source
stringlengths 14
14
| text
stringlengths 20
3.55k
| __index_level_0__
int64 0
4.13M
|
|---|---|---|
c_kbhf1zvm1cz7
|
In marine geology, a guyot (), also called a tablemount, is an isolated underwater volcanic mountain (seamount) with a flat top more than 200 m (660 ft) below the surface of the sea. The diameters of these flat summits can exceed 10 km (6.2 mi). Guyots are most commonly found in the Pacific Ocean, but they have been identified in all the oceans except the Arctic Ocean. They are analogous to tables (such as mesas) on land.
| 0
|
c_282jmvmf09cn
|
In 2018, Chief Marketer found that B2B marketers favored email, live events, and content marketing as their top three. After the COVID-19 pandemic in 2020, Gartner identified increases in social and search engine optimization for B2B marketers, while B2C marketers favored digital advertising.Lead generation is often paired with lead management to move leads through the purchase funnel. This combination of activities is referred to as pipeline marketing, which is often broken into a marketing and a sales pipeline.
| 108
|
c_4blw5zw3x1nw
|
In marketing, multivariate testing or multi-variable testing techniques apply statistical hypothesis testing on multi-variable systems, typically consumers on websites. Techniques of multivariate statistics are used.
| 116
|
c_uhcwuandnhtm
|
In martingale theory, Émery topology is a topology on the space of semimartingales. The topology is used in financial mathematics. The class of stochastic integrals with general predictable integrands coincides with the closure of the set of all simple integrals.The topology was introduced in 1979 by the french mathematician Michel Émery.
| 154
|
c_bjhy4onbdzx2
|
In mass spectrometry of peptides and proteins, knowledge of the masses of the residues is useful. The mass of the peptide or protein is the sum of the residue masses plus the mass of water (Monoisotopic mass = 18.01056 Da; average mass = 18.0153 Da). The residue masses are calculated from the tabulated chemical formulas and atomic weights. In mass spectrometry, ions may also include one or more protons (Monoisotopic mass = 1.00728 Da; average mass* = 1.0074 Da). *Protons cannot have an average mass, this confusingly infers to Deuterons as a valid isotope, but they should be a different species (see Hydron (chemistry)) § Monoisotopic mass
| 164
|
c_gltwq2t91ouc
|
In mass spectroscopy based proteomics there are three major steps needed for peptide identification: sample preparation, separation of peptides, and identification of peptides. Several groups have focused on oocytes or very early cleavage-stage cells since these cells are unusually large and provide enough material for analysis. Another approach, single cell proteomics by mass spectrometry (SCoPE-MS) has quantified thousands of proteins in mammalian cells with typical cell sizes (diameter of 10-15 μm) by combining carrier-cells and single-cell barcoding. The second generation, SCoPE2, increased the throughput by automated and miniaturized sample preparation; It also improved quantitative reliability and proteome coverage by data-driven optimization of LC-MS/MS and peptide identification.
| 188
|
c_twex9y00xti3
|
In materials chemistry, a binary phase or binary compound is a chemical compound containing two different elements. Some binary phase compounds are molecular, e.g. carbon tetrachloride (CCl4). More typically binary phase refers to extended solids. Famous examples zinc sulfide, which contains zinc and sulfur, and tungsten carbide, which contains tungsten and carbon.Phases with higher degrees of complexity feature more elements, e.g. three elements in ternary phases, four elements in quaternary phases. == References ==
| 228
|
c_dazhe203a5jh
|
In materials chemistry, a quaternary phase is a chemical compound containing four elements. Some compounds can be molecular or ionic, examples being chlorodifluoromethane (CHClF2) sodium bicarbonate (NaCO3H). More typically quaternary phase refers to extended solids. A famous example are the yttrium barium copper oxide superconductors.
| 229
|
c_cr3ogaglbdlq
|
In materials science (specifically crystallography), cocrystals are "solids that are crystalline, single-phase materials composed of two or more different molecular or ionic compounds generally in a stoichiometric ratio which are neither solvates nor simple salts." A broader definition is that cocrystals "consist of two or more components that form a unique crystalline structure having unique properties." Several subclassifications of cocrystals exist.Cocrystals can encompass many types of compounds, including hydrates, solvates and clathrates, which represent the basic principle of host–guest chemistry. Hundreds of examples of cocrystallization are reported annually.
| 241
|
c_mpyuu49zoh4r
|
In materials science Functionally Graded Materials (FGMs) may be characterized by the variation in composition and structure gradually over volume, resulting in corresponding changes in the properties of the material. The materials can be designed for specific function and applications. Various approaches based on the bulk (particulate processing), preform processing, layer processing and melt processing are used to fabricate the functionally graded materials.
| 242
|
c_ahf8pa0jrnzo
|
In materials science Giant Magnetoimpedance (GMI) is the effect that occurs in some materials where an external magnetic field causes a large variation in the electrical impedance of the material. It should not be confused with the separate physical phenomenon of Giant Magnetoresistance.
| 243
|
c_4v9a2zv1wpvg
|
In materials science and colloidal chemistry, the term colloidal particle refers to a small amount of matter having a size typical for colloids and with a clear phase boundary. The dispersed-phase particles have a diameter between approximately 1 and 1000 nanometers. Colloids are heterogeneous in nature, invisible to the naked eye, and always move in a random zig-zag-like motion known as Brownian motion. The scattering of light by colloidal particles is known as Tyndall effect.
| 244
|
c_y9vqnqmvkhl5
|
In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed. Viscoelastic materials have elements of both of these properties and, as such, exhibit time-dependent strain. Whereas elasticity is usually the result of bond stretching along crystallographic planes in an ordered solid, viscosity is the result of the diffusion of atoms or molecules inside an amorphous material.
| 245
|
c_p6i0qvppsk1t
|
In materials science and engineering, one is often interested in understanding the forces or stresses involved in the deformation of a material. For instance, if the material were a simple spring, the answer would be given by Hooke's law, which says that the force experienced by a spring is proportional to the distance displaced from equilibrium. Stresses which can be attributed to the deformation of a material from some rest state are called elastic stresses. In other materials, stresses are present which can be attributed to the deformation rate over time.
| 246
|
c_ijaze948pqlx
|
In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as plastic deformation. The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically.
| 255
|
c_ejttcxg02urb
|
In materials science and materials engineering, uranium metallurgy is the study of the physical and chemical behavior of uranium and its alloys.Commercial-grade uranium can be produced through the reduction of uranium halides with alkali or alkaline earth metals. Uranium metal can also be made through electrolysis of KUF5 or UF4, dissolved in a molten CaCl2 and NaCl. Very pure uranium can be produced through the thermal decomposition of uranium halides on a hot filament.
| 258
|
c_3b1vn3avkyuv
|
In materials science and mathematics, functionally graded elements are elements used in finite element analysis. They can be used to describe a functionally graded material.
| 260
|
c_f9s5le2iga5s
|
In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing. Toughness is the strength with which the material opposes rupture. One definition of material toughness is the amount of energy per unit volume that a material can absorb before rupturing. This measure of toughness is different from that used for fracture toughness, which describes the capacity of materials to resist fracture. Toughness requires a balance of strength and ductility.
| 261
|
c_8qkunl6r4ftc
|
In materials science and molecular biology, thermostability is the ability of a substance to resist irreversible change in its chemical or physical structure, often by resisting decomposition or polymerization, at a high relative temperature. Thermostable materials may be used industrially as fire retardants. A thermostable plastic, an uncommon and unconventional term, is likely to refer to a thermosetting plastic that cannot be reshaped when heated, than to a thermoplastic that can be remelted and recast. Thermostability is also a property of some proteins. To be a thermostable protein means to be resistant to changes in protein structure due to applied heat.
| 262
|
c_lo46a8chhh5y
|
In materials science and soil mechanics, a slip line field or slip line field theory is a technique often used to analyze the stresses and forces involved in the major deformation of metals or soils. In essence, in some problems including plane strain and plane stress elastic-plastic problems, elastic part of the material prevent unrestrained plastic flow but in many metal-forming processes, such as rolling, drawing, gorging, etc., large unrestricted plastic flows occur except for many small elastic zones. In effect we are concerned with a rigid-plastic material under condition of plane strain. it turns out that the simplest way of solving stress equations is to express them in terms of a coordinate system that is along potential slip (or failure) surfaces. It is for this reason that this type of analysis is termed slip line analysis or the theory of slip line fields in the literature.
| 263
|
c_qyuobu389ojo
|
In materials science and solid mechanics, Poisson's ratio ν {\displaystyle \nu } (nu) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading. The value of Poisson's ratio is the negative of the ratio of transverse strain to axial strain. For small values of these changes, ν {\displaystyle \nu } is the amount of transversal elongation divided by the amount of axial compression. Most materials have Poisson's ratio values ranging between 0.0 and 0.5.
| 264
|
c_ma8k99djtwlh
|
In materials science and solid mechanics, biaxial tensile testing is a versatile technique to address the mechanical characterization of planar materials. It is a generalized form of tensile testing in which the material sample is simultaneously stressed along two perpendicular axes. Typical materials tested in biaxial configuration include metal sheets,silicone elastomers,composites,thin films,textiles and biological soft tissues.
| 266
|
c_ydax6w2lp3or
|
In materials science and solid mechanics, residual stresses are stresses that remain in a solid material after the original cause of the stresses has been removed. Residual stress may be desirable or undesirable. For example, laser peening imparts deep beneficial compressive residual stresses into metal components such as turbine engine fan blades, and it is used in toughened glass to allow for large, thin, crack- and scratch-resistant glass displays on smartphones. However, unintended residual stress in a designed structure may cause it to fail prematurely.
| 267
|
c_hjs69pjlumlf
|
In materials science parlance, dislocations are defined as line defects in a material's crystal structure. The bonds surrounding the dislocation are already elastically strained by the defect compared to the bonds between the constituents of the regular crystal lattice. Therefore, these bonds break at relatively lower stresses, leading to plastic deformation. The strained bonds around a dislocation are characterized by lattice strain fields.
| 269
|
c_f08ou81e6wkz
|
In materials science the flow stress, typically denoted as Yf (or σ f {\displaystyle \sigma _{\text{f}}} ), is defined as the instantaneous value of stress required to continue plastically deforming a material - to keep it flowing. It is most commonly, though not exclusively, used in reference to metals. On a stress-strain curve, the flow stress can be found anywhere within the plastic regime; more explicitly, a flow stress can be found for any value of strain between and including yield point ( σ y {\displaystyle \sigma _{\text{y}}} ) and excluding fracture ( σ F {\displaystyle \sigma _{\text{F}}} ): σ y ≤ Y f < σ F {\displaystyle \sigma _{\text{y}}\leq Y_{\text{f}}<\sigma _{\text{F}}} . The flow stress changes as deformation proceeds and usually increases as strain accumulates due to work hardening, although the flow stress could decrease due to any recovery process.
| 272
|
c_atr27i44owh5
|
In materials science, MXenes are a class of two-dimensional inorganic compounds , that consist of atomically thin layers of transition metal carbides, nitrides, or carbonitrides. MXenes accept a variety of hydrophilic terminations. MXenes were first reported in 2012.
| 276
|
c_qk923btlx8nd
|
In materials science, Ostwald's rule or Ostwald's step rule, conceived by Wilhelm Ostwald, describes the formation of polymorphs. The rule states that usually the less stable polymorph crystallizes first. Ostwald's rule is not a universal law but a common tendency observed in nature.This can be explained on the basis of irreversible thermodynamics, structural relationships, or a combined consideration of statistical thermodynamics and structural variation with temperature.
| 277
|
c_g0ocinkmet3r
|
In materials science, Schmid's law (also Schmid factor) describes the slip plane and the slip direction of a stressed material, which can resolve the most shear stress. Schmid's Law states that the critically resolved shear stress (τ) is equal to the stress applied to the material (σ) multiplied by the cosine of the angle with the vector normal to the glide plane (φ) and the cosine of the angle with the glide direction (λ). Which can be expressed as: τ = m σ {\displaystyle \tau =m\sigma } where m is known as the Schmid factor m = cos ( ϕ ) cos ( λ ) {\displaystyle m=\cos(\phi )\cos(\lambda )} Both factors τ and σ are measured in stress units, which is calculated the same way as pressure (force divided by area). φ and λ are angles. The factor is named after Erich Schmid who coauthored a book with Walter Boas introducing the concept in 1935.
| 280
|
c_6eyyzok7zwt3
|
In materials science, a Bingham plastic is a viscoplastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at high stress. It is named after Eugene C. Bingham who proposed its mathematical form.It is used as a common mathematical model of mud flow in drilling engineering, and in the handling of slurries. A common example is toothpaste, which will not be extruded until a certain pressure is applied to the tube. It is then pushed out as a relatively coherent plug.
| 281
|
c_awaeu29i7eae
|
In materials science, a Frank–Read source is a mechanism explaining the generation of multiple dislocations in specific well-spaced slip planes in crystals when they are deformed. When a crystal is deformed, in order for slip to occur, dislocations must be generated in the material. This implies that, during deformation, dislocations must be primarily generated in these planes.
| 282
|
c_32vl16h6thvx
|
In materials science, a Lomer–Cottrell junction is a particular configuration of dislocations. When two perfect dislocations encounter along a slip plane, each perfect dislocation can split into two Shockley partial dislocations: a leading dislocation and a trailing dislocation. When the two leading Shockley partials combine, they form a separate dislocation with a burgers vector that is not in the slip plane. This is the Lomer–Cottrell dislocation.
| 284
|
c_j33ili95wary
|
In materials science, a composite laminate is an assembly of layers of fibrous composite materials which can be joined to provide required engineering properties, including in-plane stiffness, bending stiffness, strength, and coefficient of thermal expansion. The individual layers consist of high-modulus, high-strength fibers in a polymeric, metallic, or ceramic matrix material. Typical fibers used include cellulose, graphite, glass, boron, and silicon carbide, and some matrix materials are epoxies, polyimides, aluminium, titanium, and alumina.
| 286
|
c_uxr3y093vmv1
|
In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to slide over each other at low stress levels and is known as glide or slip. The crystalline order is restored on either side of a glide dislocation but the atoms on one side have moved by one position. The crystalline order is not fully restored with a partial dislocation.
| 288
|
c_4ji2mwly7rsu
|
In materials science, a general rule of mixtures is a weighted mean used to predict various properties of a composite material . It provides a theoretical upper- and lower-bound on properties such as the elastic modulus, ultimate tensile strength, thermal conductivity, and electrical conductivity. In general there are two models, one for axial loading (Voigt model), and one for transverse loading (Reuss model).In general, for some material property E {\displaystyle E} (often the elastic modulus), the rule of mixtures states that the overall property in the direction parallel to the fibers may be as high as E c = f E f + ( 1 − f ) E m {\displaystyle E_{c}=fE_{f}+\left(1-f\right)E_{m}} where f = V f V f + V m {\displaystyle f={\frac {V_{f}}{V_{f}+V_{m}}}} is the volume fraction of the fibers E f {\displaystyle E_{f}} is the material property of the fibers E m {\displaystyle E_{m}} is the material property of the matrixIt is a common mistake to believe that this is the upper-bound modulus for Young's modulus.
| 293
|
c_ap39dd5tc9tf
|
In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure, and tend to decrease the electrical and thermal conductivity of the material. Most grain boundaries are preferred sites for the onset of corrosion and for the precipitation of new phases from the solid. They are also important to many of the mechanisms of creep. On the other hand, grain boundaries disrupt the motion of dislocations through a material, so reducing crystallite size is a common way to improve mechanical strength, as described by the Hall–Petch relationship.
| 295
|
c_gzad7z232jon
|
In materials science, a matrix is a constituent of a composite material.
| 296
|
c_7seh4dowrbip
|
In materials science, a metal foam is a material or structure consisting of a solid metal (frequently aluminium) with gas-filled pores comprising a large portion of the volume. The pores can be sealed (closed-cell foam) or interconnected (open-cell foam). The defining characteristic of metal foams is a high porosity: typically only 5–25% of the volume is the base metal. The strength of the material is due to the square–cube law.
| 297
|
c_s7fpivd2y251
|
In materials science, a metal matrix composite (MMC) is a composite material with fibers or particles dispersed in a metallic matrix, such as copper, aluminum, or steel. The secondary phase is typically a ceramic (such as alumina or silicon carbide) or another metal (such as steel). They are typically classified according to the type of reinforcement: short discontinuous fibers (whiskers), continuous fibers, or particulates.
| 299
|
c_u4b317ftg0t7
|
In materials science, a partial dislocation is a decomposed form of dislocation that occurs within a crystalline material. An extended dislocation is a dislocation that has dissociated into a pair of partial dislocations. The vector sum of the Burgers vectors of the partial dislocations is the Burgers vector of the extended dislocation.
| 301
|
c_8f4d6ebfddup
|
In materials science, a polymer blend, or polymer mixture, is a member of a class of materials analogous to metal alloys, in which at least two polymers are blended together to create a new material with different physical properties.
| 302
|
c_96r1cilho69z
|
In materials science, a polymer matrix composite (PMC) is a composite material composed of a variety of short or continuous fibers bound together by a matrix of organic polymers. PMCs are designed to transfer loads between fibers of a matrix. Some of the advantages with PMCs include their light weight, high resistance to abrasion and corrosion, and high stiffness and strength along the direction of their reinforcements.
| 303
|
c_51tu1z1subgt
|
In materials science, a porous medium or a porous material is a material containing pores (voids). The skeletal portion of the material is often called the "matrix" or "frame". The pores are typically filled with a fluid (liquid or gas). The skeletal material is usually a solid, but structures like foams are often also usefully analyzed using concept of porous media.
| 304
|
c_bnzgykpfx0aj
|
Many of their important properties can only be rationalized by considering them to be porous media. The concept of porous media is used in many areas of applied science and engineering: filtration, mechanics (acoustics, geomechanics, soil mechanics, rock mechanics), engineering (petroleum engineering, bioremediation, construction engineering), geosciences (hydrogeology, petroleum geology, geophysics), biology and biophysics, material science. Two important current fields of application for porous materials are energy conversion and energy storage, where porous materials are essential for superpacitors, (photo-)catalysis, fuel cells, and batteries.
| 307
|
c_wcdee2ycfq4n
|
In materials science, a precipitate-free zone (PFZ) refers to microscopic localized regions around grain boundaries that are free of precipitates (solid impurities forced outwards from the grain during crystallization). It is a common phenomenon that arises in polycrystalline materials (crystalline materials with stochastically-oriented grains) where heterogeneous nucleation of precipitates is the dominant nucleation mechanism. This is because grain boundaries are high-energy surfaces that act as sinks for vacancies, causing regions adjacent to a grain boundary to be devoid of vacancies. As it is energetically favorable for heterogeneous nucleation to occur preferentially around defect-rich sites such as vacancies, nucleation of precipitates is impeded in the vacancy-free regions immediately adjacent to grain boundaries
| 308
|
c_ad0i48efsjl5
|
In materials science, a refractory (or refractory material) is a material that is resistant to decomposition by heat, pressure, or chemical attack, and retains strength and form at high temperatures. Refractories are polycrystalline, polyphase, inorganic, non-metallic, porous, and heterogeneous. They are typically composed of oxides or carbides, nitrides etc. of the following elements: silicon, aluminium, magnesium, calcium, boron, chromium and zirconium.ASTM C71 defines refractories as "non-metallic materials having those chemical and physical properties that make them applicable for structures, or as components of systems, that are exposed to environments above 1,000 °F (811 K; 538 °C)".Refractory materials are used in furnaces, kilns, incinerators, and reactors. Refractories are also used to make crucibles and moulds for casting glass and metals and for surfacing flame deflector systems for rocket launch structures. Today, the iron and steel industry and metal casting sectors use approximately 70% of all refractories produced.
| 309
|
c_zm9739l85qt3
|
In materials science, a sandwich-structured composite is a special class of composite materials that is fabricated by attaching two thin-but-stiff skins to a lightweight but thick core. The core material is normally low strength, but its higher thickness provides the sandwich composite with high bending stiffness with overall low density. Open- and closed-cell-structured foams like polyethersulfone, polyvinylchloride, polyurethane, polyethylene or polystyrene foams, balsa wood, syntactic foams, and honeycombs are commonly used core materials.
| 310
|
c_ak2uum6tzn69
|
In materials science, a single crystal (or single-crystal solid or monocrystalline solid) is a material in which the crystal lattice of the entire sample is continuous and unbroken to the edges of the sample, with no grain boundaries. The absence of the defects associated with grain boundaries can give monocrystals unique properties, particularly mechanical, optical and electrical, which can also be anisotropic, depending on the type of crystallographic structure. These properties, in addition to making some gems precious, are industrially used in technological applications, especially in optics and electronics.Because entropic effects favor the presence of some imperfections in the microstructure of solids, such as impurities, inhomogeneous strain and crystallographic defects such as dislocations, perfect single crystals of meaningful size are exceedingly rare in nature. The necessary laboratory conditions often add to the cost of production.
| 312
|
c_bp5pvzggkfjr
|
In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure, or mixing with a catalyst. Heat is not necessarily applied externally, but is often generated by the reaction of the resin with a curing agent (catalyst, hardener). Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.
| 314
|
c_40u7zaxd657w
|
In materials science, advanced composite materials (ACMs) are materials that are generally characterized by unusually high strength fibres with unusually high stiffness, or modulus of elasticity characteristics, compared to other materials, while bound together by weaker matrices. These are termed "advanced composite materials" in comparison to the composite materials commonly in use such as reinforced concrete, or even concrete itself. The high strength fibers are also low density while occupying a large fraction of the volume.
| 316
|
c_rtib2ea2o48d
|
In materials science, an interstitial defect is a type of point crystallographic defect where an atom of the same or of a different type, occupies an interstitial site in the crystal structure. When the atom is of the same type as those already present they are known as a self-interstitial defect. Alternatively, small atoms in some crystals may occupy interstitial sites, such as hydrogen in palladium. Interstitials can be produced by bombarding a crystal with elementary particles having energy above the displacement threshold for that crystal, but they may also exist in small concentrations in thermodynamic equilibrium. The presence of interstitial defects can modify the physical and chemical properties of a material.
| 320
|
c_e0xd77hfutfu
|
In materials science, an intrinsic property is independent of how much of a material is present and is independent of the form of the material, e.g., one large piece or a collection of small particles. Intrinsic properties are dependent mainly on the fundamental chemical composition and structure of the material. Extrinsic properties are differentiated as being dependent on the presence of avoidable chemical contaminants or structural defects.In biology, intrinsic effects originate from inside an organism or cell, such as an autoimmune disease or intrinsic immunity. In electronics and optics, intrinsic properties of devices (or systems of devices) are generally those that are free from the influence of various types of non-essential defects. Such defects may arise as a consequence of design imperfections, manufacturing errors, or operational extremes and can produce distinctive and often undesirable extrinsic properties. The identification, optimization, and control of both intrinsic and extrinsic properties are among the engineering tasks necessary to achieve the high performance and reliability of modern electrical and optical systems.
| 321
|
c_a3x6tnikqad8
|
In materials science, and especially elasticity theory, ideas of torsion also play an important role. One problem models the growth of vines, focusing on the question of how vines manage to twist around objects. The vine itself is modeled as a pair of elastic filaments twisted around one another. In its energy-minimizing state, the vine naturally grows in the shape of a helix. But the vine may also be stretched out to maximize its extent (or length). In this case, the torsion of the vine is related to the torsion of the pair of filaments (or equivalently the surface torsion of the ribbon connecting the filaments), and it reflects the difference between the length-maximizing (geodesic) configuration of the vine and its energy-minimizing configuration.
| 322
|
c_hsygco26v77z
|
In materials science, asperity, defined as "unevenness of surface, roughness, ruggedness" (from the Latin asper—"rough"), has implications (for example) in physics and seismology. Smooth surfaces, even those polished to a mirror finish, are not truly smooth on a microscopic scale. They are rough, with sharp, rough or rugged projections, termed "asperities". Surface asperities exist across multiple scales, often in a self affine or fractal geometry.
| 323
|
c_k4dx0rdl37kb
|
Friction and wear originate at these points, and thus understanding their behavior becomes important when studying materials in contact. When the surfaces are subjected to a compressive load, the asperities deform through elastic and plastic modes, increasing the contact area between the two surfaces until the contact area is sufficient to support the load. The relationship between frictional interactions and asperity geometry is complex and poorly understood. It has been reported that an increased roughness may under certain circumstances result in weaker frictional interactions while smoother surfaces may in fact exhibit high levels of friction owing to high levels of true contact.The Archard equation provides a simplified model of asperity deformation when materials in contact are subject to a force. Due to the ubiquitous presence of deformable asperities in self affine hierarchical structures, the true contact area at an interface exhibits a linear relationship with the applied normal load.
| 325
|
c_a75gn71w5f7c
|
In materials science, bulk density, also called apparent density or volumetric density, is a property of powders, granules, and other "divided" solids, especially used in reference to mineral components (soil, gravel), chemical substances, pharmaceutical ingredients, foodstuff, or any other masses of corpuscular or particulate matter (particles). Bulk density is defined as the mass of the many particles of the material divided by the total volume they occupy. The total volume includes particle volume, inter-particle void volume, and internal pore volume.Bulk density is not an intrinsic property of a material; it can change depending on how the material is handled. For example, a powder poured into a cylinder will have a particular bulk density; if the cylinder is disturbed, the powder particles will move and usually settle closer together, resulting in a higher bulk density. For this reason, the bulk density of powders is usually reported both as "freely settled" (or "poured" density) and "tapped" density (where the tapped density refers to the bulk density of the powder after a specified compaction process, usually involving vibration of the container.) In contrast, particle density is an intrinsic property of the solid and does not include the volume for voids between particles.
| 326
|
c_x5joemf2iwp0
|
In materials science, ceramic matrix composites (CMCs) are a subgroup of composite materials and a subgroup of ceramics. They consist of ceramic fibers embedded in a ceramic matrix. The fibers and the matrix both can consist of any ceramic material, whereby carbon and carbon fibers can also be regarded as a ceramic material.
| 327
|
c_2ig0bptrnigt
|
In materials science, chemical force microscopy (CFM) is a variation of atomic force microscopy (AFM) which has become a versatile tool for characterization of materials surfaces. With AFM, structural morphology is probed using simple tapping or contact modes that utilize van der Waals interactions between tip and sample to maintain a constant probe deflection amplitude (constant force mode) or maintain height while measuring tip deflection (constant height mode). CFM, on the other hand, uses chemical interactions between functionalized probe tip and sample. Choice chemistry is typically gold-coated tip and surface with R−SH thiols attached, R being the functional groups of interest.
| 328
|
c_18weafanflo7
|
In materials science, creep (sometimes called cold flow) is the tendency of a solid material to undergo slow deformation while subject to persistent mechanical stresses. It can occur as a result of long-term exposure to high levels of stress that are still below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods and generally increase as they near their melting point. The rate of deformation is a function of the material's properties, exposure time, exposure temperature and the applied structural load.
| 330
|
c_tiiyrzhekdxb
|
In materials science, critical resolved shear stress (CRSS) is the component of shear stress, resolved in the direction of slip, necessary to initiate slip in a grain. Resolved shear stress (RSS) is the shear component of an applied tensile or compressive stress resolved along a slip plane that is other than perpendicular or parallel to the stress axis. The RSS is related to the applied stress by a geometrical factor, m, typically the Schmid factor: τ RSS = σ app m = σ app ( cos ϕ cos λ ) {\displaystyle \tau _{\text{RSS}}=\sigma _{\text{app}}m=\sigma _{\text{app}}(\cos \phi \cos \lambda )} where σapp is the magnitude of the applied tensile stress, Φ is the angle between the normal of the slip plane and the direction of the applied force, and λ is the angle between the slip direction and the direction of the applied force. The Schmid factor is most applicable to FCC single-crystal metals, but for polycrystal metals the Taylor factor has been shown to be more accurate.
| 333
|
c_v02rdfkm7o3s
|
In materials science, cross slip is the process by which a screw dislocation moves from one slip plane to another due to local stresses. It allows non-planar movement of screw dislocations. Non-planar movement of edge dislocations is achieved through climb. Since the Burgers vector of a perfect screw dislocation is parallel to the dislocation line, it has an infinite number of possible slip planes (planes containing the dislocation line and the Burgers vector), unlike an edge or mixed dislocation, which has a unique slip plane.
| 335
|
c_9sr92sq41td5
|
In materials science, crystallographic texture (or preferred orientation) can be described using Euler angles. In texture analysis, the Euler angles provide a mathematical depiction of the orientation of individual crystallites within a polycrystalline material, allowing for the quantitative description of the macroscopic material. The most common definition of the angles is due to Bunge and corresponds to the ZXZ convention. It is important to note, however, that the application generally involves axis transformations of tensor quantities, i.e. passive rotations. Thus the matrix that corresponds to the Bunge Euler angles is the transpose of that shown in the table above.
| 337
|
c_p1o2ryiyc8y5
|
In materials science, direct laser interference patterning (DLIP) is a laser-based technology that uses the physical principle of interference of high-intensity coherent laser beams to produce functional periodic microstructures. In order to obtain interference, the beam is divided by a beam splitter, special prisms, or other elements. The beams are then folded together to form an interference pattern.
| 338
|
c_rw1nir3lr1lz
|
In materials science, disappearing polymorphs (or perverse polymorphism) describes a phenomenon in which a seemingly stable crystal structure is suddenly unable to be produced, instead transforming into a polymorph, or differing crystal structure with the same chemical composition, during nucleation. Sometimes the resulting transformation is extremely hard or impractical to reverse, because the new polymorph may be more stable. It is hypothesized that contact with a single microscopic seed crystal of the new polymorph can be enough to start a chain reaction causing the transformation of a much larger mass of material. Widespread contamination with such microscopic seed crystals may lead to the impression that the original polymorph has "disappeared."
| 340
|
c_5c1eqay1lkk8
|
In materials science, dispersion is the fraction of atoms of a material exposed to the surface. In general, D = NS/N, where D is the dispersion, NS is the number of surface atoms and NT is the total number of atoms of the material. It is an important concept in heterogeneous catalysis, since only atoms exposed to the surface can affect catalytic surface reactions. Dispersion increases with decreasing crystallite size and approaches unity at a crystallite diameter of about 0.1 nm.
| 343
|
c_ox85u72ul6l2
|
In materials science, effective medium approximations (EMA) or effective medium theory (EMT) pertain to analytical or theoretical modeling that describes the macroscopic properties of composite materials. EMAs or EMTs are developed from averaging the multiple values of the constituents that directly make up the composite material. At the constituent level, the values of the materials vary and are inhomogeneous. Precise calculation of the many constituent values is nearly impossible.
| 344
|
c_n4sk1ke7unhq
|
In materials science, environmental stress fracture or environment assisted fracture is the generic name given to premature failure under the influence of tensile stresses and harmful environments of materials such as metals and alloys, composites, plastics and ceramics. Metals and alloys exhibit phenomena such as stress corrosion cracking, hydrogen embrittlement, liquid metal embrittlement and corrosion fatigue all coming under this category. Environments such as moist air, sea water and corrosive liquids and gases cause environmental stress fracture. Metal matrix composites are also susceptible to many of these processes.
| 347
|
c_ft528bu363si
|
In materials science, fast ion conductors are solid conductors with highly mobile ions. These materials are important in the area of solid state ionics, and are also known as solid electrolytes and superionic conductors. These materials are useful in batteries and various sensors.
| 350
|
c_6sbp4o73ob4y
|
In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface. The crack will continue to grow until it reaches a critical size, which occurs when the stress intensity factor of the crack exceeds the fracture toughness of the material, producing rapid propagation and typically complete fracture of the structure. Fatigue has traditionally been associated with the failure of metal components which led to the term metal fatigue.
| 352
|
c_momczbpchs2l
|
In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted K Ic {\displaystyle K_{\text{Ic}}} .
| 355
|
c_7rjtdrk6q0ge
|
In materials science, fragile matter is a granular material that is jammed solid. Everyday examples include beans getting stuck in a hopper in a whole food shop, or milk powder getting jammed in an upside-down bottle. The term was coined by physicist Michael Cates, who asserts that such circumstances warrant a new class of materials.
| 357
|
c_ycig73mvowdi
|
In materials science, friability ( FRY-ə-BIL-ə-tee), the condition of being friable, describes the tendency of a solid substance to break into smaller pieces under duress or contact, especially by rubbing. The opposite of friable is indurate. Substances that are designated hazardous, such as asbestos or crystalline silica, are often said to be friable if small particles are easily dislodged and become airborne, and hence respirable (able to enter human lungs), thereby posing a health hazard. Tougher substances, such as concrete, may also be mechanically ground down and reduced to finely divided mineral dust.
| 361
|
c_b9nwx65gpusa
|
In materials science, galfenol is the general term for an alloy of iron and gallium. The name was first given to iron-gallium alloys by United States Navy researchers in 1998 when they discovered that adding gallium to iron could amplify iron's magnetostrictive effect up to tenfold. Galfenol is of interest to sonar researchers because magnetostrictor materials are used to detect sound, and amplifying the magnetostrictive effect could lead to better sensitivity of sonar detectors. Galfenol is also proposed for vibrational energy harvesting, actuators for precision machine tools, active anti-vibration systems, and anti-clogging devices for sifting screens and spray nozzles.
| 363
|
c_2nyerch6v99f
|
In materials science, grain growth is the increase in size of grains (crystallites) in a material at high temperature. This occurs when recovery and recrystallisation are complete and further reduction in the internal energy can only be achieved by reducing the total area of grain boundary. The term is commonly used in metallurgy but is also used in reference to ceramics and minerals. The behaviors of grain growth is analogous to the coarsening behaviors of grains, which implied that both of grain growth and coarsening may be dominated by the same physical mechanism.
| 366
|
c_3kedh42o455y
|
In materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain) size. It is based on the observation that grain boundaries are insurmountable borders for dislocations and that the number of dislocations within a grain has an effect on how stress builds up in the adjacent grain, which will eventually activate dislocation sources and thus enabling deformation in the neighbouring grain as well. By changing grain size, one can influence the number of dislocations piled up at the grain boundary and yield strength. For example, heat treatment after plastic deformation and changing the rate of solidification are ways to alter grain size.
| 367
|
c_5narggnme3rm
|
In materials science, hardness (antonym: softness) is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion. In general, different materials differ in their hardness; for example hard metals such as titanium and beryllium are harder than soft metals such as sodium and metallic tin, or wood and common plastics. Macroscopic hardness is generally characterized by strong intermolecular bonds, but the behavior of solid materials under force is complex; therefore, hardness can be measured in different ways, such as scratch hardness, indentation hardness, and rebound hardness. Hardness is dependent on ductility, elastic stiffness, plasticity, strain, strength, toughness, viscoelasticity, and viscosity. Common examples of hard matter are ceramics, concrete, certain metals, and superhard materials, which can be contrasted with soft matter.
| 368
|
c_vxrgt43ar50j
|
In materials science, intergranular corrosion (IGC), also known as intergranular attack (IGA), is a form of corrosion where the boundaries of crystallites of the material are more susceptible to corrosion than their insides. (Cf. transgranular corrosion.)
| 369
|
c_wqrogawhvaqf
|
In materials science, lamellar structures or microstructures are composed of fine, alternating layers of different materials in the form of lamellae. They are often observed in cases where a phase transition front moves quickly, leaving behind two solid products, as in rapid cooling of eutectic (such as solder) or eutectoid (such as pearlite) systems. Such conditions force phases of different composition to form but allow little time for diffusion to produce those phases' equilibrium compositions. Fine lamellae solve this problem by shortening the diffusion distance between phases, but their high surface energy makes them unstable and prone to break up when annealing allows diffusion to progress.
| 370
|
c_1eypuuoslx94
|
A deeper eutectic or more rapid cooling will result in finer lamellae; as the size of an individual lamellum approaches zero, the system will instead retain its high-temperature structure. Two common cases of this include cooling a liquid to form an amorphous solid, and cooling eutectoid austenite to form martensite. In biology, normal adult bones possess a lamellar structure which may be disrupted by some diseases. == References ==
| 371
|
c_fj6jqqd3rg0t
|
In materials science, liquefaction is a process that generates a liquid from a solid or a gas or that generates a non-liquid phase which behaves in accordance with fluid dynamics. It occurs both naturally and artificially. As an example of the latter, a "major commercial application of liquefaction is the liquefaction of air to allow separation of the constituents, such as oxygen, nitrogen, and the noble gases." Another is the conversion of solid coal into a liquid form usable as a substitute for liquid fuels.
| 372
|
c_v4i4u87rzmfb
|
In materials science, material failure is the loss of load carrying capacity of a material unit. This definition introduces to the fact that material failure can be examined in different scales, from microscopic, to macroscopic. In structural problems, where the structural response may be beyond the initiation of nonlinear material behaviour, material failure is of profound importance for the determination of the integrity of the structure. On the other hand, due to the lack of globally accepted fracture criteria, the determination of the structure's damage, due to material failure, is still under intensive research.
| 373
|
c_jb1lnwf3ce1p
|
In materials science, metallurgy, and engineering, a refractory metal is a metal that is extraordinarily resistant to heat and wear. Which metals belong to this category varies; the most common definition includes niobium, molybdenum, tantalum, tungsten, and rhenium. They all have melting points above 2000 °C, and a high hardness at room temperature.
| 374
|
c_2qodeogupy2i
|
In materials science, misorientation is the difference in crystallographic orientation between two crystallites in a polycrystalline material. In crystalline materials, the orientation of a crystallite is defined by a transformation from a sample reference frame (i.e. defined by the direction of a rolling or extrusion process and two orthogonal directions) to the local reference frame of the crystalline lattice, as defined by the basis of the unit cell. In the same way, misorientation is the transformation necessary to move from one local crystal frame to some other crystal frame. That is, it is the distance in orientation space between two distinct orientations.
| 375
|
c_bok4fwdvuqfk
|
In materials science, paracrystalline materials are defined as having short- and medium-range ordering in their lattice (similar to the liquid crystal phases) but lacking crystal-like long-range ordering at least in one direction.
| 377
|
c_qhk1n9anhal8
|
In materials science, permeance is the degree to which a material transmits another substance.
| 378
|
c_5zetk9bdmk95
|
In materials science, polymorphism describes the existence of a solid material in more than one form or crystal structure. Polymorphism is a form of isomerism. Any crystalline material can exhibit the phenomenon. Allotropy refers to polymorphism for chemical elements.
| 379
|
c_wnim5sel61tm
|
In materials science, quenching is the rapid cooling of a workpiece in water, oil, polymer, air, or other fluids to obtain certain material properties. A type of heat treating, quenching prevents undesired low-temperature processes, such as phase transformations, from occurring. It does this by reducing the window of time during which these undesired reactions are both thermodynamically favorable, and kinetically accessible; for instance, quenching can reduce the crystal grain size of both metallic and plastic materials, increasing their hardness. In metallurgy, quenching is most commonly used to harden steel by inducing a martensite transformation, where the steel must be rapidly cooled through its eutectoid point, the temperature at which austenite becomes unstable.
| 381
|
c_lncffwrhxz5n
|
In materials science, radiation-absorbent material (RAM) is a material which has been specially designed and shaped to absorb incident RF radiation (also known as non-ionising radiation), as effectively as possible, from as many incident directions as possible. The more effective the RAM, the lower the resulting level of reflected RF radiation. Many measurements in electromagnetic compatibility (EMC) and antenna radiation patterns require that spurious signals arising from the test setup, including reflections, are negligible to avoid the risk of causing measurement errors and ambiguities.
| 383
|
c_1e9o61ruheje
|
In materials science, recrystallization is a process by which deformed grains are replaced by a new set of defect-free grains that nucleate and grow until the original grains have been entirely consumed. Recrystallization is usually accompanied by a reduction in the strength and hardness of a material and a simultaneous increase in the ductility. Thus, the process may be introduced as a deliberate step in metals processing or may be an undesirable byproduct of another processing step. The most important industrial uses are softening of metals previously hardened or rendered brittle by cold work, and control of the grain structure in the final product. Recrystallization temperature is typically 0.3–0.4 times the melting point for pure metals and 0.5 times for alloys.
| 384
|
c_srcjs3hhf1cr
|
In materials science, reinforcement is a constituent of a composite material which increases the composite's stiffness and tensile strength.
| 385
|
c_18idd1opcosu
|
In materials science, segregation is the enrichment of atoms, ions, or molecules at a microscopic region in a materials system. While the terms segregation and adsorption are essentially synonymous, in practice, segregation is often used to describe the partitioning of molecular constituents to defects from solid solutions, whereas adsorption is generally used to describe such partitioning from liquids and gases to surfaces. The molecular-level segregation discussed in this article is distinct from other types of materials phenomena that are often called segregation, such as particle segregation in granular materials, and phase separation or precipitation, wherein molecules are segregated in to macroscopic regions of different compositions. Segregation has many practical consequences, ranging from the formation of soap bubbles, to microstructural engineering in materials science, to the stabilization of colloidal suspensions.
| 386
|
c_b580hxt3vsmg
|
In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: G = d e f τ x y γ x y = F / A Δ x / l = F l A Δ x {\displaystyle G\ {\stackrel {\mathrm {def} }{=}}\ {\frac {\tau _{xy}}{\gamma _{xy}}}={\frac {F/A}{\Delta x/l}}={\frac {Fl}{A\Delta x}}} where τ x y = F / A {\displaystyle \tau _{xy}=F/A\,} = shear stress F {\displaystyle F} is the force which acts A {\displaystyle A} is the area on which the force acts γ x y {\displaystyle \gamma _{xy}} = shear strain. In engineering := Δ x / l = tan θ {\displaystyle :=\Delta x/l=\tan \theta } , elsewhere := θ {\displaystyle :=\theta } Δ x {\displaystyle \Delta x} is the transverse displacement l {\displaystyle l} is the initial length of the area.The derived SI unit of shear modulus is the pascal (Pa), although it is usually expressed in gigapascals (GPa) or in thousand pounds per square inch (ksi). Its dimensional form is M1L−1T−2, replacing force by mass times acceleration.
| 388
|
c_oicgefilxbsc
|
In materials science, slip is the large displacement of one part of a crystal relative to another part along crystallographic planes and directions. Slip occurs by the passage of dislocations on close/packed planes, which are planes containing the greatest number of atoms per area and in close-packed directions (most atoms per length). Close-packed planes are known as slip or glide planes.
| 389
|
c_h6lqfwoyftsb
|
A slip system describes the set of symmetrically identical slip planes and associated family of slip directions for which dislocation motion can easily occur and lead to plastic deformation. The magnitude and direction of slip are represented by the Burgers vector, b. An external force makes parts of the crystal lattice glide along each other, changing the material's geometry. A critical resolved shear stress is required to initiate a slip.
| 390
|
c_bknllzmzmyzn
|
In materials science, stress relaxation is the observed decrease in stress in response to strain generated in the structure. This is primarily due to keeping the structure in a strained condition for some finite interval of time hence causing some amount of plastic strain. This should not be confused with creep, which is a constant state of stress with an increasing amount of strain. Since relaxation relieves the state of stress, it has the effect of also relieving the equipment reactions.
| 391
|
c_uxbfk3wstu91
|
In materials science, superplasticity is a state in which solid crystalline material is deformed well beyond its usual breaking point, usually over about 400% during tensile deformation. Such a state is usually achieved at high homologous temperature. Examples of superplastic materials are some fine-grained metals and ceramics. Other non-crystalline materials (amorphous) such as silica glass ("molten glass") and polymers also deform similarly, but are not called superplastic, because they are not crystalline; rather, their deformation is often described as Newtonian fluid.
| 396
|
c_4s95ktme8r12
|
In materials science, the Burgers vector, named after Dutch physicist Jan Burgers, is a vector, often denoted as b, that represents the magnitude and direction of the lattice distortion resulting from a dislocation in a crystal lattice. The vector's magnitude and direction is best understood when the dislocation-bearing crystal structure is first visualized without the dislocation, that is, the perfect crystal structure. In this perfect crystal structure, a rectangle whose lengths and widths are integer multiples of a (the unit cell edge length) is drawn encompassing the site of the original dislocation's origin. Once this encompassing rectangle is drawn, the dislocation can be introduced.
| 398
|
c_kcxl9bwvix8g
|
In materials science, the Charpy impact test, also known as the Charpy V-notch test, is a standardized high strain rate test which determines the amount of energy absorbed by a material during fracture. Absorbed energy is a measure of the material's notch toughness. It is widely used in industry, since it is easy to prepare and conduct and results can be obtained quickly and cheaply.
| 402
|
c_yvb5so5ecui3
|
In materials science, the Zener–Hollomon parameter, typically denoted as Z, is used to relate changes in temperature or strain-rate to the stress-strain behavior of a material. It has been most extensively applied to the forming of steels at increased temperature, when creep is active. It is given by Z = ε ˙ exp ( Q / R T ) {\displaystyle Z={\dot {\varepsilon }}\exp(Q/RT)} where ε ˙ {\textstyle {\dot {\varepsilon }}} is the strain rate, Q is the activation energy, R is the gas constant, and T is the temperature. The Zener–Hollomon parameter is also known as the temperature compensated strain rate, since the two are inversely proportional in the definition.
| 404
|
c_eccr9w48ehk1
|
In materials science, the concept of the Cottrell atmosphere was introduced by A. H. Cottrell and B. A. Bilby in 1949 to explain how dislocations are pinned in some metals by boron, carbon, or nitrogen interstitials. Cottrell atmospheres occur in body-centered cubic (BCC) and face-centered cubic (FCC) materials, such as iron or nickel, with small impurity atoms, such as boron, carbon, or nitrogen. As these interstitial atoms distort the lattice slightly, there will be an associated residual stress field surrounding the interstitial. This stress field can be relaxed by the interstitial atom diffusing towards a dislocation, which contains a small gap at its core (as it is a more open structure), see Figure 1.
| 407
|
c_66b6yencpmuk
|
In materials science, the sessile drop technique is a method used for the characterization of solid surface energies, and in some cases, aspects of liquid surface energies. The main premise of the method is that by placing a droplet of liquid with a known surface energy and contact angle, the surface energy of the solid substrate can be calculated. The liquid used for such experiments is referred to as the probe liquid, and the use of several different probe liquids is required.
| 409
|
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 5