pdf
pdf | label
class label 2
classes |
---|---|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
|
0Documents (2400)
|
COPGPT - RAG-based Policy Recommendation Chatbot
A sophisticated Retrieval-Augmented Generation (RAG) chatbot built with FastAPI, LangChain, and OpenAI, designed to provide intelligent policy recommendations and sustainability insights with a focus on environmental topics and carbon emissions.
Features
- Hybrid Search Architecture: Combines FAISS vector search with Google Search fallback for comprehensive information retrieval
- Conversational Memory: Maintains context across multiple interactions for coherent conversations
- Document Processing: Supports multiple file formats (PDF, DOCX, TXT, CSV, XLSX, HTML, MD, PPT)
- Metadata Preservation: Retains source information and references for all retrieved documents
- Real-time Web Search: Falls back to Google Search when local knowledge base lacks information
- Clean Response Formatting: Provides well-structured responses with proper references
- FastAPI Backend: High-performance asynchronous API endpoints
Architecture
βββββββββββββββββββ ββββββββββββββββββββ βββββββββββββββββββ
β Web Interface ββββββΆβ FastAPI Server ββββββΆβ RAG Pipeline β
βββββββββββββββββββ ββββββββββββββββββββ βββββββββββββββββββ
β
ββββββββββββββββββββββββββββ΄ββββββββββββββββββββββββββββ
β β
βββββββββΌβββββββββ ββββββββββΌβββββββββ
β FAISS Vector β β Google Search β
β Store β β (Fallback) β
ββββββββββββββββββ βββββββββββββββββββ
Github code
https://github.com/Nelsonchris1/Accelerating-Policy-Decisions---Research/tree/main
Prerequisites
- Python 3.8+
- OpenAI API Key
- Google Serper API Key (for web search functionality)
- FAISS-compatible system
Installation
Clone the repository
git clone <repository-url> cd COP29_RAG_Chatbot
Create a virtual environment
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
Install dependencies
pip install -r requirements.txt
Set up environment variables Create a
.env
file in the root directory:OPENAI_API_KEY=your_openai_api_key_here SERPER_API_KEY=your_serper_api_key_here
Project Structure
COP29_RAG_Chatbot/
β
βββ app.py # FastAPI application entry point
βββ retriever.py # Main RAG pipeline and chat logic
βββ embeddings.py # Document embedding and vector store management
βββ file_loader.py # Multi-format document loader
βββ metadata.py # Metadata inspection utilities
βββ requirements.txt # Python dependencies
β
βββ models/ # Data models
β βββ index.py # Chat model definitions
β
βββ templates/ # HTML templates
β βββ index.html # Chat interface
β
βββ static/ # Static assets (CSS, JS, images)
β
βββ test2_db/ # FAISS vector database storage
βββ document_chunks111/
Configuration
Vector Database Setup
Prepare your documents Place your documents in a folder for processing.
Generate embeddings
python embeddings.py
Follow the prompts to specify your document folder path.
Update database path Ensure the
db_path
inretriever.py
points to your FAISS database:db_path = r"path/to/your/faiss_db"
Embedding Model
The system uses OpenAI's text-embedding-3-large
model. You can modify this in embeddings.py
:
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
Running the Application
Start the FastAPI server
uvicorn app:app --reload --host 0.0.0.0 --port 8000
Access the chatbot Open your browser and navigate to:
http://localhost:8000
Usage
Web Interface
- Type your questions in the chat interface
- The bot will search its knowledge base first
- If needed, it will perform web searches for current information
- References are provided for all responses
API Endpoint
Send POST requests to /chat
:
curl -X POST "http://localhost:8000/chat" \
-H "Content-Type: application/json" \
-d '{"query": "What is carbon neutrality?"}'
Supported Queries
- Environmental policy questions
- Carbon emission inquiries
- Sustainability best practices
- COP29-related information
- General conversational queries
Key Components
Retriever Pipeline (retriever.py
)
- Manages the hybrid search strategy
- Maintains conversation history
- Handles query preprocessing and response formatting
Document Processing (file_loader.py
)
- Supports multiple file formats
- Preserves metadata during loading
- Implements fallback loaders for reliability
Vector Store (embeddings.py
)
- Creates and manages FAISS indexes
- Handles document chunking with overlap
- Preserves metadata through the embedding process
Development
Adding New Document Types
Extend the FILE_LOADER_MAPPING
in file_loader.py
:
FILE_LOADER_MAPPING = {
".new_ext": (YourLoaderClass, {"param": "value"}),
# ... existing mappings
}
Customizing Responses
Modify the predefined_responses
dictionary in retriever.py
to add custom responses for common queries.
Adjusting Search Parameters
Configure search behavior in hybrid_chain()
:
k=5
: Number of documents to retrievechunk_size=1000
: Size of text chunkschunk_overlap=100
: Overlap between chunks
Troubleshooting
Common Issues
FAISS Loading Errors
- Ensure
allow_dangerous_deserialization=True
is set - Check file permissions on the database directory
- Ensure
API Key Issues
- Verify
.env
file is in the root directory - Check API key validity
- Verify
Memory Issues
- Reduce chunk size or number of retrieved documents
- Consider using a smaller embedding model
Debug Mode
Enable detailed logging:
logging.basicConfig(level=logging.DEBUG)
Performance Optimization
- Async Processing: FastAPI handles requests asynchronously
- Caching: Consider implementing Redis for response caching
- Batch Processing: Process multiple documents simultaneously
- Index Optimization: Regularly rebuild FAISS indexes for optimal performance
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature
) - Commit your changes (
git commit -m 'Add some AmazingFeature'
) - Push to the branch (
git push origin feature/AmazingFeature
) - Open a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- Built with LangChain for RAG capabilities
- Powered by OpenAI for embeddings and language models
- FAISS for efficient similarity search
- FastAPI for the web framework
Contact
For questions or support, please contact: [email protected]
Contributors
Elizabeth Osanyinro, University of Bradford, UK
Oluwole Fagbohun, Carbonnote, USA
Ernest Effiong Offiong, Carbonnote, USA
Maxwell Nwanna, RideNear, UK
Grace Farayola, University of Buckingham, UK
Olaitan Olaonipekun, Vuhosi Limited, UK
Abiola Oludotun, Readrly Limited, UK
Sayo Agunbiade, Independent Researcher, UK
Oladotun Fasogbon, Independent Researcher, UK
Ogheneruona Maria Esegbon-Isikeh, Readrly Limited, UK
Lanre Shittu, Independent Researcher, UK
Toyese Oloyede, Independent Researcher, UK
Sa'id Olanrewaju, Readrly Limited, UK
Christopher J Ozurumba, Independent Researcher, UK
Nelson Ogbeide, independent Researcher, UK
Note: This is a beta version. For production use, please ensure proper security measures, rate limiting, and error handling are implemented.
license: apache-2.0
- Downloads last month
- 18