm.generate_prompt(prompts, stop)
[docs] async def agenerate(self, input_list: List[Dict[str, Any]]) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = await self.aprep_prompts(input_list)
return await self.llm.agenerate_prompt(prompts, stop)
[docs] def prep_prompts(
self, input_list: List[Dict[str, Any]]
) -> Tuple[List[PromptValue], Optional[List[str]]]:
"""Prepare prompts from inputs."""
stop = None
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/llm.html
|
1954af4c2268-2
|
inputs."""
stop = None
if "stop" in input_list[0]:
stop = input_list[0]["stop"]
prompts = []
for inputs in input_list:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), "green")
_text = "Prompt after formatting:\n" + _colored_text
self.callback_manager.on_text(_text, end="\n", verbose=self.verbose)
if "stop" in inputs and inputs["stop"] != stop:
raise ValueError(
"If `stop` is present in any inputs, should be present in all."
)
prompts.append(prompt)
return prompts, stop
[docs] async def aprep_prompts(
self, input_list: List[Dict[str, Any]]
) -> Tuple[List[PromptValue], Optional[List[str]]]:
"""Prepare prompts from inputs."""
stop = None
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/llm.html
|
1954af4c2268-3
|
"""Prepare prompts from inputs."""
stop = None
if "stop" in input_list[0]:
stop = input_list[0]["stop"]
prompts = []
for inputs in input_list:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), "green")
_text = "Prompt after formatting:\n" + _colored_text
if self.callback_manager.is_async:
await self.callback_manager.on_text(
_text, end="\n", verbose=self.verbose
)
else:
self.callback_manager.on_text(_text, end="\n", verbose=self.verbose)
if "stop" in inputs and inputs["stop"] != stop:
raise ValueError(
"If `stop` is present in any inputs, should be present in all."
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/llm.html
|
1954af4c2268-4
|
any inputs, should be present in all."
)
prompts.append(prompt)
return prompts, stop
[docs] def apply(self, input_list: List[Dict[str, Any]]) -> List[Dict[str, str]]:
"""Utilize the LLM generate method for speed gains."""
response = self.generate(input_list)
return self.create_outputs(response)
[docs] async def aapply(self, input_list: List[Dict[str, Any]]) -> List[Dict[str, str]]:
"""Utilize the LLM generate method for speed gains."""
response = await self.agenerate(input_list)
return self.create_outputs(response)
[docs] def create_outputs(self, response: LLMResult) -> List[Dict[str, str]]:
"""Create outputs from response."""
return [
# Get the text of the top generated string.
{self.output_key: generation[0].text}
for generation in response.generations
]
async def _acall(self, inputs: Dict[str, Any]) -> Dict[str, str]:
return (await self.aapply([inputs]))[0]
[docs] def predict(self, **kwargs: Any) -> str:
"""Format prompt with kwargs and pass to LLM.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/llm.html
|
1954af4c2268-5
|
"""Format prompt with kwargs and pass to LLM.
Args:
**kwargs: Keys to pass to prompt template.
Returns:
Completion from LLM.
Example:
.. code-block:: python
completion = llm.predict(adjective="funny")
"""
return self(kwargs)[self.output_key]
[docs] async def apredict(self, **kwargs: Any) -> str:
"""Format prompt with kwargs and pass to LLM.
Args:
**kwargs: Keys to pass to prompt template.
Returns:
Completion from LLM.
Example:
.. code-block:: python
completion = llm.predict(adjective="funny")
"""
return (await self.acall(kwargs))[self.output_key]
[docs] def predict_and_parse(self, **kwargs: Any) -> Union[str, List[str], Dict[str, str]]:
"""Call predict and then parse the results."""
result = self.predict(**kwargs)
if self.prompt.output_parser is not None:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/llm.html
|
1954af4c2268-6
|
if self.prompt.output_parser is not None:
return self.prompt.output_parser.parse(result)
else:
return result
[docs] async def apredict_and_parse(
self, **kwargs: Any
) -> Union[str, List[str], Dict[str, str]]:
"""Call apredict and then parse the results."""
result = await self.apredict(**kwargs)
if self.prompt.output_parser is not None:
return self.prompt.output_parser.parse(result)
else:
return result
[docs] def apply_and_parse(
self, input_list: List[Dict[str, Any]]
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
"""Call apply and then parse the results."""
result = self.apply(input_list)
return self._parse_result(result)
def _parse_result(
self, result: List[Dict[str, str]]
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
if self.prompt.output_parser is not None:
return [
self.prompt.output_parser.parse(res[self.output_key]) for res in result
]
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/llm.html
|
1954af4c2268-7
|
for res in result
]
else:
return result
[docs] async def aapply_and_parse(
self, input_list: List[Dict[str, Any]]
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
"""Call apply and then parse the results."""
result = await self.aapply(input_list)
return self._parse_result(result)
@property
def _chain_type(self) -> str:
return "llm_chain"
[docs] @classmethod
def from_string(cls, llm: BaseLanguageModel, template: str) -> Chain:
"""Create LLMChain from LLM and template."""
prompt_template = PromptTemplate.from_template(template)
return cls(llm=llm, prompt=prompt_template)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 18, 2023.
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/llm.html
|
e912ab597e24-0
|
Source code for langchain.chains.loading
"""Functionality for loading chains."""
import json
from pathlib import Path
from typing import Any, Union
import yaml
from langchain.chains.api.base import APIChain
from langchain.chains.base import Chain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.map_rerank import MapRerankDocumentsChain
from langchain.chains.combine_documents.refine import RefineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.hyde.base import HypotheticalDocumentEmbedder
from langchain.chains.llm import LLMChain
from langchain.chains.llm_bash.base import LLMBashChain
from langchain.chains.llm_checker.base import LLMCheckerChain
from langchain.chains.llm_math.base import LLMMathChain
from langchain.chains.llm_requests import LLMRequestsChain
from langchain.chains.pal.base import PALChain
from langchain.chains.qa_with_sources.base import QAWithSourcesChain
from langchain.chains.qa_with_sources.vector_db import VectorDBQAWithSourcesChain
from langchain.chains.retrieval_qa.base import VectorDBQA
from langchain.chains.sql_database.base import SQLDatabaseChain
from langchain.llms.loading import load_llm, load_llm_from_config
from langchain.prompts.loading import load_prompt, load_prompt_from_config
from langchain.utilities.loading import try_load_from_hub
URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/chains/"
def _load_llm_chain(config: dict, **kwargs: Any) -> LLMChain:
"""Load LLM chain from config dict."""
if "llm" in config:
llm_config =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-1
|
if "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm` or `llm_path` must be present.")
if "prompt" in config:
prompt_config = config.pop("prompt")
prompt = load_prompt_from_config(prompt_config)
elif "prompt_path" in config:
prompt = load_prompt(config.pop("prompt_path"))
else:
raise ValueError("One of `prompt` or `prompt_path` must be present.")
return LLMChain(llm=llm, prompt=prompt, **config)
def _load_hyde_chain(config: dict, **kwargs: Any) -> HypotheticalDocumentEmbedder:
"""Load hypothetical document embedder chain from config dict."""
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.")
if "embeddings" in kwargs:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-2
|
present.")
if "embeddings" in kwargs:
embeddings = kwargs.pop("embeddings")
else:
raise ValueError("`embeddings` must be present.")
return HypotheticalDocumentEmbedder(
llm_chain=llm_chain, base_embeddings=embeddings, **config
)
def _load_stuff_documents_chain(config: dict, **kwargs: Any) -> StuffDocumentsChain:
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.")
if not isinstance(llm_chain, LLMChain):
raise ValueError(f"Expected LLMChain, got {llm_chain}")
if "document_prompt" in config:
prompt_config = config.pop("document_prompt")
document_prompt = load_prompt_from_config(prompt_config)
elif "document_prompt_path" in config:
document_prompt = load_prompt(config.pop("document_prompt_path"))
else:
raise ValueError(
"One of `document_prompt` or `document_prompt_path` must be present."
)
return StuffDocumentsChain(
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-3
|
)
return StuffDocumentsChain(
llm_chain=llm_chain, document_prompt=document_prompt, **config
)
def _load_map_reduce_documents_chain(
config: dict, **kwargs: Any
) -> MapReduceDocumentsChain:
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.")
if not isinstance(llm_chain, LLMChain):
raise ValueError(f"Expected LLMChain, got {llm_chain}")
if "combine_document_chain" in config:
combine_document_chain_config = config.pop("combine_document_chain")
combine_document_chain = load_chain_from_config(combine_document_chain_config)
elif "combine_document_chain_path" in config:
combine_document_chain = load_chain(config.pop("combine_document_chain_path"))
else:
raise ValueError(
"One of `combine_document_chain` or "
"`combine_document_chain_path` must be present."
)
if "collapse_document_chain" in config:
collapse_document_chain_config =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-4
|
"collapse_document_chain" in config:
collapse_document_chain_config = config.pop("collapse_document_chain")
if collapse_document_chain_config is None:
collapse_document_chain = None
else:
collapse_document_chain = load_chain_from_config(
collapse_document_chain_config
)
elif "collapse_document_chain_path" in config:
collapse_document_chain = load_chain(config.pop("collapse_document_chain_path"))
return MapReduceDocumentsChain(
llm_chain=llm_chain,
combine_document_chain=combine_document_chain,
collapse_document_chain=collapse_document_chain,
**config,
)
def _load_llm_bash_chain(config: dict, **kwargs: Any) -> LLMBashChain:
if "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm` or `llm_path` must be present.")
if "prompt" in config:
prompt_config = config.pop("prompt")
prompt = load_prompt_from_config(prompt_config)
elif
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-5
|
prompt = load_prompt_from_config(prompt_config)
elif "prompt_path" in config:
prompt = load_prompt(config.pop("prompt_path"))
return LLMBashChain(llm=llm, prompt=prompt, **config)
def _load_llm_checker_chain(config: dict, **kwargs: Any) -> LLMCheckerChain:
if "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm` or `llm_path` must be present.")
if "create_draft_answer_prompt" in config:
create_draft_answer_prompt_config = config.pop("create_draft_answer_prompt")
create_draft_answer_prompt = load_prompt_from_config(
create_draft_answer_prompt_config
)
elif "create_draft_answer_prompt_path" in config:
create_draft_answer_prompt = load_prompt(
config.pop("create_draft_answer_prompt_path")
)
if "list_assertions_prompt" in config:
list_assertions_prompt_config = config.pop("list_assertions_prompt")
list_assertions_prompt = load_prompt_from_config(list_assertions_prompt_config)
elif "list_assertions_prompt_path" in config:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-6
|
elif "list_assertions_prompt_path" in config:
list_assertions_prompt = load_prompt(config.pop("list_assertions_prompt_path"))
if "check_assertions_prompt" in config:
check_assertions_prompt_config = config.pop("check_assertions_prompt")
check_assertions_prompt = load_prompt_from_config(
check_assertions_prompt_config
)
elif "check_assertions_prompt_path" in config:
check_assertions_prompt = load_prompt(
config.pop("check_assertions_prompt_path")
)
if "revised_answer_prompt" in config:
revised_answer_prompt_config = config.pop("revised_answer_prompt")
revised_answer_prompt = load_prompt_from_config(revised_answer_prompt_config)
elif "revised_answer_prompt_path" in config:
revised_answer_prompt = load_prompt(config.pop("revised_answer_prompt_path"))
return LLMCheckerChain(
llm=llm,
create_draft_answer_prompt=create_draft_answer_prompt,
list_assertions_prompt=list_assertions_prompt,
check_assertions_prompt=check_assertions_prompt,
revised_answer_prompt=revised_answer_prompt,
**config,
)
def _load_llm_math_chain(config: dict, **kwargs: Any) -> LLMMathChain:
if "llm" in config:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-7
|
if "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm` or `llm_path` must be present.")
if "prompt" in config:
prompt_config = config.pop("prompt")
prompt = load_prompt_from_config(prompt_config)
elif "prompt_path" in config:
prompt = load_prompt(config.pop("prompt_path"))
return LLMMathChain(llm=llm, prompt=prompt, **config)
def _load_map_rerank_documents_chain(
config: dict, **kwargs: Any
) -> MapRerankDocumentsChain:
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_config` must be present.")
return MapRerankDocumentsChain(llm_chain=llm_chain, **config)
def _load_pal_chain(config: dict, **kwargs: Any) -> PALChain:
if "llm" in config:
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-8
|
Any) -> PALChain:
if "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm` or `llm_path` must be present.")
if "prompt" in config:
prompt_config = config.pop("prompt")
prompt = load_prompt_from_config(prompt_config)
elif "prompt_path" in config:
prompt = load_prompt(config.pop("prompt_path"))
else:
raise ValueError("One of `prompt` or `prompt_path` must be present.")
return PALChain(llm=llm, prompt=prompt, **config)
def _load_refine_documents_chain(config: dict, **kwargs: Any) -> RefineDocumentsChain:
if "initial_llm_chain" in config:
initial_llm_chain_config = config.pop("initial_llm_chain")
initial_llm_chain = load_chain_from_config(initial_llm_chain_config)
elif "initial_llm_chain_path" in config:
initial_llm_chain = load_chain(config.pop("initial_llm_chain_path"))
else:
raise ValueError(
"One of `initial_llm_chain` or `initial_llm_chain_config` must be present."
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-9
|
or `initial_llm_chain_config` must be present."
)
if "refine_llm_chain" in config:
refine_llm_chain_config = config.pop("refine_llm_chain")
refine_llm_chain = load_chain_from_config(refine_llm_chain_config)
elif "refine_llm_chain_path" in config:
refine_llm_chain = load_chain(config.pop("refine_llm_chain_path"))
else:
raise ValueError(
"One of `refine_llm_chain` or `refine_llm_chain_config` must be present."
)
if "document_prompt" in config:
prompt_config = config.pop("document_prompt")
document_prompt = load_prompt_from_config(prompt_config)
elif "document_prompt_path" in config:
document_prompt = load_prompt(config.pop("document_prompt_path"))
return RefineDocumentsChain(
initial_llm_chain=initial_llm_chain,
refine_llm_chain=refine_llm_chain,
document_prompt=document_prompt,
**config,
)
def _load_qa_with_sources_chain(config: dict, **kwargs: Any) -> QAWithSourcesChain:
if "combine_documents_chain" in config:
combine_documents_chain_config = config.pop("combine_documents_chain")
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
elif
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-10
|
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
elif "combine_documents_chain_path" in config:
combine_documents_chain = load_chain(config.pop("combine_documents_chain_path"))
else:
raise ValueError(
"One of `combine_documents_chain` or "
"`combine_documents_chain_path` must be present."
)
return QAWithSourcesChain(combine_documents_chain=combine_documents_chain, **config)
def _load_sql_database_chain(config: dict, **kwargs: Any) -> SQLDatabaseChain:
if "database" in kwargs:
database = kwargs.pop("database")
else:
raise ValueError("`database` must be present.")
if "llm" in config:
llm_config = config.pop("llm")
llm = load_llm_from_config(llm_config)
elif "llm_path" in config:
llm = load_llm(config.pop("llm_path"))
else:
raise ValueError("One of `llm` or `llm_path` must be present.")
if "prompt" in config:
prompt_config = config.pop("prompt")
prompt = load_prompt_from_config(prompt_config)
return SQLDatabaseChain(database=database, llm=llm, prompt=prompt, **config)
def _load_vector_db_qa_with_sources_chain(
config: dict, **kwargs: Any
) ->
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-11
|
config: dict, **kwargs: Any
) -> VectorDBQAWithSourcesChain:
if "vectorstore" in kwargs:
vectorstore = kwargs.pop("vectorstore")
else:
raise ValueError("`vectorstore` must be present.")
if "combine_documents_chain" in config:
combine_documents_chain_config = config.pop("combine_documents_chain")
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
elif "combine_documents_chain_path" in config:
combine_documents_chain = load_chain(config.pop("combine_documents_chain_path"))
else:
raise ValueError(
"One of `combine_documents_chain` or "
"`combine_documents_chain_path` must be present."
)
return VectorDBQAWithSourcesChain(
combine_documents_chain=combine_documents_chain,
vectorstore=vectorstore,
**config,
)
def _load_vector_db_qa(config: dict, **kwargs: Any) -> VectorDBQA:
if "vectorstore" in kwargs:
vectorstore = kwargs.pop("vectorstore")
else:
raise ValueError("`vectorstore` must be present.")
if "combine_documents_chain" in config:
combine_documents_chain_config = config.pop("combine_documents_chain")
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
elif
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-12
|
combine_documents_chain = load_chain_from_config(combine_documents_chain_config)
elif "combine_documents_chain_path" in config:
combine_documents_chain = load_chain(config.pop("combine_documents_chain_path"))
else:
raise ValueError(
"One of `combine_documents_chain` or "
"`combine_documents_chain_path` must be present."
)
return VectorDBQA(
combine_documents_chain=combine_documents_chain,
vectorstore=vectorstore,
**config,
)
def _load_api_chain(config: dict, **kwargs: Any) -> APIChain:
if "api_request_chain" in config:
api_request_chain_config = config.pop("api_request_chain")
api_request_chain = load_chain_from_config(api_request_chain_config)
elif "api_request_chain_path" in config:
api_request_chain = load_chain(config.pop("api_request_chain_path"))
else:
raise ValueError(
"One of `api_request_chain` or `api_request_chain_path` must be present."
)
if "api_answer_chain" in config:
api_answer_chain_config = config.pop("api_answer_chain")
api_answer_chain = load_chain_from_config(api_answer_chain_config)
elif "api_answer_chain_path" in config:
api_answer_chain =
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-13
|
"api_answer_chain_path" in config:
api_answer_chain = load_chain(config.pop("api_answer_chain_path"))
else:
raise ValueError(
"One of `api_answer_chain` or `api_answer_chain_path` must be present."
)
if "requests_wrapper" in kwargs:
requests_wrapper = kwargs.pop("requests_wrapper")
else:
raise ValueError("`requests_wrapper` must be present.")
return APIChain(
api_request_chain=api_request_chain,
api_answer_chain=api_answer_chain,
requests_wrapper=requests_wrapper,
**config,
)
def _load_llm_requests_chain(config: dict, **kwargs: Any) -> LLMRequestsChain:
if "llm_chain" in config:
llm_chain_config = config.pop("llm_chain")
llm_chain = load_chain_from_config(llm_chain_config)
elif "llm_chain_path" in config:
llm_chain = load_chain(config.pop("llm_chain_path"))
else:
raise ValueError("One of `llm_chain` or `llm_chain_path` must be present.")
if "requests_wrapper" in kwargs:
requests_wrapper = kwargs.pop("requests_wrapper")
return LLMRequestsChain(
llm_chain=llm_chain,
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-14
|
llm_chain=llm_chain, requests_wrapper=requests_wrapper, **config
)
else:
return LLMRequestsChain(llm_chain=llm_chain, **config)
type_to_loader_dict = {
"api_chain": _load_api_chain,
"hyde_chain": _load_hyde_chain,
"llm_chain": _load_llm_chain,
"llm_bash_chain": _load_llm_bash_chain,
"llm_checker_chain": _load_llm_checker_chain,
"llm_math_chain": _load_llm_math_chain,
"llm_requests_chain": _load_llm_requests_chain,
"pal_chain": _load_pal_chain,
"qa_with_sources_chain": _load_qa_with_sources_chain,
"stuff_documents_chain": _load_stuff_documents_chain,
"map_reduce_documents_chain": _load_map_reduce_documents_chain,
"map_rerank_documents_chain": _load_map_rerank_documents_chain,
"refine_documents_chain": _load_refine_documents_chain,
"sql_database_chain": _load_sql_database_chain,
"vector_db_qa_with_sources_chain": _load_vector_db_qa_with_sources_chain,
"vector_db_qa": _load_vector_db_qa,
}
def load_chain_from_config(config: dict, **kwargs: Any) -> Chain:
"""Load chain from Config Dict."""
if "_type" not in config:
raise ValueError("Must specify a chain Type in config")
config_type = config.pop("_type")
if config_type not in
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
e912ab597e24-15
|
config_type = config.pop("_type")
if config_type not in type_to_loader_dict:
raise ValueError(f"Loading {config_type} chain not supported")
chain_loader = type_to_loader_dict[config_type]
return chain_loader(config, **kwargs)
[docs]def load_chain(path: Union[str, Path], **kwargs: Any) -> Chain:
"""Unified method for loading a chain from LangChainHub or local fs."""
if hub_result := try_load_from_hub(
path, _load_chain_from_file, "chains", {"json", "yaml"}, **kwargs
):
return hub_result
else:
return _load_chain_from_file(path, **kwargs)
def _load_chain_from_file(file: Union[str, Path], **kwargs: Any) -> Chain:
"""Load chain from file."""
# Convert file to Path object.
if isinstance(file, str):
file_path = Path(file)
else:
file_path = file
# Load from either json or yaml.
if file_path.suffix == ".json":
with open(file_path) as f:
config = json.load(f)
elif file_path.suffix == ".yaml":
with open(file_path, "r") as f:
config = yaml.safe_load(f)
else:
raise ValueError("File type must be json or yaml")
# Override default 'verbose' and
|
https:///langchain-cn.readthedocs.io/en/latest/_modules/langchain/chains/loading.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.