query
stringclasses
184 values
texts
stringclasses
184 values
label
float64
0
1
metadata
dict
query_id
stringclasses
184 values
id
stringlengths
7
7
Treatment with a protein named FN impairs regenerative abilities of aged muscles. Mammalian long intergenic noncoding RNAs (lincRNAs) are best known for modulating transcription. Here we report a posttranscriptional function for lincRNA-p21 as a modulator of translation. Association of the RNA-binding protein HuR with lincRNA-p21 favored the recruitment of let-7/Ago2 to lincRNA-p21, leading to lower lincRNA-p21 stability. Under reduced HuR levels, lincRNA-p21 accumulated in human cervical carcinoma HeLa cells, increasing its association with JUNB and CTNNB1 mRNAs and selectively lowering their translation. With elevated HuR, lincRNA-p21 levels declined, which in turn derepressed JunB and β-catenin translation and increased the levels of these proteins. We propose that HuR controls translation of a subset of target mRNAs by influencing lincRNA-p21 levels. Our findings uncover a role for lincRNA as a posttranscriptional inhibitor of translation. Summary Background Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older. Methods Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health. Findings Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2·2% (95% uncertainty interval [UI] 1·5–3·0) of age-standardised female deaths and 6·8% (5·8–8·0) of age-standardised male deaths. Among the population aged 15–49 years, alcohol use was the leading risk factor globally in 2016, with 3·8% (95% UI 3·2–4·3) of female deaths and 12·2% (10·8–13·6) of male deaths attributable to alcohol use. For the population aged 15–49 years, female attributable DALYs were 2·3% (95% UI 2·0–2·6) and male attributable DALYs were 8·9% (7·8–9·9). The three leading causes of attributable deaths in this age group were tuberculosis (1·4% [95% UI 1·0–1·7] of total deaths), road injuries (1·2% [0·7–1·9]), and self-harm (1·1% [0·6–1·5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27·1% (95% UI 21·2–33·3) of total alcohol-attributable female deaths and 18·9% (15·3–22·6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0·0–0·8) standard drinks per week. Interpretation Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption. Funding Bill & Melinda Gates Foundation. Age-related changes in the niche have long been postulated to impair the function of somatic stem cells. Here we demonstrate that the aged stem cell niche in skeletal muscle contains substantially reduced levels of fibronectin (FN), leading to detrimental consequences for the function and maintenance of muscle stem cells (MuSCs). Deletion of the gene encoding FN from young regenerating muscles replicates the aging phenotype and leads to a loss of MuSC numbers. By using an extracellular matrix (ECM) library screen and pathway profiling, we characterize FN as a preferred adhesion substrate for MuSCs and demonstrate that integrin-mediated signaling through focal adhesion kinase and the p38 mitogen-activated protein kinase pathway is strongly de-regulated in MuSCs from aged mice because of insufficient attachment to the niche. Reconstitution of FN levels in the aged niche remobilizes stem cells and restores youth-like muscle regeneration. Taken together, we identify the loss of stem cell adhesion to FN in the niche ECM as a previously unknown aging mechanism. CONTEXT Mesenchymal stem cells (MSCs) are under evaluation as a therapy for ischemic cardiomyopathy (ICM). Both autologous and allogeneic MSC therapies are possible; however, their safety and efficacy have not been compared. OBJECTIVE To test whether allogeneic MSCs are as safe and effective as autologous MSCs in patients with left ventricular (LV) dysfunction due to ICM. DESIGN, SETTING, AND PATIENTS A phase 1/2 randomized comparison (POSEIDON study) in a US tertiary-care referral hospital of allogeneic and autologous MSCs in 30 patients with LV dysfunction due to ICM between April 2, 2010, and September 14, 2011, with 13-month follow-up. INTERVENTION Twenty million, 100 million, or 200 million cells (5 patients in each cell type per dose level) were delivered by transendocardial stem cell injection into 10 LV sites. MAIN OUTCOME MEASURES Thirty-day postcatheterization incidence of predefined treatment-emergent serious adverse events (SAEs). Efficacy assessments included 6-minute walk test, exercise peak VO2, Minnesota Living with Heart Failure Questionnaire (MLHFQ), New York Heart Association class, LV volumes, ejection fraction (EF), early enhancement defect (EED; infarct size), and sphericity index. RESULTS Within 30 days, 1 patient in each group (treatment-emergent SAE rate, 6.7%) was hospitalized for heart failure, less than the prespecified stopping event rate of 25%. The 1-year incidence of SAEs was 33.3% (n = 5) in the allogeneic group and 53.3% (n = 8) in the autologous group (P = .46). At 1 year, there were no ventricular arrhythmia SAEs observed among allogeneic recipients compared with 4 patients (26.7%) in the autologous group (P = .10). Relative to baseline, autologous but not allogeneic MSC therapy was associated with an improvement in the 6-minute walk test and the MLHFQ score, but neither improved exercise VO2 max. Allogeneic and autologous MSCs reduced mean EED by −33.21% (95% CI, −43.61% to −22.81%; P < .001) and sphericity index but did not increase EF. Allogeneic MSCs reduced LV end-diastolic volumes. Low-dose concentration MSCs (20 million cells) produced greatest reductions in LV volumes and increased EF. Allogeneic MSCs did not stimulate significant donor-specific alloimmune reactions. CONCLUSIONS In this early-stage study of patients with ICM, transendocardial injection of allogeneic and autologous MSCs without a placebo control were both associated with low rates of treatment-emergent SAEs, including immunologic reactions. In aggregate, MSC injection favorably affected patient functional capacity, quality of life, and ventricular remodeling. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01087996. The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire(+) mTECs at this key developmental stage, prior to αβ T cell repertoire selection, was jointly directed by Rankl(+) lymphoid tissue inducer cells and invariant Vγ5(+) dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire(+) mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of Vγ5(+) γδ T cells during thymus medulla formation for αβ T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire(+) mTEC maturation.
Treatment with a protein named FN impairs regenerative abilities of aged muscles. Mammalian long intergenic noncoding RNAs (lincRNAs) are best known for modulating transcription. Here we report a posttranscriptional function for lincRNA-p21 as a modulator of translation. Association of the RNA-binding protein HuR with lincRNA-p21 favored the recruitment of let-7/Ago2 to lincRNA-p21, leading to lower lincRNA-p21 stability. Under reduced HuR levels, lincRNA-p21 accumulated in human cervical carcinoma HeLa cells, increasing its association with JUNB and CTNNB1 mRNAs and selectively lowering their translation. With elevated HuR, lincRNA-p21 levels declined, which in turn derepressed JunB and β-catenin translation and increased the levels of these proteins. We propose that HuR controls translation of a subset of target mRNAs by influencing lincRNA-p21 levels. Our findings uncover a role for lincRNA as a posttranscriptional inhibitor of translation. Summary Background Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older. Methods Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health. Findings Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2·2% (95% uncertainty interval [UI] 1·5–3·0) of age-standardised female deaths and 6·8% (5·8–8·0) of age-standardised male deaths. Among the population aged 15–49 years, alcohol use was the leading risk factor globally in 2016, with 3·8% (95% UI 3·2–4·3) of female deaths and 12·2% (10·8–13·6) of male deaths attributable to alcohol use. For the population aged 15–49 years, female attributable DALYs were 2·3% (95% UI 2·0–2·6) and male attributable DALYs were 8·9% (7·8–9·9). The three leading causes of attributable deaths in this age group were tuberculosis (1·4% [95% UI 1·0–1·7] of total deaths), road injuries (1·2% [0·7–1·9]), and self-harm (1·1% [0·6–1·5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27·1% (95% UI 21·2–33·3) of total alcohol-attributable female deaths and 18·9% (15·3–22·6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0·0–0·8) standard drinks per week. Interpretation Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption. Funding Bill & Melinda Gates Foundation. Age-related changes in the niche have long been postulated to impair the function of somatic stem cells. Here we demonstrate that the aged stem cell niche in skeletal muscle contains substantially reduced levels of fibronectin (FN), leading to detrimental consequences for the function and maintenance of muscle stem cells (MuSCs). Deletion of the gene encoding FN from young regenerating muscles replicates the aging phenotype and leads to a loss of MuSC numbers. By using an extracellular matrix (ECM) library screen and pathway profiling, we characterize FN as a preferred adhesion substrate for MuSCs and demonstrate that integrin-mediated signaling through focal adhesion kinase and the p38 mitogen-activated protein kinase pathway is strongly de-regulated in MuSCs from aged mice because of insufficient attachment to the niche. Reconstitution of FN levels in the aged niche remobilizes stem cells and restores youth-like muscle regeneration. Taken together, we identify the loss of stem cell adhesion to FN in the niche ECM as a previously unknown aging mechanism. CONTEXT Mesenchymal stem cells (MSCs) are under evaluation as a therapy for ischemic cardiomyopathy (ICM). Both autologous and allogeneic MSC therapies are possible; however, their safety and efficacy have not been compared. OBJECTIVE To test whether allogeneic MSCs are as safe and effective as autologous MSCs in patients with left ventricular (LV) dysfunction due to ICM. DESIGN, SETTING, AND PATIENTS A phase 1/2 randomized comparison (POSEIDON study) in a US tertiary-care referral hospital of allogeneic and autologous MSCs in 30 patients with LV dysfunction due to ICM between April 2, 2010, and September 14, 2011, with 13-month follow-up. INTERVENTION Twenty million, 100 million, or 200 million cells (5 patients in each cell type per dose level) were delivered by transendocardial stem cell injection into 10 LV sites. MAIN OUTCOME MEASURES Thirty-day postcatheterization incidence of predefined treatment-emergent serious adverse events (SAEs). Efficacy assessments included 6-minute walk test, exercise peak VO2, Minnesota Living with Heart Failure Questionnaire (MLHFQ), New York Heart Association class, LV volumes, ejection fraction (EF), early enhancement defect (EED; infarct size), and sphericity index. RESULTS Within 30 days, 1 patient in each group (treatment-emergent SAE rate, 6.7%) was hospitalized for heart failure, less than the prespecified stopping event rate of 25%. The 1-year incidence of SAEs was 33.3% (n = 5) in the allogeneic group and 53.3% (n = 8) in the autologous group (P = .46). At 1 year, there were no ventricular arrhythmia SAEs observed among allogeneic recipients compared with 4 patients (26.7%) in the autologous group (P = .10). Relative to baseline, autologous but not allogeneic MSC therapy was associated with an improvement in the 6-minute walk test and the MLHFQ score, but neither improved exercise VO2 max. Allogeneic and autologous MSCs reduced mean EED by −33.21% (95% CI, −43.61% to −22.81%; P < .001) and sphericity index but did not increase EF. Allogeneic MSCs reduced LV end-diastolic volumes. Low-dose concentration MSCs (20 million cells) produced greatest reductions in LV volumes and increased EF. Allogeneic MSCs did not stimulate significant donor-specific alloimmune reactions. CONCLUSIONS In this early-stage study of patients with ICM, transendocardial injection of allogeneic and autologous MSCs without a placebo control were both associated with low rates of treatment-emergent SAEs, including immunologic reactions. In aggregate, MSC injection favorably affected patient functional capacity, quality of life, and ventricular remodeling. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01087996. The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire(+) mTECs at this key developmental stage, prior to αβ T cell repertoire selection, was jointly directed by Rankl(+) lymphoid tissue inducer cells and invariant Vγ5(+) dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire(+) mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of Vγ5(+) γδ T cells during thymus medulla formation for αβ T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire(+) mTEC maturation.
0.333333
{ "query_id": "1323", "original_query_id": "1323", "context_doc_ids": [ "301838", "19912367", "40164383", "13763195", "52072815" ], "gold_doc_ids_in_context": [ "19912367" ], "total_gold_docs_for_query": 1, "context_f1": 0.33333333333333337, "context_size": 5, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287154", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "19912367" ], "negative_samples_considered": [ "40164383", "301838", "52072815", "13763195" ], "comprehensive_gold_set_for_query": [ "19912367" ], "target_max_context_size_config": 6, "actual_context_size": 5, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1323
aug_900
Primary pro-inflammatory cytokines suppress secondary pro- and anti-inflammatory mediators. Little is known about the inter-individual variation of cytokine responses to different pathogens in healthy individuals. To systematically describe cytokine responses elicited by distinct pathogens and to determine the effect of genetic variation on cytokine production, we profiled cytokines produced by peripheral blood mononuclear cells from 197 individuals of European origin from the 200 Functional Genomics (200FG) cohort in the Human Functional Genomics Project (http://www.humanfunctionalgenomics.org), obtained over three different years. We compared bacteria- and fungi-induced cytokine profiles and found that most cytokine responses were organized around a physiological response to specific pathogens, rather than around a particular immune pathway or cytokine. We then correlated genome-wide single-nucleotide polymorphism (SNP) genotypes with cytokine abundance and identified six cytokine quantitative trait loci (QTLs). Among them, a cytokine QTL at the NAA35-GOLM1 locus markedly modulated interleukin (IL)-6 production in response to multiple pathogens and was associated with susceptibility to candidemia. Furthermore, the cytokine QTLs that we identified were enriched among SNPs previously associated with infectious diseases and heart diseases. These data reveal and begin to explain the variability in cytokine production by human immune cells in response to pathogens.
Primary pro-inflammatory cytokines suppress secondary pro- and anti-inflammatory mediators. Little is known about the inter-individual variation of cytokine responses to different pathogens in healthy individuals. To systematically describe cytokine responses elicited by distinct pathogens and to determine the effect of genetic variation on cytokine production, we profiled cytokines produced by peripheral blood mononuclear cells from 197 individuals of European origin from the 200 Functional Genomics (200FG) cohort in the Human Functional Genomics Project (http://www.humanfunctionalgenomics.org), obtained over three different years. We compared bacteria- and fungi-induced cytokine profiles and found that most cytokine responses were organized around a physiological response to specific pathogens, rather than around a particular immune pathway or cytokine. We then correlated genome-wide single-nucleotide polymorphism (SNP) genotypes with cytokine abundance and identified six cytokine quantitative trait loci (QTLs). Among them, a cytokine QTL at the NAA35-GOLM1 locus markedly modulated interleukin (IL)-6 production in response to multiple pathogens and was associated with susceptibility to candidemia. Furthermore, the cytokine QTLs that we identified were enriched among SNPs previously associated with infectious diseases and heart diseases. These data reveal and begin to explain the variability in cytokine production by human immune cells in response to pathogens.
1
{ "query_id": "976", "original_query_id": "976", "context_doc_ids": [ "5304891" ], "gold_doc_ids_in_context": [ "5304891" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287235", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "5304891" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "5304891" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
976
aug_901
A single nucleotide variant the gene DGKK is strongly associated with increased risk of hypospadias. Blind individuals often demonstrate enhanced nonvisual perceptual abilities. However, the neural substrate that underlies this improved performance remains to be fully understood. An earlier behavioral study demonstrated that some early-blind people localize sounds more accurately than sighted controls using monaural cues. In order to investigate the neural basis of these behavioral differences in humans, we carried out functional imaging studies using positron emission tomography and a speaker array that permitted pseudo-free-field presentations within the scanner. During binaural sound localization, a sighted control group showed decreased cerebral blood flow in the occipital lobe, which was not seen in early-blind individuals. During monaural sound localization (one ear plugged), the subgroup of early-blind subjects who were behaviorally superior at sound localization displayed two activation foci in the occipital cortex. This effect was not seen in blind persons who did not have superior monaural sound localization abilities, nor in sighted individuals. The degree of activation of one of these foci was strongly correlated with sound localization accuracy across the entire group of blind subjects. The results show that those blind persons who perform better than sighted persons recruit occipital areas to carry out auditory localization under monaural conditions. We therefore conclude that computations carried out in the occipital cortex specifically underlie the enhanced capacity to use monaural cues. Our findings shed light not only on intermodal compensatory mechanisms, but also on individual differences in these mechanisms and on inhibitory patterns that differ between sighted individuals and those deprived of vision early in life. The only proven requirement for ascorbic acid (vitamin C) is in preventing scurvy, presumably because it is a cofactor for hydroxylases required for post-translational modifications that stabilize collagen. We have created mice deficient in the mouse ortholog (solute carrier family 23 member 1 or Slc23a1) of a rat ascorbic-acid transporter, Svct2 (ref. 4). Cultured embryonic fibroblasts from homozygous Slc23a1−/− mice had less than 5% of normal ascorbic-acid uptake. Ascorbic-acid levels were undetectable or markedly reduced in the blood and tissues of Slc23a1−/− mice. Prenatal supplementation of pregnant females did not elevate blood ascorbic acid in Slc23a1−/− fetuses, suggesting Slc23a1 is important in placental ascorbic-acid transport. Slc23a1−/− mice died within a few minutes of birth with respiratory failure and intraparenchymal brain hemorrhage. Lungs showed no postnatal expansion but had normal surfactant protein B levels. Brain hemorrhage was unlikely to be simply a form of scurvy since Slc23a1−/− mice showed no hemorrhage in any other tissues and their skin had normal skin 4-hydroxyproline levels despite low ascorbic-acid content. We conclude that Slc23a1 is required for transport of ascorbic acid into many tissues and across the placenta. Deficiency of the transporter is lethal in newborn mice, thereby revealing a previously unrecognized requirement for ascorbic acid in the perinatal period. The early events leading to the development of rheumatoid arthritis (RA) remain unclear, but formation of autoantibodies to citrullinated protein antigens (ACPAs) is considered a key pathogenic event. Neutrophils isolated from patients with various autoimmune diseases display enhanced neutrophil extracellular trap (NET) formation, a phenomenon that exposes autoantigens in the context of immunostimulatory molecules. We investigated whether aberrant NETosis occurs in RA, determined its triggers, and examined its deleterious inflammatory consequences. Enhanced NETosis was observed in circulating and RA synovial fluid neutrophils compared to neutrophils from healthy controls and from patients with osteoarthritis (OA). Further, netting neutrophils infiltrated RA synovial tissue, rheumatoid nodules, and skin. NETosis correlated with ACPA presence and levels and with systemic inflammatory markers. RA sera and immunoglobulin fractions from RA patients with high levels of ACPA and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these autoantibodies displayed distinct protein content. Indeed, during NETosis, neutrophils externalized the citrullinated autoantigens implicated in RA pathogenesis, and anti-citrullinated vimentin antibodies potently induced NET formation. Moreover, the inflammatory cytokines interleukin-17A (IL-17A) and tumor necrosis factor-α (TNF-α) induced NETosis in RA neutrophils. In turn, NETs significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including induction of IL-6, IL-8, chemokines, and adhesion molecules. These observations implicate accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and immunostimulatory molecules that may promote aberrant adaptive and innate immune responses in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease. Ataxia telangiectasia is a neurodegenerative disease caused by mutation of the Atm gene. Here we report that ataxia telangiectasia mutated (ATM) deficiency causes nuclear accumulation of histone deacetylase 4 (HDAC4) in neurons and promotes neurodegeneration. Nuclear HDAC4 binds to chromatin, as well as to myocyte enhancer factor 2A (MEF2A) and cAMP-responsive element binding protein (CREB), leading to histone deacetylation and altered neuronal gene expression. Blocking either HDAC4 activity or its nuclear accumulation blunts these neurodegenerative changes and rescues several behavioral abnormalities of ATM-deficient mice. Full rescue of the neurodegeneration, however, also requires the presence of HDAC4 in the cytoplasm, suggesting that the ataxia telangiectasia phenotype results both from a loss of cytoplasmic HDAC4 as well as its nuclear accumulation. To remain cytoplasmic, HDAC4 must be phosphorylated. The activity of the HDAC4 phosphatase, protein phosphatase 2A (PP2A), is downregulated by ATM-mediated phosphorylation. In ATM deficiency, enhanced PP2A activity leads to HDAC4 dephosphorylation and the nuclear accumulation of HDAC4. Our results define a crucial role of the cellular localization of HDAC4 in the events leading to ataxia telangiectasia neurodegeneration. BACKGROUND The annual number of hospital admissions and in-hospital deaths due to severe acute lower respiratory infections (ALRI) in young children worldwide is unknown. We aimed to estimate the incidence of admissions and deaths for such infections in children younger than 5 years in 2010. METHODS We estimated the incidence of admissions for severe and very severe ALRI in children younger than 5 years, stratified by age and region, with data from a systematic review of studies published between Jan 1, 1990, and March 31, 2012, and from 28 unpublished population-based studies. We applied these incidence estimates to population estimates for 2010, to calculate the global and regional burden in children admitted with severe ALRI in that year. We estimated in-hospital mortality due to severe and very severe ALRI by combining incidence estimates with case fatality ratios from hospital-based studies. FINDINGS We identified 89 eligible studies and estimated that in 2010, 11·9 million (95% CI 10·3-13·9 million) episodes of severe and 3·0 million (2·1-4·2 million) episodes of very severe ALRI resulted in hospital admissions in young children worldwide. Incidence was higher in boys than in girls, the sex disparity being greatest in South Asian studies. On the basis of data from 37 hospital studies reporting case fatality ratios for severe ALRI, we estimated that roughly 265,000 (95% CI 160,000-450,000) in-hospital deaths took place in young children, with 99% of these deaths in developing countries. Therefore, the data suggest that although 62% of children with severe ALRI are treated in hospitals, 81% of deaths happen outside hospitals. INTERPRETATION Severe ALRI is a substantial burden on health services worldwide and a major cause of hospital referral and admission in young children. Improved hospital access and reduced inequities, such as those related to sex and rural status, could substantially decrease mortality related to such infection. Community-based management of severe disease could be an important complementary strategy to reduce pneumonia mortality and health inequities. FUNDING WHO. BACKGROUND The heritable haemoglobinopathy alpha(+)-thalassaemia is caused by the reduced synthesis of alpha-globin chains that form part of normal adult haemoglobin (Hb). Individuals homozygous for alpha(+)-thalassaemia have microcytosis and an increased erythrocyte count. Alpha(+)-thalassaemia homozygosity confers considerable protection against severe malaria, including severe malarial anaemia (SMA) (Hb concentration < 50 g/l), but does not influence parasite count. We tested the hypothesis that the erythrocyte indices associated with alpha(+)-thalassaemia homozygosity provide a haematological benefit during acute malaria. METHODS AND FINDINGS Data from children living on the north coast of Papua New Guinea who had participated in a case-control study of the protection afforded by alpha(+)-thalassaemia against severe malaria were reanalysed to assess the genotype-specific reduction in erythrocyte count and Hb levels associated with acute malarial disease. We observed a reduction in median erythrocyte count of approximately 1.5 x 10(12)/l in all children with acute falciparum malaria relative to values in community children (p < 0.001). We developed a simple mathematical model of the linear relationship between Hb concentration and erythrocyte count. This model predicted that children homozygous for alpha(+)-thalassaemia lose less Hb than children of normal genotype for a reduction in erythrocyte count of >1.1 x 10(12)/l as a result of the reduced mean cell Hb in homozygous alpha(+)-thalassaemia. In addition, children homozygous for alpha(+)-thalassaemia require a 10% greater reduction in erythrocyte count than children of normal genotype (p = 0.02) for Hb concentration to fall to 50 g/l, the cutoff for SMA. We estimated that the haematological profile in children homozygous for alpha(+)-thalassaemia reduces the risk of SMA during acute malaria compared to children of normal genotype (relative risk 0.52; 95% confidence interval [CI] 0.24-1.12, p = 0.09). CONCLUSIONS The increased erythrocyte count and microcytosis in children homozygous for alpha(+)-thalassaemia may contribute substantially to their protection against SMA. A lower concentration of Hb per erythrocyte and a larger population of erythrocytes may be a biologically advantageous strategy against the significant reduction in erythrocyte count that occurs during acute infection with the malaria parasite Plasmodium falciparum. This haematological profile may reduce the risk of anaemia by other Plasmodium species, as well as other causes of anaemia. Other host polymorphisms that induce an increased erythrocyte count and microcytosis may confer a similar advantage.
A single nucleotide variant the gene DGKK is strongly associated with increased risk of hypospadias. Blind individuals often demonstrate enhanced nonvisual perceptual abilities. However, the neural substrate that underlies this improved performance remains to be fully understood. An earlier behavioral study demonstrated that some early-blind people localize sounds more accurately than sighted controls using monaural cues. In order to investigate the neural basis of these behavioral differences in humans, we carried out functional imaging studies using positron emission tomography and a speaker array that permitted pseudo-free-field presentations within the scanner. During binaural sound localization, a sighted control group showed decreased cerebral blood flow in the occipital lobe, which was not seen in early-blind individuals. During monaural sound localization (one ear plugged), the subgroup of early-blind subjects who were behaviorally superior at sound localization displayed two activation foci in the occipital cortex. This effect was not seen in blind persons who did not have superior monaural sound localization abilities, nor in sighted individuals. The degree of activation of one of these foci was strongly correlated with sound localization accuracy across the entire group of blind subjects. The results show that those blind persons who perform better than sighted persons recruit occipital areas to carry out auditory localization under monaural conditions. We therefore conclude that computations carried out in the occipital cortex specifically underlie the enhanced capacity to use monaural cues. Our findings shed light not only on intermodal compensatory mechanisms, but also on individual differences in these mechanisms and on inhibitory patterns that differ between sighted individuals and those deprived of vision early in life. The only proven requirement for ascorbic acid (vitamin C) is in preventing scurvy, presumably because it is a cofactor for hydroxylases required for post-translational modifications that stabilize collagen. We have created mice deficient in the mouse ortholog (solute carrier family 23 member 1 or Slc23a1) of a rat ascorbic-acid transporter, Svct2 (ref. 4). Cultured embryonic fibroblasts from homozygous Slc23a1−/− mice had less than 5% of normal ascorbic-acid uptake. Ascorbic-acid levels were undetectable or markedly reduced in the blood and tissues of Slc23a1−/− mice. Prenatal supplementation of pregnant females did not elevate blood ascorbic acid in Slc23a1−/− fetuses, suggesting Slc23a1 is important in placental ascorbic-acid transport. Slc23a1−/− mice died within a few minutes of birth with respiratory failure and intraparenchymal brain hemorrhage. Lungs showed no postnatal expansion but had normal surfactant protein B levels. Brain hemorrhage was unlikely to be simply a form of scurvy since Slc23a1−/− mice showed no hemorrhage in any other tissues and their skin had normal skin 4-hydroxyproline levels despite low ascorbic-acid content. We conclude that Slc23a1 is required for transport of ascorbic acid into many tissues and across the placenta. Deficiency of the transporter is lethal in newborn mice, thereby revealing a previously unrecognized requirement for ascorbic acid in the perinatal period. The early events leading to the development of rheumatoid arthritis (RA) remain unclear, but formation of autoantibodies to citrullinated protein antigens (ACPAs) is considered a key pathogenic event. Neutrophils isolated from patients with various autoimmune diseases display enhanced neutrophil extracellular trap (NET) formation, a phenomenon that exposes autoantigens in the context of immunostimulatory molecules. We investigated whether aberrant NETosis occurs in RA, determined its triggers, and examined its deleterious inflammatory consequences. Enhanced NETosis was observed in circulating and RA synovial fluid neutrophils compared to neutrophils from healthy controls and from patients with osteoarthritis (OA). Further, netting neutrophils infiltrated RA synovial tissue, rheumatoid nodules, and skin. NETosis correlated with ACPA presence and levels and with systemic inflammatory markers. RA sera and immunoglobulin fractions from RA patients with high levels of ACPA and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these autoantibodies displayed distinct protein content. Indeed, during NETosis, neutrophils externalized the citrullinated autoantigens implicated in RA pathogenesis, and anti-citrullinated vimentin antibodies potently induced NET formation. Moreover, the inflammatory cytokines interleukin-17A (IL-17A) and tumor necrosis factor-α (TNF-α) induced NETosis in RA neutrophils. In turn, NETs significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including induction of IL-6, IL-8, chemokines, and adhesion molecules. These observations implicate accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and immunostimulatory molecules that may promote aberrant adaptive and innate immune responses in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease. Ataxia telangiectasia is a neurodegenerative disease caused by mutation of the Atm gene. Here we report that ataxia telangiectasia mutated (ATM) deficiency causes nuclear accumulation of histone deacetylase 4 (HDAC4) in neurons and promotes neurodegeneration. Nuclear HDAC4 binds to chromatin, as well as to myocyte enhancer factor 2A (MEF2A) and cAMP-responsive element binding protein (CREB), leading to histone deacetylation and altered neuronal gene expression. Blocking either HDAC4 activity or its nuclear accumulation blunts these neurodegenerative changes and rescues several behavioral abnormalities of ATM-deficient mice. Full rescue of the neurodegeneration, however, also requires the presence of HDAC4 in the cytoplasm, suggesting that the ataxia telangiectasia phenotype results both from a loss of cytoplasmic HDAC4 as well as its nuclear accumulation. To remain cytoplasmic, HDAC4 must be phosphorylated. The activity of the HDAC4 phosphatase, protein phosphatase 2A (PP2A), is downregulated by ATM-mediated phosphorylation. In ATM deficiency, enhanced PP2A activity leads to HDAC4 dephosphorylation and the nuclear accumulation of HDAC4. Our results define a crucial role of the cellular localization of HDAC4 in the events leading to ataxia telangiectasia neurodegeneration. BACKGROUND The annual number of hospital admissions and in-hospital deaths due to severe acute lower respiratory infections (ALRI) in young children worldwide is unknown. We aimed to estimate the incidence of admissions and deaths for such infections in children younger than 5 years in 2010. METHODS We estimated the incidence of admissions for severe and very severe ALRI in children younger than 5 years, stratified by age and region, with data from a systematic review of studies published between Jan 1, 1990, and March 31, 2012, and from 28 unpublished population-based studies. We applied these incidence estimates to population estimates for 2010, to calculate the global and regional burden in children admitted with severe ALRI in that year. We estimated in-hospital mortality due to severe and very severe ALRI by combining incidence estimates with case fatality ratios from hospital-based studies. FINDINGS We identified 89 eligible studies and estimated that in 2010, 11·9 million (95% CI 10·3-13·9 million) episodes of severe and 3·0 million (2·1-4·2 million) episodes of very severe ALRI resulted in hospital admissions in young children worldwide. Incidence was higher in boys than in girls, the sex disparity being greatest in South Asian studies. On the basis of data from 37 hospital studies reporting case fatality ratios for severe ALRI, we estimated that roughly 265,000 (95% CI 160,000-450,000) in-hospital deaths took place in young children, with 99% of these deaths in developing countries. Therefore, the data suggest that although 62% of children with severe ALRI are treated in hospitals, 81% of deaths happen outside hospitals. INTERPRETATION Severe ALRI is a substantial burden on health services worldwide and a major cause of hospital referral and admission in young children. Improved hospital access and reduced inequities, such as those related to sex and rural status, could substantially decrease mortality related to such infection. Community-based management of severe disease could be an important complementary strategy to reduce pneumonia mortality and health inequities. FUNDING WHO. BACKGROUND The heritable haemoglobinopathy alpha(+)-thalassaemia is caused by the reduced synthesis of alpha-globin chains that form part of normal adult haemoglobin (Hb). Individuals homozygous for alpha(+)-thalassaemia have microcytosis and an increased erythrocyte count. Alpha(+)-thalassaemia homozygosity confers considerable protection against severe malaria, including severe malarial anaemia (SMA) (Hb concentration < 50 g/l), but does not influence parasite count. We tested the hypothesis that the erythrocyte indices associated with alpha(+)-thalassaemia homozygosity provide a haematological benefit during acute malaria. METHODS AND FINDINGS Data from children living on the north coast of Papua New Guinea who had participated in a case-control study of the protection afforded by alpha(+)-thalassaemia against severe malaria were reanalysed to assess the genotype-specific reduction in erythrocyte count and Hb levels associated with acute malarial disease. We observed a reduction in median erythrocyte count of approximately 1.5 x 10(12)/l in all children with acute falciparum malaria relative to values in community children (p < 0.001). We developed a simple mathematical model of the linear relationship between Hb concentration and erythrocyte count. This model predicted that children homozygous for alpha(+)-thalassaemia lose less Hb than children of normal genotype for a reduction in erythrocyte count of >1.1 x 10(12)/l as a result of the reduced mean cell Hb in homozygous alpha(+)-thalassaemia. In addition, children homozygous for alpha(+)-thalassaemia require a 10% greater reduction in erythrocyte count than children of normal genotype (p = 0.02) for Hb concentration to fall to 50 g/l, the cutoff for SMA. We estimated that the haematological profile in children homozygous for alpha(+)-thalassaemia reduces the risk of SMA during acute malaria compared to children of normal genotype (relative risk 0.52; 95% confidence interval [CI] 0.24-1.12, p = 0.09). CONCLUSIONS The increased erythrocyte count and microcytosis in children homozygous for alpha(+)-thalassaemia may contribute substantially to their protection against SMA. A lower concentration of Hb per erythrocyte and a larger population of erythrocytes may be a biologically advantageous strategy against the significant reduction in erythrocyte count that occurs during acute infection with the malaria parasite Plasmodium falciparum. This haematological profile may reduce the risk of anaemia by other Plasmodium species, as well as other causes of anaemia. Other host polymorphisms that induce an increased erythrocyte count and microcytosis may confer a similar advantage.
0
{ "query_id": "46", "original_query_id": "46", "context_doc_ids": [ "18174210", "11328820", "9167230", "19799455", "313394", "3113630" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287250", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "11328820", "3113630", "19799455", "9167230", "18174210", "313394" ], "comprehensive_gold_set_for_query": [ "380526" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
46
aug_902
Increased conversion of PGE 2 to PPARy ligand 15-ket-PGE 2 causes accumulation of PGE. Age-related changes in the niche have long been postulated to impair the function of somatic stem cells. Here we demonstrate that the aged stem cell niche in skeletal muscle contains substantially reduced levels of fibronectin (FN), leading to detrimental consequences for the function and maintenance of muscle stem cells (MuSCs). Deletion of the gene encoding FN from young regenerating muscles replicates the aging phenotype and leads to a loss of MuSC numbers. By using an extracellular matrix (ECM) library screen and pathway profiling, we characterize FN as a preferred adhesion substrate for MuSCs and demonstrate that integrin-mediated signaling through focal adhesion kinase and the p38 mitogen-activated protein kinase pathway is strongly de-regulated in MuSCs from aged mice because of insufficient attachment to the niche. Reconstitution of FN levels in the aged niche remobilizes stem cells and restores youth-like muscle regeneration. Taken together, we identify the loss of stem cell adhesion to FN in the niche ECM as a previously unknown aging mechanism. Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (encoded by Cftr) that impair its role as an apical chloride channel that supports bicarbonate transport. Individuals with cystic fibrosis show retained, thickened mucus that plugs airways and obstructs luminal organs as well as numerous other abnormalities that include inflammation of affected organs, alterations in lipid metabolism and insulin resistance. Here we show that colonic epithelial cells and whole lung tissue from Cftr-deficient mice show a defect in peroxisome proliferator-activated receptor-gamma (PPAR-gamma, encoded by Pparg) function that contributes to a pathological program of gene expression. Lipidomic analysis of colonic epithelial cells suggests that this defect results in part from reduced amounts of the endogenous PPAR-gamma ligand 15-keto-prostaglandin E(2) (15-keto-PGE(2)). Treatment of Cftr-deficient mice with the synthetic PPAR-gamma ligand rosiglitazone partially normalizes the altered gene expression pattern associated with Cftr deficiency and reduces disease severity. Rosiglitazone has no effect on chloride secretion in the colon, but it increases expression of the genes encoding carbonic anhydrases 4 and 2 (Car4 and Car2), increases bicarbonate secretion and reduces mucus retention. These studies reveal a reversible defect in PPAR-gamma signaling in Cftr-deficient cells that can be pharmacologically corrected to ameliorate the severity of the cystic fibrosis phenotype in mice. Pluripotent mouse embryonic stem (ES) cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive. Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres. The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated. Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2) and epidermal growth factor (EGF) is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS) cells. NS cells were derived first from mouse ES cells. Neural lineage induction was followed by growth factor addition in basal culture media. In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic. After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain. Colonies generated from single NS cells all produce neurons upon growth factor withdrawal. NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia. Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain. Similar NS cells can be generated from human ES cells and human foetal brain. The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells. The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying differentiation. These homogenous cultures will enable delineation of molecular mechanisms that define a tissue-specific stem cell and allow direct comparison with pluripotent ES cells.
Increased conversion of PGE 2 to PPARy ligand 15-ket-PGE 2 causes accumulation of PGE. Age-related changes in the niche have long been postulated to impair the function of somatic stem cells. Here we demonstrate that the aged stem cell niche in skeletal muscle contains substantially reduced levels of fibronectin (FN), leading to detrimental consequences for the function and maintenance of muscle stem cells (MuSCs). Deletion of the gene encoding FN from young regenerating muscles replicates the aging phenotype and leads to a loss of MuSC numbers. By using an extracellular matrix (ECM) library screen and pathway profiling, we characterize FN as a preferred adhesion substrate for MuSCs and demonstrate that integrin-mediated signaling through focal adhesion kinase and the p38 mitogen-activated protein kinase pathway is strongly de-regulated in MuSCs from aged mice because of insufficient attachment to the niche. Reconstitution of FN levels in the aged niche remobilizes stem cells and restores youth-like muscle regeneration. Taken together, we identify the loss of stem cell adhesion to FN in the niche ECM as a previously unknown aging mechanism. Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (encoded by Cftr) that impair its role as an apical chloride channel that supports bicarbonate transport. Individuals with cystic fibrosis show retained, thickened mucus that plugs airways and obstructs luminal organs as well as numerous other abnormalities that include inflammation of affected organs, alterations in lipid metabolism and insulin resistance. Here we show that colonic epithelial cells and whole lung tissue from Cftr-deficient mice show a defect in peroxisome proliferator-activated receptor-gamma (PPAR-gamma, encoded by Pparg) function that contributes to a pathological program of gene expression. Lipidomic analysis of colonic epithelial cells suggests that this defect results in part from reduced amounts of the endogenous PPAR-gamma ligand 15-keto-prostaglandin E(2) (15-keto-PGE(2)). Treatment of Cftr-deficient mice with the synthetic PPAR-gamma ligand rosiglitazone partially normalizes the altered gene expression pattern associated with Cftr deficiency and reduces disease severity. Rosiglitazone has no effect on chloride secretion in the colon, but it increases expression of the genes encoding carbonic anhydrases 4 and 2 (Car4 and Car2), increases bicarbonate secretion and reduces mucus retention. These studies reveal a reversible defect in PPAR-gamma signaling in Cftr-deficient cells that can be pharmacologically corrected to ameliorate the severity of the cystic fibrosis phenotype in mice. Pluripotent mouse embryonic stem (ES) cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive. Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres. The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated. Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2) and epidermal growth factor (EGF) is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS) cells. NS cells were derived first from mouse ES cells. Neural lineage induction was followed by growth factor addition in basal culture media. In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic. After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain. Colonies generated from single NS cells all produce neurons upon growth factor withdrawal. NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia. Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain. Similar NS cells can be generated from human ES cells and human foetal brain. The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells. The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying differentiation. These homogenous cultures will enable delineation of molecular mechanisms that define a tissue-specific stem cell and allow direct comparison with pluripotent ES cells.
0.5
{ "query_id": "606", "original_query_id": "606", "context_doc_ids": [ "19912367", "9988425", "712078" ], "gold_doc_ids_in_context": [ "712078" ], "total_gold_docs_for_query": 1, "context_f1": 0.5, "context_size": 3, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287349", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "712078" ], "negative_samples_considered": [ "9988425", "19912367" ], "comprehensive_gold_set_for_query": [ "712078" ], "target_max_context_size_config": 6, "actual_context_size": 3, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
606
aug_903
Primary pro-inflammatory cytokines suppress secondary pro- and anti-inflammatory mediators. Little is known about the inter-individual variation of cytokine responses to different pathogens in healthy individuals. To systematically describe cytokine responses elicited by distinct pathogens and to determine the effect of genetic variation on cytokine production, we profiled cytokines produced by peripheral blood mononuclear cells from 197 individuals of European origin from the 200 Functional Genomics (200FG) cohort in the Human Functional Genomics Project (http://www.humanfunctionalgenomics.org), obtained over three different years. We compared bacteria- and fungi-induced cytokine profiles and found that most cytokine responses were organized around a physiological response to specific pathogens, rather than around a particular immune pathway or cytokine. We then correlated genome-wide single-nucleotide polymorphism (SNP) genotypes with cytokine abundance and identified six cytokine quantitative trait loci (QTLs). Among them, a cytokine QTL at the NAA35-GOLM1 locus markedly modulated interleukin (IL)-6 production in response to multiple pathogens and was associated with susceptibility to candidemia. Furthermore, the cytokine QTLs that we identified were enriched among SNPs previously associated with infectious diseases and heart diseases. These data reveal and begin to explain the variability in cytokine production by human immune cells in response to pathogens.
Primary pro-inflammatory cytokines suppress secondary pro- and anti-inflammatory mediators. Little is known about the inter-individual variation of cytokine responses to different pathogens in healthy individuals. To systematically describe cytokine responses elicited by distinct pathogens and to determine the effect of genetic variation on cytokine production, we profiled cytokines produced by peripheral blood mononuclear cells from 197 individuals of European origin from the 200 Functional Genomics (200FG) cohort in the Human Functional Genomics Project (http://www.humanfunctionalgenomics.org), obtained over three different years. We compared bacteria- and fungi-induced cytokine profiles and found that most cytokine responses were organized around a physiological response to specific pathogens, rather than around a particular immune pathway or cytokine. We then correlated genome-wide single-nucleotide polymorphism (SNP) genotypes with cytokine abundance and identified six cytokine quantitative trait loci (QTLs). Among them, a cytokine QTL at the NAA35-GOLM1 locus markedly modulated interleukin (IL)-6 production in response to multiple pathogens and was associated with susceptibility to candidemia. Furthermore, the cytokine QTLs that we identified were enriched among SNPs previously associated with infectious diseases and heart diseases. These data reveal and begin to explain the variability in cytokine production by human immune cells in response to pathogens.
1
{ "query_id": "976", "original_query_id": "976", "context_doc_ids": [ "5304891" ], "gold_doc_ids_in_context": [ "5304891" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287389", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "5304891" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "5304891" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
976
aug_904
Normal granulomas form in the presence of TNF in Zebrafish. Tumor necrosis factor (TNF), a key effector in controlling tuberculosis, is thought to exert protection by directing formation of granulomas, organized aggregates of macrophages and other immune cells. Loss of TNF signaling causes progression of tuberculosis in humans, and the increased mortality of Mycobacterium tuberculosis-infected mice is associated with disorganized necrotic granulomas, although the precise roles of TNF signaling preceding this endpoint remain undefined. We monitored transparent Mycobacterium marinum-infected zebrafish live to conduct a stepwise dissection of how TNF signaling operates in mycobacterial pathogenesis. We found that loss of TNF signaling caused increased mortality even when only innate immunity was operant. In the absence of TNF, intracellular bacterial growth and granuloma formation were accelerated and was followed by necrotic death of overladen macrophages and granuloma breakdown. Thus, TNF is not required for tuberculous granuloma formation, but maintains granuloma integrity indirectly by restricting mycobacterial growth within macrophages and preventing their necrosis.
Normal granulomas form in the presence of TNF in Zebrafish. Tumor necrosis factor (TNF), a key effector in controlling tuberculosis, is thought to exert protection by directing formation of granulomas, organized aggregates of macrophages and other immune cells. Loss of TNF signaling causes progression of tuberculosis in humans, and the increased mortality of Mycobacterium tuberculosis-infected mice is associated with disorganized necrotic granulomas, although the precise roles of TNF signaling preceding this endpoint remain undefined. We monitored transparent Mycobacterium marinum-infected zebrafish live to conduct a stepwise dissection of how TNF signaling operates in mycobacterial pathogenesis. We found that loss of TNF signaling caused increased mortality even when only innate immunity was operant. In the absence of TNF, intracellular bacterial growth and granuloma formation were accelerated and was followed by necrotic death of overladen macrophages and granuloma breakdown. Thus, TNF is not required for tuberculous granuloma formation, but maintains granuloma integrity indirectly by restricting mycobacterial growth within macrophages and preventing their necrosis.
1
{ "query_id": "861", "original_query_id": "861", "context_doc_ids": [ "16066726" ], "gold_doc_ids_in_context": [ "16066726" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287404", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "16066726" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "16066726" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
861
aug_905
Knockout proximal tubule-specific deletion of the BMP receptor Alk3 causes epithelial damage. BACKGROUND Histone deimination regulates gene function and contributes to antimicrobial response, allowing the formation of neutrophil extracellular traps (NETs). Deiminated proteins are target of anti-citrullinated peptides antibodies (ACPA) in rheumatoid arthritis (RA). OBJECTIVE The objective of this paper is to test the hypothesis that RA sera react with deiminated histones contained in NETs. METHODS Neutrophils from peripheral blood were stimulated with A23187 and acid treated; NETosis was induced by phorbol myristate acetate, and NET proteins were isolated. Sera were tested by immunoblot on acid extracted proteins from neutrophils and from NETs, and by ELISA on deiminated histone H4 or H4-derived peptides. Bands reactive with RA sera were excised from gels, digested with trypsin and subjected to matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) analysis, before and after derivatisation to detect citrullinated peptides. RESULTS RA sera reacted with a deiminated antigen of 11 KDa from activated neutrophils, recognised also by anti-H4 and antideiminated H4 antibodies. A similar reactivity was observed with NET proteins. The antigen from neutrophils or NETs was identified as citrullinated H4 by MALDI-TOF analysis. By ELISA, RA sera bound in vitro citrullinated H4. Citrullinated H4 14-34 and 31-50 peptides detected antibodies in 67% and 63% of RA sera and in less than 5% of controls; antibody titre was correlated with anti-CCP2. CONCLUSIONS Citrullinated H4 from activated neutrophils and NETs is a target of antibodies in RA, and synthetic citrullinated H4-derived peptides are a new substrate for ACPA detection. As NETosis can generate antigens for ACPA, these data suggest a novel connection between innate and adaptive immunity in RA. Stressed cells coordinate a multi-faceted response spanning many levels of physiology. Yet knowledge of the complete stress-activated regulatory network as well as design principles for signal integration remains incomplete. We developed an experimental and computational approach to integrate available protein interaction data with gene fitness contributions, mutant transcriptome profiles, and phospho-proteome changes in cells responding to salt stress, to infer the salt-responsive signaling network in yeast. The inferred subnetwork presented many novel predictions by implicating new regulators, uncovering unrecognized crosstalk between known pathways, and pointing to previously unknown 'hubs' of signal integration. We exploited these predictions to show that Cdc14 phosphatase is a central hub in the network and that modification of RNA polymerase II coordinates induction of stress-defense genes with reduction of growth-related transcripts. We find that the orthologous human network is enriched for cancer-causing genes, underscoring the importance of the subnetwork's predictions in understanding stress biology. OBJECTIVE To determine whether individual fruits are differentially associated with risk of type 2 diabetes. DESIGN Prospective longitudinal cohort study. SETTING Health professionals in the United States. PARTICIPANTS 66,105 women from the Nurses' Health Study (1984-2008), 85,104 women from the Nurses' Health Study II (1991-2009), and 36,173 men from the Health Professionals Follow-up Study (1986-2008) who were free of major chronic diseases at baseline in these studies. MAIN OUTCOME MEASURE Incident cases of type 2 diabetes, identified through self report and confirmed by supplementary questionnaires. RESULTS During 3,464,641 person years of follow-up, 12,198 participants developed type 2 diabetes. After adjustment for personal, lifestyle, and dietary risk factors of diabetes, the pooled hazard ratio of type 2 diabetes for every three servings/week of total whole fruit consumption was 0.98 (95% confidence interval 0.97 [corrected] to 0.99). With mutual adjustment of individual fruits, the pooled hazard ratios of type 2 diabetes for every three servings/week were 0.74 (0.66 to 0.83) for blueberries, 0.88 (0.83 to 0.93) for grapes and raisins, 0.89 (0.79 to 1.01) for prunes, 0.93 (0.90 to 0.96) for apples and pears, 0.95 (0.91 to 0.98) for bananas, 0.95 (0.91 to 0.99) for grapefruit, 0.97 (0.92 to 1.02) for peaches, plums, and apricots, 0.99 (0.95 to 1.03) for oranges, 1.03 (0.96 to 1.10) for strawberries, and 1.10 (1.02 to 1.18) for cantaloupe. The pooled hazard ratio for the same increment in fruit juice consumption was 1.08 (1.05 to 1.11). The associations with risk of type 2 diabetes differed significantly among individual fruits (P<0.001 in all cohorts). CONCLUSION Our findings suggest the presence of heterogeneity in the associations between individual fruit consumption and risk of type 2 diabetes. Greater consumption of specific whole fruits, particularly blueberries, grapes, and apples, is significantly associated with a lower risk of type 2 diabetes, whereas greater consumption of fruit juice is associated with a higher risk. Clomifene is widely used for inducing ovulation.1 It is structurally related to diethylstilbestrol, which has been linked to vaginal and cervical clear cell adenocarcinoma in women exposed in utero. The adverse effect is less severe in sons, although links to testicular cancer and urogenital anomalies, such as epididymal cysts, have been reported.2 3 A recent study also found an increased risk of hypospadias in the sons of women exposed to diethylstilbestrol in utero.4 Clomifene has a half life of about five days, but its metabolites have been found in blood samples on day 22 of the menstrual cycle and in faeces up to six weeks after administration.5 The occurrence of hypospadias may be increasing. Little is known about the risk of hypospadias in boys born to women who have used clomifene to induce ovulation. ### Methods and results Our case-control study was done in the Danish counties of North Jutland, Aarhus, Viborg, and … Lipid droplets are ubiquitous triglyceride and sterol ester storage organelles required for energy storage homeostasis and biosynthesis. Although little is known about lipid droplet formation and regulation, it is clear that members of the PAT (perilipin, adipocyte differentiation related protein, tail interacting protein of 47 kDa) protein family coat the droplet surface and mediate interactions with lipases that remobilize the stored lipids. We identified key Drosophila candidate genes for lipid droplet regulation by RNA interference (RNAi) screening with an image segmentation-based optical read-out system, and show that these regulatory functions are conserved in the mouse. Those include the vesicle-mediated Coat Protein Complex I (COPI) transport complex, which is required for limiting lipid storage. We found that COPI components regulate the PAT protein composition at the lipid droplet surface, and promote the association of adipocyte triglyceride lipase (ATGL) with the lipid droplet surface to mediate lipolysis. Two compounds known to inhibit COPI function, Exo1 and Brefeldin A, phenocopy COPI knockdowns. Furthermore, RNAi inhibition of ATGL and simultaneous drug treatment indicate that COPI and ATGL function in the same pathway. These data indicate that the COPI complex is an evolutionarily conserved regulator of lipid homeostasis, and highlight an interaction between vesicle transport systems and lipid droplets. Emerging data suggest that microRNAs (miRNAs) are instrumental in a variety of stress responses in addition to their more recognized role in development. Surprisingly, miRNAs, which normally suppress expression of target transcripts, may become activators of expression during stress. This might be partially explained by new interactions of miRNA/Argonaute complexes with RNA-binding proteins that relocate from different subcellular compartments during stress.
Knockout proximal tubule-specific deletion of the BMP receptor Alk3 causes epithelial damage. BACKGROUND Histone deimination regulates gene function and contributes to antimicrobial response, allowing the formation of neutrophil extracellular traps (NETs). Deiminated proteins are target of anti-citrullinated peptides antibodies (ACPA) in rheumatoid arthritis (RA). OBJECTIVE The objective of this paper is to test the hypothesis that RA sera react with deiminated histones contained in NETs. METHODS Neutrophils from peripheral blood were stimulated with A23187 and acid treated; NETosis was induced by phorbol myristate acetate, and NET proteins were isolated. Sera were tested by immunoblot on acid extracted proteins from neutrophils and from NETs, and by ELISA on deiminated histone H4 or H4-derived peptides. Bands reactive with RA sera were excised from gels, digested with trypsin and subjected to matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) analysis, before and after derivatisation to detect citrullinated peptides. RESULTS RA sera reacted with a deiminated antigen of 11 KDa from activated neutrophils, recognised also by anti-H4 and antideiminated H4 antibodies. A similar reactivity was observed with NET proteins. The antigen from neutrophils or NETs was identified as citrullinated H4 by MALDI-TOF analysis. By ELISA, RA sera bound in vitro citrullinated H4. Citrullinated H4 14-34 and 31-50 peptides detected antibodies in 67% and 63% of RA sera and in less than 5% of controls; antibody titre was correlated with anti-CCP2. CONCLUSIONS Citrullinated H4 from activated neutrophils and NETs is a target of antibodies in RA, and synthetic citrullinated H4-derived peptides are a new substrate for ACPA detection. As NETosis can generate antigens for ACPA, these data suggest a novel connection between innate and adaptive immunity in RA. Stressed cells coordinate a multi-faceted response spanning many levels of physiology. Yet knowledge of the complete stress-activated regulatory network as well as design principles for signal integration remains incomplete. We developed an experimental and computational approach to integrate available protein interaction data with gene fitness contributions, mutant transcriptome profiles, and phospho-proteome changes in cells responding to salt stress, to infer the salt-responsive signaling network in yeast. The inferred subnetwork presented many novel predictions by implicating new regulators, uncovering unrecognized crosstalk between known pathways, and pointing to previously unknown 'hubs' of signal integration. We exploited these predictions to show that Cdc14 phosphatase is a central hub in the network and that modification of RNA polymerase II coordinates induction of stress-defense genes with reduction of growth-related transcripts. We find that the orthologous human network is enriched for cancer-causing genes, underscoring the importance of the subnetwork's predictions in understanding stress biology. OBJECTIVE To determine whether individual fruits are differentially associated with risk of type 2 diabetes. DESIGN Prospective longitudinal cohort study. SETTING Health professionals in the United States. PARTICIPANTS 66,105 women from the Nurses' Health Study (1984-2008), 85,104 women from the Nurses' Health Study II (1991-2009), and 36,173 men from the Health Professionals Follow-up Study (1986-2008) who were free of major chronic diseases at baseline in these studies. MAIN OUTCOME MEASURE Incident cases of type 2 diabetes, identified through self report and confirmed by supplementary questionnaires. RESULTS During 3,464,641 person years of follow-up, 12,198 participants developed type 2 diabetes. After adjustment for personal, lifestyle, and dietary risk factors of diabetes, the pooled hazard ratio of type 2 diabetes for every three servings/week of total whole fruit consumption was 0.98 (95% confidence interval 0.97 [corrected] to 0.99). With mutual adjustment of individual fruits, the pooled hazard ratios of type 2 diabetes for every three servings/week were 0.74 (0.66 to 0.83) for blueberries, 0.88 (0.83 to 0.93) for grapes and raisins, 0.89 (0.79 to 1.01) for prunes, 0.93 (0.90 to 0.96) for apples and pears, 0.95 (0.91 to 0.98) for bananas, 0.95 (0.91 to 0.99) for grapefruit, 0.97 (0.92 to 1.02) for peaches, plums, and apricots, 0.99 (0.95 to 1.03) for oranges, 1.03 (0.96 to 1.10) for strawberries, and 1.10 (1.02 to 1.18) for cantaloupe. The pooled hazard ratio for the same increment in fruit juice consumption was 1.08 (1.05 to 1.11). The associations with risk of type 2 diabetes differed significantly among individual fruits (P<0.001 in all cohorts). CONCLUSION Our findings suggest the presence of heterogeneity in the associations between individual fruit consumption and risk of type 2 diabetes. Greater consumption of specific whole fruits, particularly blueberries, grapes, and apples, is significantly associated with a lower risk of type 2 diabetes, whereas greater consumption of fruit juice is associated with a higher risk. Clomifene is widely used for inducing ovulation.1 It is structurally related to diethylstilbestrol, which has been linked to vaginal and cervical clear cell adenocarcinoma in women exposed in utero. The adverse effect is less severe in sons, although links to testicular cancer and urogenital anomalies, such as epididymal cysts, have been reported.2 3 A recent study also found an increased risk of hypospadias in the sons of women exposed to diethylstilbestrol in utero.4 Clomifene has a half life of about five days, but its metabolites have been found in blood samples on day 22 of the menstrual cycle and in faeces up to six weeks after administration.5 The occurrence of hypospadias may be increasing. Little is known about the risk of hypospadias in boys born to women who have used clomifene to induce ovulation. ### Methods and results Our case-control study was done in the Danish counties of North Jutland, Aarhus, Viborg, and … Lipid droplets are ubiquitous triglyceride and sterol ester storage organelles required for energy storage homeostasis and biosynthesis. Although little is known about lipid droplet formation and regulation, it is clear that members of the PAT (perilipin, adipocyte differentiation related protein, tail interacting protein of 47 kDa) protein family coat the droplet surface and mediate interactions with lipases that remobilize the stored lipids. We identified key Drosophila candidate genes for lipid droplet regulation by RNA interference (RNAi) screening with an image segmentation-based optical read-out system, and show that these regulatory functions are conserved in the mouse. Those include the vesicle-mediated Coat Protein Complex I (COPI) transport complex, which is required for limiting lipid storage. We found that COPI components regulate the PAT protein composition at the lipid droplet surface, and promote the association of adipocyte triglyceride lipase (ATGL) with the lipid droplet surface to mediate lipolysis. Two compounds known to inhibit COPI function, Exo1 and Brefeldin A, phenocopy COPI knockdowns. Furthermore, RNAi inhibition of ATGL and simultaneous drug treatment indicate that COPI and ATGL function in the same pathway. These data indicate that the COPI complex is an evolutionarily conserved regulator of lipid homeostasis, and highlight an interaction between vesicle transport systems and lipid droplets. Emerging data suggest that microRNAs (miRNAs) are instrumental in a variety of stress responses in addition to their more recognized role in development. Surprisingly, miRNAs, which normally suppress expression of target transcripts, may become activators of expression during stress. This might be partially explained by new interactions of miRNA/Argonaute complexes with RNA-binding proteins that relocate from different subcellular compartments during stress.
0
{ "query_id": "670", "original_query_id": "670", "context_doc_ids": [ "13794374", "43329366", "418246", "2251426", "30041340", "1974176" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287418", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "418246", "2251426", "43329366", "1974176", "30041340", "13794374" ], "comprehensive_gold_set_for_query": [ "5573975" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
670
aug_906
CHOP is a general endoplasmic reticulum stress marker. Over the past two decades there have been significant achievements in the control of a handful of important human tropical infections [1]. These achievements include the substantive reductions in the prevalence and incidence of the so-called neglected diseases such as lymphatic filariasis, onchocerciasis, guinea worm, leprosy, and trachoma (Box 1) [2]. Each of these neglected diseases is a poverty-promoting and often stigmatizing condition occurring primarily in rural areas of low-income countries (Box 2) [3]. They are ancient afflictions, described in the Bible and other ancient texts, which have burdened humanity for millennia [3]. But now, as a result of aggressive regional vertical interventions, there is a possibility that some neglected tropical infections could be eventually controlled to the point of elimination in some areas of endemicity [2–8]. In the case of guinea worm infection, disease eradication might also soon be possible [9]. Box 2. Common Features of the Neglected Tropical Diseases Ancient afflictions that have burdened humanity for centuries Poverty-promoting conditions Associated with stigma Rural areas of low-income countries and fragile states No commercial markets for products that target these diseases Interventions, when applied, have a history of success Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL. Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein. IMPORTANCE Combining pharmacotherapies for tobacco-dependence treatment may increase smoking abstinence. OBJECTIVE To determine efficacy and safety of varenicline and bupropion sustained-release (SR; combination therapy) compared with varenicline (monotherapy) in cigarette smokers. DESIGN, SETTING, AND PARTICIPANTS Randomized, blinded, placebo-controlled multicenter clinical trial with a 12-week treatment period and follow-up through week 52 conducted between October 2009 and April 2013 at 3 midwestern clinical research sites. Five hundred six adult (≥18 years) cigarette smokers were randomly assigned and 315 (62%) completed the study. INTERVENTIONS Twelve weeks of varenicline and bupropion SR or varenicline and placebo. MAIN OUTCOMES AND MEASURES Primary outcome was abstinence rates at week 12, defined as prolonged (no smoking from 2 weeks after the target quit date) abstinence and 7-day point-prevalence (no smoking past 7 days) abstinence. Secondary outcomes were prolonged and point-prevalence smoking abstinence rates at weeks 26 and 52. Outcomes were biochemically confirmed. RESULTS At 12 weeks, 53.0% of the combination therapy group achieved prolonged smoking abstinence and 56.2% achieved 7-day point-prevalence smoking abstinence compared with 43.2% and 48.6% in varenicline monotherapy (odds ratio [OR], 1.49; 95% CI, 1.05-2.12; P = .03 and OR, 1.36; 95% CI, 0.95-1.93; P = .09, respectively). At 26 weeks, 36.6% of the combination therapy group achieved prolonged and 38.2% achieved 7-day point-prevalence smoking abstinence compared with 27.6% and 31.9% in varenicline monotherapy (OR, 1.52; 95% CI, 1.04-2.22; P = .03 and OR, 1.32; 95% CI, 0.91-1.91; P = .14, respectively). At 52 weeks, 30.9% of the combination therapy group achieved prolonged and 36.6% achieved 7-day point-prevalence smoking abstinence compared with 24.5% and 29.2% in varenicline monotherapy (OR, 1.39; 95% CI, 0.93-2.07; P = .11 and OR, 1.40; 95% CI, 0.96-2.05; P = .08, respectively). Participants receiving combination therapy reported more anxiety (7.2% vs 3.1%; P = .04) and depressive symptoms (3.6% vs 0.8%; P = .03). CONCLUSIONS AND RELEVANCE Among cigarette smokers, combined use of varenicline and bupropion, compared with varenicline alone, increased prolonged abstinence but not 7-day point prevalence at 12 and 26 weeks. Neither outcome was significantly different at 52 weeks. Further research is required to determine the role of combination therapy in smoking cessation. TRIAL REGISTRATION clinicaltrials.gov Identifier: http://clinicaltrials.gov/show/NCT00935818. Endoplasmic reticulum (ER) stress causes pancreatic β-cell dysfunction and contributes to β-cell loss and the progression of type 2 diabetes. Wolfram syndrome 1 (WFS1) has been shown to be an important regulator of the ER stress signalling pathway; however, its role in β-cell function remains unclear. Here we provide evidence that WFS1 is essential for glucose- and glucagon-like peptide 1 (GLP-1)-stimulated cyclic AMP production and regulation of insulin biosynthesis and secretion. Stimulation with glucose causes WFS1 translocation from the ER to the plasma membrane, where it forms a complex with adenylyl cyclase 8 (AC8), an essential cAMP-generating enzyme in the β-cell that integrates glucose and GLP-1 signalling. ER stress and mutant WFS1 inhibit complex formation and activation of AC8, reducing cAMP synthesis and insulin secretion. These findings reveal that an ER-stress-related protein has a distinct role outside the ER regulating both insulin biosynthesis and secretion. The reduction of WFS1 protein on the plasma membrane during ER stress is a contributing factor for β-cell dysfunction and progression of type 2 diabetes.
CHOP is a general endoplasmic reticulum stress marker. Over the past two decades there have been significant achievements in the control of a handful of important human tropical infections [1]. These achievements include the substantive reductions in the prevalence and incidence of the so-called neglected diseases such as lymphatic filariasis, onchocerciasis, guinea worm, leprosy, and trachoma (Box 1) [2]. Each of these neglected diseases is a poverty-promoting and often stigmatizing condition occurring primarily in rural areas of low-income countries (Box 2) [3]. They are ancient afflictions, described in the Bible and other ancient texts, which have burdened humanity for millennia [3]. But now, as a result of aggressive regional vertical interventions, there is a possibility that some neglected tropical infections could be eventually controlled to the point of elimination in some areas of endemicity [2–8]. In the case of guinea worm infection, disease eradication might also soon be possible [9]. Box 2. Common Features of the Neglected Tropical Diseases Ancient afflictions that have burdened humanity for centuries Poverty-promoting conditions Associated with stigma Rural areas of low-income countries and fragile states No commercial markets for products that target these diseases Interventions, when applied, have a history of success Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL. Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein. IMPORTANCE Combining pharmacotherapies for tobacco-dependence treatment may increase smoking abstinence. OBJECTIVE To determine efficacy and safety of varenicline and bupropion sustained-release (SR; combination therapy) compared with varenicline (monotherapy) in cigarette smokers. DESIGN, SETTING, AND PARTICIPANTS Randomized, blinded, placebo-controlled multicenter clinical trial with a 12-week treatment period and follow-up through week 52 conducted between October 2009 and April 2013 at 3 midwestern clinical research sites. Five hundred six adult (≥18 years) cigarette smokers were randomly assigned and 315 (62%) completed the study. INTERVENTIONS Twelve weeks of varenicline and bupropion SR or varenicline and placebo. MAIN OUTCOMES AND MEASURES Primary outcome was abstinence rates at week 12, defined as prolonged (no smoking from 2 weeks after the target quit date) abstinence and 7-day point-prevalence (no smoking past 7 days) abstinence. Secondary outcomes were prolonged and point-prevalence smoking abstinence rates at weeks 26 and 52. Outcomes were biochemically confirmed. RESULTS At 12 weeks, 53.0% of the combination therapy group achieved prolonged smoking abstinence and 56.2% achieved 7-day point-prevalence smoking abstinence compared with 43.2% and 48.6% in varenicline monotherapy (odds ratio [OR], 1.49; 95% CI, 1.05-2.12; P = .03 and OR, 1.36; 95% CI, 0.95-1.93; P = .09, respectively). At 26 weeks, 36.6% of the combination therapy group achieved prolonged and 38.2% achieved 7-day point-prevalence smoking abstinence compared with 27.6% and 31.9% in varenicline monotherapy (OR, 1.52; 95% CI, 1.04-2.22; P = .03 and OR, 1.32; 95% CI, 0.91-1.91; P = .14, respectively). At 52 weeks, 30.9% of the combination therapy group achieved prolonged and 36.6% achieved 7-day point-prevalence smoking abstinence compared with 24.5% and 29.2% in varenicline monotherapy (OR, 1.39; 95% CI, 0.93-2.07; P = .11 and OR, 1.40; 95% CI, 0.96-2.05; P = .08, respectively). Participants receiving combination therapy reported more anxiety (7.2% vs 3.1%; P = .04) and depressive symptoms (3.6% vs 0.8%; P = .03). CONCLUSIONS AND RELEVANCE Among cigarette smokers, combined use of varenicline and bupropion, compared with varenicline alone, increased prolonged abstinence but not 7-day point prevalence at 12 and 26 weeks. Neither outcome was significantly different at 52 weeks. Further research is required to determine the role of combination therapy in smoking cessation. TRIAL REGISTRATION clinicaltrials.gov Identifier: http://clinicaltrials.gov/show/NCT00935818. Endoplasmic reticulum (ER) stress causes pancreatic β-cell dysfunction and contributes to β-cell loss and the progression of type 2 diabetes. Wolfram syndrome 1 (WFS1) has been shown to be an important regulator of the ER stress signalling pathway; however, its role in β-cell function remains unclear. Here we provide evidence that WFS1 is essential for glucose- and glucagon-like peptide 1 (GLP-1)-stimulated cyclic AMP production and regulation of insulin biosynthesis and secretion. Stimulation with glucose causes WFS1 translocation from the ER to the plasma membrane, where it forms a complex with adenylyl cyclase 8 (AC8), an essential cAMP-generating enzyme in the β-cell that integrates glucose and GLP-1 signalling. ER stress and mutant WFS1 inhibit complex formation and activation of AC8, reducing cAMP synthesis and insulin secretion. These findings reveal that an ER-stress-related protein has a distinct role outside the ER regulating both insulin biosynthesis and secretion. The reduction of WFS1 protein on the plasma membrane during ER stress is a contributing factor for β-cell dysfunction and progression of type 2 diabetes.
0.333333
{ "query_id": "209", "original_query_id": "209", "context_doc_ids": [ "32587939", "4421578", "11614737", "1215116", "6421792" ], "gold_doc_ids_in_context": [ "32587939" ], "total_gold_docs_for_query": 1, "context_f1": 0.33333333333333337, "context_size": 5, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287497", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "32587939" ], "negative_samples_considered": [ "4421578", "11614737", "1215116", "6421792" ], "comprehensive_gold_set_for_query": [ "32587939" ], "target_max_context_size_config": 6, "actual_context_size": 5, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
209
aug_907
Systemic immunosuppressive (IS) therapy does not enhance the chance of cancer mortality in patients with inflammatory eye disease (IED) CONTEXT Whether immunosuppressive treatment adversely affects survival is unclear. OBJECTIVE To assess whether immunosuppressive drugs increase mortality. DESIGN Retrospective cohort study evaluating overall and cancer mortality in relation to immunosuppressive drug exposure among patients with ocular inflammatory diseases. Demographic, clinical, and treatment data derived from medical records, and mortality results from United States National Death Index linkage. The cohort's mortality risk was compared with US vital statistics using standardised mortality ratios. Overall and cancer mortality in relation to use or non-use of immunosuppressive drugs within the cohort was studied with survival analysis. SETTING Five tertiary ocular inflammation clinics. Patients 7957 US residents with non-infectious ocular inflammation, 2340 of whom received immunosuppressive drugs during follow up. Exposures Use of antimetabolites, T cell inhibitors, alkylating agents, and tumour necrosis factor inhibitors. MAIN OUTCOME MEASURES Overall mortality, cancer mortality. RESULTS Over 66 802 person years (17 316 after exposure to immunosuppressive drugs), 936 patients died (1.4/100 person years), 230 (24.6%) from cancer. For patients unexposed to immunosuppressive treatment, risks of death overall (standardised mortality ratio 1.02, 95% confidence interval [CI] 0.94 to 1.11) and from cancer (1.10, 0.93 to 1.29) were similar to those of the US population. Patients who used azathioprine, methotrexate, mycophenolate mofetil, ciclosporin, systemic corticosteroids, or dapsone had overall and cancer mortality similar to that of patients who never took immunosuppressive drugs. In patients who used cyclophosphamide, overall mortality was not increased and cancer mortality was non-significantly increased. Tumour necrosis factor inhibitors were associated with increased overall (adjusted hazard ratio [HR] 1.99, 95% CI 1.00 to 3.98) and cancer mortality (adjusted HR 3.83, 1.13 to 13.01). CONCLUSIONS Most commonly used immunosuppressive drugs do not seem to increase overall or cancer mortality. Our results suggesting that tumour necrosis factor inhibitors might increase mortality are less robust than the other findings; additional evidence is needed. The role of ataxia telangiectasia mutated (ATM), a DNA double-strand break recognition and response protein, in inflammation and inflammatory diseases is unclear. We have previously shown that high levels of systemic DNA damage are induced by intestinal inflammation in wild-type mice. To determine the effect of Atm deficiency in inflammation, we induced experimental colitis in Atm(-/-), Atm(+/-), and wild-type mice via dextran sulfate sodium (DSS) administration. Atm(-/-) mice had higher disease activity indices and rates of mortality compared with heterozygous and wild-type mice. Systemic DNA damage and immune response were characterized in peripheral blood throughout and after three cycles of treatment. Atm(-/-) mice showed increased sensitivity to levels of DNA strand breaks in peripheral leukocytes, as well as micronucleus formation in erythroblasts, compared with heterozygous and wild-type mice, especially during remission periods and after the end of treatment. Markers of reactive oxygen and nitrogen species-mediated damage, including 8-oxoguanine and nitrotyrosine, were present both in the distal colon and in peripheral leukocytes, with Atm(-/-) mice manifesting more 8-oxoguanine formation than wild-type mice. Atm(-/-) mice showed greater upregulation of inflammatory cytokines and significantly higher percentages of activated CD69+ and CD44+ T cells in the peripheral blood throughout treatment. ATM, therefore, may be a critical immunoregulatory factor dampening the deleterious effects of chronic DSS-induced inflammation, necessary for systemic genomic stability and homeostasis of the gut epithelial barrier. Recognition of modified histones by ‘reader’ proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific ‘Ser 31’ residue in a composite pocket formed by the tandem bromo–PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.
Systemic immunosuppressive (IS) therapy does not enhance the chance of cancer mortality in patients with inflammatory eye disease (IED) CONTEXT Whether immunosuppressive treatment adversely affects survival is unclear. OBJECTIVE To assess whether immunosuppressive drugs increase mortality. DESIGN Retrospective cohort study evaluating overall and cancer mortality in relation to immunosuppressive drug exposure among patients with ocular inflammatory diseases. Demographic, clinical, and treatment data derived from medical records, and mortality results from United States National Death Index linkage. The cohort's mortality risk was compared with US vital statistics using standardised mortality ratios. Overall and cancer mortality in relation to use or non-use of immunosuppressive drugs within the cohort was studied with survival analysis. SETTING Five tertiary ocular inflammation clinics. Patients 7957 US residents with non-infectious ocular inflammation, 2340 of whom received immunosuppressive drugs during follow up. Exposures Use of antimetabolites, T cell inhibitors, alkylating agents, and tumour necrosis factor inhibitors. MAIN OUTCOME MEASURES Overall mortality, cancer mortality. RESULTS Over 66 802 person years (17 316 after exposure to immunosuppressive drugs), 936 patients died (1.4/100 person years), 230 (24.6%) from cancer. For patients unexposed to immunosuppressive treatment, risks of death overall (standardised mortality ratio 1.02, 95% confidence interval [CI] 0.94 to 1.11) and from cancer (1.10, 0.93 to 1.29) were similar to those of the US population. Patients who used azathioprine, methotrexate, mycophenolate mofetil, ciclosporin, systemic corticosteroids, or dapsone had overall and cancer mortality similar to that of patients who never took immunosuppressive drugs. In patients who used cyclophosphamide, overall mortality was not increased and cancer mortality was non-significantly increased. Tumour necrosis factor inhibitors were associated with increased overall (adjusted hazard ratio [HR] 1.99, 95% CI 1.00 to 3.98) and cancer mortality (adjusted HR 3.83, 1.13 to 13.01). CONCLUSIONS Most commonly used immunosuppressive drugs do not seem to increase overall or cancer mortality. Our results suggesting that tumour necrosis factor inhibitors might increase mortality are less robust than the other findings; additional evidence is needed. The role of ataxia telangiectasia mutated (ATM), a DNA double-strand break recognition and response protein, in inflammation and inflammatory diseases is unclear. We have previously shown that high levels of systemic DNA damage are induced by intestinal inflammation in wild-type mice. To determine the effect of Atm deficiency in inflammation, we induced experimental colitis in Atm(-/-), Atm(+/-), and wild-type mice via dextran sulfate sodium (DSS) administration. Atm(-/-) mice had higher disease activity indices and rates of mortality compared with heterozygous and wild-type mice. Systemic DNA damage and immune response were characterized in peripheral blood throughout and after three cycles of treatment. Atm(-/-) mice showed increased sensitivity to levels of DNA strand breaks in peripheral leukocytes, as well as micronucleus formation in erythroblasts, compared with heterozygous and wild-type mice, especially during remission periods and after the end of treatment. Markers of reactive oxygen and nitrogen species-mediated damage, including 8-oxoguanine and nitrotyrosine, were present both in the distal colon and in peripheral leukocytes, with Atm(-/-) mice manifesting more 8-oxoguanine formation than wild-type mice. Atm(-/-) mice showed greater upregulation of inflammatory cytokines and significantly higher percentages of activated CD69+ and CD44+ T cells in the peripheral blood throughout treatment. ATM, therefore, may be a critical immunoregulatory factor dampening the deleterious effects of chronic DSS-induced inflammation, necessary for systemic genomic stability and homeostasis of the gut epithelial barrier. Recognition of modified histones by ‘reader’ proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific ‘Ser 31’ residue in a composite pocket formed by the tandem bromo–PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.
0.5
{ "query_id": "1125", "original_query_id": "1125", "context_doc_ids": [ "21009874", "5572127", "4455466" ], "gold_doc_ids_in_context": [ "21009874" ], "total_gold_docs_for_query": 1, "context_f1": 0.5, "context_size": 3, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287568", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "21009874" ], "negative_samples_considered": [ "4455466", "5572127" ], "comprehensive_gold_set_for_query": [ "21009874" ], "target_max_context_size_config": 6, "actual_context_size": 3, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1125
aug_908
Individuals with Alzheimers who participate in six months of physical activity improve cognitive function for up to 18 months. In single-stranded ribonucleic acid (RNA) viruses, virus capsid assembly and genome packaging are intertwined processes. Using cryo-electron microscopy and single particle analysis we determined the asymmetric virion structure of bacteriophage MS2, which includes 178 copies of the coat protein, a single copy of the A-protein and the RNA genome. This reveals that in situ, the viral RNA genome can adopt a defined conformation. The RNA forms a branched network of stem-loops that almost all allocate near the capsid inner surface, while predominantly binding to coat protein dimers that are located in one-half of the capsid. This suggests that genomic RNA is highly involved in genome packaging and virion assembly. Seizures in focal epilepsies are sustained by a highly synchronous neuronal discharge that arises at restricted brain sites and subsequently spreads to large portions of the brain. Despite intense experimental research in this field, the earlier cellular events that initiate and sustain a focal seizure are still not well defined. Their identification is central to understand the pathophysiology of focal epilepsies and to develop new pharmacological therapies for drug-resistant forms of epilepsy. The prominent involvement of astrocytes in ictogenesis was recently proposed. We test here whether a cooperation between astrocytes and neurons is a prerequisite to support ictal (seizure-like) and interictal epileptiform events. Simultaneous patch-clamp recording and Ca2+ imaging techniques were performed in a new in vitro model of focal seizures induced by local applications of N-methyl-D-aspartic acid (NMDA) in rat entorhinal cortex slices. We found that a Ca2+ elevation in astrocytes correlates with both the initial development and the maintenance of a focal, seizure-like discharge. A delayed astrocyte activation during ictal discharges was also observed in other models (including the whole in vitro isolated guinea pig brain) in which the site of generation of seizure activity cannot be precisely monitored. In contrast, interictal discharges were not associated with Ca2+ changes in astrocytes. Selective inhibition or stimulation of astrocyte Ca2+ signalling blocked or enhanced, respectively, ictal discharges, but did not affect interictal discharge generation. Our data reveal that neurons engage astrocytes in a recurrent excitatory loop (possibly involving gliotransmission) that promotes seizure ignition and sustains the ictal discharge. This neuron-astrocyte interaction may represent a novel target to develop effective therapeutic strategies to control seizures. Background Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4α) and HNF1A/TCF1 (encoding HNF-1α), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice. Mammalian long intergenic noncoding RNAs (lincRNAs) are best known for modulating transcription. Here we report a posttranscriptional function for lincRNA-p21 as a modulator of translation. Association of the RNA-binding protein HuR with lincRNA-p21 favored the recruitment of let-7/Ago2 to lincRNA-p21, leading to lower lincRNA-p21 stability. Under reduced HuR levels, lincRNA-p21 accumulated in human cervical carcinoma HeLa cells, increasing its association with JUNB and CTNNB1 mRNAs and selectively lowering their translation. With elevated HuR, lincRNA-p21 levels declined, which in turn derepressed JunB and β-catenin translation and increased the levels of these proteins. We propose that HuR controls translation of a subset of target mRNAs by influencing lincRNA-p21 levels. Our findings uncover a role for lincRNA as a posttranscriptional inhibitor of translation. Correction for: Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al. (2007) A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis. PLoS Med 4(9): e278. doi:10.1371/journal.pmed.0040278 In Table 1, the allele ratio in column eight (Allele Ratiosb: Cases, Controls) refers to allele A: allele B and not allele1:allele2 as described in footnote b, with Allele A being the Susceptibility Allele as denoted in column seven. The footnote should read: bNumber of alleles were compared in cases versus controls: allele A: allele B cases, allele A: allele B controls. Allele A refers to the susceptibility alleles as given in column seven. Nucleosomes containing the histone variant H3.3 tend to be clustered in vivo in the neighborhood of transcriptionally active genes and over regulatory elements. It has not been clear, however, whether H3.3-containing nucleosomes possess unique properties that would affect transcription. We report here that H3.3 nucleosomes isolated from vertebrates, regardless of whether they are partnered with H2A or H2A.Z, are unusually sensitive to salt-dependent disruption, losing H2A/H2B or H2A.Z/H2B dimers. Immunoprecipitation studies of nucleosome core particles (NCPs) show that NCPs that contain both H3.3 and H2A.Z are even less stable than NCPs containing H3.3 and H2A. Intriguingly, NCPs containing H3 and H2A.Z are at least as stable as H3/H2A NCPs. These results establish an hierarchy of stabilities for native nucleosomes carrying different complements of variants, and suggest how H2A.Z could play different roles depending on its partners within the NCP. They also are consistent with the idea that H3.3 plays an active role in maintaining accessible chromatin structures in enhancer regions and transcribed regions. Consistent with this idea, promoters and enhancers at transcriptionally active genes and coding regions at highly expressed genes have nucleosomes that simultaneously carry both H3.3 and H2A.Z, and should therefore be extremely sensitive to disruption.
Individuals with Alzheimers who participate in six months of physical activity improve cognitive function for up to 18 months. In single-stranded ribonucleic acid (RNA) viruses, virus capsid assembly and genome packaging are intertwined processes. Using cryo-electron microscopy and single particle analysis we determined the asymmetric virion structure of bacteriophage MS2, which includes 178 copies of the coat protein, a single copy of the A-protein and the RNA genome. This reveals that in situ, the viral RNA genome can adopt a defined conformation. The RNA forms a branched network of stem-loops that almost all allocate near the capsid inner surface, while predominantly binding to coat protein dimers that are located in one-half of the capsid. This suggests that genomic RNA is highly involved in genome packaging and virion assembly. Seizures in focal epilepsies are sustained by a highly synchronous neuronal discharge that arises at restricted brain sites and subsequently spreads to large portions of the brain. Despite intense experimental research in this field, the earlier cellular events that initiate and sustain a focal seizure are still not well defined. Their identification is central to understand the pathophysiology of focal epilepsies and to develop new pharmacological therapies for drug-resistant forms of epilepsy. The prominent involvement of astrocytes in ictogenesis was recently proposed. We test here whether a cooperation between astrocytes and neurons is a prerequisite to support ictal (seizure-like) and interictal epileptiform events. Simultaneous patch-clamp recording and Ca2+ imaging techniques were performed in a new in vitro model of focal seizures induced by local applications of N-methyl-D-aspartic acid (NMDA) in rat entorhinal cortex slices. We found that a Ca2+ elevation in astrocytes correlates with both the initial development and the maintenance of a focal, seizure-like discharge. A delayed astrocyte activation during ictal discharges was also observed in other models (including the whole in vitro isolated guinea pig brain) in which the site of generation of seizure activity cannot be precisely monitored. In contrast, interictal discharges were not associated with Ca2+ changes in astrocytes. Selective inhibition or stimulation of astrocyte Ca2+ signalling blocked or enhanced, respectively, ictal discharges, but did not affect interictal discharge generation. Our data reveal that neurons engage astrocytes in a recurrent excitatory loop (possibly involving gliotransmission) that promotes seizure ignition and sustains the ictal discharge. This neuron-astrocyte interaction may represent a novel target to develop effective therapeutic strategies to control seizures. Background Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4α) and HNF1A/TCF1 (encoding HNF-1α), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice. Mammalian long intergenic noncoding RNAs (lincRNAs) are best known for modulating transcription. Here we report a posttranscriptional function for lincRNA-p21 as a modulator of translation. Association of the RNA-binding protein HuR with lincRNA-p21 favored the recruitment of let-7/Ago2 to lincRNA-p21, leading to lower lincRNA-p21 stability. Under reduced HuR levels, lincRNA-p21 accumulated in human cervical carcinoma HeLa cells, increasing its association with JUNB and CTNNB1 mRNAs and selectively lowering their translation. With elevated HuR, lincRNA-p21 levels declined, which in turn derepressed JunB and β-catenin translation and increased the levels of these proteins. We propose that HuR controls translation of a subset of target mRNAs by influencing lincRNA-p21 levels. Our findings uncover a role for lincRNA as a posttranscriptional inhibitor of translation. Correction for: Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al. (2007) A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis. PLoS Med 4(9): e278. doi:10.1371/journal.pmed.0040278 In Table 1, the allele ratio in column eight (Allele Ratiosb: Cases, Controls) refers to allele A: allele B and not allele1:allele2 as described in footnote b, with Allele A being the Susceptibility Allele as denoted in column seven. The footnote should read: bNumber of alleles were compared in cases versus controls: allele A: allele B cases, allele A: allele B controls. Allele A refers to the susceptibility alleles as given in column seven. Nucleosomes containing the histone variant H3.3 tend to be clustered in vivo in the neighborhood of transcriptionally active genes and over regulatory elements. It has not been clear, however, whether H3.3-containing nucleosomes possess unique properties that would affect transcription. We report here that H3.3 nucleosomes isolated from vertebrates, regardless of whether they are partnered with H2A or H2A.Z, are unusually sensitive to salt-dependent disruption, losing H2A/H2B or H2A.Z/H2B dimers. Immunoprecipitation studies of nucleosome core particles (NCPs) show that NCPs that contain both H3.3 and H2A.Z are even less stable than NCPs containing H3.3 and H2A. Intriguingly, NCPs containing H3 and H2A.Z are at least as stable as H3/H2A NCPs. These results establish an hierarchy of stabilities for native nucleosomes carrying different complements of variants, and suggest how H2A.Z could play different roles depending on its partners within the NCP. They also are consistent with the idea that H3.3 plays an active role in maintaining accessible chromatin structures in enhancer regions and transcribed regions. Consistent with this idea, promoters and enhancers at transcriptionally active genes and coding regions at highly expressed genes have nucleosomes that simultaneously carry both H3.3 and H2A.Z, and should therefore be extremely sensitive to disruption.
0
{ "query_id": "621", "original_query_id": "621", "context_doc_ids": [ "1967017", "1410197", "56893404", "6903077", "13763195", "25254425" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287626", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "13763195", "6903077", "56893404", "25254425", "1410197", "1967017" ], "comprehensive_gold_set_for_query": [ "1642727" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
621
aug_909
GATA3 regulates self-renewal capacity in bone marrow hematopoietic stem cells. Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin(-)Sca1(+)c-Kit(hi)CD150(+)CD48(-)) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well documented that GATA-3 is expressed in HSCs, a role for GATA-3 in any prethymic progenitor cell has not been established. In the present study, we show that Gata3-null mutant mice generate fewer LT-HSCs and that fewer Gata3-null LT-HSCs are in cycle. Furthermore, Gata3 mutant hematopoietic progenitor cells fail to be recruited into an increased cycling state after 5-fluorouracil-induced myelosuppression. Therefore, GATA-3 is required for the maintenance of a normal number of LT-HSCs and for their entry into the cell cycle.
GATA3 regulates self-renewal capacity in bone marrow hematopoietic stem cells. Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin(-)Sca1(+)c-Kit(hi)CD150(+)CD48(-)) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well documented that GATA-3 is expressed in HSCs, a role for GATA-3 in any prethymic progenitor cell has not been established. In the present study, we show that Gata3-null mutant mice generate fewer LT-HSCs and that fewer Gata3-null LT-HSCs are in cycle. Furthermore, Gata3 mutant hematopoietic progenitor cells fail to be recruited into an increased cycling state after 5-fluorouracil-induced myelosuppression. Therefore, GATA-3 is required for the maintenance of a normal number of LT-HSCs and for their entry into the cell cycle.
1
{ "query_id": "445", "original_query_id": "445", "context_doc_ids": [ "10165258" ], "gold_doc_ids_in_context": [ "10165258" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287685", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "10165258" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "10165258" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
445
aug_910
DUSP4 increases apoptosis. Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ∼30% of patients with breast cancer. However, many patients have residual cancer after chemotherapy, which correlates with a higher risk of metastatic recurrence and poorer outcome than those who achieve a pCR. We hypothesized that molecular profiling of tumors after NAC would identify genes associated with drug resistance. Digital transcript counting was used to profile surgically resected breast cancers after NAC. Low concentrations of dual specificity protein phosphatase 4 (DUSP4), an ERK phosphatase, correlated with high post-NAC tumor cell proliferation and with basal-like breast cancer (BLBC) status. BLBC had higher DUSP4 promoter methylation and gene expression patterns of Ras-ERK pathway activation relative to other breast cancer subtypes. DUSP4 overexpression increased chemotherapy-induced apoptosis, whereas DUSP4 depletion dampened the response to chemotherapy. Reduced DUSP4 expression in primary tumors after NAC was associated with treatment-refractory high Ki-67 scores and shorter recurrence-free survival. Finally, inhibition of mitogen-activated protein kinase kinase (MEK) synergized with docetaxel treatment in BLBC xenografts. Thus, DUSP4 downregulation activates the Ras-ERK pathway in BLBC, resulting in an attenuated response to anti-cancer chemotherapy. Apart from HIV two exogenous retroviruses (human T cell leukaemia viruses type I (HTLV-I) and type II (HTLV-II)) infect humans. HTLV-I infection is endemic in Japan, the Caribbean, Africa, and Melanesia and is found among immigrants from these regions in Europe. HTLV-I infection is associated with a 1-5% lifetime risk of adult T cell leukaemia/lymphoma, 1 a 0.25% lifetime risk of HTLV-I associated myelopathy, 2 and other inflammatory conditions (uveitis, alveolitis, and arthritis).1 HTLV-II infection is endemic in some native American and African peoples and among injecting drug users and has been associated with neurological disease.1 Between 1986 and 1992, 100 cases of HTLV-I associated myelopathy and 44 cases of adult T cell leukaemia/lymphoma were diagnosed in the United Kingdom.3 Adult T cell leukaemia/lymphoma was first described in 1977 and patients with it have a mean life expectancy of only six months, so most of the 44 cases were probably incident cases. … BACKGROUND High body-mass index (BMI) predisposes to several site-specific cancers, but a large-scale systematic and detailed characterisation of patterns of risk across all common cancers adjusted for potential confounders has not previously been undertaken. We aimed to investigate the links between BMI and the most common site-specific cancers. METHODS With primary care data from individuals in the Clinical Practice Research Datalink with BMI data, we fitted Cox models to investigate associations between BMI and 22 of the most common cancers, adjusting for potential confounders. We fitted linear then non-linear (spline) models; investigated effect modification by sex, menopausal status, smoking, and age; and calculated population effects. FINDINGS 5·24 million individuals were included; 166,955 developed cancers of interest. BMI was associated with 17 of 22 cancers, but effects varied substantially by site. Each 5 kg/m(2) increase in BMI was roughly linearly associated with cancers of the uterus (hazard ratio [HR] 1·62, 99% CI 1·56-1·69; p<0·0001), gallbladder (1·31, 1·12-1·52; p<0·0001), kidney (1·25, 1·17-1·33; p<0·0001), cervix (1·10, 1·03-1·17; p=0·00035), thyroid (1·09, 1·00-1·19; p=0·0088), and leukaemia (1·09, 1·05-1·13; p≤0·0001). BMI was positively associated with liver (1·19, 1·12-1·27), colon (1·10, 1·07-1·13), ovarian (1·09, 1.04-1.14), and postmenopausal breast cancers (1·05, 1·03-1·07) overall (all p<0·0001), but these effects varied by underlying BMI or individual-level characteristics. We estimated inverse associations with prostate and premenopausal breast cancer risk, both overall (prostate 0·98, 0·95-1·00; premenopausal breast cancer 0·89, 0·86-0·92) and in never-smokers (prostate 0·96, 0·93-0·99; premenopausal breast cancer 0·89, 0·85-0·94). By contrast, for lung and oral cavity cancer, we observed no association in never smokers (lung 0·99, 0·93-1·05; oral cavity 1·07, 0·91-1·26): inverse associations overall were driven by current smokers and ex-smokers, probably because of residual confounding by smoking amount. Assuming causality, 41% of uterine and 10% or more of gallbladder, kidney, liver, and colon cancers could be attributable to excess weight. We estimated that a 1 kg/m(2) population-wide increase in BMI would result in 3790 additional annual UK patients developing one of the ten cancers positively associated with BMI. INTERPRETATION BMI is associated with cancer risk, with substantial population-level effects. The heterogeneity in the effects suggests that different mechanisms are associated with different cancer sites and different patient subgroups. FUNDING National Institute for Health Research, Wellcome Trust, and Medical Research Council. Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues. Although MSU crystals were first identified as the aetiological agent of gout in the eighteenth century and more recently as a ‘danger signal’ released from dying cells, little is known about the molecular mechanisms underlying MSU- or CPPD-induced inflammation. Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1β and IL-18. Macrophages from mice deficient in various components of the inflammasome such as caspase-1, ASC and NALP3 are defective in crystal-induced IL-1β activation. Moreover, an impaired neutrophil influx is found in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or mice deficient in the IL-1β receptor (IL-1R). These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases.
DUSP4 increases apoptosis. Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ∼30% of patients with breast cancer. However, many patients have residual cancer after chemotherapy, which correlates with a higher risk of metastatic recurrence and poorer outcome than those who achieve a pCR. We hypothesized that molecular profiling of tumors after NAC would identify genes associated with drug resistance. Digital transcript counting was used to profile surgically resected breast cancers after NAC. Low concentrations of dual specificity protein phosphatase 4 (DUSP4), an ERK phosphatase, correlated with high post-NAC tumor cell proliferation and with basal-like breast cancer (BLBC) status. BLBC had higher DUSP4 promoter methylation and gene expression patterns of Ras-ERK pathway activation relative to other breast cancer subtypes. DUSP4 overexpression increased chemotherapy-induced apoptosis, whereas DUSP4 depletion dampened the response to chemotherapy. Reduced DUSP4 expression in primary tumors after NAC was associated with treatment-refractory high Ki-67 scores and shorter recurrence-free survival. Finally, inhibition of mitogen-activated protein kinase kinase (MEK) synergized with docetaxel treatment in BLBC xenografts. Thus, DUSP4 downregulation activates the Ras-ERK pathway in BLBC, resulting in an attenuated response to anti-cancer chemotherapy. Apart from HIV two exogenous retroviruses (human T cell leukaemia viruses type I (HTLV-I) and type II (HTLV-II)) infect humans. HTLV-I infection is endemic in Japan, the Caribbean, Africa, and Melanesia and is found among immigrants from these regions in Europe. HTLV-I infection is associated with a 1-5% lifetime risk of adult T cell leukaemia/lymphoma, 1 a 0.25% lifetime risk of HTLV-I associated myelopathy, 2 and other inflammatory conditions (uveitis, alveolitis, and arthritis).1 HTLV-II infection is endemic in some native American and African peoples and among injecting drug users and has been associated with neurological disease.1 Between 1986 and 1992, 100 cases of HTLV-I associated myelopathy and 44 cases of adult T cell leukaemia/lymphoma were diagnosed in the United Kingdom.3 Adult T cell leukaemia/lymphoma was first described in 1977 and patients with it have a mean life expectancy of only six months, so most of the 44 cases were probably incident cases. … BACKGROUND High body-mass index (BMI) predisposes to several site-specific cancers, but a large-scale systematic and detailed characterisation of patterns of risk across all common cancers adjusted for potential confounders has not previously been undertaken. We aimed to investigate the links between BMI and the most common site-specific cancers. METHODS With primary care data from individuals in the Clinical Practice Research Datalink with BMI data, we fitted Cox models to investigate associations between BMI and 22 of the most common cancers, adjusting for potential confounders. We fitted linear then non-linear (spline) models; investigated effect modification by sex, menopausal status, smoking, and age; and calculated population effects. FINDINGS 5·24 million individuals were included; 166,955 developed cancers of interest. BMI was associated with 17 of 22 cancers, but effects varied substantially by site. Each 5 kg/m(2) increase in BMI was roughly linearly associated with cancers of the uterus (hazard ratio [HR] 1·62, 99% CI 1·56-1·69; p<0·0001), gallbladder (1·31, 1·12-1·52; p<0·0001), kidney (1·25, 1·17-1·33; p<0·0001), cervix (1·10, 1·03-1·17; p=0·00035), thyroid (1·09, 1·00-1·19; p=0·0088), and leukaemia (1·09, 1·05-1·13; p≤0·0001). BMI was positively associated with liver (1·19, 1·12-1·27), colon (1·10, 1·07-1·13), ovarian (1·09, 1.04-1.14), and postmenopausal breast cancers (1·05, 1·03-1·07) overall (all p<0·0001), but these effects varied by underlying BMI or individual-level characteristics. We estimated inverse associations with prostate and premenopausal breast cancer risk, both overall (prostate 0·98, 0·95-1·00; premenopausal breast cancer 0·89, 0·86-0·92) and in never-smokers (prostate 0·96, 0·93-0·99; premenopausal breast cancer 0·89, 0·85-0·94). By contrast, for lung and oral cavity cancer, we observed no association in never smokers (lung 0·99, 0·93-1·05; oral cavity 1·07, 0·91-1·26): inverse associations overall were driven by current smokers and ex-smokers, probably because of residual confounding by smoking amount. Assuming causality, 41% of uterine and 10% or more of gallbladder, kidney, liver, and colon cancers could be attributable to excess weight. We estimated that a 1 kg/m(2) population-wide increase in BMI would result in 3790 additional annual UK patients developing one of the ten cancers positively associated with BMI. INTERPRETATION BMI is associated with cancer risk, with substantial population-level effects. The heterogeneity in the effects suggests that different mechanisms are associated with different cancer sites and different patient subgroups. FUNDING National Institute for Health Research, Wellcome Trust, and Medical Research Council. Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues. Although MSU crystals were first identified as the aetiological agent of gout in the eighteenth century and more recently as a ‘danger signal’ released from dying cells, little is known about the molecular mechanisms underlying MSU- or CPPD-induced inflammation. Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1β and IL-18. Macrophages from mice deficient in various components of the inflammasome such as caspase-1, ASC and NALP3 are defective in crystal-induced IL-1β activation. Moreover, an impaired neutrophil influx is found in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or mice deficient in the IL-1β receptor (IL-1R). These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases.
0.4
{ "query_id": "309", "original_query_id": "309", "context_doc_ids": [ "7821634", "4828631", "2692522", "24512064" ], "gold_doc_ids_in_context": [ "7821634" ], "total_gold_docs_for_query": 1, "context_f1": 0.4, "context_size": 4, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287698", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "7821634" ], "negative_samples_considered": [ "2692522", "24512064", "4828631" ], "comprehensive_gold_set_for_query": [ "7821634" ], "target_max_context_size_config": 6, "actual_context_size": 4, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
309
aug_911
Nonhypertensive people who are 55 years old have a 90% chance of developing hypertension during their lifetime. The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL. CONTEXT The long-term risk for developing hypertension is best described by the lifetime risk statistic. The lifetime risk for hypertension and trends in this risk over time are unknown. OBJECTIVES To estimate the residual lifetime risk for hypertension in older US adults and to evaluate temporal trends in this risk. DESIGN, SETTING, AND PARTICIPANTS Community-based prospective cohort study of 1298 participants from the Framingham Heart Study who were aged 55 to 65 years and free of hypertension at baseline (1976-1998). MAIN OUTCOME MEASURES Residual lifetime risk (lifetime cumulative incidence not adjusted for competing causes of mortality) for hypertension, defined as blood pressure of 140/90 mm Hg or greater or use of antihypertensive medications. RESULTS The residual lifetime risks for developing hypertension and stage 1 high blood pressure or higher (greater-than-or-equal to 140/90 mm Hg regardless of treatment) were 90% in both 55- and 65-year-old participants. The lifetime probability of receiving antihypertensive medication was 60%. The risk for hypertension remained unchanged for women, but it was approximately 60% higher for men in the contemporary 1976-1998 period compared with an earlier 1952-1975 period. In contrast, the residual lifetime risk for stage 2 high blood pressure or higher (greater-than-or-equal to 160/100 mm Hg regardless of treatment) was considerably lower in both sexes in the recent period (35%-57% in 1952-1975 vs 35%-44% in 1976-1998), likely due to a marked increase in treatment of individuals with substantially elevated blood pressure. CONCLUSION The residual lifetime risk for hypertension for middle-aged and elderly individuals is 90%, indicating a huge public health burden. Although the decline in lifetime risk for stage 2 high blood pressure or higher represents a major achievement, efforts should be directed at the primary prevention of hypertension. To characterize the properties of adult neural stem cells (NSCs), we generated and analyzed Sox2-GFP transgenic mice. Sox2-GFP cells in the subgranular zone (SGZ) express markers specific for progenitors, but they represent two morphologically distinct populations that differ in proliferation levels. Lentivirus- and retrovirus-mediated fate-tracing studies showed that Sox2+ cells in the SGZ have potential to give rise to neurons and astrocytes, revealing their multipotency at the population as well as at a single-cell level. A subpopulation of Sox2+ cells gives rise to cells that retain Sox2, highlighting Sox2+ cells as a primary source for adult NSCs. In response to mitotic signals, increased proliferation of Sox2+ cells is coupled with the generation of Sox2+ NSCs as well as neuronal precursors. An asymmetric contribution of Sox2+ NSCs may play an important role in maintaining the constant size of the NSC pool and producing newly born neurons during adult neurogenesis. Age-related changes in the niche have long been postulated to impair the function of somatic stem cells. Here we demonstrate that the aged stem cell niche in skeletal muscle contains substantially reduced levels of fibronectin (FN), leading to detrimental consequences for the function and maintenance of muscle stem cells (MuSCs). Deletion of the gene encoding FN from young regenerating muscles replicates the aging phenotype and leads to a loss of MuSC numbers. By using an extracellular matrix (ECM) library screen and pathway profiling, we characterize FN as a preferred adhesion substrate for MuSCs and demonstrate that integrin-mediated signaling through focal adhesion kinase and the p38 mitogen-activated protein kinase pathway is strongly de-regulated in MuSCs from aged mice because of insufficient attachment to the niche. Reconstitution of FN levels in the aged niche remobilizes stem cells and restores youth-like muscle regeneration. Taken together, we identify the loss of stem cell adhesion to FN in the niche ECM as a previously unknown aging mechanism. The metabolic stress-sensing enzyme AMP-activated protein kinase (AMPK) is responsible for regulating metabolism in response to energy supply and demand. Drugs that activate AMPK may be useful in the treatment of metabolic diseases including type 2 diabetes. We have determined the crystal structure of AMPK in complex with its activator 5-(5-hydroxyl-isoxazol-3-yl)-furan-2-phosphonic acid (C2), revealing two C2-binding sites in the γ-subunit distinct from nucleotide sites. C2 acts synergistically with the drug A769662 to activate AMPK α1-containing complexes independent of upstream kinases. Our results show that dual drug therapies could be effective AMPK-targeting strategies to treat metabolic diseases. Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.
Nonhypertensive people who are 55 years old have a 90% chance of developing hypertension during their lifetime. The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL. CONTEXT The long-term risk for developing hypertension is best described by the lifetime risk statistic. The lifetime risk for hypertension and trends in this risk over time are unknown. OBJECTIVES To estimate the residual lifetime risk for hypertension in older US adults and to evaluate temporal trends in this risk. DESIGN, SETTING, AND PARTICIPANTS Community-based prospective cohort study of 1298 participants from the Framingham Heart Study who were aged 55 to 65 years and free of hypertension at baseline (1976-1998). MAIN OUTCOME MEASURES Residual lifetime risk (lifetime cumulative incidence not adjusted for competing causes of mortality) for hypertension, defined as blood pressure of 140/90 mm Hg or greater or use of antihypertensive medications. RESULTS The residual lifetime risks for developing hypertension and stage 1 high blood pressure or higher (greater-than-or-equal to 140/90 mm Hg regardless of treatment) were 90% in both 55- and 65-year-old participants. The lifetime probability of receiving antihypertensive medication was 60%. The risk for hypertension remained unchanged for women, but it was approximately 60% higher for men in the contemporary 1976-1998 period compared with an earlier 1952-1975 period. In contrast, the residual lifetime risk for stage 2 high blood pressure or higher (greater-than-or-equal to 160/100 mm Hg regardless of treatment) was considerably lower in both sexes in the recent period (35%-57% in 1952-1975 vs 35%-44% in 1976-1998), likely due to a marked increase in treatment of individuals with substantially elevated blood pressure. CONCLUSION The residual lifetime risk for hypertension for middle-aged and elderly individuals is 90%, indicating a huge public health burden. Although the decline in lifetime risk for stage 2 high blood pressure or higher represents a major achievement, efforts should be directed at the primary prevention of hypertension. To characterize the properties of adult neural stem cells (NSCs), we generated and analyzed Sox2-GFP transgenic mice. Sox2-GFP cells in the subgranular zone (SGZ) express markers specific for progenitors, but they represent two morphologically distinct populations that differ in proliferation levels. Lentivirus- and retrovirus-mediated fate-tracing studies showed that Sox2+ cells in the SGZ have potential to give rise to neurons and astrocytes, revealing their multipotency at the population as well as at a single-cell level. A subpopulation of Sox2+ cells gives rise to cells that retain Sox2, highlighting Sox2+ cells as a primary source for adult NSCs. In response to mitotic signals, increased proliferation of Sox2+ cells is coupled with the generation of Sox2+ NSCs as well as neuronal precursors. An asymmetric contribution of Sox2+ NSCs may play an important role in maintaining the constant size of the NSC pool and producing newly born neurons during adult neurogenesis. Age-related changes in the niche have long been postulated to impair the function of somatic stem cells. Here we demonstrate that the aged stem cell niche in skeletal muscle contains substantially reduced levels of fibronectin (FN), leading to detrimental consequences for the function and maintenance of muscle stem cells (MuSCs). Deletion of the gene encoding FN from young regenerating muscles replicates the aging phenotype and leads to a loss of MuSC numbers. By using an extracellular matrix (ECM) library screen and pathway profiling, we characterize FN as a preferred adhesion substrate for MuSCs and demonstrate that integrin-mediated signaling through focal adhesion kinase and the p38 mitogen-activated protein kinase pathway is strongly de-regulated in MuSCs from aged mice because of insufficient attachment to the niche. Reconstitution of FN levels in the aged niche remobilizes stem cells and restores youth-like muscle regeneration. Taken together, we identify the loss of stem cell adhesion to FN in the niche ECM as a previously unknown aging mechanism. The metabolic stress-sensing enzyme AMP-activated protein kinase (AMPK) is responsible for regulating metabolism in response to energy supply and demand. Drugs that activate AMPK may be useful in the treatment of metabolic diseases including type 2 diabetes. We have determined the crystal structure of AMPK in complex with its activator 5-(5-hydroxyl-isoxazol-3-yl)-furan-2-phosphonic acid (C2), revealing two C2-binding sites in the γ-subunit distinct from nucleotide sites. C2 acts synergistically with the drug A769662 to activate AMPK α1-containing complexes independent of upstream kinases. Our results show that dual drug therapies could be effective AMPK-targeting strategies to treat metabolic diseases. Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.
0.285714
{ "query_id": "854", "original_query_id": "854", "context_doc_ids": [ "12206390", "1797622", "19912367", "1982286", "16999023", "19313533" ], "gold_doc_ids_in_context": [ "12206390" ], "total_gold_docs_for_query": 1, "context_f1": 0.2857142857142857, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287789", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "12206390" ], "negative_samples_considered": [ "19313533", "1797622", "19912367", "1982286", "16999023" ], "comprehensive_gold_set_for_query": [ "12206390" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
854
aug_912
DRD1 proteins enable Pol V transcription in vivo. Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an "alternative inflammasome" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans. Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD. Breast cancer may originate in utero. We reviewed the available evidence on the association between birthweight and the risk of breast cancer. To date, 26 research papers addressing this issue have been published. The majority of studies identified a positive link between birthweight and premenopausal, but not postmenopausal, breast cancer. The relative risk estimate for breast cancer comparing women with high birthweight to women with low birthweight combining all studies including both pre- and postmenopausal breast cancer was 1.23 (95% confidence interval 1.13-1.34). The mechanisms underlying this association likely include elevated levels of growth factors that may increase the number of susceptible stem cells in the mammary gland or initiate tumors through DNA mutations. Loss of imprinting (LOI) of growth hormone genes relevant for intrauterine growth, such as insulin-like growth factor 2 (IGF2), leads to abnormally high levels of these hormones evidenced by high birthweight. LOI of IGF2 has also been found in mammary tumor tissue. The role of environmental factors that stimulate such epigenetic regulation of gene expression remains to be elucidated. Over the past two decades there have been significant achievements in the control of a handful of important human tropical infections [1]. These achievements include the substantive reductions in the prevalence and incidence of the so-called neglected diseases such as lymphatic filariasis, onchocerciasis, guinea worm, leprosy, and trachoma (Box 1) [2]. Each of these neglected diseases is a poverty-promoting and often stigmatizing condition occurring primarily in rural areas of low-income countries (Box 2) [3]. They are ancient afflictions, described in the Bible and other ancient texts, which have burdened humanity for millennia [3]. But now, as a result of aggressive regional vertical interventions, there is a possibility that some neglected tropical infections could be eventually controlled to the point of elimination in some areas of endemicity [2–8]. In the case of guinea worm infection, disease eradication might also soon be possible [9]. Box 2. Common Features of the Neglected Tropical Diseases Ancient afflictions that have burdened humanity for centuries Poverty-promoting conditions Associated with stigma Rural areas of low-income countries and fragile states No commercial markets for products that target these diseases Interventions, when applied, have a history of success The antibacterial peptide microcin J25 (MccJ25) inhibits transcription by bacterial RNA polymerase (RNAP). Biochemical results indicate that inhibition of transcription occurs at the level of NTP uptake or NTP binding by RNAP. Genetic results indicate that inhibition of transcription requires an extensive determinant, comprising more than 50 amino acid residues, within the RNAP secondary channel (also known as the "NTP-uptake channel" or "pore"). Biophysical results indicate that inhibition of transcription involves binding of MccJ25 within the RNAP secondary channel. Molecular modeling indicates that binding of MccJ25 within the RNAP secondary channel obstructs the RNAP secondary channel. We conclude that MccJ25 inhibits transcription by binding within and obstructing the RNAP secondary channel--acting essentially as a "cork in a bottle. " Obstruction of the RNAP secondary channel represents an attractive target for drug discovery. Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.
DRD1 proteins enable Pol V transcription in vivo. Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an "alternative inflammasome" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans. Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD. Breast cancer may originate in utero. We reviewed the available evidence on the association between birthweight and the risk of breast cancer. To date, 26 research papers addressing this issue have been published. The majority of studies identified a positive link between birthweight and premenopausal, but not postmenopausal, breast cancer. The relative risk estimate for breast cancer comparing women with high birthweight to women with low birthweight combining all studies including both pre- and postmenopausal breast cancer was 1.23 (95% confidence interval 1.13-1.34). The mechanisms underlying this association likely include elevated levels of growth factors that may increase the number of susceptible stem cells in the mammary gland or initiate tumors through DNA mutations. Loss of imprinting (LOI) of growth hormone genes relevant for intrauterine growth, such as insulin-like growth factor 2 (IGF2), leads to abnormally high levels of these hormones evidenced by high birthweight. LOI of IGF2 has also been found in mammary tumor tissue. The role of environmental factors that stimulate such epigenetic regulation of gene expression remains to be elucidated. Over the past two decades there have been significant achievements in the control of a handful of important human tropical infections [1]. These achievements include the substantive reductions in the prevalence and incidence of the so-called neglected diseases such as lymphatic filariasis, onchocerciasis, guinea worm, leprosy, and trachoma (Box 1) [2]. Each of these neglected diseases is a poverty-promoting and often stigmatizing condition occurring primarily in rural areas of low-income countries (Box 2) [3]. They are ancient afflictions, described in the Bible and other ancient texts, which have burdened humanity for millennia [3]. But now, as a result of aggressive regional vertical interventions, there is a possibility that some neglected tropical infections could be eventually controlled to the point of elimination in some areas of endemicity [2–8]. In the case of guinea worm infection, disease eradication might also soon be possible [9]. Box 2. Common Features of the Neglected Tropical Diseases Ancient afflictions that have burdened humanity for centuries Poverty-promoting conditions Associated with stigma Rural areas of low-income countries and fragile states No commercial markets for products that target these diseases Interventions, when applied, have a history of success The antibacterial peptide microcin J25 (MccJ25) inhibits transcription by bacterial RNA polymerase (RNAP). Biochemical results indicate that inhibition of transcription occurs at the level of NTP uptake or NTP binding by RNAP. Genetic results indicate that inhibition of transcription requires an extensive determinant, comprising more than 50 amino acid residues, within the RNAP secondary channel (also known as the "NTP-uptake channel" or "pore"). Biophysical results indicate that inhibition of transcription involves binding of MccJ25 within the RNAP secondary channel. Molecular modeling indicates that binding of MccJ25 within the RNAP secondary channel obstructs the RNAP secondary channel. We conclude that MccJ25 inhibits transcription by binding within and obstructing the RNAP secondary channel--acting essentially as a "cork in a bottle. " Obstruction of the RNAP secondary channel represents an attractive target for drug discovery. Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.
0
{ "query_id": "305", "original_query_id": "305", "context_doc_ids": [ "34469966", "18956141", "8002887", "27123743", "1215116", "4740447" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287869", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "1215116", "18956141", "27123743", "34469966", "8002887", "4740447" ], "comprehensive_gold_set_for_query": [ "14797520" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
305
aug_913
miRNAs enforce homeostasis by suppressing low-level ''leaky'' transcription. Nanotechnologies are emerging platforms that could be useful in measuring, understanding, and manipulating stem cells. Examples include magnetic nanoparticles and quantum dots for stem cell labeling and in vivo tracking; nanoparticles, carbon nanotubes, and polyplexes for the intracellular delivery of genes/oligonucleotides and protein/peptides; and engineered nanometer-scale scaffolds for stem cell differentiation and transplantation. This review examines the use of nanotechnologies for stem cell tracking, differentiation, and transplantation. We further discuss their utility and the potential concerns regarding their cytotoxicity. BACKGROUND The diagnosis of hypertension has traditionally been based on blood-pressure measurements in the clinic, but home and ambulatory measurements better correlate with cardiovascular outcome, and ambulatory monitoring is more accurate than both clinic and home monitoring in diagnosing hypertension. We aimed to compare the cost-effectiveness of different diagnostic strategies for hypertension. METHODS We did a Markov model-based probabilistic cost-effectiveness analysis. We used a hypothetical primary-care population aged 40 years or older with a screening blood-pressure measurement greater than 140/90 mm Hg and risk-factor prevalence equivalent to the general population. We compared three diagnostic strategies-further blood pressure measurement in the clinic, at home, and with an ambulatory monitor-in terms of lifetime costs, quality-adjusted life years, and cost-effectiveness. FINDINGS Ambulatory monitoring was the most cost-effective strategy for the diagnosis of hypertension for men and women of all ages. It was cost-saving for all groups (from -£56 [95% CI -105 to -10] in men aged 75 years to -£323 [-389 to -222] in women aged 40 years) and resulted in more quality-adjusted life years for men and women older than 50 years (from 0·006 [0·000 to 0·015] for women aged 60 years to 0·022 [0·012 to 0·035] for men aged 70 years). This finding was robust when assessed with a wide range of deterministic sensitivity analyses around the base case, but was sensitive if home monitoring was judged to have equal test performance to ambulatory monitoring or if treatment was judged effective irrespective of whether an individual was hypertensive. INTERPRETATION Ambulatory monitoring as a diagnostic strategy for hypertension after an initial raised reading in the clinic would reduce misdiagnosis and save costs. Additional costs from ambulatory monitoring are counterbalanced by cost savings from better targeted treatment. Ambulatory monitoring is recommended for most patients before the start of antihypertensive drugs. FUNDING National Institute for Health Research and the National Institute for Health and Clinical Excellence. Autoantibodies to DNA and histones (chromatin) are the defining antigen specificity in systemic lupus erythematosus (SLE) and related musculoskeletal disorders but the mechanisms responsible for their induction remain mysterious. That situation rapidly changed once neutrophil extracellular chromatin traps (NETs) were discovered and observed to play a conserved role in innate immune responses to a broad variety of microbial pathogens. At the center of an infectious process, neutrophils exert various antimicrobial defenses, including the release of nuclear chromatin into the extracellular space. The externalized NETs, a complex meshwork of nuclear chromatin and antimicrobial proteins, serve to immobilize and degrade microbial pathogens. Here, we critically evaluate the evidence supporting NETs versus apoptotic bodies as a source for nuclear antigens in autoimmunity. We also discuss the possibility that NET chromatin forms an essential component of immune deposits in the pathogenesis of glomerulonephritis in SLE and other autoimmune immune complex diseases. Emerging data suggest that microRNAs (miRNAs) are instrumental in a variety of stress responses in addition to their more recognized role in development. Surprisingly, miRNAs, which normally suppress expression of target transcripts, may become activators of expression during stress. This might be partially explained by new interactions of miRNA/Argonaute complexes with RNA-binding proteins that relocate from different subcellular compartments during stress. BACKGROUND The main associations of body-mass index (BMI) with overall and cause-specific mortality can best be assessed by long-term prospective follow-up of large numbers of people. The Prospective Studies Collaboration aimed to investigate these associations by sharing data from many studies. METHODS Collaborative analyses were undertaken of baseline BMI versus mortality in 57 prospective studies with 894 576 participants, mostly in western Europe and North America (61% [n=541 452] male, mean recruitment age 46 [SD 11] years, median recruitment year 1979 [IQR 1975-85], mean BMI 25 [SD 4] kg/m(2)). The analyses were adjusted for age, sex, smoking status, and study. To limit reverse causality, the first 5 years of follow-up were excluded, leaving 66 552 deaths of known cause during a mean of 8 (SD 6) further years of follow-up (mean age at death 67 [SD 10] years): 30 416 vascular; 2070 diabetic, renal or hepatic; 22 592 neoplastic; 3770 respiratory; 7704 other. FINDINGS In both sexes, mortality was lowest at about 22.5-25 kg/m(2). Above this range, positive associations were recorded for several specific causes and inverse associations for none, the absolute excess risks for higher BMI and smoking were roughly additive, and each 5 kg/m(2) higher BMI was on average associated with about 30% higher overall mortality (hazard ratio per 5 kg/m(2) [HR] 1.29 [95% CI 1.27-1.32]): 40% for vascular mortality (HR 1.41 [1.37-1.45]); 60-120% for diabetic, renal, and hepatic mortality (HRs 2.16 [1.89-2.46], 1.59 [1.27-1.99], and 1.82 [1.59-2.09], respectively); 10% for neoplastic mortality (HR 1.10 [1.06-1.15]); and 20% for respiratory and for all other mortality (HRs 1.20 [1.07-1.34] and 1.20 [1.16-1.25], respectively). Below the range 22.5-25 kg/m(2), BMI was associated inversely with overall mortality, mainly because of strong inverse associations with respiratory disease and lung cancer. These inverse associations were much stronger for smokers than for non-smokers, despite cigarette consumption per smoker varying little with BMI. INTERPRETATION Although other anthropometric measures (eg, waist circumference, waist-to-hip ratio) could well add extra information to BMI, and BMI to them, BMI is in itself a strong predictor of overall mortality both above and below the apparent optimum of about 22.5-25 kg/m(2). The progressive excess mortality above this range is due mainly to vascular disease and is probably largely causal. At 30-35 kg/m(2), median survival is reduced by 2-4 years; at 40-45 kg/m(2), it is reduced by 8-10 years (which is comparable with the effects of smoking). The definite excess mortality below 22.5 kg/m(2) is due mainly to smoking-related diseases, and is not fully explained. Recognition of modified histones by ‘reader’ proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific ‘Ser 31’ residue in a composite pocket formed by the tandem bromo–PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.
miRNAs enforce homeostasis by suppressing low-level ''leaky'' transcription. Nanotechnologies are emerging platforms that could be useful in measuring, understanding, and manipulating stem cells. Examples include magnetic nanoparticles and quantum dots for stem cell labeling and in vivo tracking; nanoparticles, carbon nanotubes, and polyplexes for the intracellular delivery of genes/oligonucleotides and protein/peptides; and engineered nanometer-scale scaffolds for stem cell differentiation and transplantation. This review examines the use of nanotechnologies for stem cell tracking, differentiation, and transplantation. We further discuss their utility and the potential concerns regarding their cytotoxicity. BACKGROUND The diagnosis of hypertension has traditionally been based on blood-pressure measurements in the clinic, but home and ambulatory measurements better correlate with cardiovascular outcome, and ambulatory monitoring is more accurate than both clinic and home monitoring in diagnosing hypertension. We aimed to compare the cost-effectiveness of different diagnostic strategies for hypertension. METHODS We did a Markov model-based probabilistic cost-effectiveness analysis. We used a hypothetical primary-care population aged 40 years or older with a screening blood-pressure measurement greater than 140/90 mm Hg and risk-factor prevalence equivalent to the general population. We compared three diagnostic strategies-further blood pressure measurement in the clinic, at home, and with an ambulatory monitor-in terms of lifetime costs, quality-adjusted life years, and cost-effectiveness. FINDINGS Ambulatory monitoring was the most cost-effective strategy for the diagnosis of hypertension for men and women of all ages. It was cost-saving for all groups (from -£56 [95% CI -105 to -10] in men aged 75 years to -£323 [-389 to -222] in women aged 40 years) and resulted in more quality-adjusted life years for men and women older than 50 years (from 0·006 [0·000 to 0·015] for women aged 60 years to 0·022 [0·012 to 0·035] for men aged 70 years). This finding was robust when assessed with a wide range of deterministic sensitivity analyses around the base case, but was sensitive if home monitoring was judged to have equal test performance to ambulatory monitoring or if treatment was judged effective irrespective of whether an individual was hypertensive. INTERPRETATION Ambulatory monitoring as a diagnostic strategy for hypertension after an initial raised reading in the clinic would reduce misdiagnosis and save costs. Additional costs from ambulatory monitoring are counterbalanced by cost savings from better targeted treatment. Ambulatory monitoring is recommended for most patients before the start of antihypertensive drugs. FUNDING National Institute for Health Research and the National Institute for Health and Clinical Excellence. Autoantibodies to DNA and histones (chromatin) are the defining antigen specificity in systemic lupus erythematosus (SLE) and related musculoskeletal disorders but the mechanisms responsible for their induction remain mysterious. That situation rapidly changed once neutrophil extracellular chromatin traps (NETs) were discovered and observed to play a conserved role in innate immune responses to a broad variety of microbial pathogens. At the center of an infectious process, neutrophils exert various antimicrobial defenses, including the release of nuclear chromatin into the extracellular space. The externalized NETs, a complex meshwork of nuclear chromatin and antimicrobial proteins, serve to immobilize and degrade microbial pathogens. Here, we critically evaluate the evidence supporting NETs versus apoptotic bodies as a source for nuclear antigens in autoimmunity. We also discuss the possibility that NET chromatin forms an essential component of immune deposits in the pathogenesis of glomerulonephritis in SLE and other autoimmune immune complex diseases. Emerging data suggest that microRNAs (miRNAs) are instrumental in a variety of stress responses in addition to their more recognized role in development. Surprisingly, miRNAs, which normally suppress expression of target transcripts, may become activators of expression during stress. This might be partially explained by new interactions of miRNA/Argonaute complexes with RNA-binding proteins that relocate from different subcellular compartments during stress. BACKGROUND The main associations of body-mass index (BMI) with overall and cause-specific mortality can best be assessed by long-term prospective follow-up of large numbers of people. The Prospective Studies Collaboration aimed to investigate these associations by sharing data from many studies. METHODS Collaborative analyses were undertaken of baseline BMI versus mortality in 57 prospective studies with 894 576 participants, mostly in western Europe and North America (61% [n=541 452] male, mean recruitment age 46 [SD 11] years, median recruitment year 1979 [IQR 1975-85], mean BMI 25 [SD 4] kg/m(2)). The analyses were adjusted for age, sex, smoking status, and study. To limit reverse causality, the first 5 years of follow-up were excluded, leaving 66 552 deaths of known cause during a mean of 8 (SD 6) further years of follow-up (mean age at death 67 [SD 10] years): 30 416 vascular; 2070 diabetic, renal or hepatic; 22 592 neoplastic; 3770 respiratory; 7704 other. FINDINGS In both sexes, mortality was lowest at about 22.5-25 kg/m(2). Above this range, positive associations were recorded for several specific causes and inverse associations for none, the absolute excess risks for higher BMI and smoking were roughly additive, and each 5 kg/m(2) higher BMI was on average associated with about 30% higher overall mortality (hazard ratio per 5 kg/m(2) [HR] 1.29 [95% CI 1.27-1.32]): 40% for vascular mortality (HR 1.41 [1.37-1.45]); 60-120% for diabetic, renal, and hepatic mortality (HRs 2.16 [1.89-2.46], 1.59 [1.27-1.99], and 1.82 [1.59-2.09], respectively); 10% for neoplastic mortality (HR 1.10 [1.06-1.15]); and 20% for respiratory and for all other mortality (HRs 1.20 [1.07-1.34] and 1.20 [1.16-1.25], respectively). Below the range 22.5-25 kg/m(2), BMI was associated inversely with overall mortality, mainly because of strong inverse associations with respiratory disease and lung cancer. These inverse associations were much stronger for smokers than for non-smokers, despite cigarette consumption per smoker varying little with BMI. INTERPRETATION Although other anthropometric measures (eg, waist circumference, waist-to-hip ratio) could well add extra information to BMI, and BMI to them, BMI is in itself a strong predictor of overall mortality both above and below the apparent optimum of about 22.5-25 kg/m(2). The progressive excess mortality above this range is due mainly to vascular disease and is probably largely causal. At 30-35 kg/m(2), median survival is reduced by 2-4 years; at 40-45 kg/m(2), it is reduced by 8-10 years (which is comparable with the effects of smoking). The definite excess mortality below 22.5 kg/m(2) is due mainly to smoking-related diseases, and is not fully explained. Recognition of modified histones by ‘reader’ proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific ‘Ser 31’ residue in a composite pocket formed by the tandem bromo–PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.
0
{ "query_id": "1393", "original_query_id": "1393", "context_doc_ids": [ "14853989", "4455466", "5151024", "2251426", "31715818", "195689316" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 2, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.287933", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "4455466", "2251426", "14853989", "5151024", "195689316", "31715818" ], "comprehensive_gold_set_for_query": [ "12440953", "2000038" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1393
aug_914
Transcription factor EB induces transcription of pro-inflammatory cytokines in macrophages infected with Staphylococcus aureus. Animal host defense against infection requires the expression of defense genes at the right place and the right time. Understanding such tight control of host defense requires the elucidation of the transcription factors involved. By using an unbiased approach in the model Caenorhabditis elegans, we discovered that HLH-30 (known as TFEB in mammals) is a key transcription factor for host defense. HLH-30 was activated shortly after Staphylococcus aureus infection, and drove the expression of close to 80% of the host response, including antimicrobial and autophagy genes that were essential for host tolerance of infection. TFEB was also rapidly activated in murine macrophages upon S. aureus infection and was required for proper transcriptional induction of several proinflammatory cytokines and chemokines. Thus, our data suggest that TFEB is a previously unappreciated, evolutionarily ancient transcription factor in the host response to infection. CONTEXT Some studies have inferred that an epidemic of Kaposi sarcoma-associated herpesvirus (KSHV) infection in homosexual men in the United States occurred concurrently with that of human immunodeficiency virus (HIV), but there have been no direct measurements of KSHV prevalence at the beginning of the HIV epidemic. OBJECTIVES To determine the prevalence of KSHV infection in homosexual men in San Francisco, Calif, at the beginning of the HIV epidemic in 1978 and 1979 and to examine changes in prevalence of KSHV at time points from 1978 through 1996 in light of changes in sexual behavior. DESIGN, SETTING, AND PARTICIPANTS Analysis of a clinic-based sample (n = 398) derived from the San Francisco City Clinic Cohort (ages 18-66 years) (n = 2666 for analyses herein) and from population-based samples from the San Francisco Men's Health Study (MHS) (ages 25-54 years) (n = 825 and 252) and the San Francisco Young Men's Health Study (YMHS) (ages 18-29 years) (n = 428-976, and 557); behavioral studies were longitudinal and KSHV prevalence studies were cross-sectional. MAIN OUTCOME MEASURES Antibodies against KSHV and HIV; sexual behaviors. RESULTS The prevalence of KSHV infection in 1978 and 1979 was 26.5% of 235 (a random sample) overall (weighted for HIV infection) vs 6.9% (128/1842) for HIV in the San Francisco City Clinic Cohort sample. The prevalence of KSHV infection remained essentially unchanged between an MHS sample of 252 in 1984 and 1985 (29.6%) and a YMHS sample of 557 in 1995 and 1996 (26.4%), while HIV prevalence dropped from 49.5% of 825 in 1984 and 1985 (MHS) to 17.6% of 428 in 1992 and 1993 (YMHS). The proportion of men practicing unprotected receptive anal intercourse with 1 or more partners declined from 54% to 11% during the 1984 through 1993 period (MHS) with similar though slightly higher values in the YMHS in 1992 and 1993; whereas for unprotected oral intercourse it ranged between 60% and 90% in the 1984 through 1996 period (MHS and YMHS). CONCLUSIONS Infection with KSHV was already highly prevalent in homosexual men when the HIV epidemic began in San Francisco, and its prevalence has been maintained at a nearly constant level. Any declines in the incidence of Kaposi sarcoma do not appear to be caused by a decline in KSHV transmission. Precise control of myeloid cell activation is required for optimal host defense. However, this activation process must be under exquisite control to prevent uncontrolled inflammation. Herein, we identify the Kruppel-like transcription factor 2 (KLF2) as a potent regulator of myeloid cell activation in vivo. Exposure of myeloid cells to hypoxia and/or bacterial products reduced KLF2 expression while inducing hypoxia inducible factor-1α (HIF-1α), findings that were recapitulated in human septic patients. Myeloid KLF2 was found to be a potent inhibitor of nuclear factor-kappaB (NF-κB)-dependent HIF-1α transcription and, consequently, a critical determinant of outcome in models of polymicrobial infection and endotoxemia. Collectively, these observations identify KLF2 as a tonic repressor of myeloid cell activation in vivo and an essential regulator of the innate immune system.
Transcription factor EB induces transcription of pro-inflammatory cytokines in macrophages infected with Staphylococcus aureus. Animal host defense against infection requires the expression of defense genes at the right place and the right time. Understanding such tight control of host defense requires the elucidation of the transcription factors involved. By using an unbiased approach in the model Caenorhabditis elegans, we discovered that HLH-30 (known as TFEB in mammals) is a key transcription factor for host defense. HLH-30 was activated shortly after Staphylococcus aureus infection, and drove the expression of close to 80% of the host response, including antimicrobial and autophagy genes that were essential for host tolerance of infection. TFEB was also rapidly activated in murine macrophages upon S. aureus infection and was required for proper transcriptional induction of several proinflammatory cytokines and chemokines. Thus, our data suggest that TFEB is a previously unappreciated, evolutionarily ancient transcription factor in the host response to infection. CONTEXT Some studies have inferred that an epidemic of Kaposi sarcoma-associated herpesvirus (KSHV) infection in homosexual men in the United States occurred concurrently with that of human immunodeficiency virus (HIV), but there have been no direct measurements of KSHV prevalence at the beginning of the HIV epidemic. OBJECTIVES To determine the prevalence of KSHV infection in homosexual men in San Francisco, Calif, at the beginning of the HIV epidemic in 1978 and 1979 and to examine changes in prevalence of KSHV at time points from 1978 through 1996 in light of changes in sexual behavior. DESIGN, SETTING, AND PARTICIPANTS Analysis of a clinic-based sample (n = 398) derived from the San Francisco City Clinic Cohort (ages 18-66 years) (n = 2666 for analyses herein) and from population-based samples from the San Francisco Men's Health Study (MHS) (ages 25-54 years) (n = 825 and 252) and the San Francisco Young Men's Health Study (YMHS) (ages 18-29 years) (n = 428-976, and 557); behavioral studies were longitudinal and KSHV prevalence studies were cross-sectional. MAIN OUTCOME MEASURES Antibodies against KSHV and HIV; sexual behaviors. RESULTS The prevalence of KSHV infection in 1978 and 1979 was 26.5% of 235 (a random sample) overall (weighted for HIV infection) vs 6.9% (128/1842) for HIV in the San Francisco City Clinic Cohort sample. The prevalence of KSHV infection remained essentially unchanged between an MHS sample of 252 in 1984 and 1985 (29.6%) and a YMHS sample of 557 in 1995 and 1996 (26.4%), while HIV prevalence dropped from 49.5% of 825 in 1984 and 1985 (MHS) to 17.6% of 428 in 1992 and 1993 (YMHS). The proportion of men practicing unprotected receptive anal intercourse with 1 or more partners declined from 54% to 11% during the 1984 through 1993 period (MHS) with similar though slightly higher values in the YMHS in 1992 and 1993; whereas for unprotected oral intercourse it ranged between 60% and 90% in the 1984 through 1996 period (MHS and YMHS). CONCLUSIONS Infection with KSHV was already highly prevalent in homosexual men when the HIV epidemic began in San Francisco, and its prevalence has been maintained at a nearly constant level. Any declines in the incidence of Kaposi sarcoma do not appear to be caused by a decline in KSHV transmission. Precise control of myeloid cell activation is required for optimal host defense. However, this activation process must be under exquisite control to prevent uncontrolled inflammation. Herein, we identify the Kruppel-like transcription factor 2 (KLF2) as a potent regulator of myeloid cell activation in vivo. Exposure of myeloid cells to hypoxia and/or bacterial products reduced KLF2 expression while inducing hypoxia inducible factor-1α (HIF-1α), findings that were recapitulated in human septic patients. Myeloid KLF2 was found to be a potent inhibitor of nuclear factor-kappaB (NF-κB)-dependent HIF-1α transcription and, consequently, a critical determinant of outcome in models of polymicrobial infection and endotoxemia. Collectively, these observations identify KLF2 as a tonic repressor of myeloid cell activation in vivo and an essential regulator of the innate immune system.
0.5
{ "query_id": "1312", "original_query_id": "1312", "context_doc_ids": [ "5548081", "6493422", "24177706" ], "gold_doc_ids_in_context": [ "24177706" ], "total_gold_docs_for_query": 1, "context_f1": 0.5, "context_size": 3, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288018", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "24177706" ], "negative_samples_considered": [ "5548081", "6493422" ], "comprehensive_gold_set_for_query": [ "24177706" ], "target_max_context_size_config": 6, "actual_context_size": 3, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1312
aug_915
Expression of oncolytic virus antigens as peptides makes relapse more likely. To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists. Tumor recurrence represents a major clinical challenge. Our data show that emergent recurrent tumors acquire a phenotype radically different from that of their originating primary tumors. This phenotype allows them to evade a host-derived innate immune response elicited by the progression from minimal residual disease (MRD) to actively growing recurrence. Screening for this innate response predicted accurately in which mice recurrence would occur. Premature induction of recurrence resensitized MRD to the primary therapy, suggesting a possible paradigm shift for clinical treatment of dormant disease in which the current expectant approach is replaced with active attempts to uncover MRD before evolution of the escape phenotype is complete. By combining screening with second-line treatments targeting innate insensitivity, up to 100% of mice that would have otherwise relapsed were cured. These data may open new avenues for early detection and appropriately timed, highly targeted treatment of tumor recurrence irrespective of tumor type or frontline treatment. Fibrosis is a pathological result of a dysfunctional repair response to tissue injury and occurs in a number of organs, including the lungs1. Cellular metabolism regulates tissue repair and remodelling responses to injury2-4. AMPK is a critical sensor of cellular bioenergetics and controls the switch from anabolic to catabolic metabolism5. However, the role of AMPK in fibrosis is not well understood. Here, we demonstrate that in humans with idiopathic pulmonary fibrosis (IPF) and in an experimental mouse model of lung fibrosis, AMPK activity is lower in fibrotic regions associated with metabolically active and apoptosis-resistant myofibroblasts. Pharmacological activation of AMPK in myofibroblasts from lungs of humans with IPF display lower fibrotic activity, along with enhanced mitochondrial biogenesis and normalization of sensitivity to apoptosis. In a bleomycin model of lung fibrosis in mice, metformin therapeutically accelerates the resolution of well-established fibrosis in an AMPK-dependent manner. These studies implicate deficient AMPK activation in non-resolving, pathologic fibrotic processes, and support a role for metformin (or other AMPK activators) to reverse established fibrosis by facilitating deactivation and apoptosis of myofibroblasts. CONTEXT Hyperhomocysteinemia is caused by genetic and lifestyle influences, including low intakes of folate and vitamin B6. However, prospective data relating intake of these vitamins to risk of coronary heart disease (CHD) are not available. OBJECTIVE To examine intakes of folate and vitamin B6 in relation to the incidence of nonfatal myocardial infarction (MI) and fatal CHD. DESIGN Prospective cohort study. SETTING AND PATIENTS In 1980, a total of 80082 women from the Nurses' Health Study with no previous history of cardiovascular disease, cancer, hypercholesterolemia, or diabetes completed a detailed food frequency questionnaire from which we derived usual intake of folate and vitamin B6. MAIN OUTCOME MEASURE Nonfatal MI and fatal CHD confirmed by World Health Organization criteria. RESULTS During 14 years of follow-up, we documented 658 incident cases of nonfatal MI and 281 cases of fatal CHD. After controlling for cardiovascular risk factors, including smoking and hypertension and intake of alcohol, fiber, vitamin E, and saturated, polyunsaturated, and trans fat, the relative risks (RRs) of CHD between extreme quintiles were 0.69 (95% confidence interval [CI], 0.55-0.87) for folate (median intake, 696 microg/d vs 158 microg/d) and 0.67 (95% CI, 0.53-0.85) for vitamin B6 (median intake, 4.6 mg/d vs 1.1 mg/d). Controlling for the same variables, the RR was 0.55 (95% CI, 0.41-0.74) among women in the highest quintile of both folate and vitamin B6 intake compared with the opposite extreme. Risk of CHD was reduced among women who regularly used multiple vitamins (RR=0.76; 95% CI, 0.65-0.90), the major source of folate and vitamin B6, and after excluding multiple vitamin users, among those with higher dietary intakes of folate and vitamin B6. In a subgroup analysis, compared with nondrinkers, the inverse association between a high-folate diet and CHD was strongest among women who consumed up to 1 alcoholic beverage per day (RR =0.69; 95% CI, 0.49-0.97) or more than 1 drink per day (RR=0.27; 95% CI, 0.13-0.58). CONCLUSION These results suggest that intake of folate and vitamin B6 above the current recommended dietary allowance may be important in the primary prevention of CHD among women. Small-vessel vasculitis (SVV) is a chronic autoinflammatory condition linked to antineutrophil cytoplasm autoantibodies (ANCAs). Here we show that chromatin fibers, so-called neutrophil extracellular traps (NETs), are released by ANCA-stimulated neutrophils and contain the targeted autoantigens proteinase-3 (PR3) and myeloperoxidase (MPO). Deposition of NETs in inflamed kidneys and circulating MPO-DNA complexes suggest that NET formation triggers vasculitis and promotes the autoimmune response against neutrophil components in individuals with SVV.
Expression of oncolytic virus antigens as peptides makes relapse more likely. To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists. Tumor recurrence represents a major clinical challenge. Our data show that emergent recurrent tumors acquire a phenotype radically different from that of their originating primary tumors. This phenotype allows them to evade a host-derived innate immune response elicited by the progression from minimal residual disease (MRD) to actively growing recurrence. Screening for this innate response predicted accurately in which mice recurrence would occur. Premature induction of recurrence resensitized MRD to the primary therapy, suggesting a possible paradigm shift for clinical treatment of dormant disease in which the current expectant approach is replaced with active attempts to uncover MRD before evolution of the escape phenotype is complete. By combining screening with second-line treatments targeting innate insensitivity, up to 100% of mice that would have otherwise relapsed were cured. These data may open new avenues for early detection and appropriately timed, highly targeted treatment of tumor recurrence irrespective of tumor type or frontline treatment. Fibrosis is a pathological result of a dysfunctional repair response to tissue injury and occurs in a number of organs, including the lungs1. Cellular metabolism regulates tissue repair and remodelling responses to injury2-4. AMPK is a critical sensor of cellular bioenergetics and controls the switch from anabolic to catabolic metabolism5. However, the role of AMPK in fibrosis is not well understood. Here, we demonstrate that in humans with idiopathic pulmonary fibrosis (IPF) and in an experimental mouse model of lung fibrosis, AMPK activity is lower in fibrotic regions associated with metabolically active and apoptosis-resistant myofibroblasts. Pharmacological activation of AMPK in myofibroblasts from lungs of humans with IPF display lower fibrotic activity, along with enhanced mitochondrial biogenesis and normalization of sensitivity to apoptosis. In a bleomycin model of lung fibrosis in mice, metformin therapeutically accelerates the resolution of well-established fibrosis in an AMPK-dependent manner. These studies implicate deficient AMPK activation in non-resolving, pathologic fibrotic processes, and support a role for metformin (or other AMPK activators) to reverse established fibrosis by facilitating deactivation and apoptosis of myofibroblasts. CONTEXT Hyperhomocysteinemia is caused by genetic and lifestyle influences, including low intakes of folate and vitamin B6. However, prospective data relating intake of these vitamins to risk of coronary heart disease (CHD) are not available. OBJECTIVE To examine intakes of folate and vitamin B6 in relation to the incidence of nonfatal myocardial infarction (MI) and fatal CHD. DESIGN Prospective cohort study. SETTING AND PATIENTS In 1980, a total of 80082 women from the Nurses' Health Study with no previous history of cardiovascular disease, cancer, hypercholesterolemia, or diabetes completed a detailed food frequency questionnaire from which we derived usual intake of folate and vitamin B6. MAIN OUTCOME MEASURE Nonfatal MI and fatal CHD confirmed by World Health Organization criteria. RESULTS During 14 years of follow-up, we documented 658 incident cases of nonfatal MI and 281 cases of fatal CHD. After controlling for cardiovascular risk factors, including smoking and hypertension and intake of alcohol, fiber, vitamin E, and saturated, polyunsaturated, and trans fat, the relative risks (RRs) of CHD between extreme quintiles were 0.69 (95% confidence interval [CI], 0.55-0.87) for folate (median intake, 696 microg/d vs 158 microg/d) and 0.67 (95% CI, 0.53-0.85) for vitamin B6 (median intake, 4.6 mg/d vs 1.1 mg/d). Controlling for the same variables, the RR was 0.55 (95% CI, 0.41-0.74) among women in the highest quintile of both folate and vitamin B6 intake compared with the opposite extreme. Risk of CHD was reduced among women who regularly used multiple vitamins (RR=0.76; 95% CI, 0.65-0.90), the major source of folate and vitamin B6, and after excluding multiple vitamin users, among those with higher dietary intakes of folate and vitamin B6. In a subgroup analysis, compared with nondrinkers, the inverse association between a high-folate diet and CHD was strongest among women who consumed up to 1 alcoholic beverage per day (RR =0.69; 95% CI, 0.49-0.97) or more than 1 drink per day (RR=0.27; 95% CI, 0.13-0.58). CONCLUSION These results suggest that intake of folate and vitamin B6 above the current recommended dietary allowance may be important in the primary prevention of CHD among women. Small-vessel vasculitis (SVV) is a chronic autoinflammatory condition linked to antineutrophil cytoplasm autoantibodies (ANCAs). Here we show that chromatin fibers, so-called neutrophil extracellular traps (NETs), are released by ANCA-stimulated neutrophils and contain the targeted autoantigens proteinase-3 (PR3) and myeloperoxidase (MPO). Deposition of NETs in inflamed kidneys and circulating MPO-DNA complexes suggest that NET formation triggers vasculitis and promotes the autoimmune response against neutrophil components in individuals with SVV.
0.333333
{ "query_id": "403", "original_query_id": "403", "context_doc_ids": [ "17741440", "1921218", "25001628", "49556906", "12810152" ], "gold_doc_ids_in_context": [ "1921218" ], "total_gold_docs_for_query": 1, "context_f1": 0.33333333333333337, "context_size": 5, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288062", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "1921218" ], "negative_samples_considered": [ "12810152", "17741440", "49556906", "25001628" ], "comprehensive_gold_set_for_query": [ "1921218" ], "target_max_context_size_config": 6, "actual_context_size": 5, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
403
aug_916
The effect of Lipopolysaccharides on kidney barrier function is dependent on inflammation levels. Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of αvβ3 integrin. Mice lacking uPAR (Plaur−/−) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active β3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate αvβ3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of αvβ3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability. IMPORTANCE Bariatric surgery is associated with sustained weight loss and improved physical health status for severely obese individuals. Mental health conditions may be common among patients seeking bariatric surgery; however, the prevalence of these conditions and whether they are associated with postoperative outcomes remains unknown. OBJECTIVE To determine the prevalence of mental health conditions among bariatric surgery candidates and recipients, to evaluate the association between preoperative mental health conditions and health outcomes following bariatric surgery, and to evaluate the association between surgery and the clinical course of mental health conditions. DATA SOURCES We searched PubMed, MEDLINE on OVID, and PsycINFO for studies published between January 1988 and November 2015. Study quality was assessed using an adapted tool for risk of bias; quality of evidence was rated based on GRADE (Grading of Recommendations Assessment, Development and Evaluation) criteria. FINDINGS We identified 68 publications meeting inclusion criteria: 59 reporting the prevalence of preoperative mental health conditions (65,363 patients) and 27 reporting associations between preoperative mental health conditions and postoperative outcomes (50,182 patients). Among patients seeking and undergoing bariatric surgery, the most common mental health conditions, based on random-effects estimates of prevalence, were depression (19% [95% CI, 14%-25%]) and binge eating disorder (17% [95% CI, 13%-21%]). There was conflicting evidence regarding the association between preoperative mental health conditions and postoperative weight loss. Neither depression nor binge eating disorder was consistently associated with differences in weight outcomes. Bariatric surgery was, however, consistently associated with postoperative decreases in the prevalence of depression (7 studies; 8%-74% decrease) and the severity of depressive symptoms (6 studies; 40%-70% decrease). CONCLUSIONS AND RELEVANCE Mental health conditions are common among bariatric surgery patients-in particular, depression and binge eating disorder. There is inconsistent evidence regarding the association between preoperative mental health conditions and postoperative weight loss. Moderate-quality evidence supports an association between bariatric surgery and lower rates of depression postoperatively. Mice lacking junctional adhesion molecule A (JAM-A, encoded by F11r) exhibit enhanced intestinal epithelial permeability, bacterial translocation, and elevated colonic lymphocyte numbers, yet do not develop colitis. To investigate the contribution of adaptive immune compensation in response to increased intestinal epithelial permeability, we examined the susceptibility of F11r(-/-)Rag1(-/-) mice to acute colitis. Although negligible contributions of adaptive immunity in F11r(+/+)Rag1(-/-) mice were observed, F11r(-/-)Rag1(-/-) mice exhibited increased microflora-dependent colitis. Elimination of T cell subsets and cytokine analyses revealed a protective role for TGF-β-producing CD4(+) T cells in F11r(-/-) mice. Additionally, loss of JAM-A resulted in elevated mucosal and serum IgA that was dependent upon CD4(+) T cells and TGF-β. Absence of IgA in F11r(+/+)Igha(-/-) mice did not affect disease, whereas F11r(-/-)Igha(-/-) mice displayed markedly increased susceptibility to acute injury-induced colitis. These data establish a role for adaptive immune-mediated protection from acute colitis under conditions of intestinal epithelial barrier compromise. Activation of the mammalian Notch receptor after ligand binding relies on a succession of events including metalloprotease-cleavage, endocytosis, monoubiquitination, and eventually processing by the gamma-secretase, giving rise to a soluble, transcriptionally active molecule. The Notch1 receptor was proposed to be monoubiquitinated before its gamma-secretase cleavage; the targeted lysine has been localized to its submembrane domain. Investigating how this step might be regulated by a deubiquitinase (DUB) activity will provide new insight for understanding Notch receptor activation and downstream signaling. An immunofluorescence-based screening of an shRNA library allowed us to identify eIF3f, previously known as one of the subunits of the translation initiation factor eIF3, as a DUB targeting the activated Notch receptor. We show that eIF3f has an intrinsic DUB activity. Knocking down eIF3f leads to an accumulation of monoubiquitinated forms of activated Notch, an effect counteracted by murine WT eIF3f but not by a catalytically inactive mutant. We also show that eIF3f is recruited to activated Notch on endocytic vesicles by the putative E3 ubiquitin ligase Deltex1, which serves as a bridging factor. Finally, catalytically inactive forms of eIF3f as well as shRNAs targeting eIF3f repress Notch activation in a coculture assay, showing that eIF3f is a new positive regulator of the Notch pathway. Our results support two new and provocative conclusions: (1) The activated form of Notch needs to be deubiquitinated before being processed by the gamma-secretase activity and entering the nucleus, where it fulfills its transcriptional function. (2) The enzyme accounting for this deubiquitinase activity is eIF3f, known so far as a translation initiation factor. These data improve our knowledge of Notch signaling but also open new avenues of research on the Zomes family and the translation initiation factors. OBJECTIVE Folate and vitamin B12 are two vital regulators in the metabolic process of homocysteine, which is a risk factor of atherothrombotic events. Low folate intake or low plasma folate concentration is associated with increased stroke risk. Previous randomized controlled trials presented discordant findings in the effect of folic acid supplementation-based homocysteine lowering on stroke risk. The aim of the present review was to perform a meta-analysis of relevant randomized controlled trials to check the how different folate fortification status might affect the effects of folic acid supplementation in lowering homocysteine and reducing stroke risk. DESIGN Relevant randomized controlled trials were identified through formal literature search. Homocysteine reduction was compared in subgroups stratified by folate fortification status. Relative risks with 95 % confidence intervals were used as a measure to assess the association between folic acid supplementation and stroke risk. SETTING The meta-analysis included fourteen randomized controlled trials, SUBJECTS A total of 39 420 patients. RESULTS Homocysteine reductions were 26·99 (sd 1·91) %, 18·38 (sd 3·82) % and 21·30 (sd 1·98) %, respectively, in the subgroups without folate fortification, with folate fortification and with partial folate fortification. Significant difference was observed between the subgroups with folate fortification and without folate fortification (P=0·05). The relative risk of stroke was 0·88 (95 % CI 0·77, 1·00, P=0·05) in the subgroup without folate fortification, 0·94 (95 % CI 0·58, 1·54, P=0·82) in the subgroup with folate fortification and 0·91 (95 % CI 0·82, 1·01, P=0·09) in the subgroup with partial folate fortification. CONCLUSIONS Folic acid supplementation might have a modest benefit on stroke prevention in regions without folate fortification.
The effect of Lipopolysaccharides on kidney barrier function is dependent on inflammation levels. Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of αvβ3 integrin. Mice lacking uPAR (Plaur−/−) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active β3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate αvβ3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of αvβ3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability. IMPORTANCE Bariatric surgery is associated with sustained weight loss and improved physical health status for severely obese individuals. Mental health conditions may be common among patients seeking bariatric surgery; however, the prevalence of these conditions and whether they are associated with postoperative outcomes remains unknown. OBJECTIVE To determine the prevalence of mental health conditions among bariatric surgery candidates and recipients, to evaluate the association between preoperative mental health conditions and health outcomes following bariatric surgery, and to evaluate the association between surgery and the clinical course of mental health conditions. DATA SOURCES We searched PubMed, MEDLINE on OVID, and PsycINFO for studies published between January 1988 and November 2015. Study quality was assessed using an adapted tool for risk of bias; quality of evidence was rated based on GRADE (Grading of Recommendations Assessment, Development and Evaluation) criteria. FINDINGS We identified 68 publications meeting inclusion criteria: 59 reporting the prevalence of preoperative mental health conditions (65,363 patients) and 27 reporting associations between preoperative mental health conditions and postoperative outcomes (50,182 patients). Among patients seeking and undergoing bariatric surgery, the most common mental health conditions, based on random-effects estimates of prevalence, were depression (19% [95% CI, 14%-25%]) and binge eating disorder (17% [95% CI, 13%-21%]). There was conflicting evidence regarding the association between preoperative mental health conditions and postoperative weight loss. Neither depression nor binge eating disorder was consistently associated with differences in weight outcomes. Bariatric surgery was, however, consistently associated with postoperative decreases in the prevalence of depression (7 studies; 8%-74% decrease) and the severity of depressive symptoms (6 studies; 40%-70% decrease). CONCLUSIONS AND RELEVANCE Mental health conditions are common among bariatric surgery patients-in particular, depression and binge eating disorder. There is inconsistent evidence regarding the association between preoperative mental health conditions and postoperative weight loss. Moderate-quality evidence supports an association between bariatric surgery and lower rates of depression postoperatively. Mice lacking junctional adhesion molecule A (JAM-A, encoded by F11r) exhibit enhanced intestinal epithelial permeability, bacterial translocation, and elevated colonic lymphocyte numbers, yet do not develop colitis. To investigate the contribution of adaptive immune compensation in response to increased intestinal epithelial permeability, we examined the susceptibility of F11r(-/-)Rag1(-/-) mice to acute colitis. Although negligible contributions of adaptive immunity in F11r(+/+)Rag1(-/-) mice were observed, F11r(-/-)Rag1(-/-) mice exhibited increased microflora-dependent colitis. Elimination of T cell subsets and cytokine analyses revealed a protective role for TGF-β-producing CD4(+) T cells in F11r(-/-) mice. Additionally, loss of JAM-A resulted in elevated mucosal and serum IgA that was dependent upon CD4(+) T cells and TGF-β. Absence of IgA in F11r(+/+)Igha(-/-) mice did not affect disease, whereas F11r(-/-)Igha(-/-) mice displayed markedly increased susceptibility to acute injury-induced colitis. These data establish a role for adaptive immune-mediated protection from acute colitis under conditions of intestinal epithelial barrier compromise. Activation of the mammalian Notch receptor after ligand binding relies on a succession of events including metalloprotease-cleavage, endocytosis, monoubiquitination, and eventually processing by the gamma-secretase, giving rise to a soluble, transcriptionally active molecule. The Notch1 receptor was proposed to be monoubiquitinated before its gamma-secretase cleavage; the targeted lysine has been localized to its submembrane domain. Investigating how this step might be regulated by a deubiquitinase (DUB) activity will provide new insight for understanding Notch receptor activation and downstream signaling. An immunofluorescence-based screening of an shRNA library allowed us to identify eIF3f, previously known as one of the subunits of the translation initiation factor eIF3, as a DUB targeting the activated Notch receptor. We show that eIF3f has an intrinsic DUB activity. Knocking down eIF3f leads to an accumulation of monoubiquitinated forms of activated Notch, an effect counteracted by murine WT eIF3f but not by a catalytically inactive mutant. We also show that eIF3f is recruited to activated Notch on endocytic vesicles by the putative E3 ubiquitin ligase Deltex1, which serves as a bridging factor. Finally, catalytically inactive forms of eIF3f as well as shRNAs targeting eIF3f repress Notch activation in a coculture assay, showing that eIF3f is a new positive regulator of the Notch pathway. Our results support two new and provocative conclusions: (1) The activated form of Notch needs to be deubiquitinated before being processed by the gamma-secretase activity and entering the nucleus, where it fulfills its transcriptional function. (2) The enzyme accounting for this deubiquitinase activity is eIF3f, known so far as a translation initiation factor. These data improve our knowledge of Notch signaling but also open new avenues of research on the Zomes family and the translation initiation factors. OBJECTIVE Folate and vitamin B12 are two vital regulators in the metabolic process of homocysteine, which is a risk factor of atherothrombotic events. Low folate intake or low plasma folate concentration is associated with increased stroke risk. Previous randomized controlled trials presented discordant findings in the effect of folic acid supplementation-based homocysteine lowering on stroke risk. The aim of the present review was to perform a meta-analysis of relevant randomized controlled trials to check the how different folate fortification status might affect the effects of folic acid supplementation in lowering homocysteine and reducing stroke risk. DESIGN Relevant randomized controlled trials were identified through formal literature search. Homocysteine reduction was compared in subgroups stratified by folate fortification status. Relative risks with 95 % confidence intervals were used as a measure to assess the association between folic acid supplementation and stroke risk. SETTING The meta-analysis included fourteen randomized controlled trials, SUBJECTS A total of 39 420 patients. RESULTS Homocysteine reductions were 26·99 (sd 1·91) %, 18·38 (sd 3·82) % and 21·30 (sd 1·98) %, respectively, in the subgroups without folate fortification, with folate fortification and with partial folate fortification. Significant difference was observed between the subgroups with folate fortification and without folate fortification (P=0·05). The relative risk of stroke was 0·88 (95 % CI 0·77, 1·00, P=0·05) in the subgroup without folate fortification, 0·94 (95 % CI 0·58, 1·54, P=0·82) in the subgroup with folate fortification and 0·91 (95 % CI 0·82, 1·01, P=0·09) in the subgroup with partial folate fortification. CONCLUSIONS Folic acid supplementation might have a modest benefit on stroke prevention in regions without folate fortification.
0.333333
{ "query_id": "1215", "original_query_id": "1215", "context_doc_ids": [ "37424881", "16355392", "9505448", "40096222", "18872233" ], "gold_doc_ids_in_context": [ "16355392" ], "total_gold_docs_for_query": 1, "context_f1": 0.33333333333333337, "context_size": 5, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288109", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "16355392" ], "negative_samples_considered": [ "40096222", "37424881", "18872233", "9505448" ], "comprehensive_gold_set_for_query": [ "16355392" ], "target_max_context_size_config": 6, "actual_context_size": 5, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1215
aug_917
Mouse models can be generated using "artificial spermatids." Haploid cells are amenable for genetic analysis. Recent success in the derivation of mouse haploid embryonic stem cells (haESCs) via parthenogenesis has enabled genetic screening in mammalian cells. However, successful generation of live animals from these haESCs, which is needed to extend the genetic analysis to the organism level, has not been achieved. Here, we report the derivation of haESCs from androgenetic blastocysts. These cells, designated as AG-haESCs, partially maintain paternal imprints, express classical ESC pluripotency markers, and contribute to various tissues, including the germline, upon injection into diploid blastocysts. Strikingly, live mice can be obtained upon injection of AG-haESCs into MII oocytes, and these mice bear haESC-carried genetic traits and develop into fertile adults. Furthermore, gene targeting via homologous recombination is feasible in the AG-haESCs. Our results demonstrate that AG-haESCs can be used as a genetically tractable fertilization agent for the production of live animals via injection into oocytes.
Mouse models can be generated using "artificial spermatids." Haploid cells are amenable for genetic analysis. Recent success in the derivation of mouse haploid embryonic stem cells (haESCs) via parthenogenesis has enabled genetic screening in mammalian cells. However, successful generation of live animals from these haESCs, which is needed to extend the genetic analysis to the organism level, has not been achieved. Here, we report the derivation of haESCs from androgenetic blastocysts. These cells, designated as AG-haESCs, partially maintain paternal imprints, express classical ESC pluripotency markers, and contribute to various tissues, including the germline, upon injection into diploid blastocysts. Strikingly, live mice can be obtained upon injection of AG-haESCs into MII oocytes, and these mice bear haESC-carried genetic traits and develop into fertile adults. Furthermore, gene targeting via homologous recombination is feasible in the AG-haESCs. Our results demonstrate that AG-haESCs can be used as a genetically tractable fertilization agent for the production of live animals via injection into oocytes.
1
{ "query_id": "810", "original_query_id": "810", "context_doc_ids": [ "13513790" ], "gold_doc_ids_in_context": [ "13513790" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288188", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "13513790" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "13513790" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
810
aug_918
General exercise therapy is more effective than scapular stabilizer exercises in reducing pain and improving function of the shoulder. OBJECTIVE To measure whether the benefits of a single education and self management structured programme for people with newly diagnosed type 2 diabetes mellitus are sustained at three years. DESIGN Three year follow-up of a multicentre cluster randomised controlled trial in primary care, with randomisation at practice level. SETTING 207 general practices in 13 primary care sites in the United Kingdom. PARTICIPANTS 731 of the 824 participants included in the original trial were eligible for follow-up. Biomedical data were collected on 604 (82.6%) and questionnaire data on 513 (70.1%) participants. INTERVENTION A structured group education programme for six hours delivered in the community by two trained healthcare professional educators compared with usual care. MAIN OUTCOME MEASURES The primary outcome was glycated haemoglobin (HbA(1c)) levels. The secondary outcomes were blood pressure, weight, blood lipid levels, smoking status, physical activity, quality of life, beliefs about illness, depression, emotional impact of diabetes, and drug use at three years. RESULTS HbA(1c) levels at three years had decreased in both groups. After adjusting for baseline and cluster the difference was not significant (difference -0.02, 95% confidence interval -0.22 to 0.17). The groups did not differ for the other biomedical and lifestyle outcomes and drug use. The significant benefits in the intervention group across four out of five health beliefs seen at 12 months were sustained at three years (P<0.01). Depression scores and quality of life did not differ at three years. CONCLUSION A single programme for people with newly diagnosed type 2 diabetes mellitus showed no difference in biomedical or lifestyle outcomes at three years although there were sustained improvements in some illness beliefs. TRIAL REGISTRATION Current Controlled Trials ISRCTN17844016. OBJECTIVE To evaluate if a specific exercise strategy, targeting the rotator cuff and scapula stabilisers, improves shoulder function and pain more than unspecific exercises in patients with subacromial impingement syndrome, thereby decreasing the need for arthroscopic subacromial decompression. DESIGN Randomised, participant and single assessor blinded, controlled study. SETTING Department of orthopaedics in a Swedish university hospital. PARTICIPANTS 102 patients with long standing (over six months) persistent subacromial impingement syndrome in whom earlier conservative treatment had failed, recruited through orthopaedic specialists. INTERVENTIONS The specific exercise strategy consisted of strengthening eccentric exercises for the rotator cuff and concentric/eccentric exercises for the scapula stabilisers in combination with manual mobilisation. The control exercise programme consisted of unspecific movement exercises for the neck and shoulder. Patients in both groups received five to six individual guided treatment sessions during 12 weeks. In between these supervised sessions the participants performed home exercises once or twice a day for 12 weeks. MAIN OUTCOME MEASURES The primary outcome was the Constant-Murley shoulder assessment score evaluating shoulder function and pain. Secondary outcomes were patients' global impression of change because of treatment and decision regarding surgery. RESULTS Most (97, 95%) participants completed the 12 week study. There was a significantly greater improvement in the Constant-Murley score in the specific exercise group than in the control exercise group (24 points (95% confidence interval 19 to 28.0) v 9 points (5 to 13); mean difference between group: 15 points (8.5 to 20.6)). Significantly more patients in the specific exercise group reported successful outcome (defined as large improvement or recovered) in the patients' global assessment of change because of treatment: 69% (35/51) v 24% (11/46); odds ratio 7.6, 3.1 to 18.9; P<0.001. A significantly lower proportion of patients in the specific exercise group subsequently chose to undergo surgery: 20% (10/51) v 63% (29/46); odds ratio 7.7, 3.1 to 19.4; P<0.001). CONCLUSION A specific exercise strategy, focusing on strengthening eccentric exercises for the rotator cuff and concentric/eccentric exercises for the scapula stabilisers, is effective in reducing pain and improving shoulder function in patients with persistent subacromial impingement syndrome. By extension, this exercise strategy reduces the need for arthroscopic subacromial decompression within the three month timeframe used in the study. TRIAL REGISTRATION Clinical trials NCT01037673. Leprosy enables investigation of mechanisms by which the innate immune system contributes to host defense against infection, because in one form, the disease progresses, and in the other, the infection is limited. We report that Toll-like receptor (TLR) activation of human monocytes induces rapid differentiation into two distinct subsets: DC-SIGN+ CD16+ macrophages and CD1b+ DC-SIGN− dendritic cells. DC-SIGN+ phagocytic macrophages were expanded by TLR-mediated upregulation of interleukin (IL)-15 and IL-15 receptor. CD1b+ dendritic cells were expanded by TLR-mediated upregulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor, promoted T cell activation and secreted proinflammatory cytokines. Whereas DC-SIGN+ macrophages were detected in lesions and after TLR activation in all leprosy patients, CD1b+ dendritic cells were not detected in lesions or after TLR activation of peripheral monocytes in individuals with the progressive lepromatous form, except during reversal reactions in which bacilli were cleared by T helper type 1 (TH1) responses. In tuberculoid lepromatous lesions, DC-SIGN+ cells were positive for macrophage markers, but negative for dendritic cell markers. Thus, TLR-induced differentiation of monocytes into either macrophages or dendritic cells seems to crucially influence effective host defenses in human infectious disease. BACKGROUND LDL cholesterol has a causal role in the development of cardiovascular disease. Improved understanding of the biological mechanisms that underlie the metabolism and regulation of LDL cholesterol might help to identify novel therapeutic targets. We therefore did a genome-wide association study of LDL-cholesterol concentrations. METHODS We used genome-wide association data from up to 11,685 participants with measures of circulating LDL-cholesterol concentrations across five studies, including data for 293 461 autosomal single nucleotide polymorphisms (SNPs) with a minor allele frequency of 5% or more that passed our quality control criteria. We also used data from a second genome-wide array in up to 4337 participants from three of these five studies, with data for 290,140 SNPs. We did replication studies in two independent populations consisting of up to 4979 participants. Statistical approaches, including meta-analysis and linkage disequilibrium plots, were used to refine association signals; we analysed pooled data from all seven populations to determine the effect of each SNP on variations in circulating LDL-cholesterol concentrations. FINDINGS In our initial scan, we found two SNPs (rs599839 [p=1.7x10(-15)] and rs4970834 [p=3.0x10(-11)]) that showed genome-wide statistical association with LDL cholesterol at chromosomal locus 1p13.3. The second genome screen found a third statistically associated SNP at the same locus (rs646776 [p=4.3x10(-9)]). Meta-analysis of data from all studies showed an association of SNPs rs599839 (combined p=1.2x10(-33)) and rs646776 (p=4.8x10(-20)) with LDL-cholesterol concentrations. SNPs rs599839 and rs646776 both explained around 1% of the variation in circulating LDL-cholesterol concentrations and were associated with about 15% of an SD change in LDL cholesterol per allele, assuming an SD of 1 mmol/L. INTERPRETATION We found evidence for a novel locus for LDL cholesterol on chromosome 1p13.3. These results potentially provide insight into the biological mechanisms that underlie the regulation of LDL cholesterol and might help in the discovery of novel therapeutic targets for cardiovascular disease.
General exercise therapy is more effective than scapular stabilizer exercises in reducing pain and improving function of the shoulder. OBJECTIVE To measure whether the benefits of a single education and self management structured programme for people with newly diagnosed type 2 diabetes mellitus are sustained at three years. DESIGN Three year follow-up of a multicentre cluster randomised controlled trial in primary care, with randomisation at practice level. SETTING 207 general practices in 13 primary care sites in the United Kingdom. PARTICIPANTS 731 of the 824 participants included in the original trial were eligible for follow-up. Biomedical data were collected on 604 (82.6%) and questionnaire data on 513 (70.1%) participants. INTERVENTION A structured group education programme for six hours delivered in the community by two trained healthcare professional educators compared with usual care. MAIN OUTCOME MEASURES The primary outcome was glycated haemoglobin (HbA(1c)) levels. The secondary outcomes were blood pressure, weight, blood lipid levels, smoking status, physical activity, quality of life, beliefs about illness, depression, emotional impact of diabetes, and drug use at three years. RESULTS HbA(1c) levels at three years had decreased in both groups. After adjusting for baseline and cluster the difference was not significant (difference -0.02, 95% confidence interval -0.22 to 0.17). The groups did not differ for the other biomedical and lifestyle outcomes and drug use. The significant benefits in the intervention group across four out of five health beliefs seen at 12 months were sustained at three years (P<0.01). Depression scores and quality of life did not differ at three years. CONCLUSION A single programme for people with newly diagnosed type 2 diabetes mellitus showed no difference in biomedical or lifestyle outcomes at three years although there were sustained improvements in some illness beliefs. TRIAL REGISTRATION Current Controlled Trials ISRCTN17844016. OBJECTIVE To evaluate if a specific exercise strategy, targeting the rotator cuff and scapula stabilisers, improves shoulder function and pain more than unspecific exercises in patients with subacromial impingement syndrome, thereby decreasing the need for arthroscopic subacromial decompression. DESIGN Randomised, participant and single assessor blinded, controlled study. SETTING Department of orthopaedics in a Swedish university hospital. PARTICIPANTS 102 patients with long standing (over six months) persistent subacromial impingement syndrome in whom earlier conservative treatment had failed, recruited through orthopaedic specialists. INTERVENTIONS The specific exercise strategy consisted of strengthening eccentric exercises for the rotator cuff and concentric/eccentric exercises for the scapula stabilisers in combination with manual mobilisation. The control exercise programme consisted of unspecific movement exercises for the neck and shoulder. Patients in both groups received five to six individual guided treatment sessions during 12 weeks. In between these supervised sessions the participants performed home exercises once or twice a day for 12 weeks. MAIN OUTCOME MEASURES The primary outcome was the Constant-Murley shoulder assessment score evaluating shoulder function and pain. Secondary outcomes were patients' global impression of change because of treatment and decision regarding surgery. RESULTS Most (97, 95%) participants completed the 12 week study. There was a significantly greater improvement in the Constant-Murley score in the specific exercise group than in the control exercise group (24 points (95% confidence interval 19 to 28.0) v 9 points (5 to 13); mean difference between group: 15 points (8.5 to 20.6)). Significantly more patients in the specific exercise group reported successful outcome (defined as large improvement or recovered) in the patients' global assessment of change because of treatment: 69% (35/51) v 24% (11/46); odds ratio 7.6, 3.1 to 18.9; P<0.001. A significantly lower proportion of patients in the specific exercise group subsequently chose to undergo surgery: 20% (10/51) v 63% (29/46); odds ratio 7.7, 3.1 to 19.4; P<0.001). CONCLUSION A specific exercise strategy, focusing on strengthening eccentric exercises for the rotator cuff and concentric/eccentric exercises for the scapula stabilisers, is effective in reducing pain and improving shoulder function in patients with persistent subacromial impingement syndrome. By extension, this exercise strategy reduces the need for arthroscopic subacromial decompression within the three month timeframe used in the study. TRIAL REGISTRATION Clinical trials NCT01037673. Leprosy enables investigation of mechanisms by which the innate immune system contributes to host defense against infection, because in one form, the disease progresses, and in the other, the infection is limited. We report that Toll-like receptor (TLR) activation of human monocytes induces rapid differentiation into two distinct subsets: DC-SIGN+ CD16+ macrophages and CD1b+ DC-SIGN− dendritic cells. DC-SIGN+ phagocytic macrophages were expanded by TLR-mediated upregulation of interleukin (IL)-15 and IL-15 receptor. CD1b+ dendritic cells were expanded by TLR-mediated upregulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor, promoted T cell activation and secreted proinflammatory cytokines. Whereas DC-SIGN+ macrophages were detected in lesions and after TLR activation in all leprosy patients, CD1b+ dendritic cells were not detected in lesions or after TLR activation of peripheral monocytes in individuals with the progressive lepromatous form, except during reversal reactions in which bacilli were cleared by T helper type 1 (TH1) responses. In tuberculoid lepromatous lesions, DC-SIGN+ cells were positive for macrophage markers, but negative for dendritic cell markers. Thus, TLR-induced differentiation of monocytes into either macrophages or dendritic cells seems to crucially influence effective host defenses in human infectious disease. BACKGROUND LDL cholesterol has a causal role in the development of cardiovascular disease. Improved understanding of the biological mechanisms that underlie the metabolism and regulation of LDL cholesterol might help to identify novel therapeutic targets. We therefore did a genome-wide association study of LDL-cholesterol concentrations. METHODS We used genome-wide association data from up to 11,685 participants with measures of circulating LDL-cholesterol concentrations across five studies, including data for 293 461 autosomal single nucleotide polymorphisms (SNPs) with a minor allele frequency of 5% or more that passed our quality control criteria. We also used data from a second genome-wide array in up to 4337 participants from three of these five studies, with data for 290,140 SNPs. We did replication studies in two independent populations consisting of up to 4979 participants. Statistical approaches, including meta-analysis and linkage disequilibrium plots, were used to refine association signals; we analysed pooled data from all seven populations to determine the effect of each SNP on variations in circulating LDL-cholesterol concentrations. FINDINGS In our initial scan, we found two SNPs (rs599839 [p=1.7x10(-15)] and rs4970834 [p=3.0x10(-11)]) that showed genome-wide statistical association with LDL cholesterol at chromosomal locus 1p13.3. The second genome screen found a third statistically associated SNP at the same locus (rs646776 [p=4.3x10(-9)]). Meta-analysis of data from all studies showed an association of SNPs rs599839 (combined p=1.2x10(-33)) and rs646776 (p=4.8x10(-20)) with LDL-cholesterol concentrations. SNPs rs599839 and rs646776 both explained around 1% of the variation in circulating LDL-cholesterol concentrations and were associated with about 15% of an SD change in LDL cholesterol per allele, assuming an SD of 1 mmol/L. INTERPRETATION We found evidence for a novel locus for LDL cholesterol on chromosome 1p13.3. These results potentially provide insight into the biological mechanisms that underlie the regulation of LDL cholesterol and might help in the discovery of novel therapeutic targets for cardiovascular disease.
0.4
{ "query_id": "454", "original_query_id": "454", "context_doc_ids": [ "2095573", "12584053", "4200695", "21498497" ], "gold_doc_ids_in_context": [ "4200695" ], "total_gold_docs_for_query": 1, "context_f1": 0.4, "context_size": 4, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288203", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "4200695" ], "negative_samples_considered": [ "12584053", "21498497", "2095573" ], "comprehensive_gold_set_for_query": [ "4200695" ], "target_max_context_size_config": 6, "actual_context_size": 4, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
454
aug_919
The risk of female prisoners harming themselves is ten times that of male prisoners. BACKGROUND Self-harm and suicide are common in prisoners, yet robust information on the full extent and characteristics of people at risk of self-harm is scant. Furthermore, understanding how frequently self-harm is followed by suicide, and in which prisoners this progression is most likely to happen, is important. We did a case-control study of all prisoners in England and Wales to ascertain the prevalence of self-harm in this population, associated risk factors, clustering effects, and risk of subsequent suicide after self-harm. METHODS Records of self-harm incidents in all prisons in England and Wales were gathered routinely between January, 2004, and December, 2009. We did a case-control comparison of prisoners who self-harmed and those who did not between January, 2006, and December, 2009. We also used a Bayesian approach to look at clustering of people who self-harmed. Prisoners who self-harmed and subsequently died by suicide in prison were compared with other inmates who self-harmed. FINDINGS 139,195 self-harm incidents were recorded in 26,510 individual prisoners between 2004 and 2009; 5-6% of male prisoners and 20-24% of female inmates self-harmed every year. Self-harm rates were more than ten times higher in female prisoners than in male inmates. Repetition of self-harm was common, particularly in women and teenage girls, in whom a subgroup of 102 prisoners accounted for 17,307 episodes. In both sexes, self-harm was associated with younger age, white ethnic origin, prison type, and a life sentence or being unsentenced; in female inmates, committing a violent offence against an individual was also a factor. Substantial evidence was noted of clustering in time and location of prisoners who self-harmed (adjusted intra-class correlation 0·15, 95% CI 0·11-0·18). 109 subsequent suicides in prison were reported in individuals who self-harmed; the risk was higher in those who self-harmed than in the general prison population, and more than half the deaths occurred within a month of self-harm. Risk factors for suicide after self-harm in male prisoners were older age and a previous self-harm incident of high or moderate lethality; in female inmates, a history of more than five self-harm incidents within a year was associated with subsequent suicide. INTERPRETATION The burden of self-harm in prisoners is substantial, particularly in women. Self-harm in prison is associated with subsequent suicide in this setting. Prevention and treatment of self-harm in prisoners is an essential component of suicide prevention in prisons. FUNDING Wellcome Trust, National Institute for Health Research, National Offender Management Service, and Department of Health.
The risk of female prisoners harming themselves is ten times that of male prisoners. BACKGROUND Self-harm and suicide are common in prisoners, yet robust information on the full extent and characteristics of people at risk of self-harm is scant. Furthermore, understanding how frequently self-harm is followed by suicide, and in which prisoners this progression is most likely to happen, is important. We did a case-control study of all prisoners in England and Wales to ascertain the prevalence of self-harm in this population, associated risk factors, clustering effects, and risk of subsequent suicide after self-harm. METHODS Records of self-harm incidents in all prisons in England and Wales were gathered routinely between January, 2004, and December, 2009. We did a case-control comparison of prisoners who self-harmed and those who did not between January, 2006, and December, 2009. We also used a Bayesian approach to look at clustering of people who self-harmed. Prisoners who self-harmed and subsequently died by suicide in prison were compared with other inmates who self-harmed. FINDINGS 139,195 self-harm incidents were recorded in 26,510 individual prisoners between 2004 and 2009; 5-6% of male prisoners and 20-24% of female inmates self-harmed every year. Self-harm rates were more than ten times higher in female prisoners than in male inmates. Repetition of self-harm was common, particularly in women and teenage girls, in whom a subgroup of 102 prisoners accounted for 17,307 episodes. In both sexes, self-harm was associated with younger age, white ethnic origin, prison type, and a life sentence or being unsentenced; in female inmates, committing a violent offence against an individual was also a factor. Substantial evidence was noted of clustering in time and location of prisoners who self-harmed (adjusted intra-class correlation 0·15, 95% CI 0·11-0·18). 109 subsequent suicides in prison were reported in individuals who self-harmed; the risk was higher in those who self-harmed than in the general prison population, and more than half the deaths occurred within a month of self-harm. Risk factors for suicide after self-harm in male prisoners were older age and a previous self-harm incident of high or moderate lethality; in female inmates, a history of more than five self-harm incidents within a year was associated with subsequent suicide. INTERPRETATION The burden of self-harm in prisoners is substantial, particularly in women. Self-harm in prison is associated with subsequent suicide in this setting. Prevention and treatment of self-harm in prisoners is an essential component of suicide prevention in prisons. FUNDING Wellcome Trust, National Institute for Health Research, National Offender Management Service, and Department of Health.
1
{ "query_id": "1269", "original_query_id": "1269", "context_doc_ids": [ "13900610" ], "gold_doc_ids_in_context": [ "13900610" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288278", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "13900610" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "13900610" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1269
aug_920
Patients with common epithelial cancers are less likely to have an emergency event as their first hospital admission if they live in resource-deprived areas. Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer. How the number of immune cells recruited to sites of infection is determined and adjusted to differences in the cellular stoichiometry between host and pathogen is unknown. Here, we have uncovered a role for reactive oxygen species (ROS) as sensors of microbe size. By sensing the differential localization of ROS generated in response to microbes of different size, neutrophils tuned their interleukin (IL)-1β expression via the selective oxidation of NF-κB, in order to implement distinct inflammatory programs. Small microbes triggered ROS intracellularly, suppressing IL-1β expression to limit neutrophil recruitment as each phagocyte eliminated numerous pathogens. In contrast, large microbes triggered ROS extracellularly, amplifying IL-1β expression to recruit numerous neutrophils forming cooperative clusters. Defects in ROS-mediated microbe size sensing resulted in large neutrophil infiltrates and clusters in response to small microbes that contribute to inflammatory disease. These findings highlight the impact of ROS localization on signal transduction. IMPORTANCE Identification of the bacterium responsible for an outbreak can aid in disease management. However, traditional culture-based diagnosis can be difficult, particularly if no specific diagnostic test is available for an outbreak strain. OBJECTIVE To explore the potential of metagenomics, which is the direct sequencing of DNA extracted from microbiologically complex samples, as an open-ended clinical discovery platform capable of identifying and characterizing bacterial strains from an outbreak without laboratory culture. DESIGN, SETTING, AND PATIENTS In a retrospective investigation, 45 samples were selected from fecal specimens obtained from patients with diarrhea during the 2011 outbreak of Shiga-toxigenic Escherichia coli (STEC) O104:H4 in Germany. Samples were subjected to high-throughput sequencing (August-September 2012), followed by a 3-phase analysis (November 2012-February 2013). In phase 1, a de novo assembly approach was developed to obtain a draft genome of the outbreak strain. In phase 2, the depth of coverage of the outbreak strain genome was determined in each sample. In phase 3, sequences from each sample were compared with sequences from known bacteria to identify pathogens other than the outbreak strain. MAIN OUTCOMES AND MEASURES The recovery of genome sequence data for the purposes of identification and characterization of the outbreak strain and other pathogens from fecal samples. RESULTS During phase 1, a draft genome of the STEC outbreak strain was obtained. During phase 2, the outbreak strain genome was recovered from 10 samples at greater than 10-fold coverage and from 26 samples at greater than 1-fold coverage. Sequences from the Shiga-toxin genes were detected in 27 of 40 STEC-positive samples (67%). In phase 3, sequences from Clostridium difficile, Campylobacter jejuni, Campylobacter concisus, and Salmonella enterica were recovered. CONCLUSIONS AND RELEVANCE These results suggest the potential of metagenomics as a culture-independent approach for the identification of bacterial pathogens during an outbreak of diarrheal disease. Challenges include improving diagnostic sensitivity, speeding up and simplifying workflows, and reducing costs. We generated a series of knockin mouse lines, in which the cytokine receptor gp130-dependent STAT3 and/or SHP2 signals were disrupted, by replacing the mouse gp130 gene with human gp130 mutant cDNAs. The SHP2 signal-deficient mice (gp130F759/F759 were born normal but displayed splenomegaly and lymphadenopathy and an enhanced acute phase reaction. In contrast, the STAT3 signal-deficient mice (gp130FXQ/FXXQ) died perinatally, like the gp130-deficient mice (gp130D/D). The gp130F759/F759 mice showed prolonged gp130-induced STAT3 activation, indicating a negative regulatory role for SHP2. Th1-type cytokine production and IgG2a and IgG2b production were increased in the gp130F759/F759 mice, while they were decreased in the gp130FXXQ/FXXQ immune system. These results indicate that the balance of positive and negative signals generated through gp130 regulates the immune responses. DNA replication in mammals is regulated via the coordinate firing of clusters of replicons that duplicate megabase-sized chromosome segments at specific times during S-phase. Cytogenetic studies show that these "replicon clusters" coalesce as subchromosomal units that persist through multiple cell generations, but the molecular boundaries of such units have remained elusive. Moreover, the extent to which changes in replication timing occur during differentiation and their relationship to transcription changes has not been rigorously investigated. We have constructed high-resolution replication-timing profiles in mouse embryonic stem cells (mESCs) before and after differentiation to neural precursor cells. We demonstrate that chromosomes can be segmented into multimegabase domains of coordinate replication, which we call "replication domains," separated by transition regions whose replication kinetics are consistent with large originless segments. The molecular boundaries of replication domains are remarkably well conserved between distantly related ESC lines and induced pluripotent stem cells. Unexpectedly, ESC differentiation was accompanied by the consolidation of smaller differentially replicating domains into larger coordinately replicated units whose replication time was more aligned to isochore GC content and the density of LINE-1 transposable elements, but not gene density. Replication-timing changes were coordinated with transcription changes for weak promoters more than strong promoters, and were accompanied by rearrangements in subnuclear position. We conclude that replication profiles are cell-type specific, and changes in these profiles reveal chromosome segments that undergo large changes in organization during differentiation. Moreover, smaller replication domains and a higher density of timing transition regions that interrupt isochore replication timing define a novel characteristic of the pluripotent state. BACKGROUND Emerging evidence suggests an association between female prenatal experience and her subsequent risk of developing breast cancer. Potential underlying mechanisms include variation in amounts of maternal endogenous sex hormones and growth hormones, germ-cell mutations, formation of cancer stem-cells, and other genetic or epigenetic events. We reviewed and summarised quantitatively the available data on intrauterine exposures and risk of breast cancer. METHODS We systematically searched for studies that assessed association between perinatal factors and risk of breast cancer. We reviewed separately each of the perinatal factors, including birthweight, birth length, parental age at delivery, gestational age, intrauterine exposure to diethylstilbestrol, twin membership, maternal pre-eclampsia or eclampsia, and other factors. FINDINGS We identified 57 studies published between Oct 1, 1980, and June 21, 2007. Increased risk of breast cancer was noted with increased birthweight (relative risk [RR] 1.15 [95% CI 1.09-1.21]), birth length (1.28 [1.11-1.48]), higher maternal age (1.13 [1.02-1.25]), and paternal age (1.12 [1.05-1.19]). Decreased risk of breast cancer was noted for maternal pre-eclampsia and eclampsia (0.48 [0.30-0.78]) and twin membership (0.93 [0.87-1.00]). No association was noted between risk of breast cancer and gestational age at birth (0.95 [0.71-1.26]) or maternal diethylstilbestrol treatment (1.40 [0.86-2.28]). INTERPRETATION The intrauterine environment contributes to the predisposition of women to breast cancer in adulthood. The in-utero mechanisms responsible for such predisposition need to be elucidated.
Patients with common epithelial cancers are less likely to have an emergency event as their first hospital admission if they live in resource-deprived areas. Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer. How the number of immune cells recruited to sites of infection is determined and adjusted to differences in the cellular stoichiometry between host and pathogen is unknown. Here, we have uncovered a role for reactive oxygen species (ROS) as sensors of microbe size. By sensing the differential localization of ROS generated in response to microbes of different size, neutrophils tuned their interleukin (IL)-1β expression via the selective oxidation of NF-κB, in order to implement distinct inflammatory programs. Small microbes triggered ROS intracellularly, suppressing IL-1β expression to limit neutrophil recruitment as each phagocyte eliminated numerous pathogens. In contrast, large microbes triggered ROS extracellularly, amplifying IL-1β expression to recruit numerous neutrophils forming cooperative clusters. Defects in ROS-mediated microbe size sensing resulted in large neutrophil infiltrates and clusters in response to small microbes that contribute to inflammatory disease. These findings highlight the impact of ROS localization on signal transduction. IMPORTANCE Identification of the bacterium responsible for an outbreak can aid in disease management. However, traditional culture-based diagnosis can be difficult, particularly if no specific diagnostic test is available for an outbreak strain. OBJECTIVE To explore the potential of metagenomics, which is the direct sequencing of DNA extracted from microbiologically complex samples, as an open-ended clinical discovery platform capable of identifying and characterizing bacterial strains from an outbreak without laboratory culture. DESIGN, SETTING, AND PATIENTS In a retrospective investigation, 45 samples were selected from fecal specimens obtained from patients with diarrhea during the 2011 outbreak of Shiga-toxigenic Escherichia coli (STEC) O104:H4 in Germany. Samples were subjected to high-throughput sequencing (August-September 2012), followed by a 3-phase analysis (November 2012-February 2013). In phase 1, a de novo assembly approach was developed to obtain a draft genome of the outbreak strain. In phase 2, the depth of coverage of the outbreak strain genome was determined in each sample. In phase 3, sequences from each sample were compared with sequences from known bacteria to identify pathogens other than the outbreak strain. MAIN OUTCOMES AND MEASURES The recovery of genome sequence data for the purposes of identification and characterization of the outbreak strain and other pathogens from fecal samples. RESULTS During phase 1, a draft genome of the STEC outbreak strain was obtained. During phase 2, the outbreak strain genome was recovered from 10 samples at greater than 10-fold coverage and from 26 samples at greater than 1-fold coverage. Sequences from the Shiga-toxin genes were detected in 27 of 40 STEC-positive samples (67%). In phase 3, sequences from Clostridium difficile, Campylobacter jejuni, Campylobacter concisus, and Salmonella enterica were recovered. CONCLUSIONS AND RELEVANCE These results suggest the potential of metagenomics as a culture-independent approach for the identification of bacterial pathogens during an outbreak of diarrheal disease. Challenges include improving diagnostic sensitivity, speeding up and simplifying workflows, and reducing costs. We generated a series of knockin mouse lines, in which the cytokine receptor gp130-dependent STAT3 and/or SHP2 signals were disrupted, by replacing the mouse gp130 gene with human gp130 mutant cDNAs. The SHP2 signal-deficient mice (gp130F759/F759 were born normal but displayed splenomegaly and lymphadenopathy and an enhanced acute phase reaction. In contrast, the STAT3 signal-deficient mice (gp130FXQ/FXXQ) died perinatally, like the gp130-deficient mice (gp130D/D). The gp130F759/F759 mice showed prolonged gp130-induced STAT3 activation, indicating a negative regulatory role for SHP2. Th1-type cytokine production and IgG2a and IgG2b production were increased in the gp130F759/F759 mice, while they were decreased in the gp130FXXQ/FXXQ immune system. These results indicate that the balance of positive and negative signals generated through gp130 regulates the immune responses. DNA replication in mammals is regulated via the coordinate firing of clusters of replicons that duplicate megabase-sized chromosome segments at specific times during S-phase. Cytogenetic studies show that these "replicon clusters" coalesce as subchromosomal units that persist through multiple cell generations, but the molecular boundaries of such units have remained elusive. Moreover, the extent to which changes in replication timing occur during differentiation and their relationship to transcription changes has not been rigorously investigated. We have constructed high-resolution replication-timing profiles in mouse embryonic stem cells (mESCs) before and after differentiation to neural precursor cells. We demonstrate that chromosomes can be segmented into multimegabase domains of coordinate replication, which we call "replication domains," separated by transition regions whose replication kinetics are consistent with large originless segments. The molecular boundaries of replication domains are remarkably well conserved between distantly related ESC lines and induced pluripotent stem cells. Unexpectedly, ESC differentiation was accompanied by the consolidation of smaller differentially replicating domains into larger coordinately replicated units whose replication time was more aligned to isochore GC content and the density of LINE-1 transposable elements, but not gene density. Replication-timing changes were coordinated with transcription changes for weak promoters more than strong promoters, and were accompanied by rearrangements in subnuclear position. We conclude that replication profiles are cell-type specific, and changes in these profiles reveal chromosome segments that undergo large changes in organization during differentiation. Moreover, smaller replication domains and a higher density of timing transition regions that interrupt isochore replication timing define a novel characteristic of the pluripotent state. BACKGROUND Emerging evidence suggests an association between female prenatal experience and her subsequent risk of developing breast cancer. Potential underlying mechanisms include variation in amounts of maternal endogenous sex hormones and growth hormones, germ-cell mutations, formation of cancer stem-cells, and other genetic or epigenetic events. We reviewed and summarised quantitatively the available data on intrauterine exposures and risk of breast cancer. METHODS We systematically searched for studies that assessed association between perinatal factors and risk of breast cancer. We reviewed separately each of the perinatal factors, including birthweight, birth length, parental age at delivery, gestational age, intrauterine exposure to diethylstilbestrol, twin membership, maternal pre-eclampsia or eclampsia, and other factors. FINDINGS We identified 57 studies published between Oct 1, 1980, and June 21, 2007. Increased risk of breast cancer was noted with increased birthweight (relative risk [RR] 1.15 [95% CI 1.09-1.21]), birth length (1.28 [1.11-1.48]), higher maternal age (1.13 [1.02-1.25]), and paternal age (1.12 [1.05-1.19]). Decreased risk of breast cancer was noted for maternal pre-eclampsia and eclampsia (0.48 [0.30-0.78]) and twin membership (0.93 [0.87-1.00]). No association was noted between risk of breast cancer and gestational age at birth (0.95 [0.71-1.26]) or maternal diethylstilbestrol treatment (1.40 [0.86-2.28]). INTERPRETATION The intrauterine environment contributes to the predisposition of women to breast cancer in adulthood. The in-utero mechanisms responsible for such predisposition need to be elucidated.
0
{ "query_id": "927", "original_query_id": "927", "context_doc_ids": [ "26851674", "2212067", "23557241", "22696649", "6173523", "8148122" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288303", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "22696649", "2212067", "8148122", "26851674", "6173523", "23557241" ], "comprehensive_gold_set_for_query": [ "16390264" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
927
aug_921
PrimPol degrades short DNA replication intermediates on the leading strand during DNA replication. Macrophages are distributed in tissues throughout the body and contribute to both homeostasis and disease. Recently, it has become evident that most adult tissue macrophages originate during embryonic development and not from circulating monocytes. Each tissue has its own composition of embryonically derived and adult-derived macrophages, but it is unclear whether macrophages of distinct origins are functionally interchangeable or have unique roles at steady state. This new understanding also prompts reconsideration of the function of circulating monocytes. Classical Ly6c(hi) monocytes patrol the extravascular space in resting organs, and Ly6c(lo) nonclassical monocytes patrol the vasculature. Inflammation triggers monocytes to differentiate into macrophages, but whether resident and newly recruited macrophages possess similar functions during inflammation is unclear. Here, we define the tools used for identifying the complex origin of tissue macrophages and discuss the relative contributions of tissue niche versus ontological origin to the regulation of macrophage functions during steady state and inflammation. We describe a second primase in human cells, PrimPol, which has the ability to start DNA chains with deoxynucleotides unlike regular primases, which use exclusively ribonucleotides. Moreover, PrimPol is also a DNA polymerase tailored to bypass the most common oxidative lesions in DNA, such as abasic sites and 8-oxoguanine. Subcellular fractionation and immunodetection studies indicated that PrimPol is present in both nuclear and mitochondrial DNA compartments. PrimPol activity is detectable in mitochondrial lysates from human and mouse cells but is absent from mitochondria derived from PRIMPOL knockout mice. PRIMPOL gene silencing or ablation in human and mouse cells impaired mitochondrial DNA replication. On the basis of the synergy observed with replicative DNA polymerases Polγ and Polε, PrimPol is proposed to facilitate replication fork progression by acting as a translesion DNA polymerase or as a specific DNA primase reinitiating downstream of lesions that block synthesis during both mitochondrial and nuclear DNA replication. To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.
PrimPol degrades short DNA replication intermediates on the leading strand during DNA replication. Macrophages are distributed in tissues throughout the body and contribute to both homeostasis and disease. Recently, it has become evident that most adult tissue macrophages originate during embryonic development and not from circulating monocytes. Each tissue has its own composition of embryonically derived and adult-derived macrophages, but it is unclear whether macrophages of distinct origins are functionally interchangeable or have unique roles at steady state. This new understanding also prompts reconsideration of the function of circulating monocytes. Classical Ly6c(hi) monocytes patrol the extravascular space in resting organs, and Ly6c(lo) nonclassical monocytes patrol the vasculature. Inflammation triggers monocytes to differentiate into macrophages, but whether resident and newly recruited macrophages possess similar functions during inflammation is unclear. Here, we define the tools used for identifying the complex origin of tissue macrophages and discuss the relative contributions of tissue niche versus ontological origin to the regulation of macrophage functions during steady state and inflammation. We describe a second primase in human cells, PrimPol, which has the ability to start DNA chains with deoxynucleotides unlike regular primases, which use exclusively ribonucleotides. Moreover, PrimPol is also a DNA polymerase tailored to bypass the most common oxidative lesions in DNA, such as abasic sites and 8-oxoguanine. Subcellular fractionation and immunodetection studies indicated that PrimPol is present in both nuclear and mitochondrial DNA compartments. PrimPol activity is detectable in mitochondrial lysates from human and mouse cells but is absent from mitochondria derived from PRIMPOL knockout mice. PRIMPOL gene silencing or ablation in human and mouse cells impaired mitochondrial DNA replication. On the basis of the synergy observed with replicative DNA polymerases Polγ and Polε, PrimPol is proposed to facilitate replication fork progression by acting as a translesion DNA polymerase or as a specific DNA primase reinitiating downstream of lesions that block synthesis during both mitochondrial and nuclear DNA replication. To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.
0.4
{ "query_id": "969", "original_query_id": "969", "context_doc_ids": [ "22406695", "17368516", "25001628" ], "gold_doc_ids_in_context": [ "17368516" ], "total_gold_docs_for_query": 2, "context_f1": 0.4, "context_size": 3, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288391", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "17368516" ], "negative_samples_considered": [ "25001628", "22406695" ], "comprehensive_gold_set_for_query": [ "19356271", "17368516" ], "target_max_context_size_config": 6, "actual_context_size": 3, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
969
aug_922
PCSK9 inhibitors decrease plasma Lp(a) levels. BACKGROUND Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known whether inhibition of PCSK9 has any effects on very low-density lipoprotein or intermediate-density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma lipoprotein (a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors in the clearance of Lp(a), is poorly defined, and no mechanistic studies of the Lp(a) lowering by alirocumab in humans have been published to date. METHODS Eighteen (10 F, 8 mol/L) participants completed a placebo-controlled, 2-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCRs) and production rates (PRs) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides and apoB48 levels were measured. RESULTS Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was caused by an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was due to a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of very low-density lipoproteins-apoB and very low-density lipoproteins triglycerides or on postprandial plasma triglycerides or apoB48 concentrations. CONCLUSIONS Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs and decreasing LDL-apoB PR. These results are consistent with increases in LDL receptors available to clear IDL and LDL from blood during PCSK9 inhibition. The increase in apo(a) FCR during alirocumab treatment suggests that increased LDL receptors may also play a role in the reduction of plasma Lp(a). CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01959971.
PCSK9 inhibitors decrease plasma Lp(a) levels. BACKGROUND Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known whether inhibition of PCSK9 has any effects on very low-density lipoprotein or intermediate-density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma lipoprotein (a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors in the clearance of Lp(a), is poorly defined, and no mechanistic studies of the Lp(a) lowering by alirocumab in humans have been published to date. METHODS Eighteen (10 F, 8 mol/L) participants completed a placebo-controlled, 2-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCRs) and production rates (PRs) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides and apoB48 levels were measured. RESULTS Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was caused by an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was due to a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of very low-density lipoproteins-apoB and very low-density lipoproteins triglycerides or on postprandial plasma triglycerides or apoB48 concentrations. CONCLUSIONS Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs and decreasing LDL-apoB PR. These results are consistent with increases in LDL receptors available to clear IDL and LDL from blood during PCSK9 inhibition. The increase in apo(a) FCR during alirocumab treatment suggests that increased LDL receptors may also play a role in the reduction of plasma Lp(a). CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01959971.
1
{ "query_id": "901", "original_query_id": "901", "context_doc_ids": [ "6540064" ], "gold_doc_ids_in_context": [ "6540064" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288437", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "6540064" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "6540064" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
901
aug_923
Integrating classroom-based collaborative learning with Web-based collaborative learning offers the best class performance. It is becoming “a truth universally acknowledged” that the education of undergraduate medical students will be enhanced through the use of computer assisted learning. Access to the wide range of online options illustrated in the figure must surely make learning more exciting, effective, and likely to be retained. This assumption is potentially but by no means inevitably correct. ### Box 1: Why fund computer assisted learning? Computer assisted learning is inevitable —Individual lecturers and departments are already beginning to introduce a wide range of computer based applications, sometimes in a haphazard way. Planned and coordinated development is better than indiscriminate expansion It is convenient and flexible —Courses supported by computer assisted learning applications may require fewer face to face lectures and seminars and place fewer geographical and temporal constraints on staff and students. Students at peripheral hospitals or primary care centres may benefit in particular Unique presentational benefits —Computer presentation is particularly suited to subjects that are visually intensive, detail oriented, and difficult to conceptualise, such as complex biochemical processes or microscopic images.1 Furthermore, “virtual” cases may reduce the need to use animal or human tissue in learning Personalised learning —Each learner can progress at his or her preferred pace. They can repeat, interrupt, and resume at will, which may have particular advantages for weaker students Economies of scale —Once an application has been set up, the incremental cost of offering it to additional students is relatively small Competitive advantage —Potential applicants may use the quality of information technology to discriminate between medical schools. A “leading edge” virtual campus is likely to attract good students Achieves the ultimate goal of higher education —The goal is to link people into learning communities. Computer applications, especially the internet and world wide web, are an extremely efficient way of doing this2 Expands pedagogical horizons —The most controversial argument for … RETURN TO TEXT
Integrating classroom-based collaborative learning with Web-based collaborative learning offers the best class performance. It is becoming “a truth universally acknowledged” that the education of undergraduate medical students will be enhanced through the use of computer assisted learning. Access to the wide range of online options illustrated in the figure must surely make learning more exciting, effective, and likely to be retained. This assumption is potentially but by no means inevitably correct. ### Box 1: Why fund computer assisted learning? Computer assisted learning is inevitable —Individual lecturers and departments are already beginning to introduce a wide range of computer based applications, sometimes in a haphazard way. Planned and coordinated development is better than indiscriminate expansion It is convenient and flexible —Courses supported by computer assisted learning applications may require fewer face to face lectures and seminars and place fewer geographical and temporal constraints on staff and students. Students at peripheral hospitals or primary care centres may benefit in particular Unique presentational benefits —Computer presentation is particularly suited to subjects that are visually intensive, detail oriented, and difficult to conceptualise, such as complex biochemical processes or microscopic images.1 Furthermore, “virtual” cases may reduce the need to use animal or human tissue in learning Personalised learning —Each learner can progress at his or her preferred pace. They can repeat, interrupt, and resume at will, which may have particular advantages for weaker students Economies of scale —Once an application has been set up, the incremental cost of offering it to additional students is relatively small Competitive advantage —Potential applicants may use the quality of information technology to discriminate between medical schools. A “leading edge” virtual campus is likely to attract good students Achieves the ultimate goal of higher education —The goal is to link people into learning communities. Computer applications, especially the internet and world wide web, are an extremely efficient way of doing this2 Expands pedagogical horizons —The most controversial argument for … RETURN TO TEXT
1
{ "query_id": "650", "original_query_id": "650", "context_doc_ids": [ "12789595" ], "gold_doc_ids_in_context": [ "12789595" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288457", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "12789595" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "12789595" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
650
aug_924
Low nucleosome occupancy correlates with high methylation levels across species. Dnmt1 epigenetically propagates symmetrical CG methylation in many eukaryotes. Their genomes are typically depleted of CG dinucleotides because of imperfect repair of deaminated methylcytosines. Here, we extensively survey diverse species lacking Dnmt1 and show that, surprisingly, symmetrical CG methylation is nonetheless frequently present and catalyzed by a different DNA methyltransferase family, Dnmt5. Numerous Dnmt5-containing organisms that diverged more than a billion years ago exhibit clustered methylation, specifically in nucleosome linkers. Clustered methylation occurs at unprecedented densities and directly disfavors nucleosomes, contributing to nucleosome positioning between clusters. Dense methylation is enabled by a regime of genomic sequence evolution that enriches CG dinucleotides and drives the highest CG frequencies known. Species with linker methylation have small, transcriptionally active nuclei that approach the physical limits of chromatin compaction. These features constitute a previously unappreciated genome architecture, in which dense methylation influences nucleosome positions, likely facilitating nuclear processes under extreme spatial constraints.
Low nucleosome occupancy correlates with high methylation levels across species. Dnmt1 epigenetically propagates symmetrical CG methylation in many eukaryotes. Their genomes are typically depleted of CG dinucleotides because of imperfect repair of deaminated methylcytosines. Here, we extensively survey diverse species lacking Dnmt1 and show that, surprisingly, symmetrical CG methylation is nonetheless frequently present and catalyzed by a different DNA methyltransferase family, Dnmt5. Numerous Dnmt5-containing organisms that diverged more than a billion years ago exhibit clustered methylation, specifically in nucleosome linkers. Clustered methylation occurs at unprecedented densities and directly disfavors nucleosomes, contributing to nucleosome positioning between clusters. Dense methylation is enabled by a regime of genomic sequence evolution that enriches CG dinucleotides and drives the highest CG frequencies known. Species with linker methylation have small, transcriptionally active nuclei that approach the physical limits of chromatin compaction. These features constitute a previously unappreciated genome architecture, in which dense methylation influences nucleosome positions, likely facilitating nuclear processes under extreme spatial constraints.
1
{ "query_id": "717", "original_query_id": "717", "context_doc_ids": [ "17587795" ], "gold_doc_ids_in_context": [ "17587795" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288488", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "17587795" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "17587795" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
717
aug_925
Lack of FGF21 in mice leads to reduced lifespan. Paraneoplastic thrombocytosis is associated with many solid tumors and often correlates with reduced survival. Recent studies suggest that a pathogenic feed back loop may be operative between platelets and tumor cells, with reciprocal interactions between tumor growth/metastasis and thrombocytosis/platelet activation. Specific molecular pathways have been identified in which tumors can stimulate platelet production and activation; activated platelets can, in turn, promote tumor growth and metastasis. Taken together, these findings provide exciting new potential targets for therapeutic intervention. BACKGROUND Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. METHODS AND RESULTS The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E(-/-) mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E(-/-) mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E(-/-)mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E(-/-) mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. CONCLUSIONS FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels. T cell activation is predicated on the interaction between the T cell receptor and peptide-major histocompatibility (pMHC) ligands. The factors that determine the stimulatory potency of a pMHC molecule remain unclear. We describe results showing that a peptide exhibiting many hallmarks of a weak agonist stimulates T cells to proliferate more than the wild-type agonist ligand. An in silico approach suggested that the inability to form the central supramolecular activation cluster (cSMAC) could underlie the increased proliferation. This conclusion was supported by experiments that showed that enhancing cSMAC formation reduced stimulatory capacity of the weak peptide. Our studies highlight the fact that a complex interplay of factors determines the quality of a T cell antigen.
Lack of FGF21 in mice leads to reduced lifespan. Paraneoplastic thrombocytosis is associated with many solid tumors and often correlates with reduced survival. Recent studies suggest that a pathogenic feed back loop may be operative between platelets and tumor cells, with reciprocal interactions between tumor growth/metastasis and thrombocytosis/platelet activation. Specific molecular pathways have been identified in which tumors can stimulate platelet production and activation; activated platelets can, in turn, promote tumor growth and metastasis. Taken together, these findings provide exciting new potential targets for therapeutic intervention. BACKGROUND Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. METHODS AND RESULTS The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E(-/-) mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E(-/-) mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E(-/-)mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E(-/-) mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. CONCLUSIONS FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels. T cell activation is predicated on the interaction between the T cell receptor and peptide-major histocompatibility (pMHC) ligands. The factors that determine the stimulatory potency of a pMHC molecule remain unclear. We describe results showing that a peptide exhibiting many hallmarks of a weak agonist stimulates T cells to proliferate more than the wild-type agonist ligand. An in silico approach suggested that the inability to form the central supramolecular activation cluster (cSMAC) could underlie the increased proliferation. This conclusion was supported by experiments that showed that enhancing cSMAC formation reduced stimulatory capacity of the weak peptide. Our studies highlight the fact that a complex interplay of factors determines the quality of a T cell antigen.
0.5
{ "query_id": "682", "original_query_id": "682", "context_doc_ids": [ "14075252", "306006", "9315213" ], "gold_doc_ids_in_context": [ "9315213" ], "total_gold_docs_for_query": 1, "context_f1": 0.5, "context_size": 3, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288502", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "9315213" ], "negative_samples_considered": [ "14075252", "306006" ], "comprehensive_gold_set_for_query": [ "9315213" ], "target_max_context_size_config": 6, "actual_context_size": 3, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
682
aug_926
PrimPol degrades short DNA replication intermediates on the leading strand during DNA replication. Macrophages are distributed in tissues throughout the body and contribute to both homeostasis and disease. Recently, it has become evident that most adult tissue macrophages originate during embryonic development and not from circulating monocytes. Each tissue has its own composition of embryonically derived and adult-derived macrophages, but it is unclear whether macrophages of distinct origins are functionally interchangeable or have unique roles at steady state. This new understanding also prompts reconsideration of the function of circulating monocytes. Classical Ly6c(hi) monocytes patrol the extravascular space in resting organs, and Ly6c(lo) nonclassical monocytes patrol the vasculature. Inflammation triggers monocytes to differentiate into macrophages, but whether resident and newly recruited macrophages possess similar functions during inflammation is unclear. Here, we define the tools used for identifying the complex origin of tissue macrophages and discuss the relative contributions of tissue niche versus ontological origin to the regulation of macrophage functions during steady state and inflammation. We describe a second primase in human cells, PrimPol, which has the ability to start DNA chains with deoxynucleotides unlike regular primases, which use exclusively ribonucleotides. Moreover, PrimPol is also a DNA polymerase tailored to bypass the most common oxidative lesions in DNA, such as abasic sites and 8-oxoguanine. Subcellular fractionation and immunodetection studies indicated that PrimPol is present in both nuclear and mitochondrial DNA compartments. PrimPol activity is detectable in mitochondrial lysates from human and mouse cells but is absent from mitochondria derived from PRIMPOL knockout mice. PRIMPOL gene silencing or ablation in human and mouse cells impaired mitochondrial DNA replication. On the basis of the synergy observed with replicative DNA polymerases Polγ and Polε, PrimPol is proposed to facilitate replication fork progression by acting as a translesion DNA polymerase or as a specific DNA primase reinitiating downstream of lesions that block synthesis during both mitochondrial and nuclear DNA replication. To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.
PrimPol degrades short DNA replication intermediates on the leading strand during DNA replication. Macrophages are distributed in tissues throughout the body and contribute to both homeostasis and disease. Recently, it has become evident that most adult tissue macrophages originate during embryonic development and not from circulating monocytes. Each tissue has its own composition of embryonically derived and adult-derived macrophages, but it is unclear whether macrophages of distinct origins are functionally interchangeable or have unique roles at steady state. This new understanding also prompts reconsideration of the function of circulating monocytes. Classical Ly6c(hi) monocytes patrol the extravascular space in resting organs, and Ly6c(lo) nonclassical monocytes patrol the vasculature. Inflammation triggers monocytes to differentiate into macrophages, but whether resident and newly recruited macrophages possess similar functions during inflammation is unclear. Here, we define the tools used for identifying the complex origin of tissue macrophages and discuss the relative contributions of tissue niche versus ontological origin to the regulation of macrophage functions during steady state and inflammation. We describe a second primase in human cells, PrimPol, which has the ability to start DNA chains with deoxynucleotides unlike regular primases, which use exclusively ribonucleotides. Moreover, PrimPol is also a DNA polymerase tailored to bypass the most common oxidative lesions in DNA, such as abasic sites and 8-oxoguanine. Subcellular fractionation and immunodetection studies indicated that PrimPol is present in both nuclear and mitochondrial DNA compartments. PrimPol activity is detectable in mitochondrial lysates from human and mouse cells but is absent from mitochondria derived from PRIMPOL knockout mice. PRIMPOL gene silencing or ablation in human and mouse cells impaired mitochondrial DNA replication. On the basis of the synergy observed with replicative DNA polymerases Polγ and Polε, PrimPol is proposed to facilitate replication fork progression by acting as a translesion DNA polymerase or as a specific DNA primase reinitiating downstream of lesions that block synthesis during both mitochondrial and nuclear DNA replication. To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonists.
0.4
{ "query_id": "969", "original_query_id": "969", "context_doc_ids": [ "22406695", "17368516", "25001628" ], "gold_doc_ids_in_context": [ "17368516" ], "total_gold_docs_for_query": 2, "context_f1": 0.4, "context_size": 3, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288542", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "17368516" ], "negative_samples_considered": [ "25001628", "22406695" ], "comprehensive_gold_set_for_query": [ "19356271", "17368516" ], "target_max_context_size_config": 6, "actual_context_size": 3, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
969
aug_927
Low nucleosome occupancy correlates with high methylation levels across species. Dnmt1 epigenetically propagates symmetrical CG methylation in many eukaryotes. Their genomes are typically depleted of CG dinucleotides because of imperfect repair of deaminated methylcytosines. Here, we extensively survey diverse species lacking Dnmt1 and show that, surprisingly, symmetrical CG methylation is nonetheless frequently present and catalyzed by a different DNA methyltransferase family, Dnmt5. Numerous Dnmt5-containing organisms that diverged more than a billion years ago exhibit clustered methylation, specifically in nucleosome linkers. Clustered methylation occurs at unprecedented densities and directly disfavors nucleosomes, contributing to nucleosome positioning between clusters. Dense methylation is enabled by a regime of genomic sequence evolution that enriches CG dinucleotides and drives the highest CG frequencies known. Species with linker methylation have small, transcriptionally active nuclei that approach the physical limits of chromatin compaction. These features constitute a previously unappreciated genome architecture, in which dense methylation influences nucleosome positions, likely facilitating nuclear processes under extreme spatial constraints.
Low nucleosome occupancy correlates with high methylation levels across species. Dnmt1 epigenetically propagates symmetrical CG methylation in many eukaryotes. Their genomes are typically depleted of CG dinucleotides because of imperfect repair of deaminated methylcytosines. Here, we extensively survey diverse species lacking Dnmt1 and show that, surprisingly, symmetrical CG methylation is nonetheless frequently present and catalyzed by a different DNA methyltransferase family, Dnmt5. Numerous Dnmt5-containing organisms that diverged more than a billion years ago exhibit clustered methylation, specifically in nucleosome linkers. Clustered methylation occurs at unprecedented densities and directly disfavors nucleosomes, contributing to nucleosome positioning between clusters. Dense methylation is enabled by a regime of genomic sequence evolution that enriches CG dinucleotides and drives the highest CG frequencies known. Species with linker methylation have small, transcriptionally active nuclei that approach the physical limits of chromatin compaction. These features constitute a previously unappreciated genome architecture, in which dense methylation influences nucleosome positions, likely facilitating nuclear processes under extreme spatial constraints.
1
{ "query_id": "717", "original_query_id": "717", "context_doc_ids": [ "17587795" ], "gold_doc_ids_in_context": [ "17587795" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288581", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "17587795" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "17587795" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
717
aug_928
Sudden death can occur in patients with orthostatic hypertension without cardiac conduction abnormalities. BACKGROUND Patients with familial amyloid polyneuropathy, a rare hereditary form of amyloidosis, have progressive autonomic neuropathy. The disease usually does not induce heart failure but is associated with sudden death, conduction disturbances, and an increased risk of complications during anesthesia. Although cardiac sympathetic denervation has been clearly demonstrated, the postsynaptic status of the cardiac autonomic nervous system remains unelucidated. METHODS AND RESULTS Twenty-one patients were studied (age, 39+/-11 years; normal coronary arteries; left ventricular ejection fraction 68+/-9%). To evaluate the density and affinity constants of myocardial muscarinic receptors, PET with (11)C-MQNB (methylquinuclidinyl benzilate), a specific hydrophilic antagonist, was used. Cardiac beta-receptor functional efficiency was studied by the heart rate (HR) response to intravenous infusion of isoproterenol (5 minutes after 2 mg of atropine, 5, 10, and 15 ng/kg per minute during 5 minutes per step). The mean muscarinic receptor density was higher in patients than in control subjects (B'(max), 35.5+/-8.9 versus 26.1+/-6.7 pmol/mL, P=0.003), without change in receptor affinity. The increase in HR after injection of atropine as well as of MQNB was lower in patients compared with control subjects despite a similar basal HR (DeltaHR after atropine, 11+/-21% versus 62+/-17%; P<0.001), consistent with parasympathetic denervation. Incremental infusion of isoproterenol induced a similar increase in HR in patients and control subjects. CONCLUSIONS Cardiac autonomic denervation in familial amyloid polyneuropathy results in an upregulation of myocardial muscarinic receptors but without change in cardiac beta-receptor responsiveness to catecholamines.
Sudden death can occur in patients with orthostatic hypertension without cardiac conduction abnormalities. BACKGROUND Patients with familial amyloid polyneuropathy, a rare hereditary form of amyloidosis, have progressive autonomic neuropathy. The disease usually does not induce heart failure but is associated with sudden death, conduction disturbances, and an increased risk of complications during anesthesia. Although cardiac sympathetic denervation has been clearly demonstrated, the postsynaptic status of the cardiac autonomic nervous system remains unelucidated. METHODS AND RESULTS Twenty-one patients were studied (age, 39+/-11 years; normal coronary arteries; left ventricular ejection fraction 68+/-9%). To evaluate the density and affinity constants of myocardial muscarinic receptors, PET with (11)C-MQNB (methylquinuclidinyl benzilate), a specific hydrophilic antagonist, was used. Cardiac beta-receptor functional efficiency was studied by the heart rate (HR) response to intravenous infusion of isoproterenol (5 minutes after 2 mg of atropine, 5, 10, and 15 ng/kg per minute during 5 minutes per step). The mean muscarinic receptor density was higher in patients than in control subjects (B'(max), 35.5+/-8.9 versus 26.1+/-6.7 pmol/mL, P=0.003), without change in receptor affinity. The increase in HR after injection of atropine as well as of MQNB was lower in patients compared with control subjects despite a similar basal HR (DeltaHR after atropine, 11+/-21% versus 62+/-17%; P<0.001), consistent with parasympathetic denervation. Incremental infusion of isoproterenol induced a similar increase in HR in patients and control subjects. CONCLUSIONS Cardiac autonomic denervation in familial amyloid polyneuropathy results in an upregulation of myocardial muscarinic receptors but without change in cardiac beta-receptor responsiveness to catecholamines.
1
{ "query_id": "1112", "original_query_id": "1112", "context_doc_ids": [ "1686881" ], "gold_doc_ids_in_context": [ "1686881" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288594", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "1686881" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "1686881" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1112
aug_929
DUSP4 downregulation deactivates the Ras-ERK pathway BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2. Calorie restriction (CR) extends lifespan in a wide spectrum of organisms and is the only regimen known to lengthen the lifespan of mammals. We established a model of CR in budding yeast Saccharomyces cerevisiae. In this system, lifespan can be extended by limiting glucose or by reducing the activity of the glucose-sensing cyclic-AMP-dependent kinase (PKA). Lifespan extension in a mutant with reduced PKA activity requires Sir2 and NAD (nicotinamide adenine dinucleotide). In this study we explore how CR activates Sir2 to extend lifespan. Here we show that the shunting of carbon metabolism toward the mitochondrial tricarboxylic acid cycle and the concomitant increase in respiration play a central part in this process. We discuss how this metabolic strategy may apply to CR in animals. CONTEXT Adequate vitamin D status for optimum bone health has received increased recognition in recent years; however, the ideal intake is not known. Serum 25-hydroxyvitamin D is the generally accepted indicator of vitamin D status, but no universal reference level has been reached. OBJECTIVE To investigate the relative importance of high calcium intake and serum 25-hydroxyvitamin D for calcium homeostasis, as determined by serum intact parathyroid hormone (PTH). DESIGN, SETTING, AND PARTICIPANTS Cross-sectional study of 2310 healthy Icelandic adults who were divided equally into 3 age groups (30-45 years, 50-65 years, or 70-85 years) and recruited from February 2001 to January 2003. They were administered a semi-quantitative food frequency questionnaire, which assessed vitamin D and calcium intake. Participants were further divided into groups according to calcium intake (<800 mg/d, 800-1200 mg/d, and >1200 mg/d) and serum 25-hydroxyvitamin D level (<10 ng/mL, 10-18 ng/mL, and >18 ng/mL). MAIN OUTCOME MEASURE Serum intact PTH as determined by calcium intake and vitamin D. RESULTS A total of 944 healthy participants completed all parts of the study. After adjusting for relevant factors, serum PTH was lowest in the group with a serum 25-hydroxyvitamin D level of more than 18 ng/mL but highest in the group with a serum 25-hydroxyvitamin D level of less than 10 ng/mL. At the low serum 25-hydroxyvitamin D level (<10 ng/mL), calcium intake of less than 800 mg/d vs more than 1200 mg/d was significantly associated with higher serum PTH (P = .04); and at a calcium intake of more than 1200 mg/d, there was a significant difference between the lowest and highest vitamin D groups (P = .04). CONCLUSIONS As long as vitamin D status is ensured, calcium intake levels of more than 800 mg/d may be unnecessary for maintaining calcium metabolism. Vitamin D supplements are necessary for adequate vitamin D status in northern climates. Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ∼30% of patients with breast cancer. However, many patients have residual cancer after chemotherapy, which correlates with a higher risk of metastatic recurrence and poorer outcome than those who achieve a pCR. We hypothesized that molecular profiling of tumors after NAC would identify genes associated with drug resistance. Digital transcript counting was used to profile surgically resected breast cancers after NAC. Low concentrations of dual specificity protein phosphatase 4 (DUSP4), an ERK phosphatase, correlated with high post-NAC tumor cell proliferation and with basal-like breast cancer (BLBC) status. BLBC had higher DUSP4 promoter methylation and gene expression patterns of Ras-ERK pathway activation relative to other breast cancer subtypes. DUSP4 overexpression increased chemotherapy-induced apoptosis, whereas DUSP4 depletion dampened the response to chemotherapy. Reduced DUSP4 expression in primary tumors after NAC was associated with treatment-refractory high Ki-67 scores and shorter recurrence-free survival. Finally, inhibition of mitogen-activated protein kinase kinase (MEK) synergized with docetaxel treatment in BLBC xenografts. Thus, DUSP4 downregulation activates the Ras-ERK pathway in BLBC, resulting in an attenuated response to anti-cancer chemotherapy.
DUSP4 downregulation deactivates the Ras-ERK pathway BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2. Calorie restriction (CR) extends lifespan in a wide spectrum of organisms and is the only regimen known to lengthen the lifespan of mammals. We established a model of CR in budding yeast Saccharomyces cerevisiae. In this system, lifespan can be extended by limiting glucose or by reducing the activity of the glucose-sensing cyclic-AMP-dependent kinase (PKA). Lifespan extension in a mutant with reduced PKA activity requires Sir2 and NAD (nicotinamide adenine dinucleotide). In this study we explore how CR activates Sir2 to extend lifespan. Here we show that the shunting of carbon metabolism toward the mitochondrial tricarboxylic acid cycle and the concomitant increase in respiration play a central part in this process. We discuss how this metabolic strategy may apply to CR in animals. CONTEXT Adequate vitamin D status for optimum bone health has received increased recognition in recent years; however, the ideal intake is not known. Serum 25-hydroxyvitamin D is the generally accepted indicator of vitamin D status, but no universal reference level has been reached. OBJECTIVE To investigate the relative importance of high calcium intake and serum 25-hydroxyvitamin D for calcium homeostasis, as determined by serum intact parathyroid hormone (PTH). DESIGN, SETTING, AND PARTICIPANTS Cross-sectional study of 2310 healthy Icelandic adults who were divided equally into 3 age groups (30-45 years, 50-65 years, or 70-85 years) and recruited from February 2001 to January 2003. They were administered a semi-quantitative food frequency questionnaire, which assessed vitamin D and calcium intake. Participants were further divided into groups according to calcium intake (<800 mg/d, 800-1200 mg/d, and >1200 mg/d) and serum 25-hydroxyvitamin D level (<10 ng/mL, 10-18 ng/mL, and >18 ng/mL). MAIN OUTCOME MEASURE Serum intact PTH as determined by calcium intake and vitamin D. RESULTS A total of 944 healthy participants completed all parts of the study. After adjusting for relevant factors, serum PTH was lowest in the group with a serum 25-hydroxyvitamin D level of more than 18 ng/mL but highest in the group with a serum 25-hydroxyvitamin D level of less than 10 ng/mL. At the low serum 25-hydroxyvitamin D level (<10 ng/mL), calcium intake of less than 800 mg/d vs more than 1200 mg/d was significantly associated with higher serum PTH (P = .04); and at a calcium intake of more than 1200 mg/d, there was a significant difference between the lowest and highest vitamin D groups (P = .04). CONCLUSIONS As long as vitamin D status is ensured, calcium intake levels of more than 800 mg/d may be unnecessary for maintaining calcium metabolism. Vitamin D supplements are necessary for adequate vitamin D status in northern climates. Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ∼30% of patients with breast cancer. However, many patients have residual cancer after chemotherapy, which correlates with a higher risk of metastatic recurrence and poorer outcome than those who achieve a pCR. We hypothesized that molecular profiling of tumors after NAC would identify genes associated with drug resistance. Digital transcript counting was used to profile surgically resected breast cancers after NAC. Low concentrations of dual specificity protein phosphatase 4 (DUSP4), an ERK phosphatase, correlated with high post-NAC tumor cell proliferation and with basal-like breast cancer (BLBC) status. BLBC had higher DUSP4 promoter methylation and gene expression patterns of Ras-ERK pathway activation relative to other breast cancer subtypes. DUSP4 overexpression increased chemotherapy-induced apoptosis, whereas DUSP4 depletion dampened the response to chemotherapy. Reduced DUSP4 expression in primary tumors after NAC was associated with treatment-refractory high Ki-67 scores and shorter recurrence-free survival. Finally, inhibition of mitogen-activated protein kinase kinase (MEK) synergized with docetaxel treatment in BLBC xenografts. Thus, DUSP4 downregulation activates the Ras-ERK pathway in BLBC, resulting in an attenuated response to anti-cancer chemotherapy.
0.4
{ "query_id": "308", "original_query_id": "308", "context_doc_ids": [ "7821634", "4414481", "5633876", "16256507" ], "gold_doc_ids_in_context": [ "7821634" ], "total_gold_docs_for_query": 1, "context_f1": 0.4, "context_size": 4, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288610", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "7821634" ], "negative_samples_considered": [ "16256507", "4414481", "5633876" ], "comprehensive_gold_set_for_query": [ "7821634" ], "target_max_context_size_config": 6, "actual_context_size": 4, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
308
aug_930
miRNAs enforce homeostasis by suppressing low-level ''leaky'' transcription. Nanotechnologies are emerging platforms that could be useful in measuring, understanding, and manipulating stem cells. Examples include magnetic nanoparticles and quantum dots for stem cell labeling and in vivo tracking; nanoparticles, carbon nanotubes, and polyplexes for the intracellular delivery of genes/oligonucleotides and protein/peptides; and engineered nanometer-scale scaffolds for stem cell differentiation and transplantation. This review examines the use of nanotechnologies for stem cell tracking, differentiation, and transplantation. We further discuss their utility and the potential concerns regarding their cytotoxicity. BACKGROUND The diagnosis of hypertension has traditionally been based on blood-pressure measurements in the clinic, but home and ambulatory measurements better correlate with cardiovascular outcome, and ambulatory monitoring is more accurate than both clinic and home monitoring in diagnosing hypertension. We aimed to compare the cost-effectiveness of different diagnostic strategies for hypertension. METHODS We did a Markov model-based probabilistic cost-effectiveness analysis. We used a hypothetical primary-care population aged 40 years or older with a screening blood-pressure measurement greater than 140/90 mm Hg and risk-factor prevalence equivalent to the general population. We compared three diagnostic strategies-further blood pressure measurement in the clinic, at home, and with an ambulatory monitor-in terms of lifetime costs, quality-adjusted life years, and cost-effectiveness. FINDINGS Ambulatory monitoring was the most cost-effective strategy for the diagnosis of hypertension for men and women of all ages. It was cost-saving for all groups (from -£56 [95% CI -105 to -10] in men aged 75 years to -£323 [-389 to -222] in women aged 40 years) and resulted in more quality-adjusted life years for men and women older than 50 years (from 0·006 [0·000 to 0·015] for women aged 60 years to 0·022 [0·012 to 0·035] for men aged 70 years). This finding was robust when assessed with a wide range of deterministic sensitivity analyses around the base case, but was sensitive if home monitoring was judged to have equal test performance to ambulatory monitoring or if treatment was judged effective irrespective of whether an individual was hypertensive. INTERPRETATION Ambulatory monitoring as a diagnostic strategy for hypertension after an initial raised reading in the clinic would reduce misdiagnosis and save costs. Additional costs from ambulatory monitoring are counterbalanced by cost savings from better targeted treatment. Ambulatory monitoring is recommended for most patients before the start of antihypertensive drugs. FUNDING National Institute for Health Research and the National Institute for Health and Clinical Excellence. Autoantibodies to DNA and histones (chromatin) are the defining antigen specificity in systemic lupus erythematosus (SLE) and related musculoskeletal disorders but the mechanisms responsible for their induction remain mysterious. That situation rapidly changed once neutrophil extracellular chromatin traps (NETs) were discovered and observed to play a conserved role in innate immune responses to a broad variety of microbial pathogens. At the center of an infectious process, neutrophils exert various antimicrobial defenses, including the release of nuclear chromatin into the extracellular space. The externalized NETs, a complex meshwork of nuclear chromatin and antimicrobial proteins, serve to immobilize and degrade microbial pathogens. Here, we critically evaluate the evidence supporting NETs versus apoptotic bodies as a source for nuclear antigens in autoimmunity. We also discuss the possibility that NET chromatin forms an essential component of immune deposits in the pathogenesis of glomerulonephritis in SLE and other autoimmune immune complex diseases. Emerging data suggest that microRNAs (miRNAs) are instrumental in a variety of stress responses in addition to their more recognized role in development. Surprisingly, miRNAs, which normally suppress expression of target transcripts, may become activators of expression during stress. This might be partially explained by new interactions of miRNA/Argonaute complexes with RNA-binding proteins that relocate from different subcellular compartments during stress. BACKGROUND The main associations of body-mass index (BMI) with overall and cause-specific mortality can best be assessed by long-term prospective follow-up of large numbers of people. The Prospective Studies Collaboration aimed to investigate these associations by sharing data from many studies. METHODS Collaborative analyses were undertaken of baseline BMI versus mortality in 57 prospective studies with 894 576 participants, mostly in western Europe and North America (61% [n=541 452] male, mean recruitment age 46 [SD 11] years, median recruitment year 1979 [IQR 1975-85], mean BMI 25 [SD 4] kg/m(2)). The analyses were adjusted for age, sex, smoking status, and study. To limit reverse causality, the first 5 years of follow-up were excluded, leaving 66 552 deaths of known cause during a mean of 8 (SD 6) further years of follow-up (mean age at death 67 [SD 10] years): 30 416 vascular; 2070 diabetic, renal or hepatic; 22 592 neoplastic; 3770 respiratory; 7704 other. FINDINGS In both sexes, mortality was lowest at about 22.5-25 kg/m(2). Above this range, positive associations were recorded for several specific causes and inverse associations for none, the absolute excess risks for higher BMI and smoking were roughly additive, and each 5 kg/m(2) higher BMI was on average associated with about 30% higher overall mortality (hazard ratio per 5 kg/m(2) [HR] 1.29 [95% CI 1.27-1.32]): 40% for vascular mortality (HR 1.41 [1.37-1.45]); 60-120% for diabetic, renal, and hepatic mortality (HRs 2.16 [1.89-2.46], 1.59 [1.27-1.99], and 1.82 [1.59-2.09], respectively); 10% for neoplastic mortality (HR 1.10 [1.06-1.15]); and 20% for respiratory and for all other mortality (HRs 1.20 [1.07-1.34] and 1.20 [1.16-1.25], respectively). Below the range 22.5-25 kg/m(2), BMI was associated inversely with overall mortality, mainly because of strong inverse associations with respiratory disease and lung cancer. These inverse associations were much stronger for smokers than for non-smokers, despite cigarette consumption per smoker varying little with BMI. INTERPRETATION Although other anthropometric measures (eg, waist circumference, waist-to-hip ratio) could well add extra information to BMI, and BMI to them, BMI is in itself a strong predictor of overall mortality both above and below the apparent optimum of about 22.5-25 kg/m(2). The progressive excess mortality above this range is due mainly to vascular disease and is probably largely causal. At 30-35 kg/m(2), median survival is reduced by 2-4 years; at 40-45 kg/m(2), it is reduced by 8-10 years (which is comparable with the effects of smoking). The definite excess mortality below 22.5 kg/m(2) is due mainly to smoking-related diseases, and is not fully explained. Recognition of modified histones by ‘reader’ proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific ‘Ser 31’ residue in a composite pocket formed by the tandem bromo–PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.
miRNAs enforce homeostasis by suppressing low-level ''leaky'' transcription. Nanotechnologies are emerging platforms that could be useful in measuring, understanding, and manipulating stem cells. Examples include magnetic nanoparticles and quantum dots for stem cell labeling and in vivo tracking; nanoparticles, carbon nanotubes, and polyplexes for the intracellular delivery of genes/oligonucleotides and protein/peptides; and engineered nanometer-scale scaffolds for stem cell differentiation and transplantation. This review examines the use of nanotechnologies for stem cell tracking, differentiation, and transplantation. We further discuss their utility and the potential concerns regarding their cytotoxicity. BACKGROUND The diagnosis of hypertension has traditionally been based on blood-pressure measurements in the clinic, but home and ambulatory measurements better correlate with cardiovascular outcome, and ambulatory monitoring is more accurate than both clinic and home monitoring in diagnosing hypertension. We aimed to compare the cost-effectiveness of different diagnostic strategies for hypertension. METHODS We did a Markov model-based probabilistic cost-effectiveness analysis. We used a hypothetical primary-care population aged 40 years or older with a screening blood-pressure measurement greater than 140/90 mm Hg and risk-factor prevalence equivalent to the general population. We compared three diagnostic strategies-further blood pressure measurement in the clinic, at home, and with an ambulatory monitor-in terms of lifetime costs, quality-adjusted life years, and cost-effectiveness. FINDINGS Ambulatory monitoring was the most cost-effective strategy for the diagnosis of hypertension for men and women of all ages. It was cost-saving for all groups (from -£56 [95% CI -105 to -10] in men aged 75 years to -£323 [-389 to -222] in women aged 40 years) and resulted in more quality-adjusted life years for men and women older than 50 years (from 0·006 [0·000 to 0·015] for women aged 60 years to 0·022 [0·012 to 0·035] for men aged 70 years). This finding was robust when assessed with a wide range of deterministic sensitivity analyses around the base case, but was sensitive if home monitoring was judged to have equal test performance to ambulatory monitoring or if treatment was judged effective irrespective of whether an individual was hypertensive. INTERPRETATION Ambulatory monitoring as a diagnostic strategy for hypertension after an initial raised reading in the clinic would reduce misdiagnosis and save costs. Additional costs from ambulatory monitoring are counterbalanced by cost savings from better targeted treatment. Ambulatory monitoring is recommended for most patients before the start of antihypertensive drugs. FUNDING National Institute for Health Research and the National Institute for Health and Clinical Excellence. Autoantibodies to DNA and histones (chromatin) are the defining antigen specificity in systemic lupus erythematosus (SLE) and related musculoskeletal disorders but the mechanisms responsible for their induction remain mysterious. That situation rapidly changed once neutrophil extracellular chromatin traps (NETs) were discovered and observed to play a conserved role in innate immune responses to a broad variety of microbial pathogens. At the center of an infectious process, neutrophils exert various antimicrobial defenses, including the release of nuclear chromatin into the extracellular space. The externalized NETs, a complex meshwork of nuclear chromatin and antimicrobial proteins, serve to immobilize and degrade microbial pathogens. Here, we critically evaluate the evidence supporting NETs versus apoptotic bodies as a source for nuclear antigens in autoimmunity. We also discuss the possibility that NET chromatin forms an essential component of immune deposits in the pathogenesis of glomerulonephritis in SLE and other autoimmune immune complex diseases. Emerging data suggest that microRNAs (miRNAs) are instrumental in a variety of stress responses in addition to their more recognized role in development. Surprisingly, miRNAs, which normally suppress expression of target transcripts, may become activators of expression during stress. This might be partially explained by new interactions of miRNA/Argonaute complexes with RNA-binding proteins that relocate from different subcellular compartments during stress. BACKGROUND The main associations of body-mass index (BMI) with overall and cause-specific mortality can best be assessed by long-term prospective follow-up of large numbers of people. The Prospective Studies Collaboration aimed to investigate these associations by sharing data from many studies. METHODS Collaborative analyses were undertaken of baseline BMI versus mortality in 57 prospective studies with 894 576 participants, mostly in western Europe and North America (61% [n=541 452] male, mean recruitment age 46 [SD 11] years, median recruitment year 1979 [IQR 1975-85], mean BMI 25 [SD 4] kg/m(2)). The analyses were adjusted for age, sex, smoking status, and study. To limit reverse causality, the first 5 years of follow-up were excluded, leaving 66 552 deaths of known cause during a mean of 8 (SD 6) further years of follow-up (mean age at death 67 [SD 10] years): 30 416 vascular; 2070 diabetic, renal or hepatic; 22 592 neoplastic; 3770 respiratory; 7704 other. FINDINGS In both sexes, mortality was lowest at about 22.5-25 kg/m(2). Above this range, positive associations were recorded for several specific causes and inverse associations for none, the absolute excess risks for higher BMI and smoking were roughly additive, and each 5 kg/m(2) higher BMI was on average associated with about 30% higher overall mortality (hazard ratio per 5 kg/m(2) [HR] 1.29 [95% CI 1.27-1.32]): 40% for vascular mortality (HR 1.41 [1.37-1.45]); 60-120% for diabetic, renal, and hepatic mortality (HRs 2.16 [1.89-2.46], 1.59 [1.27-1.99], and 1.82 [1.59-2.09], respectively); 10% for neoplastic mortality (HR 1.10 [1.06-1.15]); and 20% for respiratory and for all other mortality (HRs 1.20 [1.07-1.34] and 1.20 [1.16-1.25], respectively). Below the range 22.5-25 kg/m(2), BMI was associated inversely with overall mortality, mainly because of strong inverse associations with respiratory disease and lung cancer. These inverse associations were much stronger for smokers than for non-smokers, despite cigarette consumption per smoker varying little with BMI. INTERPRETATION Although other anthropometric measures (eg, waist circumference, waist-to-hip ratio) could well add extra information to BMI, and BMI to them, BMI is in itself a strong predictor of overall mortality both above and below the apparent optimum of about 22.5-25 kg/m(2). The progressive excess mortality above this range is due mainly to vascular disease and is probably largely causal. At 30-35 kg/m(2), median survival is reduced by 2-4 years; at 40-45 kg/m(2), it is reduced by 8-10 years (which is comparable with the effects of smoking). The definite excess mortality below 22.5 kg/m(2) is due mainly to smoking-related diseases, and is not fully explained. Recognition of modified histones by ‘reader’ proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific ‘Ser 31’ residue in a composite pocket formed by the tandem bromo–PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.
0
{ "query_id": "1393", "original_query_id": "1393", "context_doc_ids": [ "14853989", "4455466", "5151024", "2251426", "31715818", "195689316" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 2, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288666", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "4455466", "2251426", "14853989", "5151024", "195689316", "31715818" ], "comprehensive_gold_set_for_query": [ "12440953", "2000038" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1393
aug_931
PRC1-bound plasmids sediment at a slower rate in unbound plasmids than in sucrose gradients. Uncoupling protein 1 (UCP1) plays a central role in nonshivering thermogenesis in brown fat; however, its role in beige fat remains unclear. Here we report a robust UCP1-independent thermogenic mechanism in beige fat that involves enhanced ATP-dependent Ca2+ cycling by sarco/endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) and ryanodine receptor 2 (RyR2). Inhibition of SERCA2b impairs UCP1-independent beige fat thermogenesis in humans and mice as well as in pigs, a species that lacks a functional UCP1 protein. Conversely, enhanced Ca2+ cycling by activation of α1- and/or β3-adrenergic receptors or the SERCA2b-RyR2 pathway stimulates UCP1-independent thermogenesis in beige adipocytes. In the absence of UCP1, beige fat dynamically expends glucose through enhanced glycolysis, tricarboxylic acid metabolism and pyruvate dehydrogenase activity for ATP-dependent thermogenesis through the SERCA2b pathway; beige fat thereby functions as a 'glucose sink' and improves glucose tolerance independently of body weight loss. Our study uncovers a noncanonical thermogenic mechanism through which beige fat controls whole-body energy homeostasis via Ca2+ cycling. Two-component signal transduction pathways comprising histidine protein kinases (HPKs) and their response regulators (RRs) are widely used to control bacterial responses to environmental challenges. Some bacteria have over 150 different two-component pathways, and the specificity of the phosphotransfer reactions within these systems is tightly controlled to prevent unwanted crosstalk. One of the best understood two-component signalling pathways is the chemotaxis pathway. Here, we present the 1.40 A crystal structure of the histidine-containing phosphotransfer domain of the chemotaxis HPK, CheA(3), in complex with its cognate RR, CheY(6). A methionine finger on CheY(6) that nestles in a hydrophobic pocket in CheA(3) was shown to be important for the interaction and was found to only occur in the cognate RRs of CheA(3), CheY(6), and CheB(2). Site-directed mutagenesis of this methionine in combination with two adjacent residues abolished binding, as shown by surface plasmon resonance studies, and phosphotransfer from CheA(3)-P to CheY(6). Introduction of this methionine and an adjacent alanine residue into a range of noncognate CheYs, dramatically changed their specificity, allowing protein interaction and rapid phosphotransfer from CheA(3)-P. The structure presented here has allowed us to identify specificity determinants for the CheA-CheY interaction and subsequently to successfully reengineer phosphotransfer signalling. In summary, our results provide valuable insight into how cells mediate specificity in one of the most abundant signalling pathways in biology, two-component signal transduction. The transcriptional status of a gene can be maintained through multiple rounds of cell division during development. This epigenetic effect is believed to reflect heritable changes in chromatin folding and histone modifications or variants at target genes, but little is known about how these chromatin features are inherited through cell division. A particular challenge for maintaining transcription states is DNA replication, which disrupts or dilutes chromatin-associated proteins and histone modifications. PRC1-class Polycomb group protein complexes are essential for development and are thought to heritably silence transcription by altering chromatin folding and histone modifications. It is not known whether these complexes and their effects are maintained during DNA replication or subsequently re-established. We find that when PRC1-class Polycomb complex-bound chromatin or DNA is replicated in vitro, Polycomb complexes remain bound to replicated templates. Retention of Polycomb proteins through DNA replication may contribute to maintenance of transcriptional silencing through cell division. Humoral immunity depends on both rapid and long-term antibody production against invading pathogens. This is achieved by the generation of spatially distinct extrafollicular plasmablast and follicular germinal center (GC) B cell populations, but the signals that guide responding B cells to these alternative compartments have not been fully elucidated. Here, we show that expression of the orphan G protein-coupled receptor Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) by activated B cells was essential for their movement to extrafollicular sites and induction of early plasmablast responses. Conversely, downregulation of EBI2 enabled B cells to access the center of follicles and promoted efficient GC formation. EBI2 therefore provides a previously uncharacterized dimension to B cell migration that is crucial for coordinating rapid versus long-term antibody responses. Seizures in focal epilepsies are sustained by a highly synchronous neuronal discharge that arises at restricted brain sites and subsequently spreads to large portions of the brain. Despite intense experimental research in this field, the earlier cellular events that initiate and sustain a focal seizure are still not well defined. Their identification is central to understand the pathophysiology of focal epilepsies and to develop new pharmacological therapies for drug-resistant forms of epilepsy. The prominent involvement of astrocytes in ictogenesis was recently proposed. We test here whether a cooperation between astrocytes and neurons is a prerequisite to support ictal (seizure-like) and interictal epileptiform events. Simultaneous patch-clamp recording and Ca2+ imaging techniques were performed in a new in vitro model of focal seizures induced by local applications of N-methyl-D-aspartic acid (NMDA) in rat entorhinal cortex slices. We found that a Ca2+ elevation in astrocytes correlates with both the initial development and the maintenance of a focal, seizure-like discharge. A delayed astrocyte activation during ictal discharges was also observed in other models (including the whole in vitro isolated guinea pig brain) in which the site of generation of seizure activity cannot be precisely monitored. In contrast, interictal discharges were not associated with Ca2+ changes in astrocytes. Selective inhibition or stimulation of astrocyte Ca2+ signalling blocked or enhanced, respectively, ictal discharges, but did not affect interictal discharge generation. Our data reveal that neurons engage astrocytes in a recurrent excitatory loop (possibly involving gliotransmission) that promotes seizure ignition and sustains the ictal discharge. This neuron-astrocyte interaction may represent a novel target to develop effective therapeutic strategies to control seizures.
PRC1-bound plasmids sediment at a slower rate in unbound plasmids than in sucrose gradients. Uncoupling protein 1 (UCP1) plays a central role in nonshivering thermogenesis in brown fat; however, its role in beige fat remains unclear. Here we report a robust UCP1-independent thermogenic mechanism in beige fat that involves enhanced ATP-dependent Ca2+ cycling by sarco/endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) and ryanodine receptor 2 (RyR2). Inhibition of SERCA2b impairs UCP1-independent beige fat thermogenesis in humans and mice as well as in pigs, a species that lacks a functional UCP1 protein. Conversely, enhanced Ca2+ cycling by activation of α1- and/or β3-adrenergic receptors or the SERCA2b-RyR2 pathway stimulates UCP1-independent thermogenesis in beige adipocytes. In the absence of UCP1, beige fat dynamically expends glucose through enhanced glycolysis, tricarboxylic acid metabolism and pyruvate dehydrogenase activity for ATP-dependent thermogenesis through the SERCA2b pathway; beige fat thereby functions as a 'glucose sink' and improves glucose tolerance independently of body weight loss. Our study uncovers a noncanonical thermogenic mechanism through which beige fat controls whole-body energy homeostasis via Ca2+ cycling. Two-component signal transduction pathways comprising histidine protein kinases (HPKs) and their response regulators (RRs) are widely used to control bacterial responses to environmental challenges. Some bacteria have over 150 different two-component pathways, and the specificity of the phosphotransfer reactions within these systems is tightly controlled to prevent unwanted crosstalk. One of the best understood two-component signalling pathways is the chemotaxis pathway. Here, we present the 1.40 A crystal structure of the histidine-containing phosphotransfer domain of the chemotaxis HPK, CheA(3), in complex with its cognate RR, CheY(6). A methionine finger on CheY(6) that nestles in a hydrophobic pocket in CheA(3) was shown to be important for the interaction and was found to only occur in the cognate RRs of CheA(3), CheY(6), and CheB(2). Site-directed mutagenesis of this methionine in combination with two adjacent residues abolished binding, as shown by surface plasmon resonance studies, and phosphotransfer from CheA(3)-P to CheY(6). Introduction of this methionine and an adjacent alanine residue into a range of noncognate CheYs, dramatically changed their specificity, allowing protein interaction and rapid phosphotransfer from CheA(3)-P. The structure presented here has allowed us to identify specificity determinants for the CheA-CheY interaction and subsequently to successfully reengineer phosphotransfer signalling. In summary, our results provide valuable insight into how cells mediate specificity in one of the most abundant signalling pathways in biology, two-component signal transduction. The transcriptional status of a gene can be maintained through multiple rounds of cell division during development. This epigenetic effect is believed to reflect heritable changes in chromatin folding and histone modifications or variants at target genes, but little is known about how these chromatin features are inherited through cell division. A particular challenge for maintaining transcription states is DNA replication, which disrupts or dilutes chromatin-associated proteins and histone modifications. PRC1-class Polycomb group protein complexes are essential for development and are thought to heritably silence transcription by altering chromatin folding and histone modifications. It is not known whether these complexes and their effects are maintained during DNA replication or subsequently re-established. We find that when PRC1-class Polycomb complex-bound chromatin or DNA is replicated in vitro, Polycomb complexes remain bound to replicated templates. Retention of Polycomb proteins through DNA replication may contribute to maintenance of transcriptional silencing through cell division. Humoral immunity depends on both rapid and long-term antibody production against invading pathogens. This is achieved by the generation of spatially distinct extrafollicular plasmablast and follicular germinal center (GC) B cell populations, but the signals that guide responding B cells to these alternative compartments have not been fully elucidated. Here, we show that expression of the orphan G protein-coupled receptor Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) by activated B cells was essential for their movement to extrafollicular sites and induction of early plasmablast responses. Conversely, downregulation of EBI2 enabled B cells to access the center of follicles and promoted efficient GC formation. EBI2 therefore provides a previously uncharacterized dimension to B cell migration that is crucial for coordinating rapid versus long-term antibody responses. Seizures in focal epilepsies are sustained by a highly synchronous neuronal discharge that arises at restricted brain sites and subsequently spreads to large portions of the brain. Despite intense experimental research in this field, the earlier cellular events that initiate and sustain a focal seizure are still not well defined. Their identification is central to understand the pathophysiology of focal epilepsies and to develop new pharmacological therapies for drug-resistant forms of epilepsy. The prominent involvement of astrocytes in ictogenesis was recently proposed. We test here whether a cooperation between astrocytes and neurons is a prerequisite to support ictal (seizure-like) and interictal epileptiform events. Simultaneous patch-clamp recording and Ca2+ imaging techniques were performed in a new in vitro model of focal seizures induced by local applications of N-methyl-D-aspartic acid (NMDA) in rat entorhinal cortex slices. We found that a Ca2+ elevation in astrocytes correlates with both the initial development and the maintenance of a focal, seizure-like discharge. A delayed astrocyte activation during ictal discharges was also observed in other models (including the whole in vitro isolated guinea pig brain) in which the site of generation of seizure activity cannot be precisely monitored. In contrast, interictal discharges were not associated with Ca2+ changes in astrocytes. Selective inhibition or stimulation of astrocyte Ca2+ signalling blocked or enhanced, respectively, ictal discharges, but did not affect interictal discharge generation. Our data reveal that neurons engage astrocytes in a recurrent excitatory loop (possibly involving gliotransmission) that promotes seizure ignition and sustains the ictal discharge. This neuron-astrocyte interaction may represent a novel target to develop effective therapeutic strategies to control seizures.
0.333333
{ "query_id": "916", "original_query_id": "916", "context_doc_ids": [ "1410197", "19205437", "11603066", "18037805", "15488881" ], "gold_doc_ids_in_context": [ "18037805" ], "total_gold_docs_for_query": 1, "context_f1": 0.33333333333333337, "context_size": 5, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288748", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "18037805" ], "negative_samples_considered": [ "15488881", "11603066", "1410197", "19205437" ], "comprehensive_gold_set_for_query": [ "18037805" ], "target_max_context_size_config": 6, "actual_context_size": 5, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
916
aug_932
Individuals with Alzheimers who participate in six months of physical activity improve cognitive function for up to 18 months. In single-stranded ribonucleic acid (RNA) viruses, virus capsid assembly and genome packaging are intertwined processes. Using cryo-electron microscopy and single particle analysis we determined the asymmetric virion structure of bacteriophage MS2, which includes 178 copies of the coat protein, a single copy of the A-protein and the RNA genome. This reveals that in situ, the viral RNA genome can adopt a defined conformation. The RNA forms a branched network of stem-loops that almost all allocate near the capsid inner surface, while predominantly binding to coat protein dimers that are located in one-half of the capsid. This suggests that genomic RNA is highly involved in genome packaging and virion assembly. Seizures in focal epilepsies are sustained by a highly synchronous neuronal discharge that arises at restricted brain sites and subsequently spreads to large portions of the brain. Despite intense experimental research in this field, the earlier cellular events that initiate and sustain a focal seizure are still not well defined. Their identification is central to understand the pathophysiology of focal epilepsies and to develop new pharmacological therapies for drug-resistant forms of epilepsy. The prominent involvement of astrocytes in ictogenesis was recently proposed. We test here whether a cooperation between astrocytes and neurons is a prerequisite to support ictal (seizure-like) and interictal epileptiform events. Simultaneous patch-clamp recording and Ca2+ imaging techniques were performed in a new in vitro model of focal seizures induced by local applications of N-methyl-D-aspartic acid (NMDA) in rat entorhinal cortex slices. We found that a Ca2+ elevation in astrocytes correlates with both the initial development and the maintenance of a focal, seizure-like discharge. A delayed astrocyte activation during ictal discharges was also observed in other models (including the whole in vitro isolated guinea pig brain) in which the site of generation of seizure activity cannot be precisely monitored. In contrast, interictal discharges were not associated with Ca2+ changes in astrocytes. Selective inhibition or stimulation of astrocyte Ca2+ signalling blocked or enhanced, respectively, ictal discharges, but did not affect interictal discharge generation. Our data reveal that neurons engage astrocytes in a recurrent excitatory loop (possibly involving gliotransmission) that promotes seizure ignition and sustains the ictal discharge. This neuron-astrocyte interaction may represent a novel target to develop effective therapeutic strategies to control seizures. Background Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4α) and HNF1A/TCF1 (encoding HNF-1α), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice. Mammalian long intergenic noncoding RNAs (lincRNAs) are best known for modulating transcription. Here we report a posttranscriptional function for lincRNA-p21 as a modulator of translation. Association of the RNA-binding protein HuR with lincRNA-p21 favored the recruitment of let-7/Ago2 to lincRNA-p21, leading to lower lincRNA-p21 stability. Under reduced HuR levels, lincRNA-p21 accumulated in human cervical carcinoma HeLa cells, increasing its association with JUNB and CTNNB1 mRNAs and selectively lowering their translation. With elevated HuR, lincRNA-p21 levels declined, which in turn derepressed JunB and β-catenin translation and increased the levels of these proteins. We propose that HuR controls translation of a subset of target mRNAs by influencing lincRNA-p21 levels. Our findings uncover a role for lincRNA as a posttranscriptional inhibitor of translation. Correction for: Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al. (2007) A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis. PLoS Med 4(9): e278. doi:10.1371/journal.pmed.0040278 In Table 1, the allele ratio in column eight (Allele Ratiosb: Cases, Controls) refers to allele A: allele B and not allele1:allele2 as described in footnote b, with Allele A being the Susceptibility Allele as denoted in column seven. The footnote should read: bNumber of alleles were compared in cases versus controls: allele A: allele B cases, allele A: allele B controls. Allele A refers to the susceptibility alleles as given in column seven. Nucleosomes containing the histone variant H3.3 tend to be clustered in vivo in the neighborhood of transcriptionally active genes and over regulatory elements. It has not been clear, however, whether H3.3-containing nucleosomes possess unique properties that would affect transcription. We report here that H3.3 nucleosomes isolated from vertebrates, regardless of whether they are partnered with H2A or H2A.Z, are unusually sensitive to salt-dependent disruption, losing H2A/H2B or H2A.Z/H2B dimers. Immunoprecipitation studies of nucleosome core particles (NCPs) show that NCPs that contain both H3.3 and H2A.Z are even less stable than NCPs containing H3.3 and H2A. Intriguingly, NCPs containing H3 and H2A.Z are at least as stable as H3/H2A NCPs. These results establish an hierarchy of stabilities for native nucleosomes carrying different complements of variants, and suggest how H2A.Z could play different roles depending on its partners within the NCP. They also are consistent with the idea that H3.3 plays an active role in maintaining accessible chromatin structures in enhancer regions and transcribed regions. Consistent with this idea, promoters and enhancers at transcriptionally active genes and coding regions at highly expressed genes have nucleosomes that simultaneously carry both H3.3 and H2A.Z, and should therefore be extremely sensitive to disruption.
Individuals with Alzheimers who participate in six months of physical activity improve cognitive function for up to 18 months. In single-stranded ribonucleic acid (RNA) viruses, virus capsid assembly and genome packaging are intertwined processes. Using cryo-electron microscopy and single particle analysis we determined the asymmetric virion structure of bacteriophage MS2, which includes 178 copies of the coat protein, a single copy of the A-protein and the RNA genome. This reveals that in situ, the viral RNA genome can adopt a defined conformation. The RNA forms a branched network of stem-loops that almost all allocate near the capsid inner surface, while predominantly binding to coat protein dimers that are located in one-half of the capsid. This suggests that genomic RNA is highly involved in genome packaging and virion assembly. Seizures in focal epilepsies are sustained by a highly synchronous neuronal discharge that arises at restricted brain sites and subsequently spreads to large portions of the brain. Despite intense experimental research in this field, the earlier cellular events that initiate and sustain a focal seizure are still not well defined. Their identification is central to understand the pathophysiology of focal epilepsies and to develop new pharmacological therapies for drug-resistant forms of epilepsy. The prominent involvement of astrocytes in ictogenesis was recently proposed. We test here whether a cooperation between astrocytes and neurons is a prerequisite to support ictal (seizure-like) and interictal epileptiform events. Simultaneous patch-clamp recording and Ca2+ imaging techniques were performed in a new in vitro model of focal seizures induced by local applications of N-methyl-D-aspartic acid (NMDA) in rat entorhinal cortex slices. We found that a Ca2+ elevation in astrocytes correlates with both the initial development and the maintenance of a focal, seizure-like discharge. A delayed astrocyte activation during ictal discharges was also observed in other models (including the whole in vitro isolated guinea pig brain) in which the site of generation of seizure activity cannot be precisely monitored. In contrast, interictal discharges were not associated with Ca2+ changes in astrocytes. Selective inhibition or stimulation of astrocyte Ca2+ signalling blocked or enhanced, respectively, ictal discharges, but did not affect interictal discharge generation. Our data reveal that neurons engage astrocytes in a recurrent excitatory loop (possibly involving gliotransmission) that promotes seizure ignition and sustains the ictal discharge. This neuron-astrocyte interaction may represent a novel target to develop effective therapeutic strategies to control seizures. Background Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4α) and HNF1A/TCF1 (encoding HNF-1α), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice. Mammalian long intergenic noncoding RNAs (lincRNAs) are best known for modulating transcription. Here we report a posttranscriptional function for lincRNA-p21 as a modulator of translation. Association of the RNA-binding protein HuR with lincRNA-p21 favored the recruitment of let-7/Ago2 to lincRNA-p21, leading to lower lincRNA-p21 stability. Under reduced HuR levels, lincRNA-p21 accumulated in human cervical carcinoma HeLa cells, increasing its association with JUNB and CTNNB1 mRNAs and selectively lowering their translation. With elevated HuR, lincRNA-p21 levels declined, which in turn derepressed JunB and β-catenin translation and increased the levels of these proteins. We propose that HuR controls translation of a subset of target mRNAs by influencing lincRNA-p21 levels. Our findings uncover a role for lincRNA as a posttranscriptional inhibitor of translation. Correction for: Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al. (2007) A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis. PLoS Med 4(9): e278. doi:10.1371/journal.pmed.0040278 In Table 1, the allele ratio in column eight (Allele Ratiosb: Cases, Controls) refers to allele A: allele B and not allele1:allele2 as described in footnote b, with Allele A being the Susceptibility Allele as denoted in column seven. The footnote should read: bNumber of alleles were compared in cases versus controls: allele A: allele B cases, allele A: allele B controls. Allele A refers to the susceptibility alleles as given in column seven. Nucleosomes containing the histone variant H3.3 tend to be clustered in vivo in the neighborhood of transcriptionally active genes and over regulatory elements. It has not been clear, however, whether H3.3-containing nucleosomes possess unique properties that would affect transcription. We report here that H3.3 nucleosomes isolated from vertebrates, regardless of whether they are partnered with H2A or H2A.Z, are unusually sensitive to salt-dependent disruption, losing H2A/H2B or H2A.Z/H2B dimers. Immunoprecipitation studies of nucleosome core particles (NCPs) show that NCPs that contain both H3.3 and H2A.Z are even less stable than NCPs containing H3.3 and H2A. Intriguingly, NCPs containing H3 and H2A.Z are at least as stable as H3/H2A NCPs. These results establish an hierarchy of stabilities for native nucleosomes carrying different complements of variants, and suggest how H2A.Z could play different roles depending on its partners within the NCP. They also are consistent with the idea that H3.3 plays an active role in maintaining accessible chromatin structures in enhancer regions and transcribed regions. Consistent with this idea, promoters and enhancers at transcriptionally active genes and coding regions at highly expressed genes have nucleosomes that simultaneously carry both H3.3 and H2A.Z, and should therefore be extremely sensitive to disruption.
0
{ "query_id": "621", "original_query_id": "621", "context_doc_ids": [ "1967017", "1410197", "56893404", "6903077", "13763195", "25254425" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.288813", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "13763195", "6903077", "56893404", "25254425", "1410197", "1967017" ], "comprehensive_gold_set_for_query": [ "1642727" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
621
aug_933
Homozygous deletion of murine Sbds gene from osterix-expressing mesenchymal stem and progenitor cells (MPCs) induces oxidative stress. Cancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6(-) progenitor cells do not give rise to metastatic lesions but, when treated with cytokines, acquire CD44v6 expression and metastatic capacity. Importantly, phosphatidylinositol 3-kinase (PI3K) inhibition selectively killed CD44v6 CR-CSCs and reduced metastatic growth. In patient cohorts, low levels of CD44v6 predict increased probability of survival. Thus, the metastatic process in colorectal cancer is initiated by CSCs through the expression of CD44v6, which is both a functional biomarker and therapeutic target. It is becoming “a truth universally acknowledged” that the education of undergraduate medical students will be enhanced through the use of computer assisted learning. Access to the wide range of online options illustrated in the figure must surely make learning more exciting, effective, and likely to be retained. This assumption is potentially but by no means inevitably correct. ### Box 1: Why fund computer assisted learning? Computer assisted learning is inevitable —Individual lecturers and departments are already beginning to introduce a wide range of computer based applications, sometimes in a haphazard way. Planned and coordinated development is better than indiscriminate expansion It is convenient and flexible —Courses supported by computer assisted learning applications may require fewer face to face lectures and seminars and place fewer geographical and temporal constraints on staff and students. Students at peripheral hospitals or primary care centres may benefit in particular Unique presentational benefits —Computer presentation is particularly suited to subjects that are visually intensive, detail oriented, and difficult to conceptualise, such as complex biochemical processes or microscopic images.1 Furthermore, “virtual” cases may reduce the need to use animal or human tissue in learning Personalised learning —Each learner can progress at his or her preferred pace. They can repeat, interrupt, and resume at will, which may have particular advantages for weaker students Economies of scale —Once an application has been set up, the incremental cost of offering it to additional students is relatively small Competitive advantage —Potential applicants may use the quality of information technology to discriminate between medical schools. A “leading edge” virtual campus is likely to attract good students Achieves the ultimate goal of higher education —The goal is to link people into learning communities. Computer applications, especially the internet and world wide web, are an extremely efficient way of doing this2 Expands pedagogical horizons —The most controversial argument for … RETURN TO TEXT Deamidation of N-terminal Gln by Nt(Q)-amidase, an N-terminal amidohydrolase, is a part of the N-end rule pathway of protein degradation. We detected the activity of Nt(Q)-amidase, termed Ntaq1, in mouse tissues, purified Ntaq1 from bovine brains, identified its gene, and began analyzing this enzyme. Ntaq1 is highly conserved among animals, plants, and some fungi, but its sequence is dissimilar to sequences of other amidases. An earlier mutant in the Drosophila Cg8253 gene that we show here to encode Nt(Q)-amidase has defective long-term memory. Other studies identified protein ligands of the uncharacterized human C8orf32 protein that we show here to be the Ntaq1 Nt(Q)-amidase. Remarkably, "high-throughput" studies have recently solved the crystal structure of C8orf32 (Ntaq1). Our site-directed mutagenesis of Ntaq1 and its crystal structure indicate that the active site and catalytic mechanism of Nt(Q)-amidase are similar to those of transglutaminases. Tissue regeneration requires dynamic cellular adaptation to the wound environment. It is currently unclear how this is orchestrated at the cellular level and how cell fate is affected by severe tissue damage. Here we dissect cell fate transitions during colonic regeneration in a mouse dextran sulfate sodium (DSS) colitis model, and we demonstrate that the epithelium is transiently reprogrammed into a primitive state. This is characterized by de novo expression of fetal markers as well as suppression of markers for adult stem and differentiated cells. The fate change is orchestrated by remodeling the extracellular matrix (ECM), increased FAK/Src signaling, and ultimately YAP/TAZ activation. In a defined cell culture system recapitulating the extracellular matrix remodeling observed in vivo, we show that a collagen 3D matrix supplemented with Wnt ligands is sufficient to sustain endogenous YAP/TAZ and induce conversion of cell fate. This provides a simple model for tissue regeneration, implicating cellular reprogramming as an essential element. Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system, but the underlying molecular mechanisms and relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the pre-leukemic disorder Shwachman-Diamond syndrome (SDS) induces mitochondrial dysfunction, oxidative stress, and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the SDS mouse model and a range of human pre-leukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome (MDS), the principal leukemia predisposition syndrome. Collectively, our findings identify mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as a targetable determinant of disease outcome in human pre-leukemia.
Homozygous deletion of murine Sbds gene from osterix-expressing mesenchymal stem and progenitor cells (MPCs) induces oxidative stress. Cancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6(-) progenitor cells do not give rise to metastatic lesions but, when treated with cytokines, acquire CD44v6 expression and metastatic capacity. Importantly, phosphatidylinositol 3-kinase (PI3K) inhibition selectively killed CD44v6 CR-CSCs and reduced metastatic growth. In patient cohorts, low levels of CD44v6 predict increased probability of survival. Thus, the metastatic process in colorectal cancer is initiated by CSCs through the expression of CD44v6, which is both a functional biomarker and therapeutic target. It is becoming “a truth universally acknowledged” that the education of undergraduate medical students will be enhanced through the use of computer assisted learning. Access to the wide range of online options illustrated in the figure must surely make learning more exciting, effective, and likely to be retained. This assumption is potentially but by no means inevitably correct. ### Box 1: Why fund computer assisted learning? Computer assisted learning is inevitable —Individual lecturers and departments are already beginning to introduce a wide range of computer based applications, sometimes in a haphazard way. Planned and coordinated development is better than indiscriminate expansion It is convenient and flexible —Courses supported by computer assisted learning applications may require fewer face to face lectures and seminars and place fewer geographical and temporal constraints on staff and students. Students at peripheral hospitals or primary care centres may benefit in particular Unique presentational benefits —Computer presentation is particularly suited to subjects that are visually intensive, detail oriented, and difficult to conceptualise, such as complex biochemical processes or microscopic images.1 Furthermore, “virtual” cases may reduce the need to use animal or human tissue in learning Personalised learning —Each learner can progress at his or her preferred pace. They can repeat, interrupt, and resume at will, which may have particular advantages for weaker students Economies of scale —Once an application has been set up, the incremental cost of offering it to additional students is relatively small Competitive advantage —Potential applicants may use the quality of information technology to discriminate between medical schools. A “leading edge” virtual campus is likely to attract good students Achieves the ultimate goal of higher education —The goal is to link people into learning communities. Computer applications, especially the internet and world wide web, are an extremely efficient way of doing this2 Expands pedagogical horizons —The most controversial argument for … RETURN TO TEXT Deamidation of N-terminal Gln by Nt(Q)-amidase, an N-terminal amidohydrolase, is a part of the N-end rule pathway of protein degradation. We detected the activity of Nt(Q)-amidase, termed Ntaq1, in mouse tissues, purified Ntaq1 from bovine brains, identified its gene, and began analyzing this enzyme. Ntaq1 is highly conserved among animals, plants, and some fungi, but its sequence is dissimilar to sequences of other amidases. An earlier mutant in the Drosophila Cg8253 gene that we show here to encode Nt(Q)-amidase has defective long-term memory. Other studies identified protein ligands of the uncharacterized human C8orf32 protein that we show here to be the Ntaq1 Nt(Q)-amidase. Remarkably, "high-throughput" studies have recently solved the crystal structure of C8orf32 (Ntaq1). Our site-directed mutagenesis of Ntaq1 and its crystal structure indicate that the active site and catalytic mechanism of Nt(Q)-amidase are similar to those of transglutaminases. Tissue regeneration requires dynamic cellular adaptation to the wound environment. It is currently unclear how this is orchestrated at the cellular level and how cell fate is affected by severe tissue damage. Here we dissect cell fate transitions during colonic regeneration in a mouse dextran sulfate sodium (DSS) colitis model, and we demonstrate that the epithelium is transiently reprogrammed into a primitive state. This is characterized by de novo expression of fetal markers as well as suppression of markers for adult stem and differentiated cells. The fate change is orchestrated by remodeling the extracellular matrix (ECM), increased FAK/Src signaling, and ultimately YAP/TAZ activation. In a defined cell culture system recapitulating the extracellular matrix remodeling observed in vivo, we show that a collagen 3D matrix supplemented with Wnt ligands is sufficient to sustain endogenous YAP/TAZ and induce conversion of cell fate. This provides a simple model for tissue regeneration, implicating cellular reprogramming as an essential element. Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system, but the underlying molecular mechanisms and relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the pre-leukemic disorder Shwachman-Diamond syndrome (SDS) induces mitochondrial dysfunction, oxidative stress, and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the SDS mouse model and a range of human pre-leukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome (MDS), the principal leukemia predisposition syndrome. Collectively, our findings identify mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as a targetable determinant of disease outcome in human pre-leukemia.
0.333333
{ "query_id": "526", "original_query_id": "526", "context_doc_ids": [ "12789595", "36540079", "13481880", "9558539", "3863543" ], "gold_doc_ids_in_context": [ "3863543" ], "total_gold_docs_for_query": 1, "context_f1": 0.33333333333333337, "context_size": 5, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289043", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "3863543" ], "negative_samples_considered": [ "13481880", "36540079", "9558539", "12789595" ], "comprehensive_gold_set_for_query": [ "3863543" ], "target_max_context_size_config": 6, "actual_context_size": 5, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
526
aug_934
Malaria has a high vectorial capacity. Experience gained from the Global Malaria Eradication Program (1955-72) identified a set of shared technical and operational factors that enabled some countries to successfully eliminate malaria. Spatial data for these factors were assembled for all malaria-endemic countries and combined to provide an objective, relative ranking of countries by technical, operational, and combined elimination feasibility. The analysis was done separately for Plasmodium falciparum and Plasmodium vivax, and the limitations of the approach were discussed. The relative rankings suggested that malaria elimination would be most feasible in countries in the Americas and Asia, and least feasible in countries in central and west Africa. The results differed when feasibility was measured by technical or operational factors, highlighting the different types of challenge faced by each country. The results are not intended to be prescriptive, predictive, or to provide absolute assessments of feasibility, but they do show that spatial information is available to facilitate evidence-based assessments of the relative feasibility of malaria elimination by country that can be rapidly updated.
Malaria has a high vectorial capacity. Experience gained from the Global Malaria Eradication Program (1955-72) identified a set of shared technical and operational factors that enabled some countries to successfully eliminate malaria. Spatial data for these factors were assembled for all malaria-endemic countries and combined to provide an objective, relative ranking of countries by technical, operational, and combined elimination feasibility. The analysis was done separately for Plasmodium falciparum and Plasmodium vivax, and the limitations of the approach were discussed. The relative rankings suggested that malaria elimination would be most feasible in countries in the Americas and Asia, and least feasible in countries in central and west Africa. The results differed when feasibility was measured by technical or operational factors, highlighting the different types of challenge faced by each country. The results are not intended to be prescriptive, predictive, or to provide absolute assessments of feasibility, but they do show that spatial information is available to facilitate evidence-based assessments of the relative feasibility of malaria elimination by country that can be rapidly updated.
1
{ "query_id": "753", "original_query_id": "753", "context_doc_ids": [ "1173667" ], "gold_doc_ids_in_context": [ "1173667" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289124", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "1173667" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "1173667" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
753
aug_935
Foxp3 represses the expression of transcriptional regulators implicated in memory T cell development. Blood monocytes are well-characterized precursors for macrophages and dendritic cells. Subsets of human monocytes with differential representation in various disease states are well known. In contrast, mouse monocyte subsets have been characterized minimally. In this study we identify three subpopulations of mouse monocytes that can be distinguished by differential expression of Ly-6C, CD43, CD11c, MBR, and CD62L. The subsets share the characteristics of extensive phagocytosis, similar expression of M-CSF receptor (CD115), and development into macrophages upon M-CSF stimulation. By eliminating blood monocytes with dichloromethylene-bisphosphonate-loaded liposomes and monitoring their repopulation, we showed a developmental relationship between the subsets. Monocytes were maximally depleted 18 h after liposome application and subsequently reappeared in the circulation. These cells were exclusively of the Ly-6C(high) subset, resembling bone marrow monocytes. Serial flow cytometric analyses of newly released Ly-6C(high) monocytes showed that Ly-6C expression on these cells was down-regulated while in circulation. Under inflammatory conditions elicited either by acute infection with Listeria monocytogenes or chronic infection with Leishmania major, there was a significant increase in immature Ly-6C(high) monocytes, resembling the inflammatory left shift of granulocytes. In addition, acute peritoneal inflammation recruited preferentially Ly-6C(med-high) monocytes. Taken together, these data identify distinct subpopulations of mouse blood monocytes that differ in maturation stage and capacity to become recruited to inflammatory sites. Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation. Cells from organisms with renewable tissues can permanently withdraw from the cell cycle in response to diverse stress, including dysfunctional telomeres, DNA damage, strong mitogenic signals, and disrupted chromatin. This response, termed cellular senescence, is controlled by the p53 and RB tumor suppressor proteins and constitutes a potent anticancer mechanism. Nonetheless, senescent cells acquire phenotypic changes that may contribute to aging and certain age-related diseases, including late-life cancer. Thus, the senescence response may be antagonistically pleiotropic, promoting early-life survival by curtailing the development of cancer but eventually limiting longevity as dysfunctional senescent cells accumulate. Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of Parkinson's disease. LRRK2 is a multifunctional protein affecting many cellular processes and has been described to bind microtubules. Defective microtubule-based axonal transport is hypothesized to contribute to Parkinson's disease, but whether LRRK2 mutations affect this process to mediate pathogenesis is not known. Here we find that LRRK2 containing pathogenic Roc-COR domain mutations (R1441C, Y1699C) preferentially associates with deacetylated microtubules, and inhibits axonal transport in primary neurons and in Drosophila, causing locomotor deficits in vivo. In vitro, increasing microtubule acetylation using deacetylase inhibitors or the tubulin acetylase αTAT1 prevents association of mutant LRRK2 with microtubules, and the deacetylase inhibitor trichostatin A (TSA) restores axonal transport. In vivo knockdown of the deacetylases HDAC6 and Sirt2, or administration of TSA rescues both axonal transport and locomotor behavior. Thus, this study reveals a pathogenic mechanism and a potential intervention for Parkinson's disease. Alzheimer's disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4-3.5 Å resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer's disease. Filament cores are made of two identical protofilaments comprising residues 306-378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases. Correction for: Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al. (2007) A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis. PLoS Med 4(9): e278. doi:10.1371/journal.pmed.0040278 In Table 1, the allele ratio in column eight (Allele Ratiosb: Cases, Controls) refers to allele A: allele B and not allele1:allele2 as described in footnote b, with Allele A being the Susceptibility Allele as denoted in column seven. The footnote should read: bNumber of alleles were compared in cases versus controls: allele A: allele B cases, allele A: allele B controls. Allele A refers to the susceptibility alleles as given in column seven.
Foxp3 represses the expression of transcriptional regulators implicated in memory T cell development. Blood monocytes are well-characterized precursors for macrophages and dendritic cells. Subsets of human monocytes with differential representation in various disease states are well known. In contrast, mouse monocyte subsets have been characterized minimally. In this study we identify three subpopulations of mouse monocytes that can be distinguished by differential expression of Ly-6C, CD43, CD11c, MBR, and CD62L. The subsets share the characteristics of extensive phagocytosis, similar expression of M-CSF receptor (CD115), and development into macrophages upon M-CSF stimulation. By eliminating blood monocytes with dichloromethylene-bisphosphonate-loaded liposomes and monitoring their repopulation, we showed a developmental relationship between the subsets. Monocytes were maximally depleted 18 h after liposome application and subsequently reappeared in the circulation. These cells were exclusively of the Ly-6C(high) subset, resembling bone marrow monocytes. Serial flow cytometric analyses of newly released Ly-6C(high) monocytes showed that Ly-6C expression on these cells was down-regulated while in circulation. Under inflammatory conditions elicited either by acute infection with Listeria monocytogenes or chronic infection with Leishmania major, there was a significant increase in immature Ly-6C(high) monocytes, resembling the inflammatory left shift of granulocytes. In addition, acute peritoneal inflammation recruited preferentially Ly-6C(med-high) monocytes. Taken together, these data identify distinct subpopulations of mouse blood monocytes that differ in maturation stage and capacity to become recruited to inflammatory sites. Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation. Cells from organisms with renewable tissues can permanently withdraw from the cell cycle in response to diverse stress, including dysfunctional telomeres, DNA damage, strong mitogenic signals, and disrupted chromatin. This response, termed cellular senescence, is controlled by the p53 and RB tumor suppressor proteins and constitutes a potent anticancer mechanism. Nonetheless, senescent cells acquire phenotypic changes that may contribute to aging and certain age-related diseases, including late-life cancer. Thus, the senescence response may be antagonistically pleiotropic, promoting early-life survival by curtailing the development of cancer but eventually limiting longevity as dysfunctional senescent cells accumulate. Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of Parkinson's disease. LRRK2 is a multifunctional protein affecting many cellular processes and has been described to bind microtubules. Defective microtubule-based axonal transport is hypothesized to contribute to Parkinson's disease, but whether LRRK2 mutations affect this process to mediate pathogenesis is not known. Here we find that LRRK2 containing pathogenic Roc-COR domain mutations (R1441C, Y1699C) preferentially associates with deacetylated microtubules, and inhibits axonal transport in primary neurons and in Drosophila, causing locomotor deficits in vivo. In vitro, increasing microtubule acetylation using deacetylase inhibitors or the tubulin acetylase αTAT1 prevents association of mutant LRRK2 with microtubules, and the deacetylase inhibitor trichostatin A (TSA) restores axonal transport. In vivo knockdown of the deacetylases HDAC6 and Sirt2, or administration of TSA rescues both axonal transport and locomotor behavior. Thus, this study reveals a pathogenic mechanism and a potential intervention for Parkinson's disease. Alzheimer's disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4-3.5 Å resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer's disease. Filament cores are made of two identical protofilaments comprising residues 306-378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases. Correction for: Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al. (2007) A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis. PLoS Med 4(9): e278. doi:10.1371/journal.pmed.0040278 In Table 1, the allele ratio in column eight (Allele Ratiosb: Cases, Controls) refers to allele A: allele B and not allele1:allele2 as described in footnote b, with Allele A being the Susceptibility Allele as denoted in column seven. The footnote should read: bNumber of alleles were compared in cases versus controls: allele A: allele B cases, allele A: allele B controls. Allele A refers to the susceptibility alleles as given in column seven.
0
{ "query_id": "435", "original_query_id": "435", "context_doc_ids": [ "1967017", "4547102", "4446814", "9638032", "36444198", "9559146" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289143", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "4547102", "36444198", "9559146", "9638032", "4446814", "1967017" ], "comprehensive_gold_set_for_query": [ "9500590" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
435
aug_936
A T helper 2 cell (Th2) environment impedes disease development in patients with systemic lupus erythematosus (SLE). In systemic lupus erythematosus (SLE), self-reactive antibodies can target the kidney (lupus nephritis), leading to functional failure and possible mortality. We report that activation of basophils by autoreactive IgE causes their homing to lymph nodes, promoting T helper type 2 (T(H)2) cell differentiation and enhancing the production of self-reactive antibodies that cause lupus-like nephritis in mice lacking the Src family protein tyrosine kinase Lyn (Lyn(-/-) mice). Individuals with SLE also have elevated serum IgE, self-reactive IgEs and activated basophils that express CD62 ligand (CD62L) and the major histocompatibility complex (MHC) class II molecule human leukocyte antigen-DR (HLA-DR), parameters that are associated with increased disease activity and active lupus nephritis. Basophils were also present in the lymph nodes and spleen of subjects with SLE. Thus, in Lyn(-/-) mice, basophils and IgE autoantibodies amplify autoantibody production that leads to lupus nephritis, and in individuals with SLE IgE autoantibodies and activated basophils are factors associated with disease activity and nephritis.
A T helper 2 cell (Th2) environment impedes disease development in patients with systemic lupus erythematosus (SLE). In systemic lupus erythematosus (SLE), self-reactive antibodies can target the kidney (lupus nephritis), leading to functional failure and possible mortality. We report that activation of basophils by autoreactive IgE causes their homing to lymph nodes, promoting T helper type 2 (T(H)2) cell differentiation and enhancing the production of self-reactive antibodies that cause lupus-like nephritis in mice lacking the Src family protein tyrosine kinase Lyn (Lyn(-/-) mice). Individuals with SLE also have elevated serum IgE, self-reactive IgEs and activated basophils that express CD62 ligand (CD62L) and the major histocompatibility complex (MHC) class II molecule human leukocyte antigen-DR (HLA-DR), parameters that are associated with increased disease activity and active lupus nephritis. Basophils were also present in the lymph nodes and spleen of subjects with SLE. Thus, in Lyn(-/-) mice, basophils and IgE autoantibodies amplify autoantibody production that leads to lupus nephritis, and in individuals with SLE IgE autoantibodies and activated basophils are factors associated with disease activity and nephritis.
1
{ "query_id": "28", "original_query_id": "28", "context_doc_ids": [ "12670680" ], "gold_doc_ids_in_context": [ "12670680" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289232", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "12670680" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "12670680" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
28
aug_937
Side effects associated with antidepressants increases risk of stroke. Alzheimer's disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4-3.5 Å resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer's disease. Filament cores are made of two identical protofilaments comprising residues 306-378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases. Turnover of integrin-based focal adhesions (FAs) with the extracellular matrix (ECM) is essential for coordinated cell movement. In collectively migrating human keratinocytes, FAs assemble near the leading edge, grow and mature as a result of contractile forces and disassemble underneath the advancing cell body. We report that clustering of microtubule-associated CLASP1 and CLASP2 proteins around FAs temporally correlates with FA turnover. CLASPs and LL5β (also known as PHLDB2), which recruits CLASPs to FAs, facilitate FA disassembly. CLASPs are further required for FA-associated ECM degradation, and matrix metalloprotease inhibition slows FA disassembly similarly to CLASP or PHLDB2 (LL5β) depletion. Finally, CLASP-mediated microtubule tethering at FAs establishes an FA-directed transport pathway for delivery, docking and localized fusion of exocytic vesicles near FAs. We propose that CLASPs couple microtubule organization, vesicle transport and cell interactions with the ECM, establishing a local secretion pathway that facilitates FA turnover by severing cell-matrix connections. OBJECTIVE To investigate the association between gastric cancer and prior infection with Helicobacter pylori. DESIGN Case-control comparison of prevalence of IgG antibodies to H pylori in blood samples collected prospectively, before diagnosis of gastric cancer in the cases. Presence of H pylori antibody (greater than 10 micrograms IgG/ml) determined by enzyme linked immunosorbent assay (ELISA). SUBJECTS 29 men with a subsequent diagnosis of gastric cancer and 116 aged matched controls selected from over 22,000 middle aged men participating in two ongoing cohort studies (the British United Provident Association study and the Caerphilly collaborative heart disease study), who had provided blood samples during 1975-1982. RESULTS 20 of the 29 cases (69%) and 54 of the 116 controls (47%) were positive for H pylori specific antibody. The median specific IgG concentration was significantly higher in the cases than controls (90 micrograms/ml v 3.6 micrograms/ml, p less than 0.01). The estimated odds ratio for the risk of gastric cancer in those with a history of infection with H pylori was 2.77 (95% confidence interval 1.04 to 7.97, 2p = 0.039). CONCLUSIONS H pylori infection may be an important cause of gastric cancer; between 35% and 55% of all cases may be associated with such an infection. BACKGROUND High body-mass index (BMI) predisposes to several site-specific cancers, but a large-scale systematic and detailed characterisation of patterns of risk across all common cancers adjusted for potential confounders has not previously been undertaken. We aimed to investigate the links between BMI and the most common site-specific cancers. METHODS With primary care data from individuals in the Clinical Practice Research Datalink with BMI data, we fitted Cox models to investigate associations between BMI and 22 of the most common cancers, adjusting for potential confounders. We fitted linear then non-linear (spline) models; investigated effect modification by sex, menopausal status, smoking, and age; and calculated population effects. FINDINGS 5·24 million individuals were included; 166,955 developed cancers of interest. BMI was associated with 17 of 22 cancers, but effects varied substantially by site. Each 5 kg/m(2) increase in BMI was roughly linearly associated with cancers of the uterus (hazard ratio [HR] 1·62, 99% CI 1·56-1·69; p<0·0001), gallbladder (1·31, 1·12-1·52; p<0·0001), kidney (1·25, 1·17-1·33; p<0·0001), cervix (1·10, 1·03-1·17; p=0·00035), thyroid (1·09, 1·00-1·19; p=0·0088), and leukaemia (1·09, 1·05-1·13; p≤0·0001). BMI was positively associated with liver (1·19, 1·12-1·27), colon (1·10, 1·07-1·13), ovarian (1·09, 1.04-1.14), and postmenopausal breast cancers (1·05, 1·03-1·07) overall (all p<0·0001), but these effects varied by underlying BMI or individual-level characteristics. We estimated inverse associations with prostate and premenopausal breast cancer risk, both overall (prostate 0·98, 0·95-1·00; premenopausal breast cancer 0·89, 0·86-0·92) and in never-smokers (prostate 0·96, 0·93-0·99; premenopausal breast cancer 0·89, 0·85-0·94). By contrast, for lung and oral cavity cancer, we observed no association in never smokers (lung 0·99, 0·93-1·05; oral cavity 1·07, 0·91-1·26): inverse associations overall were driven by current smokers and ex-smokers, probably because of residual confounding by smoking amount. Assuming causality, 41% of uterine and 10% or more of gallbladder, kidney, liver, and colon cancers could be attributable to excess weight. We estimated that a 1 kg/m(2) population-wide increase in BMI would result in 3790 additional annual UK patients developing one of the ten cancers positively associated with BMI. INTERPRETATION BMI is associated with cancer risk, with substantial population-level effects. The heterogeneity in the effects suggests that different mechanisms are associated with different cancer sites and different patient subgroups. FUNDING National Institute for Health Research, Wellcome Trust, and Medical Research Council. The tricyclic antidepressant, amitriptyline, is an effective drug for the treatment of chronic tension-type headache and for other chronic pain syndromes, but it is also effective in the prophylaxis of an episodic type of headache such as migraine. However, its efficacy in episodic tension-type headache has not yet been clarified. We compared the efficacy of amitriptyline (25 mg/day) in 82 nondepressed patients with either chronic or episodic tension-type headache in an open-label study. Amitriptyline significantly reduced (P < 0.05) frequency and duration of headache as well as analgesic consumption in chronic, but not in episodic, tension-type headache. Further placebo-controlled trials, possibly with higher doses of amitriptyline, might confirm if the different pattern of response to amitriptyline can be explained in terms of different involvement of central nociception and of peripheral myofascial factors in the chronic and in the episodic forms of tension-type headache. OBJECTIVES To investigate the association between antidepressant treatment and risk of several potential adverse outcomes in older people with depression and to examine risks by class of antidepressant, duration of use, and dose. DESIGN Cohort study of people aged 65 and over diagnosed as having depression. SETTING 570 general practices in the United Kingdom supplying data to the QResearch primary care database. PARTICIPANTS 60,746 patients diagnosed as having a new episode of depression between the ages of 65 and 100 years from 1 January 1996 to 31 December 2007 and followed up until 31 December 2008. MAIN OUTCOME MEASURES Hazard ratios associated with antidepressant use for all cause mortality, attempted suicide/self harm, myocardial infarction, stroke/transient ischaemic attack, falls, fractures, upper gastrointestinal bleeding, epilepsy/seizures, road traffic accidents, adverse drug reactions, and hyponatraemia, adjusted for a range of potential confounding variables. Hazard ratios were calculated for antidepressant class (tricyclic and related antidepressants, selective serotonin reuptake inhibitors, other antidepressants), dose, and duration of use and for commonly prescribed individual drugs. RESULTS 54,038 (89.0%) patients received at least one prescription for an antidepressant during follow-up. A total of 1,398,359 antidepressant prescriptions were issued: 764,659 (54.7%) for selective serotonin reuptake inhibitors, 442,192 (31.6%) for tricyclic antidepressants, 2203 (0.2%) for monoamine oxidase inhibitors, and 189,305 (13.5%) for the group of other antidepressants. The associations with the adverse outcomes differed significantly between the antidepressant classes for seven outcomes. Selective serotonin reuptake inhibitors were associated with the highest adjusted hazard ratios for falls (1.66, 95% confidence interval 1.58 to 1.73) and hyponatraemia (1.52, 1.33 to 1.75) compared with when antidepressants were not being used. The group of other antidepressants was associated with the highest adjusted hazard ratios for all cause mortality (1.66, 1.56 to 1.77), attempted suicide/self harm (5.16, 3.90 to 6.83), stroke/transient ischaemic attack (1.37, 1.22 to 1.55), fracture (1.64, 1.46 to 1.84), and epilepsy/seizures (2.24, 1.60 to 3.15), compared with when antidepressants were not being used. Tricyclic antidepressants did not have the highest hazard ratio for any of the outcomes. Significantly different associations also existed between the individual drugs for the same seven outcomes; trazodone (tricyclic antidepressant), mirtazapine, and venlafaxine (both in the group of other antidepressants) were associated with the highest rates for some of these outcomes. Absolute risks over 1 year for all cause mortality were 7.04% for patients while not taking antidepressants, 8.12% for those taking tricyclic antidepressants, 10.61% for selective serotonin reuptake inhibitors, and 11.43% for other antidepressants. CONCLUSIONS Selective serotonin reuptake inhibitors and drugs in the group of other antidepressants were associated with an increased risk of several adverse outcomes compared with tricyclic antidepressants. Among individual drugs, trazodone, mirtazapine, and venlafaxine were associated with the highest risks for some outcomes. As this is an observational study, it is susceptible to confounding by indication, channelling bias, and residual confounding, so differences in characteristics between patients prescribed different antidepressant drugs that could account for some of the associations between the drugs and the adverse outcomes may remain. Further research is needed to confirm these findings, but the risks and benefits of different antidepressants should be carefully evaluated when these drugs are prescribed to older people.
Side effects associated with antidepressants increases risk of stroke. Alzheimer's disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4-3.5 Å resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer's disease. Filament cores are made of two identical protofilaments comprising residues 306-378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases. Turnover of integrin-based focal adhesions (FAs) with the extracellular matrix (ECM) is essential for coordinated cell movement. In collectively migrating human keratinocytes, FAs assemble near the leading edge, grow and mature as a result of contractile forces and disassemble underneath the advancing cell body. We report that clustering of microtubule-associated CLASP1 and CLASP2 proteins around FAs temporally correlates with FA turnover. CLASPs and LL5β (also known as PHLDB2), which recruits CLASPs to FAs, facilitate FA disassembly. CLASPs are further required for FA-associated ECM degradation, and matrix metalloprotease inhibition slows FA disassembly similarly to CLASP or PHLDB2 (LL5β) depletion. Finally, CLASP-mediated microtubule tethering at FAs establishes an FA-directed transport pathway for delivery, docking and localized fusion of exocytic vesicles near FAs. We propose that CLASPs couple microtubule organization, vesicle transport and cell interactions with the ECM, establishing a local secretion pathway that facilitates FA turnover by severing cell-matrix connections. OBJECTIVE To investigate the association between gastric cancer and prior infection with Helicobacter pylori. DESIGN Case-control comparison of prevalence of IgG antibodies to H pylori in blood samples collected prospectively, before diagnosis of gastric cancer in the cases. Presence of H pylori antibody (greater than 10 micrograms IgG/ml) determined by enzyme linked immunosorbent assay (ELISA). SUBJECTS 29 men with a subsequent diagnosis of gastric cancer and 116 aged matched controls selected from over 22,000 middle aged men participating in two ongoing cohort studies (the British United Provident Association study and the Caerphilly collaborative heart disease study), who had provided blood samples during 1975-1982. RESULTS 20 of the 29 cases (69%) and 54 of the 116 controls (47%) were positive for H pylori specific antibody. The median specific IgG concentration was significantly higher in the cases than controls (90 micrograms/ml v 3.6 micrograms/ml, p less than 0.01). The estimated odds ratio for the risk of gastric cancer in those with a history of infection with H pylori was 2.77 (95% confidence interval 1.04 to 7.97, 2p = 0.039). CONCLUSIONS H pylori infection may be an important cause of gastric cancer; between 35% and 55% of all cases may be associated with such an infection. BACKGROUND High body-mass index (BMI) predisposes to several site-specific cancers, but a large-scale systematic and detailed characterisation of patterns of risk across all common cancers adjusted for potential confounders has not previously been undertaken. We aimed to investigate the links between BMI and the most common site-specific cancers. METHODS With primary care data from individuals in the Clinical Practice Research Datalink with BMI data, we fitted Cox models to investigate associations between BMI and 22 of the most common cancers, adjusting for potential confounders. We fitted linear then non-linear (spline) models; investigated effect modification by sex, menopausal status, smoking, and age; and calculated population effects. FINDINGS 5·24 million individuals were included; 166,955 developed cancers of interest. BMI was associated with 17 of 22 cancers, but effects varied substantially by site. Each 5 kg/m(2) increase in BMI was roughly linearly associated with cancers of the uterus (hazard ratio [HR] 1·62, 99% CI 1·56-1·69; p<0·0001), gallbladder (1·31, 1·12-1·52; p<0·0001), kidney (1·25, 1·17-1·33; p<0·0001), cervix (1·10, 1·03-1·17; p=0·00035), thyroid (1·09, 1·00-1·19; p=0·0088), and leukaemia (1·09, 1·05-1·13; p≤0·0001). BMI was positively associated with liver (1·19, 1·12-1·27), colon (1·10, 1·07-1·13), ovarian (1·09, 1.04-1.14), and postmenopausal breast cancers (1·05, 1·03-1·07) overall (all p<0·0001), but these effects varied by underlying BMI or individual-level characteristics. We estimated inverse associations with prostate and premenopausal breast cancer risk, both overall (prostate 0·98, 0·95-1·00; premenopausal breast cancer 0·89, 0·86-0·92) and in never-smokers (prostate 0·96, 0·93-0·99; premenopausal breast cancer 0·89, 0·85-0·94). By contrast, for lung and oral cavity cancer, we observed no association in never smokers (lung 0·99, 0·93-1·05; oral cavity 1·07, 0·91-1·26): inverse associations overall were driven by current smokers and ex-smokers, probably because of residual confounding by smoking amount. Assuming causality, 41% of uterine and 10% or more of gallbladder, kidney, liver, and colon cancers could be attributable to excess weight. We estimated that a 1 kg/m(2) population-wide increase in BMI would result in 3790 additional annual UK patients developing one of the ten cancers positively associated with BMI. INTERPRETATION BMI is associated with cancer risk, with substantial population-level effects. The heterogeneity in the effects suggests that different mechanisms are associated with different cancer sites and different patient subgroups. FUNDING National Institute for Health Research, Wellcome Trust, and Medical Research Council. The tricyclic antidepressant, amitriptyline, is an effective drug for the treatment of chronic tension-type headache and for other chronic pain syndromes, but it is also effective in the prophylaxis of an episodic type of headache such as migraine. However, its efficacy in episodic tension-type headache has not yet been clarified. We compared the efficacy of amitriptyline (25 mg/day) in 82 nondepressed patients with either chronic or episodic tension-type headache in an open-label study. Amitriptyline significantly reduced (P < 0.05) frequency and duration of headache as well as analgesic consumption in chronic, but not in episodic, tension-type headache. Further placebo-controlled trials, possibly with higher doses of amitriptyline, might confirm if the different pattern of response to amitriptyline can be explained in terms of different involvement of central nociception and of peripheral myofascial factors in the chronic and in the episodic forms of tension-type headache. OBJECTIVES To investigate the association between antidepressant treatment and risk of several potential adverse outcomes in older people with depression and to examine risks by class of antidepressant, duration of use, and dose. DESIGN Cohort study of people aged 65 and over diagnosed as having depression. SETTING 570 general practices in the United Kingdom supplying data to the QResearch primary care database. PARTICIPANTS 60,746 patients diagnosed as having a new episode of depression between the ages of 65 and 100 years from 1 January 1996 to 31 December 2007 and followed up until 31 December 2008. MAIN OUTCOME MEASURES Hazard ratios associated with antidepressant use for all cause mortality, attempted suicide/self harm, myocardial infarction, stroke/transient ischaemic attack, falls, fractures, upper gastrointestinal bleeding, epilepsy/seizures, road traffic accidents, adverse drug reactions, and hyponatraemia, adjusted for a range of potential confounding variables. Hazard ratios were calculated for antidepressant class (tricyclic and related antidepressants, selective serotonin reuptake inhibitors, other antidepressants), dose, and duration of use and for commonly prescribed individual drugs. RESULTS 54,038 (89.0%) patients received at least one prescription for an antidepressant during follow-up. A total of 1,398,359 antidepressant prescriptions were issued: 764,659 (54.7%) for selective serotonin reuptake inhibitors, 442,192 (31.6%) for tricyclic antidepressants, 2203 (0.2%) for monoamine oxidase inhibitors, and 189,305 (13.5%) for the group of other antidepressants. The associations with the adverse outcomes differed significantly between the antidepressant classes for seven outcomes. Selective serotonin reuptake inhibitors were associated with the highest adjusted hazard ratios for falls (1.66, 95% confidence interval 1.58 to 1.73) and hyponatraemia (1.52, 1.33 to 1.75) compared with when antidepressants were not being used. The group of other antidepressants was associated with the highest adjusted hazard ratios for all cause mortality (1.66, 1.56 to 1.77), attempted suicide/self harm (5.16, 3.90 to 6.83), stroke/transient ischaemic attack (1.37, 1.22 to 1.55), fracture (1.64, 1.46 to 1.84), and epilepsy/seizures (2.24, 1.60 to 3.15), compared with when antidepressants were not being used. Tricyclic antidepressants did not have the highest hazard ratio for any of the outcomes. Significantly different associations also existed between the individual drugs for the same seven outcomes; trazodone (tricyclic antidepressant), mirtazapine, and venlafaxine (both in the group of other antidepressants) were associated with the highest rates for some of these outcomes. Absolute risks over 1 year for all cause mortality were 7.04% for patients while not taking antidepressants, 8.12% for those taking tricyclic antidepressants, 10.61% for selective serotonin reuptake inhibitors, and 11.43% for other antidepressants. CONCLUSIONS Selective serotonin reuptake inhibitors and drugs in the group of other antidepressants were associated with an increased risk of several adverse outcomes compared with tricyclic antidepressants. Among individual drugs, trazodone, mirtazapine, and venlafaxine were associated with the highest risks for some outcomes. As this is an observational study, it is susceptible to confounding by indication, channelling bias, and residual confounding, so differences in characteristics between patients prescribed different antidepressant drugs that could account for some of the associations between the drugs and the adverse outcomes may remain. Further research is needed to confirm these findings, but the risks and benefits of different antidepressants should be carefully evaluated when these drugs are prescribed to older people.
0.285714
{ "query_id": "1084", "original_query_id": "1084", "context_doc_ids": [ "4446814", "1676568", "2052720", "5691302", "22995579", "4828631" ], "gold_doc_ids_in_context": [ "5691302" ], "total_gold_docs_for_query": 1, "context_f1": 0.2857142857142857, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289248", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "5691302" ], "negative_samples_considered": [ "4828631", "2052720", "4446814", "1676568", "22995579" ], "comprehensive_gold_set_for_query": [ "5691302" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1084
aug_938
Destination container port throughput(CPT) is positively related to dengue virus (DENV-1) diffusion in air traffic shipments. BACKGROUND Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk. METHODS AND FINDINGS We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km² prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks. CONCLUSIONS Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary.
Destination container port throughput(CPT) is positively related to dengue virus (DENV-1) diffusion in air traffic shipments. BACKGROUND Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk. METHODS AND FINDINGS We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km² prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks. CONCLUSIONS Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary.
1
{ "query_id": "337", "original_query_id": "337", "context_doc_ids": [ "2097256" ], "gold_doc_ids_in_context": [ "2097256" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289352", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "2097256" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "2097256" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
337
aug_939
Antiretroviral therapy increases rates of tuberculosis across a broad range of CD4 strata. In this study, we used whole-genome sequencing and gene expression profiling of 215 human induced pluripotent stem cell (iPSC) lines from different donors to identify genetic variants associated with RNA expression for 5,746 genes. We were able to predict causal variants for these expression quantitative trait loci (eQTLs) that disrupt transcription factor binding and validated a subset of them experimentally. We also identified copy-number variant (CNV) eQTLs, including some that appear to affect gene expression by altering the copy number of intergenic regulatory regions. In addition, we were able to identify effects on gene expression of rare genic CNVs and regulatory single-nucleotide variants and found that reactivation of gene expression on the X chromosome depends on gene chromosomal position. Our work highlights the value of iPSCs for genetic association analyses and provides a unique resource for investigating the genetic regulation of gene expression in pluripotent cells. Understanding the genetic basis of adaptation is a central problem in biology. However, revealing the underlying molecular mechanisms has been challenging as changes in fitness may result from perturbations to many pathways, any of which may contribute relatively little. We have developed a combined experimental/computational framework to address this problem and used it to understand the genetic basis of ethanol tolerance in Escherichia coli. We used fitness profiling to measure the consequences of single-locus perturbations in the context of ethanol exposure. A module-level computational analysis was then used to reveal the organization of the contributing loci into cellular processes and regulatory pathways (e.g. osmoregulation and cell-wall biogenesis) whose modifications significantly affect ethanol tolerance. Strikingly, we discovered that a dominant component of adaptation involves metabolic rewiring that boosts intracellular ethanol degradation and assimilation. Through phenotypic and metabolomic analysis of laboratory-evolved ethanol-tolerant strains, we investigated naturally accessible pathways of ethanol tolerance. Remarkably, these laboratory-evolved strains, by and large, follow the same adaptive paths as inferred from our coarse-grained search of the fitness landscape. BACKGROUND Although cigarette smoking, excessive alcohol drinking, obesity, and several other well-studied unhealthy lifestyle-related factors each have been linked to the risk of multiple chronic diseases and premature death, little is known about the combined impact on mortality outcomes, in particular among Chinese and other non-Western populations. The objective of this study was to quantify the overall impact of lifestyle-related factors beyond that of active cigarette smoking and alcohol consumption on all-cause and cause-specific mortality in Chinese women. METHODS AND FINDINGS We used data from the Shanghai Women's Health Study, an ongoing population-based prospective cohort study in China. Participants included 71,243 women aged 40 to 70 years enrolled during 1996-2000 who never smoked or drank alcohol regularly. A healthy lifestyle score was created on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes (normal weight, lower waist-hip ratio, daily exercise, never exposed to spouse's smoking, higher daily fruit and vegetable intake). The score ranged from zero (least healthy) to five (most healthy) points. During an average follow-up of 9 years, 2,860 deaths occurred, including 775 from cardiovascular disease (CVD) and 1,351 from cancer. Adjusted hazard ratios for mortality decreased progressively with an increasing number of healthy lifestyle factors. Compared to women with a score of zero, hazard ratios (95% confidence intervals) for women with four to five factors were 0.57 (0.44-0.74) for total mortality, 0.29 (0.16-0.54) for CVD mortality, and 0.76 (0.54-1.06) for cancer mortality. The inverse association between the healthy lifestyle score and mortality was seen consistently regardless of chronic disease status at baseline. The population attributable risks for not having 4-5 healthy lifestyle factors were 33% for total deaths, 59% for CVD deaths, and 19% for cancer deaths. CONCLUSIONS In this first study, to our knowledge, to quantify the combined impact of lifestyle-related factors on mortality outcomes in Chinese women, a healthier lifestyle pattern-including being of normal weight, lower central adiposity, participation in physical activity, nonexposure to spousal smoking, and higher fruit and vegetable intake-was associated with reductions in total and cause-specific mortality among lifetime nonsmoking and nondrinking women, supporting the importance of overall lifestyle modification in disease prevention. Please see later in the article for the Editors' Summary. Hepatic stellate cells (HSCs) play critical roles in liver fibrosis and hepatocellular carcinoma (HCC). Vitamin D receptor (VDR) activation in HSCs inhibits liver inflammation and fibrosis. We found that p62/SQSTM1, a protein upregulated in liver parenchymal cells but downregulated in HCC-associated HSCs, negatively controls HSC activation. Total body or HSC-specific p62 ablation potentiates HSCs and enhances inflammation, fibrosis, and HCC progression. p62 directly interacts with VDR and RXR promoting their heterodimerization, which is critical for VDR:RXR target gene recruitment. Loss of p62 in HSCs impairs the repression of fibrosis and inflammation by VDR agonists. This demonstrates that p62 is a negative regulator of liver inflammation and fibrosis through its ability to promote VDR signaling in HSCs, whose activation supports HCC. Inflammasomes are multiprotein complexes that include members of the NLR (nucleotide-binding domain leucine-rich repeat containing) family and caspase-1. Once bacterial molecules are sensed within the macrophage, the inflammasome is assembled, mediating the activation of caspase-1. Caspase-11 mediates caspase-1 activation in response to lipopolysaccharide and bacterial toxins, and yet its role during bacterial infection is unknown. Here, we demonstrated that caspase-11 was dispensable for caspase-1 activation in response to Legionella, Salmonella, Francisella, and Listeria. We also determined that active mouse caspase-11 was required for restriction of L. pneumophila infection. Similarly, human caspase-4 and caspase-5, homologs of mouse caspase-11, cooperated to restrict L. pneumophila infection in human macrophages. Caspase-11 promoted the fusion of the L. pneumophila vacuole with lysosomes by modulating actin polymerization through cofilin. However, caspase-11 was dispensable for the fusion of lysosomes with phagosomes containing nonpathogenic bacteria, uncovering a fundamental difference in the trafficking of phagosomes according to their cargo. Fibrosis is a pathological result of a dysfunctional repair response to tissue injury and occurs in a number of organs, including the lungs1. Cellular metabolism regulates tissue repair and remodelling responses to injury2-4. AMPK is a critical sensor of cellular bioenergetics and controls the switch from anabolic to catabolic metabolism5. However, the role of AMPK in fibrosis is not well understood. Here, we demonstrate that in humans with idiopathic pulmonary fibrosis (IPF) and in an experimental mouse model of lung fibrosis, AMPK activity is lower in fibrotic regions associated with metabolically active and apoptosis-resistant myofibroblasts. Pharmacological activation of AMPK in myofibroblasts from lungs of humans with IPF display lower fibrotic activity, along with enhanced mitochondrial biogenesis and normalization of sensitivity to apoptosis. In a bleomycin model of lung fibrosis in mice, metformin therapeutically accelerates the resolution of well-established fibrosis in an AMPK-dependent manner. These studies implicate deficient AMPK activation in non-resolving, pathologic fibrotic processes, and support a role for metformin (or other AMPK activators) to reverse established fibrosis by facilitating deactivation and apoptosis of myofibroblasts.
Antiretroviral therapy increases rates of tuberculosis across a broad range of CD4 strata. In this study, we used whole-genome sequencing and gene expression profiling of 215 human induced pluripotent stem cell (iPSC) lines from different donors to identify genetic variants associated with RNA expression for 5,746 genes. We were able to predict causal variants for these expression quantitative trait loci (eQTLs) that disrupt transcription factor binding and validated a subset of them experimentally. We also identified copy-number variant (CNV) eQTLs, including some that appear to affect gene expression by altering the copy number of intergenic regulatory regions. In addition, we were able to identify effects on gene expression of rare genic CNVs and regulatory single-nucleotide variants and found that reactivation of gene expression on the X chromosome depends on gene chromosomal position. Our work highlights the value of iPSCs for genetic association analyses and provides a unique resource for investigating the genetic regulation of gene expression in pluripotent cells. Understanding the genetic basis of adaptation is a central problem in biology. However, revealing the underlying molecular mechanisms has been challenging as changes in fitness may result from perturbations to many pathways, any of which may contribute relatively little. We have developed a combined experimental/computational framework to address this problem and used it to understand the genetic basis of ethanol tolerance in Escherichia coli. We used fitness profiling to measure the consequences of single-locus perturbations in the context of ethanol exposure. A module-level computational analysis was then used to reveal the organization of the contributing loci into cellular processes and regulatory pathways (e.g. osmoregulation and cell-wall biogenesis) whose modifications significantly affect ethanol tolerance. Strikingly, we discovered that a dominant component of adaptation involves metabolic rewiring that boosts intracellular ethanol degradation and assimilation. Through phenotypic and metabolomic analysis of laboratory-evolved ethanol-tolerant strains, we investigated naturally accessible pathways of ethanol tolerance. Remarkably, these laboratory-evolved strains, by and large, follow the same adaptive paths as inferred from our coarse-grained search of the fitness landscape. BACKGROUND Although cigarette smoking, excessive alcohol drinking, obesity, and several other well-studied unhealthy lifestyle-related factors each have been linked to the risk of multiple chronic diseases and premature death, little is known about the combined impact on mortality outcomes, in particular among Chinese and other non-Western populations. The objective of this study was to quantify the overall impact of lifestyle-related factors beyond that of active cigarette smoking and alcohol consumption on all-cause and cause-specific mortality in Chinese women. METHODS AND FINDINGS We used data from the Shanghai Women's Health Study, an ongoing population-based prospective cohort study in China. Participants included 71,243 women aged 40 to 70 years enrolled during 1996-2000 who never smoked or drank alcohol regularly. A healthy lifestyle score was created on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes (normal weight, lower waist-hip ratio, daily exercise, never exposed to spouse's smoking, higher daily fruit and vegetable intake). The score ranged from zero (least healthy) to five (most healthy) points. During an average follow-up of 9 years, 2,860 deaths occurred, including 775 from cardiovascular disease (CVD) and 1,351 from cancer. Adjusted hazard ratios for mortality decreased progressively with an increasing number of healthy lifestyle factors. Compared to women with a score of zero, hazard ratios (95% confidence intervals) for women with four to five factors were 0.57 (0.44-0.74) for total mortality, 0.29 (0.16-0.54) for CVD mortality, and 0.76 (0.54-1.06) for cancer mortality. The inverse association between the healthy lifestyle score and mortality was seen consistently regardless of chronic disease status at baseline. The population attributable risks for not having 4-5 healthy lifestyle factors were 33% for total deaths, 59% for CVD deaths, and 19% for cancer deaths. CONCLUSIONS In this first study, to our knowledge, to quantify the combined impact of lifestyle-related factors on mortality outcomes in Chinese women, a healthier lifestyle pattern-including being of normal weight, lower central adiposity, participation in physical activity, nonexposure to spousal smoking, and higher fruit and vegetable intake-was associated with reductions in total and cause-specific mortality among lifetime nonsmoking and nondrinking women, supporting the importance of overall lifestyle modification in disease prevention. Please see later in the article for the Editors' Summary. Hepatic stellate cells (HSCs) play critical roles in liver fibrosis and hepatocellular carcinoma (HCC). Vitamin D receptor (VDR) activation in HSCs inhibits liver inflammation and fibrosis. We found that p62/SQSTM1, a protein upregulated in liver parenchymal cells but downregulated in HCC-associated HSCs, negatively controls HSC activation. Total body or HSC-specific p62 ablation potentiates HSCs and enhances inflammation, fibrosis, and HCC progression. p62 directly interacts with VDR and RXR promoting their heterodimerization, which is critical for VDR:RXR target gene recruitment. Loss of p62 in HSCs impairs the repression of fibrosis and inflammation by VDR agonists. This demonstrates that p62 is a negative regulator of liver inflammation and fibrosis through its ability to promote VDR signaling in HSCs, whose activation supports HCC. Inflammasomes are multiprotein complexes that include members of the NLR (nucleotide-binding domain leucine-rich repeat containing) family and caspase-1. Once bacterial molecules are sensed within the macrophage, the inflammasome is assembled, mediating the activation of caspase-1. Caspase-11 mediates caspase-1 activation in response to lipopolysaccharide and bacterial toxins, and yet its role during bacterial infection is unknown. Here, we demonstrated that caspase-11 was dispensable for caspase-1 activation in response to Legionella, Salmonella, Francisella, and Listeria. We also determined that active mouse caspase-11 was required for restriction of L. pneumophila infection. Similarly, human caspase-4 and caspase-5, homologs of mouse caspase-11, cooperated to restrict L. pneumophila infection in human macrophages. Caspase-11 promoted the fusion of the L. pneumophila vacuole with lysosomes by modulating actin polymerization through cofilin. However, caspase-11 was dispensable for the fusion of lysosomes with phagosomes containing nonpathogenic bacteria, uncovering a fundamental difference in the trafficking of phagosomes according to their cargo. Fibrosis is a pathological result of a dysfunctional repair response to tissue injury and occurs in a number of organs, including the lungs1. Cellular metabolism regulates tissue repair and remodelling responses to injury2-4. AMPK is a critical sensor of cellular bioenergetics and controls the switch from anabolic to catabolic metabolism5. However, the role of AMPK in fibrosis is not well understood. Here, we demonstrate that in humans with idiopathic pulmonary fibrosis (IPF) and in an experimental mouse model of lung fibrosis, AMPK activity is lower in fibrotic regions associated with metabolically active and apoptosis-resistant myofibroblasts. Pharmacological activation of AMPK in myofibroblasts from lungs of humans with IPF display lower fibrotic activity, along with enhanced mitochondrial biogenesis and normalization of sensitivity to apoptosis. In a bleomycin model of lung fibrosis in mice, metformin therapeutically accelerates the resolution of well-established fibrosis in an AMPK-dependent manner. These studies implicate deficient AMPK activation in non-resolving, pathologic fibrotic processes, and support a role for metformin (or other AMPK activators) to reverse established fibrosis by facilitating deactivation and apoptosis of myofibroblasts.
0
{ "query_id": "123", "original_query_id": "123", "context_doc_ids": [ "4632921", "49556906", "5099266", "1456068", "3701541", "1148122" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289373", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "1148122", "3701541", "5099266", "49556906", "4632921", "1456068" ], "comprehensive_gold_set_for_query": [ "4883040" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
123
aug_940
Angiotensin converting enzyme inhibitors are associated with decreased risk for functional renal insufficiency. Calorie restriction slows aging and increases life span in many organisms. In yeast, a mechanistic explanation has been proposed whereby calorie restriction slows aging by activating Sir2. Here we report the identification of a Sir2-independent pathway responsible for a majority of the longevity benefit associated with calorie restriction. Deletion of FOB1 and overexpression of SIR2 have been previously found to increase life span by reducing the levels of toxic rDNA circles in aged mother cells. We find that combining calorie restriction with either of these genetic interventions dramatically enhances longevity, resulting in the longest-lived yeast strain reported thus far. Further, calorie restriction results in a greater life span extension in cells lacking both Sir2 and Fob1 than in cells where Sir2 is present. These findings indicate that Sir2 and calorie restriction act in parallel pathways to promote longevity in yeast and, perhaps, higher eukaryotes. The transition from androgen-dependent to castration-resistant prostate cancer (CRPC) is a lethal event of uncertain molecular etiology. Comparing gene expression in isogenic androgen-dependent and CRPC xenografts, we found a reproducible increase in N-cadherin expression, which was also elevated in primary and metastatic tumors of individuals with CRPC. Ectopic expression of N-cadherin in nonmetastatic, androgen-dependent prostate cancer models caused castration resistance, invasion and metastasis. Monoclonal antibodies against the ectodomain of N-cadherin reduced proliferation, adhesion and invasion of prostate cancer cells in vitro. In vivo, these antibodies slowed the growth of multiple established CRPC xenografts, blocked local invasion and metastasis and, at higher doses, led to complete regression. N-cadherin–specific antibodies markedly delayed the time to emergence of castration resistance, markedly affected tumor histology and angiogenesis, and reduced both AKT serine-threonine kinase activity and serum interleukin-8 (IL-8) secretion. These data indicate that N-cadherin is a major cause of both prostate cancer metastasis and castration resistance. Therapeutic targeting of this factor with monoclonal antibodies may have considerable clinical benefit. OBJECTIVE To evaluate the association of overall and specific headaches with volume of white matter hyperintensities, brain infarcts, and cognition. DESIGN Population based, cross sectional study. SETTING Epidemiology of Vascular Ageing study, Nantes, France. PARTICIPANTS 780 participants (mean age 69, 58.5% women) with detailed headache assessment. MAIN OUTCOME MEASURES Brain scans were evaluated for volume of white matter hyperintensities (by fully automated imaging processing) and for classification of infarcts (by visual reading with a standardised assessment grid). Cognitive function was assessed by a battery of tests including the mini-mental state examination. RESULTS 163 (20.9%) participants reported a history of severe headache and 116 had migraine, of whom 17 (14.7%) reported aura symptoms. An association was found between any history of severe headache and increasing volume of white matter hyperintensities. The adjusted odds ratio of being in the highest third for total volume of white matter hyperintensities was 2.0 (95% confidence interval 1.3 to 3.1, P for trend 0.002) for participants with any history of severe headache when compared with participants without severe headache being in the lowest third. The association pattern was similar for all headache types. Migraine with aura was the only headache type strongly associated with volume of deep white matter hyperintensities (highest third odds ratio 12.4, 1.6 to 99.4, P for trend 0.005) and with brain infarcts (3.4, 1.2 to 9.3). The location of infarcts was predominantly outside the cerebellum and brain stem. Evidence was lacking for cognitive impairment for any headache type with or without brain lesions. CONCLUSIONS In this population based study, any history of severe headache was associated with an increased volume of white matter hyperintensities. Migraine with aura was the only headache type associated with brain infarcts. Evidence that headache of any type by itself or in combination with brain lesions was associated with cognitive impairment was lacking. Non-coding RNAs have emerged as crucial regulators of gene expression and cell fate decisions. However, their expression patterns and regulatory functions during normal and malignant human hematopoiesis are incompletely understood. Here we present a comprehensive resource defining the non-coding RNA landscape of the human hematopoietic system. Based on highly specific non-coding RNA expression portraits per blood cell population, we identify unique fingerprint non-coding RNAs-such as LINC00173 in granulocytes-and assign these to critical regulatory circuits involved in blood homeostasis. Following the incorporation of acute myeloid leukemia samples into the landscape, we further uncover prognostically relevant non-coding RNA stem cell signatures shared between acute myeloid leukemia blasts and healthy hematopoietic stem cells. Our findings highlight the importance of the non-coding transcriptome in the formation and maintenance of the human blood hierarchy. While micro-RNAs are known regulators of haematopoiesis and leukemogenesis, the role of long non-coding RNAs is less clear. Here the authors provide a non-coding RNA expression landscape of the human hematopoietic system, highlighting their role in the formation and maintenance of the human blood hierarchy. Little is known about the inter-individual variation of cytokine responses to different pathogens in healthy individuals. To systematically describe cytokine responses elicited by distinct pathogens and to determine the effect of genetic variation on cytokine production, we profiled cytokines produced by peripheral blood mononuclear cells from 197 individuals of European origin from the 200 Functional Genomics (200FG) cohort in the Human Functional Genomics Project (http://www.humanfunctionalgenomics.org), obtained over three different years. We compared bacteria- and fungi-induced cytokine profiles and found that most cytokine responses were organized around a physiological response to specific pathogens, rather than around a particular immune pathway or cytokine. We then correlated genome-wide single-nucleotide polymorphism (SNP) genotypes with cytokine abundance and identified six cytokine quantitative trait loci (QTLs). Among them, a cytokine QTL at the NAA35-GOLM1 locus markedly modulated interleukin (IL)-6 production in response to multiple pathogens and was associated with susceptibility to candidemia. Furthermore, the cytokine QTLs that we identified were enriched among SNPs previously associated with infectious diseases and heart diseases. These data reveal and begin to explain the variability in cytokine production by human immune cells in response to pathogens. Myeloid-derived suppressor cells (MDSCs) play critical roles in primary and metastatic cancer progression. MDSC regulation is widely variable even among patients harbouring the same type of malignancy, and the mechanisms governing such heterogeneity are largely unknown. Here, integrating human tumour genomics and syngeneic mammary tumour models, we demonstrate that mTOR signalling in cancer cells dictates a mammary tumour's ability to stimulate MDSC accumulation through regulating G-CSF. Inhibiting this pathway or its activators (for example, FGFR) impairs tumour progression, which is partially rescued by restoring MDSCs or G-CSF. Tumour-initiating cells (TICs) exhibit elevated G-CSF. MDSCs reciprocally increase TIC frequency through activating Notch in tumour cells, forming a feedforward loop. Analyses of primary breast cancers and patient-derived xenografts corroborate these mechanisms in patients. These findings establish a non-canonical oncogenic role of mTOR signalling in recruiting pro-tumorigenic MDSCs and show how defined cancer subsets may evolve to promote and depend on a distinct immune microenvironment.
Angiotensin converting enzyme inhibitors are associated with decreased risk for functional renal insufficiency. Calorie restriction slows aging and increases life span in many organisms. In yeast, a mechanistic explanation has been proposed whereby calorie restriction slows aging by activating Sir2. Here we report the identification of a Sir2-independent pathway responsible for a majority of the longevity benefit associated with calorie restriction. Deletion of FOB1 and overexpression of SIR2 have been previously found to increase life span by reducing the levels of toxic rDNA circles in aged mother cells. We find that combining calorie restriction with either of these genetic interventions dramatically enhances longevity, resulting in the longest-lived yeast strain reported thus far. Further, calorie restriction results in a greater life span extension in cells lacking both Sir2 and Fob1 than in cells where Sir2 is present. These findings indicate that Sir2 and calorie restriction act in parallel pathways to promote longevity in yeast and, perhaps, higher eukaryotes. The transition from androgen-dependent to castration-resistant prostate cancer (CRPC) is a lethal event of uncertain molecular etiology. Comparing gene expression in isogenic androgen-dependent and CRPC xenografts, we found a reproducible increase in N-cadherin expression, which was also elevated in primary and metastatic tumors of individuals with CRPC. Ectopic expression of N-cadherin in nonmetastatic, androgen-dependent prostate cancer models caused castration resistance, invasion and metastasis. Monoclonal antibodies against the ectodomain of N-cadherin reduced proliferation, adhesion and invasion of prostate cancer cells in vitro. In vivo, these antibodies slowed the growth of multiple established CRPC xenografts, blocked local invasion and metastasis and, at higher doses, led to complete regression. N-cadherin–specific antibodies markedly delayed the time to emergence of castration resistance, markedly affected tumor histology and angiogenesis, and reduced both AKT serine-threonine kinase activity and serum interleukin-8 (IL-8) secretion. These data indicate that N-cadherin is a major cause of both prostate cancer metastasis and castration resistance. Therapeutic targeting of this factor with monoclonal antibodies may have considerable clinical benefit. OBJECTIVE To evaluate the association of overall and specific headaches with volume of white matter hyperintensities, brain infarcts, and cognition. DESIGN Population based, cross sectional study. SETTING Epidemiology of Vascular Ageing study, Nantes, France. PARTICIPANTS 780 participants (mean age 69, 58.5% women) with detailed headache assessment. MAIN OUTCOME MEASURES Brain scans were evaluated for volume of white matter hyperintensities (by fully automated imaging processing) and for classification of infarcts (by visual reading with a standardised assessment grid). Cognitive function was assessed by a battery of tests including the mini-mental state examination. RESULTS 163 (20.9%) participants reported a history of severe headache and 116 had migraine, of whom 17 (14.7%) reported aura symptoms. An association was found between any history of severe headache and increasing volume of white matter hyperintensities. The adjusted odds ratio of being in the highest third for total volume of white matter hyperintensities was 2.0 (95% confidence interval 1.3 to 3.1, P for trend 0.002) for participants with any history of severe headache when compared with participants without severe headache being in the lowest third. The association pattern was similar for all headache types. Migraine with aura was the only headache type strongly associated with volume of deep white matter hyperintensities (highest third odds ratio 12.4, 1.6 to 99.4, P for trend 0.005) and with brain infarcts (3.4, 1.2 to 9.3). The location of infarcts was predominantly outside the cerebellum and brain stem. Evidence was lacking for cognitive impairment for any headache type with or without brain lesions. CONCLUSIONS In this population based study, any history of severe headache was associated with an increased volume of white matter hyperintensities. Migraine with aura was the only headache type associated with brain infarcts. Evidence that headache of any type by itself or in combination with brain lesions was associated with cognitive impairment was lacking. Non-coding RNAs have emerged as crucial regulators of gene expression and cell fate decisions. However, their expression patterns and regulatory functions during normal and malignant human hematopoiesis are incompletely understood. Here we present a comprehensive resource defining the non-coding RNA landscape of the human hematopoietic system. Based on highly specific non-coding RNA expression portraits per blood cell population, we identify unique fingerprint non-coding RNAs-such as LINC00173 in granulocytes-and assign these to critical regulatory circuits involved in blood homeostasis. Following the incorporation of acute myeloid leukemia samples into the landscape, we further uncover prognostically relevant non-coding RNA stem cell signatures shared between acute myeloid leukemia blasts and healthy hematopoietic stem cells. Our findings highlight the importance of the non-coding transcriptome in the formation and maintenance of the human blood hierarchy. While micro-RNAs are known regulators of haematopoiesis and leukemogenesis, the role of long non-coding RNAs is less clear. Here the authors provide a non-coding RNA expression landscape of the human hematopoietic system, highlighting their role in the formation and maintenance of the human blood hierarchy. Little is known about the inter-individual variation of cytokine responses to different pathogens in healthy individuals. To systematically describe cytokine responses elicited by distinct pathogens and to determine the effect of genetic variation on cytokine production, we profiled cytokines produced by peripheral blood mononuclear cells from 197 individuals of European origin from the 200 Functional Genomics (200FG) cohort in the Human Functional Genomics Project (http://www.humanfunctionalgenomics.org), obtained over three different years. We compared bacteria- and fungi-induced cytokine profiles and found that most cytokine responses were organized around a physiological response to specific pathogens, rather than around a particular immune pathway or cytokine. We then correlated genome-wide single-nucleotide polymorphism (SNP) genotypes with cytokine abundance and identified six cytokine quantitative trait loci (QTLs). Among them, a cytokine QTL at the NAA35-GOLM1 locus markedly modulated interleukin (IL)-6 production in response to multiple pathogens and was associated with susceptibility to candidemia. Furthermore, the cytokine QTLs that we identified were enriched among SNPs previously associated with infectious diseases and heart diseases. These data reveal and begin to explain the variability in cytokine production by human immune cells in response to pathogens. Myeloid-derived suppressor cells (MDSCs) play critical roles in primary and metastatic cancer progression. MDSC regulation is widely variable even among patients harbouring the same type of malignancy, and the mechanisms governing such heterogeneity are largely unknown. Here, integrating human tumour genomics and syngeneic mammary tumour models, we demonstrate that mTOR signalling in cancer cells dictates a mammary tumour's ability to stimulate MDSC accumulation through regulating G-CSF. Inhibiting this pathway or its activators (for example, FGFR) impairs tumour progression, which is partially rescued by restoring MDSCs or G-CSF. Tumour-initiating cells (TICs) exhibit elevated G-CSF. MDSCs reciprocally increase TIC frequency through activating Notch in tumour cells, forming a feedforward loop. Analyses of primary breast cancers and patient-derived xenografts corroborate these mechanisms in patients. These findings establish a non-canonical oncogenic role of mTOR signalling in recruiting pro-tumorigenic MDSCs and show how defined cancer subsets may evolve to promote and depend on a distinct immune microenvironment.
0
{ "query_id": "112", "original_query_id": "112", "context_doc_ids": [ "22180793", "17930286", "2014909", "7185591", "5304891", "3321943" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289433", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "3321943", "5304891", "17930286", "7185591", "2014909", "22180793" ], "comprehensive_gold_set_for_query": [ "6157837" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
112
aug_941
Anthrax spores remain deadly until affected areas are decontaminated. CONTEXT Bioterrorist attacks involving letters and mail-handling systems in Washington, DC, resulted in Bacillus anthracis (anthrax) spore contamination in the Hart Senate Office Building and other facilities in the US Capitol's vicinity. OBJECTIVE To provide information about the nature and extent of indoor secondary aerosolization of B anthracis spores. DESIGN Stationary and personal air samples, surface dust, and swab samples were collected under semiquiescent (minimal activities) and then simulated active office conditions to estimate secondary aerosolization of B anthracis spores. Nominal size characteristics, airborne concentrations, and surface contamination of B anthracis particles (colony-forming units) were evaluated. RESULTS Viable B anthracis spores reaerosolized under semiquiescent conditions, with a marked increase in reaerosolization during simulated active office conditions. Increases were observed for B anthracis collected on open sheep blood agar plates (P<.001) and personal air monitors (P =.01) during active office conditions. More than 80% of the B anthracis particles collected on stationary monitors were within an alveolar respirable size range of 0.95 to 3.5 micro m. CONCLUSIONS Bacillus anthracis spores used in a recent terrorist incident reaerosolized under common office activities. These findings have important implications for appropriate respiratory protection, remediation, and reoccupancy of contaminated office environments.
Anthrax spores remain deadly until affected areas are decontaminated. CONTEXT Bioterrorist attacks involving letters and mail-handling systems in Washington, DC, resulted in Bacillus anthracis (anthrax) spore contamination in the Hart Senate Office Building and other facilities in the US Capitol's vicinity. OBJECTIVE To provide information about the nature and extent of indoor secondary aerosolization of B anthracis spores. DESIGN Stationary and personal air samples, surface dust, and swab samples were collected under semiquiescent (minimal activities) and then simulated active office conditions to estimate secondary aerosolization of B anthracis spores. Nominal size characteristics, airborne concentrations, and surface contamination of B anthracis particles (colony-forming units) were evaluated. RESULTS Viable B anthracis spores reaerosolized under semiquiescent conditions, with a marked increase in reaerosolization during simulated active office conditions. Increases were observed for B anthracis collected on open sheep blood agar plates (P<.001) and personal air monitors (P =.01) during active office conditions. More than 80% of the B anthracis particles collected on stationary monitors were within an alveolar respirable size range of 0.95 to 3.5 micro m. CONCLUSIONS Bacillus anthracis spores used in a recent terrorist incident reaerosolized under common office activities. These findings have important implications for appropriate respiratory protection, remediation, and reoccupancy of contaminated office environments.
1
{ "query_id": "116", "original_query_id": "116", "context_doc_ids": [ "33872649" ], "gold_doc_ids_in_context": [ "33872649" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289547", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "33872649" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "33872649" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
116
aug_942
Mutations in RIM1 raise levels of IME1 RNA. Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case–control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10−5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10−4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10−9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification. CONTEXT Long-term travelers, defined here as those traveling for periods of 6 months or longer, face particular challenges regarding malaria prevention. Current guidelines for malaria prevention primarily address prevention of Plasmodium falciparum infections in short-term travelers. OBJECTIVES To examine the risk of malaria in long-term travelers, recent developments in personal protective measures, and the safety and tolerability of malaria chemoprophylaxis during long-term use and to consider prevention strategies including continuous chemoprophylaxis, stand-by emergency self-treatment, seasonal prophylaxis, and strategies to prevent primary infection and relapses from P vivax malaria. EVIDENCE ACQUISITION Comprehensive search of scientific publications including MEDLINE via both OVID and PubMED for relevant studies and articles with a cutoff date of July 2006, using the search terms long-term travel and malaria prevention, long-term malaria chemoprophylaxis, and insect repellent and malaria. Additional references were obtained from searching the bibliographies of the selected articles, from dissertations, and from the proceedings of relevant conferences on travel medicine. There were no language restrictions. EVIDENCE SYNTHESIS Long-term travelers have a higher risk of malaria than short-term travelers. Long-term travelers underuse personal protective measures and adhere poorly to continuous chemoprophylaxis regimens. A number of strategies are used during long-term stays: discontinuation of chemoprophylaxis after the initial period, sequential regimens with different medications for chemoprophylaxis, stand-by emergency self-treatment, and seasonal chemoprophylaxis targeting high-incidence periods or locations. All strategies have advantages and drawbacks. Counterfeit drugs sold in countries endemic for malaria pose serious concern for long-term travelers who purchase their medications overseas. Vivax malaria causes significant illness in travelers, but relapses of vivax malaria are not prevented with the current first-line chemoprophylaxis regimens. Consensus guidelines are needed for prevention of malaria in long-term travelers. CONCLUSIONS Prevention of malaria in long-term travelers is a complex issue and requires expert advice from travel medicine specialists. Recommendations for prevention of malaria in long-term travelers must be individualized. TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications. Bullying is still prevalent in schools and is clearly stressful for victims. 1 2 It may also have undesirable consequences for bullies, with antisocial behaviour persisting into adulthood. Victims are generally reported to be weaker than the bullies. 2 3 This would suggest that very short pupils are more likely to be victims and less likely to be the aggressors. The Wessex growth study allowed us to examine the prevalence of bullying, as experienced or perpetrated by pupils of different heights. Ninety two short normal adolescents who had been below the third centile for height at school entry4 and 117 controls matched for age and sex completed a bullying questionnaire, derived from work by Whitney and Smith.5 There were no refusals or any significant differences in sex or social class between the groups. Mean age (range) was 14.7 (13.4-15.7) years. Mean height SD scores were: short pupils −1.90 (−3.53 to −0.01), controls 0.31 (−1.41 … Although mast cell functions have classically been related to allergic responses, recent studies indicate that these cells contribute to other common diseases such as multiple sclerosis, rheumatoid arthritis, atherosclerosis, aortic aneurysm and cancer. This study presents evidence that mast cells also contribute to diet-induced obesity and diabetes. For example, white adipose tissue (WAT) from obese humans and mice contain more mast cells than WAT from their lean counterparts. Furthermore, in the context of mice on a Western diet, genetically induced deficiency of mast cells, or their pharmacological stabilization, reduces body weight gain and levels of inflammatory cytokines, chemokines and proteases in serum and WAT, in concert with improved glucose homeostasis and energy expenditure. Mechanistic studies reveal that mast cells contribute to WAT and muscle angiogenesis and associated cell apoptosis and cathepsin activity. Adoptive transfer experiments of cytokine-deficient mast cells show that these cells, by producing interleukin-6 (IL-6) and interferon-gamma (IFN-gamma), contribute to mouse adipose tissue cysteine protease cathepsin expression, apoptosis and angiogenesis, thereby promoting diet-induced obesity and glucose intolerance. Our results showing reduced obesity and diabetes in mice treated with clinically available mast cell-stabilizing agents suggest the potential of developing new therapies for these common human metabolic disorders. Deamidation of N-terminal Gln by Nt(Q)-amidase, an N-terminal amidohydrolase, is a part of the N-end rule pathway of protein degradation. We detected the activity of Nt(Q)-amidase, termed Ntaq1, in mouse tissues, purified Ntaq1 from bovine brains, identified its gene, and began analyzing this enzyme. Ntaq1 is highly conserved among animals, plants, and some fungi, but its sequence is dissimilar to sequences of other amidases. An earlier mutant in the Drosophila Cg8253 gene that we show here to encode Nt(Q)-amidase has defective long-term memory. Other studies identified protein ligands of the uncharacterized human C8orf32 protein that we show here to be the Ntaq1 Nt(Q)-amidase. Remarkably, "high-throughput" studies have recently solved the crystal structure of C8orf32 (Ntaq1). Our site-directed mutagenesis of Ntaq1 and its crystal structure indicate that the active site and catalytic mechanism of Nt(Q)-amidase are similar to those of transglutaminases.
Mutations in RIM1 raise levels of IME1 RNA. Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case–control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10−5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10−4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10−9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification. CONTEXT Long-term travelers, defined here as those traveling for periods of 6 months or longer, face particular challenges regarding malaria prevention. Current guidelines for malaria prevention primarily address prevention of Plasmodium falciparum infections in short-term travelers. OBJECTIVES To examine the risk of malaria in long-term travelers, recent developments in personal protective measures, and the safety and tolerability of malaria chemoprophylaxis during long-term use and to consider prevention strategies including continuous chemoprophylaxis, stand-by emergency self-treatment, seasonal prophylaxis, and strategies to prevent primary infection and relapses from P vivax malaria. EVIDENCE ACQUISITION Comprehensive search of scientific publications including MEDLINE via both OVID and PubMED for relevant studies and articles with a cutoff date of July 2006, using the search terms long-term travel and malaria prevention, long-term malaria chemoprophylaxis, and insect repellent and malaria. Additional references were obtained from searching the bibliographies of the selected articles, from dissertations, and from the proceedings of relevant conferences on travel medicine. There were no language restrictions. EVIDENCE SYNTHESIS Long-term travelers have a higher risk of malaria than short-term travelers. Long-term travelers underuse personal protective measures and adhere poorly to continuous chemoprophylaxis regimens. A number of strategies are used during long-term stays: discontinuation of chemoprophylaxis after the initial period, sequential regimens with different medications for chemoprophylaxis, stand-by emergency self-treatment, and seasonal chemoprophylaxis targeting high-incidence periods or locations. All strategies have advantages and drawbacks. Counterfeit drugs sold in countries endemic for malaria pose serious concern for long-term travelers who purchase their medications overseas. Vivax malaria causes significant illness in travelers, but relapses of vivax malaria are not prevented with the current first-line chemoprophylaxis regimens. Consensus guidelines are needed for prevention of malaria in long-term travelers. CONCLUSIONS Prevention of malaria in long-term travelers is a complex issue and requires expert advice from travel medicine specialists. Recommendations for prevention of malaria in long-term travelers must be individualized. TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications. Bullying is still prevalent in schools and is clearly stressful for victims. 1 2 It may also have undesirable consequences for bullies, with antisocial behaviour persisting into adulthood. Victims are generally reported to be weaker than the bullies. 2 3 This would suggest that very short pupils are more likely to be victims and less likely to be the aggressors. The Wessex growth study allowed us to examine the prevalence of bullying, as experienced or perpetrated by pupils of different heights. Ninety two short normal adolescents who had been below the third centile for height at school entry4 and 117 controls matched for age and sex completed a bullying questionnaire, derived from work by Whitney and Smith.5 There were no refusals or any significant differences in sex or social class between the groups. Mean age (range) was 14.7 (13.4-15.7) years. Mean height SD scores were: short pupils −1.90 (−3.53 to −0.01), controls 0.31 (−1.41 … Although mast cell functions have classically been related to allergic responses, recent studies indicate that these cells contribute to other common diseases such as multiple sclerosis, rheumatoid arthritis, atherosclerosis, aortic aneurysm and cancer. This study presents evidence that mast cells also contribute to diet-induced obesity and diabetes. For example, white adipose tissue (WAT) from obese humans and mice contain more mast cells than WAT from their lean counterparts. Furthermore, in the context of mice on a Western diet, genetically induced deficiency of mast cells, or their pharmacological stabilization, reduces body weight gain and levels of inflammatory cytokines, chemokines and proteases in serum and WAT, in concert with improved glucose homeostasis and energy expenditure. Mechanistic studies reveal that mast cells contribute to WAT and muscle angiogenesis and associated cell apoptosis and cathepsin activity. Adoptive transfer experiments of cytokine-deficient mast cells show that these cells, by producing interleukin-6 (IL-6) and interferon-gamma (IFN-gamma), contribute to mouse adipose tissue cysteine protease cathepsin expression, apoptosis and angiogenesis, thereby promoting diet-induced obesity and glucose intolerance. Our results showing reduced obesity and diabetes in mice treated with clinically available mast cell-stabilizing agents suggest the potential of developing new therapies for these common human metabolic disorders. Deamidation of N-terminal Gln by Nt(Q)-amidase, an N-terminal amidohydrolase, is a part of the N-end rule pathway of protein degradation. We detected the activity of Nt(Q)-amidase, termed Ntaq1, in mouse tissues, purified Ntaq1 from bovine brains, identified its gene, and began analyzing this enzyme. Ntaq1 is highly conserved among animals, plants, and some fungi, but its sequence is dissimilar to sequences of other amidases. An earlier mutant in the Drosophila Cg8253 gene that we show here to encode Nt(Q)-amidase has defective long-term memory. Other studies identified protein ligands of the uncharacterized human C8orf32 protein that we show here to be the Ntaq1 Nt(Q)-amidase. Remarkably, "high-throughput" studies have recently solved the crystal structure of C8orf32 (Ntaq1). Our site-directed mutagenesis of Ntaq1 and its crystal structure indicate that the active site and catalytic mechanism of Nt(Q)-amidase are similar to those of transglutaminases.
0
{ "query_id": "816", "original_query_id": "816", "context_doc_ids": [ "16855829", "597790", "4414547", "36540079", "32390525", "3981729" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289566", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "16855829", "4414547", "597790", "3981729", "36540079", "32390525" ], "comprehensive_gold_set_for_query": [ "8148304" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
816
aug_943
A deficiency of vitamin B6 decreases blood levels of homocysteine. OBJECTIVE To establish the mental health needs of homeless children and families before and after rehousing. DESIGN Cross sectional, longitudinal study. SETTING City of Birmingham. SUBJECTS 58 rehoused families with 103 children aged 2-16 years and 21 comparison families of low socioeconomic status in stable housing, with 54 children. MAIN OUTCOME MEASURES Children's mental health problems and level of communication; mothers' mental health problems and social support one year after rehousing. RESULTS Mental health problems remained significantly higher in rehoused mothers and their children than in the comparison group (mothers 26% v 5%, P = 0.04; children 39% v 11%, P = 0.0003). Homeless mothers continued to have significantly less social support at follow up. Mothers with a history of abuse and poor social integration were more likely to have children with persistent mental health problems. CONCLUSIONS Homeless families have a high level of complex needs that cannot be met by conventional health services and arrangements. Local strategies for rapid rehousing into permanent accommodation, effective social support and health care for parents and children, and protection from violence and intimidation should be developed and implemented. Importance Postmarket safety events of novel pharmaceuticals and biologics occur when new safety risks are identified after initial regulatory approval of these therapeutics. These safety events can change how novel therapeutics are used in clinical practice and inform patient and clinician decision making. Objectives To characterize the frequency of postmarket safety events among novel therapeutics approved by the US Food and Drug Administration (FDA), and to examine whether any novel therapeutic characteristics known at the time of FDA approval were associated with increased risk. Design and Setting Cohort study of all novel therapeutics approved by the FDA between January 1, 2001, and December 31, 2010, followed up through February 28, 2017. Exposures Novel therapeutic characteristics known at the time of FDA approval, including drug class, therapeutic area, priority review, accelerated approval, orphan status, near–regulatory deadline approval, and regulatory review time. Main Outcomes and Measures A composite of (1) withdrawals due to safety concerns, (2) FDA issuance of incremental boxed warnings added in the postmarket period, and (3) FDA issuance of safety communications. Results From 2001 through 2010, the FDA approved 222 novel therapeutics (183 pharmaceuticals and 39 biologics). There were 123 new postmarket safety events (3 withdrawals, 61 boxed warnings, and 59 safety communications) during a median follow-up period of 11.7 years (interquartile range [IQR], 8.7-13.8 years), affecting 71 (32.0%) of the novel therapeutics. The median time from approval to first postmarket safety event was 4.2 years (IQR, 2.5-6.0 years), and the proportion of novel therapeutics affected by a postmarket safety event at 10 years was 30.8% (95% CI, 25.1%-37.5%). In multivariable analysis, postmarket safety events were statistically significantly more frequent among biologics (incidence rate ratio [IRR] = 1.93; 95% CI, 1.06-3.52; P = .03), therapeutics indicated for the treatment of psychiatric disease (IRR = 3.78; 95% CI, 1.77-8.06; P < .001), those receiving accelerated approval (IRR = 2.20; 95% CI, 1.15-4.21; P = .02), and those with near–regulatory deadline approval (IRR = 1.90; 95% CI, 1.19-3.05; P = .008); events were statistically significantly less frequent among those with regulatory review times less than 200 days (IRR = 0.46; 95% CI, 0.24-0.87; P = .02). Conclusions and Relevance Among 222 novel therapeutics approved by the FDA from 2001 through 2010, 32% were affected by a postmarket safety event. Biologics, psychiatric therapeutics, and accelerated and near–regulatory deadline approval were statistically significantly associated with higher rates of events, highlighting the need for continuous monitoring of the safety of novel therapeutics throughout their life cycle. Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members. Objective To explore the in vitro maintenance and characterization of human embryonic stem cells(hESCs).Methods hESCs were cultured on feeder layer with ES culture medium,which consists of 20% Knockout Serum Replacement,Knockout DMEM and 10 ng/mL bFGF.Undifferentiated status of hESCs was identified by cell morphology,and the expressions of cell surface marker SSEA-1,SSEA-3 and TRA-1-60.G banding technique was employed for cell karyotype analysis. Pluropotency of cells were analyzed via in vitro embyoid body(EB) formation and in vivo terotoma formation. Results Most of cells showed undifferentiated properties in cell morphology and normal karyotype throughout extended culture periods. They maintained undifferentiated status with positive immunoreactivity to SSEA-3,SSEA-4 and TRA-1-60.in vitro EB formation and in vivo teratoma formation demonstrated the pluripotency of human ES cells. Conclusion The fundamental requirement to hESCs for research and clinical application were their undifferentiated status and pluropotency in culture. Our result demonstrated their potential for these purposes. The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses. Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.
A deficiency of vitamin B6 decreases blood levels of homocysteine. OBJECTIVE To establish the mental health needs of homeless children and families before and after rehousing. DESIGN Cross sectional, longitudinal study. SETTING City of Birmingham. SUBJECTS 58 rehoused families with 103 children aged 2-16 years and 21 comparison families of low socioeconomic status in stable housing, with 54 children. MAIN OUTCOME MEASURES Children's mental health problems and level of communication; mothers' mental health problems and social support one year after rehousing. RESULTS Mental health problems remained significantly higher in rehoused mothers and their children than in the comparison group (mothers 26% v 5%, P = 0.04; children 39% v 11%, P = 0.0003). Homeless mothers continued to have significantly less social support at follow up. Mothers with a history of abuse and poor social integration were more likely to have children with persistent mental health problems. CONCLUSIONS Homeless families have a high level of complex needs that cannot be met by conventional health services and arrangements. Local strategies for rapid rehousing into permanent accommodation, effective social support and health care for parents and children, and protection from violence and intimidation should be developed and implemented. Importance Postmarket safety events of novel pharmaceuticals and biologics occur when new safety risks are identified after initial regulatory approval of these therapeutics. These safety events can change how novel therapeutics are used in clinical practice and inform patient and clinician decision making. Objectives To characterize the frequency of postmarket safety events among novel therapeutics approved by the US Food and Drug Administration (FDA), and to examine whether any novel therapeutic characteristics known at the time of FDA approval were associated with increased risk. Design and Setting Cohort study of all novel therapeutics approved by the FDA between January 1, 2001, and December 31, 2010, followed up through February 28, 2017. Exposures Novel therapeutic characteristics known at the time of FDA approval, including drug class, therapeutic area, priority review, accelerated approval, orphan status, near–regulatory deadline approval, and regulatory review time. Main Outcomes and Measures A composite of (1) withdrawals due to safety concerns, (2) FDA issuance of incremental boxed warnings added in the postmarket period, and (3) FDA issuance of safety communications. Results From 2001 through 2010, the FDA approved 222 novel therapeutics (183 pharmaceuticals and 39 biologics). There were 123 new postmarket safety events (3 withdrawals, 61 boxed warnings, and 59 safety communications) during a median follow-up period of 11.7 years (interquartile range [IQR], 8.7-13.8 years), affecting 71 (32.0%) of the novel therapeutics. The median time from approval to first postmarket safety event was 4.2 years (IQR, 2.5-6.0 years), and the proportion of novel therapeutics affected by a postmarket safety event at 10 years was 30.8% (95% CI, 25.1%-37.5%). In multivariable analysis, postmarket safety events were statistically significantly more frequent among biologics (incidence rate ratio [IRR] = 1.93; 95% CI, 1.06-3.52; P = .03), therapeutics indicated for the treatment of psychiatric disease (IRR = 3.78; 95% CI, 1.77-8.06; P < .001), those receiving accelerated approval (IRR = 2.20; 95% CI, 1.15-4.21; P = .02), and those with near–regulatory deadline approval (IRR = 1.90; 95% CI, 1.19-3.05; P = .008); events were statistically significantly less frequent among those with regulatory review times less than 200 days (IRR = 0.46; 95% CI, 0.24-0.87; P = .02). Conclusions and Relevance Among 222 novel therapeutics approved by the FDA from 2001 through 2010, 32% were affected by a postmarket safety event. Biologics, psychiatric therapeutics, and accelerated and near–regulatory deadline approval were statistically significantly associated with higher rates of events, highlighting the need for continuous monitoring of the safety of novel therapeutics throughout their life cycle. Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members. Objective To explore the in vitro maintenance and characterization of human embryonic stem cells(hESCs).Methods hESCs were cultured on feeder layer with ES culture medium,which consists of 20% Knockout Serum Replacement,Knockout DMEM and 10 ng/mL bFGF.Undifferentiated status of hESCs was identified by cell morphology,and the expressions of cell surface marker SSEA-1,SSEA-3 and TRA-1-60.G banding technique was employed for cell karyotype analysis. Pluropotency of cells were analyzed via in vitro embyoid body(EB) formation and in vivo terotoma formation. Results Most of cells showed undifferentiated properties in cell morphology and normal karyotype throughout extended culture periods. They maintained undifferentiated status with positive immunoreactivity to SSEA-3,SSEA-4 and TRA-1-60.in vitro EB formation and in vivo teratoma formation demonstrated the pluripotency of human ES cells. Conclusion The fundamental requirement to hESCs for research and clinical application were their undifferentiated status and pluropotency in culture. Our result demonstrated their potential for these purposes. The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses. Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.
0
{ "query_id": "37", "original_query_id": "37", "context_doc_ids": [ "4547102", "8883846", "3578380", "87610599", "25649714", "13868795" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 2, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289648", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "4547102", "13868795", "87610599", "8883846", "3578380", "25649714" ], "comprehensive_gold_set_for_query": [ "11705328", "5152028" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
37
aug_944
The innate immune response struggles to remove small numbers of parasites. Histone levels are tightly regulated to prevent harmful effects such as genomic instability and hypersensitivity to DNA-damaging agents due to the accumulation of these highly basic proteins when DNA replication slows down or stops. Although chromosomal histones are stable, excess (non-chromatin bound) histones are rapidly degraded in a Rad53 (radiation sensitive 53) kinase-dependent manner in Saccharomyces cerevisiae. Here we demonstrate that excess histones associate with Rad53 in vivo and seem to undergo modifications such as tyrosine phosphorylation and polyubiquitylation, before their proteolysis by the proteasome. We have identified the Tyr 99 residue of histone H3 as being critical for the efficient ubiquitylation and degradation of this histone. We have also identified the ubiquitin conjugating enzymes (E2) Ubc4 and Ubc5, as well as the ubiquitin ligase (E3) Tom1 (temperature dependent organization in mitotic nucleus 1), as enzymes involved in the ubiquitylation of excess histones. Regulated histone proteolysis has major implications for the maintenance of epigenetic marks on chromatin, genomic stability and the packaging of sperm DNA. OBJECTIVES We investigated the role of cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in cachexia development in newly diagnosed nonsmall cell lung cancer (NSCLC) patients. METHODS : We evaluated 44 (M/F:41/3) NSCLC patients and 12 (M/F:10/2) age matched healthy smokers. NSCLC cases with a weight loss of > or =10% consisted the cachectic group (n:23, M/F:21/2) and the ones with <10% weight loss consisted the noncachectic group (n:21, M/F:19/2). RESULTS Body mass index (BMI) of cachectics was significantly lower than that of noncachectics (21.0 +/- 2.9 versus 24.5 +/- 3.6, P = 0.02) and controls (21.0 +/- 2.9 versus 25.5 +/- 2.6, P = 0.01). Serum TNF-alpha level did not differ between cachectic and noncachectics (37.3 +/- 39.1 and 51.6 +/- 84.2 pg/mL, respectively). However, it was significantly higher in NSCLC patients compared with controls (44.1 +/- 64.3 and 15.1 +/- 14.3 pg/mL, P = 0.03). Serum IL-6 level was not different between 3 groups (6.4 +/- 4.1, 8.9 +/- 16.3, and 4.1 +/- 3.5 pg/mL, respectively) but it correlated significantly with TNF-alpha (r = 0.4, P = 0.006) and BMI (r = -0.3, P = 0.03). Erythrocyte sedimentation rate (ESR) correlated significantly with TNF-alpha (r = 0.4, P = 0.003) and BMI (r = -0.3, P = 0.03). Among 44 cases, survival of 12 and 17 patients was recorded in cachectics and noncachectics, with no statistical difference (12.2 +/- 3.7 and 11.2 +/- 1.0 months, respectively). CONCLUSIONS TNF-alpha and IL-6 levels did not differ significantly between cachectics and noncachectics. However, significant correlations between IL-6, BMI, and TNF-alpha suggested that these cytokines acted as cofactors in weight loss. Survival was neither influenced by BMI, nor the cytokine levels in the present study. The significant correlation of ESR with TNF-alpha suggested that ESR could provide valuable clue for considerable weight loss in the follow-up of NSCLC patients. Immune clearance and resource limitation (via red blood cell depletion) shape the peaks and troughs of malaria parasitemia, which in turn affect disease severity and transmission. Quantitatively partitioning the relative roles of these effects through time is challenging. Using data from rodent malaria, we estimated the effective propagation number, which reflects the relative importance of contrasting within-host control mechanisms through time and is sensitive to the inoculating parasite dose. Our analysis showed that the capacity of innate responses to restrict initial parasite growth saturates with parasite dose and that experimentally enhanced innate immunity can affect parasite density indirectly via resource depletion. Such a statistical approach offers a tool to improve targeting of drugs or vaccines for human therapy by revealing the dynamics and interactions of within-host regulatory mechanisms. CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages. Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid and protein phosphatase, PTEN, has a novel role in the nucleus by functioning as an indispensible regulator with SRF to maintain the differentiated SM phenotype. PTEN interacts with the N-terminal domain of SRF and PTEN-SRF interaction promotes SRF binding to essential promoter elements in SM-specific genes. Factors inducing phenotypic switching promote loss of nuclear PTEN through nucleo-cytoplasmic translocation resulting in reduced myogenically active SRF, but enhanced SRF activity on target genes involved in proliferation. Overall decreased expression of PTEN was observed in intimal SMCs of human atherosclerotic lesions underlying the potential clinical importance of these findings. Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output.
The innate immune response struggles to remove small numbers of parasites. Histone levels are tightly regulated to prevent harmful effects such as genomic instability and hypersensitivity to DNA-damaging agents due to the accumulation of these highly basic proteins when DNA replication slows down or stops. Although chromosomal histones are stable, excess (non-chromatin bound) histones are rapidly degraded in a Rad53 (radiation sensitive 53) kinase-dependent manner in Saccharomyces cerevisiae. Here we demonstrate that excess histones associate with Rad53 in vivo and seem to undergo modifications such as tyrosine phosphorylation and polyubiquitylation, before their proteolysis by the proteasome. We have identified the Tyr 99 residue of histone H3 as being critical for the efficient ubiquitylation and degradation of this histone. We have also identified the ubiquitin conjugating enzymes (E2) Ubc4 and Ubc5, as well as the ubiquitin ligase (E3) Tom1 (temperature dependent organization in mitotic nucleus 1), as enzymes involved in the ubiquitylation of excess histones. Regulated histone proteolysis has major implications for the maintenance of epigenetic marks on chromatin, genomic stability and the packaging of sperm DNA. OBJECTIVES We investigated the role of cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in cachexia development in newly diagnosed nonsmall cell lung cancer (NSCLC) patients. METHODS : We evaluated 44 (M/F:41/3) NSCLC patients and 12 (M/F:10/2) age matched healthy smokers. NSCLC cases with a weight loss of > or =10% consisted the cachectic group (n:23, M/F:21/2) and the ones with <10% weight loss consisted the noncachectic group (n:21, M/F:19/2). RESULTS Body mass index (BMI) of cachectics was significantly lower than that of noncachectics (21.0 +/- 2.9 versus 24.5 +/- 3.6, P = 0.02) and controls (21.0 +/- 2.9 versus 25.5 +/- 2.6, P = 0.01). Serum TNF-alpha level did not differ between cachectic and noncachectics (37.3 +/- 39.1 and 51.6 +/- 84.2 pg/mL, respectively). However, it was significantly higher in NSCLC patients compared with controls (44.1 +/- 64.3 and 15.1 +/- 14.3 pg/mL, P = 0.03). Serum IL-6 level was not different between 3 groups (6.4 +/- 4.1, 8.9 +/- 16.3, and 4.1 +/- 3.5 pg/mL, respectively) but it correlated significantly with TNF-alpha (r = 0.4, P = 0.006) and BMI (r = -0.3, P = 0.03). Erythrocyte sedimentation rate (ESR) correlated significantly with TNF-alpha (r = 0.4, P = 0.003) and BMI (r = -0.3, P = 0.03). Among 44 cases, survival of 12 and 17 patients was recorded in cachectics and noncachectics, with no statistical difference (12.2 +/- 3.7 and 11.2 +/- 1.0 months, respectively). CONCLUSIONS TNF-alpha and IL-6 levels did not differ significantly between cachectics and noncachectics. However, significant correlations between IL-6, BMI, and TNF-alpha suggested that these cytokines acted as cofactors in weight loss. Survival was neither influenced by BMI, nor the cytokine levels in the present study. The significant correlation of ESR with TNF-alpha suggested that ESR could provide valuable clue for considerable weight loss in the follow-up of NSCLC patients. Immune clearance and resource limitation (via red blood cell depletion) shape the peaks and troughs of malaria parasitemia, which in turn affect disease severity and transmission. Quantitatively partitioning the relative roles of these effects through time is challenging. Using data from rodent malaria, we estimated the effective propagation number, which reflects the relative importance of contrasting within-host control mechanisms through time and is sensitive to the inoculating parasite dose. Our analysis showed that the capacity of innate responses to restrict initial parasite growth saturates with parasite dose and that experimentally enhanced innate immunity can affect parasite density indirectly via resource depletion. Such a statistical approach offers a tool to improve targeting of drugs or vaccines for human therapy by revealing the dynamics and interactions of within-host regulatory mechanisms. CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages. Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid and protein phosphatase, PTEN, has a novel role in the nucleus by functioning as an indispensible regulator with SRF to maintain the differentiated SM phenotype. PTEN interacts with the N-terminal domain of SRF and PTEN-SRF interaction promotes SRF binding to essential promoter elements in SM-specific genes. Factors inducing phenotypic switching promote loss of nuclear PTEN through nucleo-cytoplasmic translocation resulting in reduced myogenically active SRF, but enhanced SRF activity on target genes involved in proliferation. Overall decreased expression of PTEN was observed in intimal SMCs of human atherosclerotic lesions underlying the potential clinical importance of these findings. Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output.
0.285714
{ "query_id": "1223", "original_query_id": "1223", "context_doc_ids": [ "16939583", "14637235", "39264456", "34071621", "5289038", "3512154" ], "gold_doc_ids_in_context": [ "5289038" ], "total_gold_docs_for_query": 1, "context_f1": 0.2857142857142857, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289746", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "5289038" ], "negative_samples_considered": [ "16939583", "39264456", "3512154", "14637235", "34071621" ], "comprehensive_gold_set_for_query": [ "5289038" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1223
aug_945
Cytosolic proteins bind to iron-responsive elements on mRNAs coding for TFRC1. Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element-binding protein 2 (IRP2) as an important COPD susceptibility gene and have shown that IRP2 protein is increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD. By integrating RNA immunoprecipitation followed by sequencing (RIP-seq), RNA sequencing (RNA-seq), and gene expression and functional enrichment clustering analysis, we identified Irp2 as a regulator of mitochondrial function in the lungs of mice. Irp2 increased mitochondrial iron loading and levels of cytochrome c oxidase (COX), which led to mitochondrial dysfunction and subsequent experimental COPD. Frataxin-deficient mice, which had higher mitochondrial iron loading, showed impaired airway mucociliary clearance (MCC) and higher pulmonary inflammation at baseline, whereas mice deficient in the synthesis of cytochrome c oxidase, which have reduced COX, were protected from CS-induced pulmonary inflammation and impairment of MCC. Mice treated with a mitochondrial iron chelator or mice fed a low-iron diet were protected from CS-induced COPD. Mitochondrial iron chelation also alleviated CS-induced impairment of MCC, CS-induced pulmonary inflammation and CS-associated lung injury in mice with established COPD, suggesting a critical functional role and potential therapeutic intervention for the mitochondrial-iron axis in COPD.
Cytosolic proteins bind to iron-responsive elements on mRNAs coding for TFRC1. Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element-binding protein 2 (IRP2) as an important COPD susceptibility gene and have shown that IRP2 protein is increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD. By integrating RNA immunoprecipitation followed by sequencing (RIP-seq), RNA sequencing (RNA-seq), and gene expression and functional enrichment clustering analysis, we identified Irp2 as a regulator of mitochondrial function in the lungs of mice. Irp2 increased mitochondrial iron loading and levels of cytochrome c oxidase (COX), which led to mitochondrial dysfunction and subsequent experimental COPD. Frataxin-deficient mice, which had higher mitochondrial iron loading, showed impaired airway mucociliary clearance (MCC) and higher pulmonary inflammation at baseline, whereas mice deficient in the synthesis of cytochrome c oxidase, which have reduced COX, were protected from CS-induced pulmonary inflammation and impairment of MCC. Mice treated with a mitochondrial iron chelator or mice fed a low-iron diet were protected from CS-induced COPD. Mitochondrial iron chelation also alleviated CS-induced impairment of MCC, CS-induced pulmonary inflammation and CS-associated lung injury in mice with established COPD, suggesting a critical functional role and potential therapeutic intervention for the mitochondrial-iron axis in COPD.
1
{ "query_id": "301", "original_query_id": "301", "context_doc_ids": [ "3553087" ], "gold_doc_ids_in_context": [ "3553087" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289806", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "3553087" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "3553087" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
301
aug_946
Progerin induces premature aging in stem cells. Mammalian long intergenic noncoding RNAs (lincRNAs) are best known for modulating transcription. Here we report a posttranscriptional function for lincRNA-p21 as a modulator of translation. Association of the RNA-binding protein HuR with lincRNA-p21 favored the recruitment of let-7/Ago2 to lincRNA-p21, leading to lower lincRNA-p21 stability. Under reduced HuR levels, lincRNA-p21 accumulated in human cervical carcinoma HeLa cells, increasing its association with JUNB and CTNNB1 mRNAs and selectively lowering their translation. With elevated HuR, lincRNA-p21 levels declined, which in turn derepressed JunB and β-catenin translation and increased the levels of these proteins. We propose that HuR controls translation of a subset of target mRNAs by influencing lincRNA-p21 levels. Our findings uncover a role for lincRNA as a posttranscriptional inhibitor of translation. INTRODUCTION Various perinatal factors, including birth weight, birth order, maternal age, gestational age, twin status, and parental smoking, have been postulated to affect breast cancer risk in daughters by altering the hormonal environment of the developing fetal mammary glands. Despite ample biologic plausibility, epidemiologic studies to date have yielded conflicting results. We investigated the associations between perinatal factors and subsequent breast cancer risk through meta-analyses. METHODS We reviewed breast cancer studies published from January 1966 to February 2007 that included data on birth weight, birth order, maternal age, gestational age, twin status, and maternal or paternal smoking. Meta-analyses using random effect models were employed to summarize the results. RESULTS We found that heavier birth weights were associated with increased breast cancer risk, with studies involving five categories of birth weight identifying odds ratios (ORs) of 1.24 (95% confidence interval [CI] 1.04 to 1.48) for 4,000 g or more and 1.15 (95% CI 1.04 to 1.26) for 3,500 g to 3,999 g, relative to a birth weight of 2,500 to 2,599 g. These studies provided no support for a J-shaped relationship of birthweight to risk. Support for an association with birthweight was also derived from studies based on three birth weight categories (OR 1.15 [95% CI 1.01 to 1.31] for > or =4,000 g relative to <3,000 g) and two birth weight categories (OR 1.09 [95% CI 1.02 to 1.18] for > or =3,000 g relative to <3,000 g). Women born to older mothers and twins were also at some increased risk, but the results were heterogeneous across studies and publication years. Birth order, prematurity, and maternal smoking were unrelated to breast cancer risk. CONCLUSION Our findings provide some support for the hypothesis that in utero exposures reflective of higher endogenous hormone levels could affect risk for development of breast cancer in adulthood. In single-stranded ribonucleic acid (RNA) viruses, virus capsid assembly and genome packaging are intertwined processes. Using cryo-electron microscopy and single particle analysis we determined the asymmetric virion structure of bacteriophage MS2, which includes 178 copies of the coat protein, a single copy of the A-protein and the RNA genome. This reveals that in situ, the viral RNA genome can adopt a defined conformation. The RNA forms a branched network of stem-loops that almost all allocate near the capsid inner surface, while predominantly binding to coat protein dimers that are located in one-half of the capsid. This suggests that genomic RNA is highly involved in genome packaging and virion assembly. BACKGROUND Genetic and epidemiological evidence suggests an inverse association between B-type natriuretic peptide (BNP) levels in blood and risk of type 2 diabetes (T2D), but the prospective association of BNP with T2D is uncertain, and it is unclear whether the association is confounded. METHODS AND FINDINGS We analysed the association between levels of the N-terminal fragment of pro-BNP (NT-pro-BNP) in blood and risk of incident T2D in a prospective case-cohort study and genotyped the variant rs198389 within the BNP locus in three T2D case-control studies. We combined our results with existing data in a meta-analysis of 11 case-control studies. Using a Mendelian randomization approach, we compared the observed association between rs198389 and T2D to that expected from the NT-pro-BNP level to T2D association and the NT-pro-BNP difference per C allele of rs198389. In participants of our case-cohort study who were free of T2D and cardiovascular disease at baseline, we observed a 21% (95% CI 3%-36%) decreased risk of incident T2D per one standard deviation (SD) higher log-transformed NT-pro-BNP levels in analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking, family history of T2D, history of hypertension, and levels of triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The association between rs198389 and T2D observed in case-control studies (odds ratio = 0.94 per C allele, 95% CI 0.91-0.97) was similar to that expected (0.96, 0.93-0.98) based on the pooled estimate for the log-NT-pro-BNP level to T2D association derived from a meta-analysis of our study and published data (hazard ratio = 0.82 per SD, 0.74-0.90) and the difference in NT-pro-BNP levels (0.22 SD, 0.15-0.29) per C allele of rs198389. No significant associations were observed between the rs198389 genotype and potential confounders. CONCLUSIONS Our results provide evidence for a potential causal role of the BNP system in the aetiology of T2D. Further studies are needed to investigate the mechanisms underlying this association and possibilities for preventive interventions. Please see later in the article for the Editors' Summary. The transcriptional status of a gene can be maintained through multiple rounds of cell division during development. This epigenetic effect is believed to reflect heritable changes in chromatin folding and histone modifications or variants at target genes, but little is known about how these chromatin features are inherited through cell division. A particular challenge for maintaining transcription states is DNA replication, which disrupts or dilutes chromatin-associated proteins and histone modifications. PRC1-class Polycomb group protein complexes are essential for development and are thought to heritably silence transcription by altering chromatin folding and histone modifications. It is not known whether these complexes and their effects are maintained during DNA replication or subsequently re-established. We find that when PRC1-class Polycomb complex-bound chromatin or DNA is replicated in vitro, Polycomb complexes remain bound to replicated templates. Retention of Polycomb proteins through DNA replication may contribute to maintenance of transcriptional silencing through cell division. Epidemiological studies demonstrate that a lower blood pressure and decline in blood pressure over months or years are associated with higher mortality in dialysis patients. In contrast, randomized, controlled trials lack power to establish benefits of antihypertensive therapy. Patients on long-term dialysis participating in randomized, controlled trials and receiving antihypertensive drug therapy were the subject of this meta-analysis. Outcomes assessed were the hazard ratio of cardiovascular events and all-cause mortality in treated group compared with controls. Among 1202 patients who we identified in 5 studies, the overall benefit of antihypertensive therapy compared with the control or placebo group had a combined hazard ratio for cardiovascular events of 0.69 (95% CI: 0.56 to 0.84) using a fixed-effects model and 0.62 (95% CI: 0.45 to 0.86) using a random-effects model. In a sensitivity analysis, we found that the hypertensive group had a pooled hazard ratio of 0.49 (95% CI: 0.35 to 0.67), but when normotensives were included in the trial, lesser cardiovascular protection was seen (pooled hazard ratio of 0.86 [95% CI: 0.67 to 1.12]). Test for heterogeneity between hypertensive and "normotensive-included" groups was significant (P<0.006). Similar results were seen for risk ratio for death and cardiovascular events. There was evidence of publication bias based on Egger's test and funnel plot. Randomized trials suggested a benefit of antihypertensive therapy among hemodialysis patients. Adequately powered randomized trials are required to confirm these observations, especially among those with hypertension.
Progerin induces premature aging in stem cells. Mammalian long intergenic noncoding RNAs (lincRNAs) are best known for modulating transcription. Here we report a posttranscriptional function for lincRNA-p21 as a modulator of translation. Association of the RNA-binding protein HuR with lincRNA-p21 favored the recruitment of let-7/Ago2 to lincRNA-p21, leading to lower lincRNA-p21 stability. Under reduced HuR levels, lincRNA-p21 accumulated in human cervical carcinoma HeLa cells, increasing its association with JUNB and CTNNB1 mRNAs and selectively lowering their translation. With elevated HuR, lincRNA-p21 levels declined, which in turn derepressed JunB and β-catenin translation and increased the levels of these proteins. We propose that HuR controls translation of a subset of target mRNAs by influencing lincRNA-p21 levels. Our findings uncover a role for lincRNA as a posttranscriptional inhibitor of translation. INTRODUCTION Various perinatal factors, including birth weight, birth order, maternal age, gestational age, twin status, and parental smoking, have been postulated to affect breast cancer risk in daughters by altering the hormonal environment of the developing fetal mammary glands. Despite ample biologic plausibility, epidemiologic studies to date have yielded conflicting results. We investigated the associations between perinatal factors and subsequent breast cancer risk through meta-analyses. METHODS We reviewed breast cancer studies published from January 1966 to February 2007 that included data on birth weight, birth order, maternal age, gestational age, twin status, and maternal or paternal smoking. Meta-analyses using random effect models were employed to summarize the results. RESULTS We found that heavier birth weights were associated with increased breast cancer risk, with studies involving five categories of birth weight identifying odds ratios (ORs) of 1.24 (95% confidence interval [CI] 1.04 to 1.48) for 4,000 g or more and 1.15 (95% CI 1.04 to 1.26) for 3,500 g to 3,999 g, relative to a birth weight of 2,500 to 2,599 g. These studies provided no support for a J-shaped relationship of birthweight to risk. Support for an association with birthweight was also derived from studies based on three birth weight categories (OR 1.15 [95% CI 1.01 to 1.31] for > or =4,000 g relative to <3,000 g) and two birth weight categories (OR 1.09 [95% CI 1.02 to 1.18] for > or =3,000 g relative to <3,000 g). Women born to older mothers and twins were also at some increased risk, but the results were heterogeneous across studies and publication years. Birth order, prematurity, and maternal smoking were unrelated to breast cancer risk. CONCLUSION Our findings provide some support for the hypothesis that in utero exposures reflective of higher endogenous hormone levels could affect risk for development of breast cancer in adulthood. In single-stranded ribonucleic acid (RNA) viruses, virus capsid assembly and genome packaging are intertwined processes. Using cryo-electron microscopy and single particle analysis we determined the asymmetric virion structure of bacteriophage MS2, which includes 178 copies of the coat protein, a single copy of the A-protein and the RNA genome. This reveals that in situ, the viral RNA genome can adopt a defined conformation. The RNA forms a branched network of stem-loops that almost all allocate near the capsid inner surface, while predominantly binding to coat protein dimers that are located in one-half of the capsid. This suggests that genomic RNA is highly involved in genome packaging and virion assembly. BACKGROUND Genetic and epidemiological evidence suggests an inverse association between B-type natriuretic peptide (BNP) levels in blood and risk of type 2 diabetes (T2D), but the prospective association of BNP with T2D is uncertain, and it is unclear whether the association is confounded. METHODS AND FINDINGS We analysed the association between levels of the N-terminal fragment of pro-BNP (NT-pro-BNP) in blood and risk of incident T2D in a prospective case-cohort study and genotyped the variant rs198389 within the BNP locus in three T2D case-control studies. We combined our results with existing data in a meta-analysis of 11 case-control studies. Using a Mendelian randomization approach, we compared the observed association between rs198389 and T2D to that expected from the NT-pro-BNP level to T2D association and the NT-pro-BNP difference per C allele of rs198389. In participants of our case-cohort study who were free of T2D and cardiovascular disease at baseline, we observed a 21% (95% CI 3%-36%) decreased risk of incident T2D per one standard deviation (SD) higher log-transformed NT-pro-BNP levels in analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking, family history of T2D, history of hypertension, and levels of triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The association between rs198389 and T2D observed in case-control studies (odds ratio = 0.94 per C allele, 95% CI 0.91-0.97) was similar to that expected (0.96, 0.93-0.98) based on the pooled estimate for the log-NT-pro-BNP level to T2D association derived from a meta-analysis of our study and published data (hazard ratio = 0.82 per SD, 0.74-0.90) and the difference in NT-pro-BNP levels (0.22 SD, 0.15-0.29) per C allele of rs198389. No significant associations were observed between the rs198389 genotype and potential confounders. CONCLUSIONS Our results provide evidence for a potential causal role of the BNP system in the aetiology of T2D. Further studies are needed to investigate the mechanisms underlying this association and possibilities for preventive interventions. Please see later in the article for the Editors' Summary. The transcriptional status of a gene can be maintained through multiple rounds of cell division during development. This epigenetic effect is believed to reflect heritable changes in chromatin folding and histone modifications or variants at target genes, but little is known about how these chromatin features are inherited through cell division. A particular challenge for maintaining transcription states is DNA replication, which disrupts or dilutes chromatin-associated proteins and histone modifications. PRC1-class Polycomb group protein complexes are essential for development and are thought to heritably silence transcription by altering chromatin folding and histone modifications. It is not known whether these complexes and their effects are maintained during DNA replication or subsequently re-established. We find that when PRC1-class Polycomb complex-bound chromatin or DNA is replicated in vitro, Polycomb complexes remain bound to replicated templates. Retention of Polycomb proteins through DNA replication may contribute to maintenance of transcriptional silencing through cell division. Epidemiological studies demonstrate that a lower blood pressure and decline in blood pressure over months or years are associated with higher mortality in dialysis patients. In contrast, randomized, controlled trials lack power to establish benefits of antihypertensive therapy. Patients on long-term dialysis participating in randomized, controlled trials and receiving antihypertensive drug therapy were the subject of this meta-analysis. Outcomes assessed were the hazard ratio of cardiovascular events and all-cause mortality in treated group compared with controls. Among 1202 patients who we identified in 5 studies, the overall benefit of antihypertensive therapy compared with the control or placebo group had a combined hazard ratio for cardiovascular events of 0.69 (95% CI: 0.56 to 0.84) using a fixed-effects model and 0.62 (95% CI: 0.45 to 0.86) using a random-effects model. In a sensitivity analysis, we found that the hypertensive group had a pooled hazard ratio of 0.49 (95% CI: 0.35 to 0.67), but when normotensives were included in the trial, lesser cardiovascular protection was seen (pooled hazard ratio of 0.86 [95% CI: 0.67 to 1.12]). Test for heterogeneity between hypertensive and "normotensive-included" groups was significant (P<0.006). Similar results were seen for risk ratio for death and cardiovascular events. There was evidence of publication bias based on Egger's test and funnel plot. Randomized trials suggested a benefit of antihypertensive therapy among hemodialysis patients. Adequately powered randomized trials are required to confirm these observations, especially among those with hypertension.
0
{ "query_id": "979", "original_query_id": "979", "context_doc_ids": [ "10072941", "15663829", "6903077", "13763195", "18037805", "17450673" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289830", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "15663829", "6903077", "10072941", "18037805", "13763195", "17450673" ], "comprehensive_gold_set_for_query": [ "11659421" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
979
aug_947
A deficiency of vitamin B6 decreases blood levels of homocysteine. OBJECTIVE To establish the mental health needs of homeless children and families before and after rehousing. DESIGN Cross sectional, longitudinal study. SETTING City of Birmingham. SUBJECTS 58 rehoused families with 103 children aged 2-16 years and 21 comparison families of low socioeconomic status in stable housing, with 54 children. MAIN OUTCOME MEASURES Children's mental health problems and level of communication; mothers' mental health problems and social support one year after rehousing. RESULTS Mental health problems remained significantly higher in rehoused mothers and their children than in the comparison group (mothers 26% v 5%, P = 0.04; children 39% v 11%, P = 0.0003). Homeless mothers continued to have significantly less social support at follow up. Mothers with a history of abuse and poor social integration were more likely to have children with persistent mental health problems. CONCLUSIONS Homeless families have a high level of complex needs that cannot be met by conventional health services and arrangements. Local strategies for rapid rehousing into permanent accommodation, effective social support and health care for parents and children, and protection from violence and intimidation should be developed and implemented. Importance Postmarket safety events of novel pharmaceuticals and biologics occur when new safety risks are identified after initial regulatory approval of these therapeutics. These safety events can change how novel therapeutics are used in clinical practice and inform patient and clinician decision making. Objectives To characterize the frequency of postmarket safety events among novel therapeutics approved by the US Food and Drug Administration (FDA), and to examine whether any novel therapeutic characteristics known at the time of FDA approval were associated with increased risk. Design and Setting Cohort study of all novel therapeutics approved by the FDA between January 1, 2001, and December 31, 2010, followed up through February 28, 2017. Exposures Novel therapeutic characteristics known at the time of FDA approval, including drug class, therapeutic area, priority review, accelerated approval, orphan status, near–regulatory deadline approval, and regulatory review time. Main Outcomes and Measures A composite of (1) withdrawals due to safety concerns, (2) FDA issuance of incremental boxed warnings added in the postmarket period, and (3) FDA issuance of safety communications. Results From 2001 through 2010, the FDA approved 222 novel therapeutics (183 pharmaceuticals and 39 biologics). There were 123 new postmarket safety events (3 withdrawals, 61 boxed warnings, and 59 safety communications) during a median follow-up period of 11.7 years (interquartile range [IQR], 8.7-13.8 years), affecting 71 (32.0%) of the novel therapeutics. The median time from approval to first postmarket safety event was 4.2 years (IQR, 2.5-6.0 years), and the proportion of novel therapeutics affected by a postmarket safety event at 10 years was 30.8% (95% CI, 25.1%-37.5%). In multivariable analysis, postmarket safety events were statistically significantly more frequent among biologics (incidence rate ratio [IRR] = 1.93; 95% CI, 1.06-3.52; P = .03), therapeutics indicated for the treatment of psychiatric disease (IRR = 3.78; 95% CI, 1.77-8.06; P < .001), those receiving accelerated approval (IRR = 2.20; 95% CI, 1.15-4.21; P = .02), and those with near–regulatory deadline approval (IRR = 1.90; 95% CI, 1.19-3.05; P = .008); events were statistically significantly less frequent among those with regulatory review times less than 200 days (IRR = 0.46; 95% CI, 0.24-0.87; P = .02). Conclusions and Relevance Among 222 novel therapeutics approved by the FDA from 2001 through 2010, 32% were affected by a postmarket safety event. Biologics, psychiatric therapeutics, and accelerated and near–regulatory deadline approval were statistically significantly associated with higher rates of events, highlighting the need for continuous monitoring of the safety of novel therapeutics throughout their life cycle. Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members. Objective To explore the in vitro maintenance and characterization of human embryonic stem cells(hESCs).Methods hESCs were cultured on feeder layer with ES culture medium,which consists of 20% Knockout Serum Replacement,Knockout DMEM and 10 ng/mL bFGF.Undifferentiated status of hESCs was identified by cell morphology,and the expressions of cell surface marker SSEA-1,SSEA-3 and TRA-1-60.G banding technique was employed for cell karyotype analysis. Pluropotency of cells were analyzed via in vitro embyoid body(EB) formation and in vivo terotoma formation. Results Most of cells showed undifferentiated properties in cell morphology and normal karyotype throughout extended culture periods. They maintained undifferentiated status with positive immunoreactivity to SSEA-3,SSEA-4 and TRA-1-60.in vitro EB formation and in vivo teratoma formation demonstrated the pluripotency of human ES cells. Conclusion The fundamental requirement to hESCs for research and clinical application were their undifferentiated status and pluropotency in culture. Our result demonstrated their potential for these purposes. The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses. Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.
A deficiency of vitamin B6 decreases blood levels of homocysteine. OBJECTIVE To establish the mental health needs of homeless children and families before and after rehousing. DESIGN Cross sectional, longitudinal study. SETTING City of Birmingham. SUBJECTS 58 rehoused families with 103 children aged 2-16 years and 21 comparison families of low socioeconomic status in stable housing, with 54 children. MAIN OUTCOME MEASURES Children's mental health problems and level of communication; mothers' mental health problems and social support one year after rehousing. RESULTS Mental health problems remained significantly higher in rehoused mothers and their children than in the comparison group (mothers 26% v 5%, P = 0.04; children 39% v 11%, P = 0.0003). Homeless mothers continued to have significantly less social support at follow up. Mothers with a history of abuse and poor social integration were more likely to have children with persistent mental health problems. CONCLUSIONS Homeless families have a high level of complex needs that cannot be met by conventional health services and arrangements. Local strategies for rapid rehousing into permanent accommodation, effective social support and health care for parents and children, and protection from violence and intimidation should be developed and implemented. Importance Postmarket safety events of novel pharmaceuticals and biologics occur when new safety risks are identified after initial regulatory approval of these therapeutics. These safety events can change how novel therapeutics are used in clinical practice and inform patient and clinician decision making. Objectives To characterize the frequency of postmarket safety events among novel therapeutics approved by the US Food and Drug Administration (FDA), and to examine whether any novel therapeutic characteristics known at the time of FDA approval were associated with increased risk. Design and Setting Cohort study of all novel therapeutics approved by the FDA between January 1, 2001, and December 31, 2010, followed up through February 28, 2017. Exposures Novel therapeutic characteristics known at the time of FDA approval, including drug class, therapeutic area, priority review, accelerated approval, orphan status, near–regulatory deadline approval, and regulatory review time. Main Outcomes and Measures A composite of (1) withdrawals due to safety concerns, (2) FDA issuance of incremental boxed warnings added in the postmarket period, and (3) FDA issuance of safety communications. Results From 2001 through 2010, the FDA approved 222 novel therapeutics (183 pharmaceuticals and 39 biologics). There were 123 new postmarket safety events (3 withdrawals, 61 boxed warnings, and 59 safety communications) during a median follow-up period of 11.7 years (interquartile range [IQR], 8.7-13.8 years), affecting 71 (32.0%) of the novel therapeutics. The median time from approval to first postmarket safety event was 4.2 years (IQR, 2.5-6.0 years), and the proportion of novel therapeutics affected by a postmarket safety event at 10 years was 30.8% (95% CI, 25.1%-37.5%). In multivariable analysis, postmarket safety events were statistically significantly more frequent among biologics (incidence rate ratio [IRR] = 1.93; 95% CI, 1.06-3.52; P = .03), therapeutics indicated for the treatment of psychiatric disease (IRR = 3.78; 95% CI, 1.77-8.06; P < .001), those receiving accelerated approval (IRR = 2.20; 95% CI, 1.15-4.21; P = .02), and those with near–regulatory deadline approval (IRR = 1.90; 95% CI, 1.19-3.05; P = .008); events were statistically significantly less frequent among those with regulatory review times less than 200 days (IRR = 0.46; 95% CI, 0.24-0.87; P = .02). Conclusions and Relevance Among 222 novel therapeutics approved by the FDA from 2001 through 2010, 32% were affected by a postmarket safety event. Biologics, psychiatric therapeutics, and accelerated and near–regulatory deadline approval were statistically significantly associated with higher rates of events, highlighting the need for continuous monitoring of the safety of novel therapeutics throughout their life cycle. Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members. Objective To explore the in vitro maintenance and characterization of human embryonic stem cells(hESCs).Methods hESCs were cultured on feeder layer with ES culture medium,which consists of 20% Knockout Serum Replacement,Knockout DMEM and 10 ng/mL bFGF.Undifferentiated status of hESCs was identified by cell morphology,and the expressions of cell surface marker SSEA-1,SSEA-3 and TRA-1-60.G banding technique was employed for cell karyotype analysis. Pluropotency of cells were analyzed via in vitro embyoid body(EB) formation and in vivo terotoma formation. Results Most of cells showed undifferentiated properties in cell morphology and normal karyotype throughout extended culture periods. They maintained undifferentiated status with positive immunoreactivity to SSEA-3,SSEA-4 and TRA-1-60.in vitro EB formation and in vivo teratoma formation demonstrated the pluripotency of human ES cells. Conclusion The fundamental requirement to hESCs for research and clinical application were their undifferentiated status and pluropotency in culture. Our result demonstrated their potential for these purposes. The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses. Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.
0
{ "query_id": "37", "original_query_id": "37", "context_doc_ids": [ "4547102", "8883846", "3578380", "87610599", "25649714", "13868795" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 2, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.289915", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "4547102", "13868795", "87610599", "8883846", "3578380", "25649714" ], "comprehensive_gold_set_for_query": [ "11705328", "5152028" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
37
aug_948
The NF-κB essential modulator gene prevents intestinal inflammation by inhibiting receptor-interacting protein (RIP) kinase 1 kinase activity-mediated epithelial cell death. Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD.
The NF-κB essential modulator gene prevents intestinal inflammation by inhibiting receptor-interacting protein (RIP) kinase 1 kinase activity-mediated epithelial cell death. Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD.
1
{ "query_id": "1171", "original_query_id": "1171", "context_doc_ids": [ "18956141" ], "gold_doc_ids_in_context": [ "18956141" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290009", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "18956141" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "18956141" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1171
aug_949
Systemic immunosuppressive (IS) therapy does not enhance the chance of cancer mortality in patients with inflammatory eye disease (IED) CONTEXT Whether immunosuppressive treatment adversely affects survival is unclear. OBJECTIVE To assess whether immunosuppressive drugs increase mortality. DESIGN Retrospective cohort study evaluating overall and cancer mortality in relation to immunosuppressive drug exposure among patients with ocular inflammatory diseases. Demographic, clinical, and treatment data derived from medical records, and mortality results from United States National Death Index linkage. The cohort's mortality risk was compared with US vital statistics using standardised mortality ratios. Overall and cancer mortality in relation to use or non-use of immunosuppressive drugs within the cohort was studied with survival analysis. SETTING Five tertiary ocular inflammation clinics. Patients 7957 US residents with non-infectious ocular inflammation, 2340 of whom received immunosuppressive drugs during follow up. Exposures Use of antimetabolites, T cell inhibitors, alkylating agents, and tumour necrosis factor inhibitors. MAIN OUTCOME MEASURES Overall mortality, cancer mortality. RESULTS Over 66 802 person years (17 316 after exposure to immunosuppressive drugs), 936 patients died (1.4/100 person years), 230 (24.6%) from cancer. For patients unexposed to immunosuppressive treatment, risks of death overall (standardised mortality ratio 1.02, 95% confidence interval [CI] 0.94 to 1.11) and from cancer (1.10, 0.93 to 1.29) were similar to those of the US population. Patients who used azathioprine, methotrexate, mycophenolate mofetil, ciclosporin, systemic corticosteroids, or dapsone had overall and cancer mortality similar to that of patients who never took immunosuppressive drugs. In patients who used cyclophosphamide, overall mortality was not increased and cancer mortality was non-significantly increased. Tumour necrosis factor inhibitors were associated with increased overall (adjusted hazard ratio [HR] 1.99, 95% CI 1.00 to 3.98) and cancer mortality (adjusted HR 3.83, 1.13 to 13.01). CONCLUSIONS Most commonly used immunosuppressive drugs do not seem to increase overall or cancer mortality. Our results suggesting that tumour necrosis factor inhibitors might increase mortality are less robust than the other findings; additional evidence is needed. The role of ataxia telangiectasia mutated (ATM), a DNA double-strand break recognition and response protein, in inflammation and inflammatory diseases is unclear. We have previously shown that high levels of systemic DNA damage are induced by intestinal inflammation in wild-type mice. To determine the effect of Atm deficiency in inflammation, we induced experimental colitis in Atm(-/-), Atm(+/-), and wild-type mice via dextran sulfate sodium (DSS) administration. Atm(-/-) mice had higher disease activity indices and rates of mortality compared with heterozygous and wild-type mice. Systemic DNA damage and immune response were characterized in peripheral blood throughout and after three cycles of treatment. Atm(-/-) mice showed increased sensitivity to levels of DNA strand breaks in peripheral leukocytes, as well as micronucleus formation in erythroblasts, compared with heterozygous and wild-type mice, especially during remission periods and after the end of treatment. Markers of reactive oxygen and nitrogen species-mediated damage, including 8-oxoguanine and nitrotyrosine, were present both in the distal colon and in peripheral leukocytes, with Atm(-/-) mice manifesting more 8-oxoguanine formation than wild-type mice. Atm(-/-) mice showed greater upregulation of inflammatory cytokines and significantly higher percentages of activated CD69+ and CD44+ T cells in the peripheral blood throughout treatment. ATM, therefore, may be a critical immunoregulatory factor dampening the deleterious effects of chronic DSS-induced inflammation, necessary for systemic genomic stability and homeostasis of the gut epithelial barrier. Recognition of modified histones by ‘reader’ proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific ‘Ser 31’ residue in a composite pocket formed by the tandem bromo–PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.
Systemic immunosuppressive (IS) therapy does not enhance the chance of cancer mortality in patients with inflammatory eye disease (IED) CONTEXT Whether immunosuppressive treatment adversely affects survival is unclear. OBJECTIVE To assess whether immunosuppressive drugs increase mortality. DESIGN Retrospective cohort study evaluating overall and cancer mortality in relation to immunosuppressive drug exposure among patients with ocular inflammatory diseases. Demographic, clinical, and treatment data derived from medical records, and mortality results from United States National Death Index linkage. The cohort's mortality risk was compared with US vital statistics using standardised mortality ratios. Overall and cancer mortality in relation to use or non-use of immunosuppressive drugs within the cohort was studied with survival analysis. SETTING Five tertiary ocular inflammation clinics. Patients 7957 US residents with non-infectious ocular inflammation, 2340 of whom received immunosuppressive drugs during follow up. Exposures Use of antimetabolites, T cell inhibitors, alkylating agents, and tumour necrosis factor inhibitors. MAIN OUTCOME MEASURES Overall mortality, cancer mortality. RESULTS Over 66 802 person years (17 316 after exposure to immunosuppressive drugs), 936 patients died (1.4/100 person years), 230 (24.6%) from cancer. For patients unexposed to immunosuppressive treatment, risks of death overall (standardised mortality ratio 1.02, 95% confidence interval [CI] 0.94 to 1.11) and from cancer (1.10, 0.93 to 1.29) were similar to those of the US population. Patients who used azathioprine, methotrexate, mycophenolate mofetil, ciclosporin, systemic corticosteroids, or dapsone had overall and cancer mortality similar to that of patients who never took immunosuppressive drugs. In patients who used cyclophosphamide, overall mortality was not increased and cancer mortality was non-significantly increased. Tumour necrosis factor inhibitors were associated with increased overall (adjusted hazard ratio [HR] 1.99, 95% CI 1.00 to 3.98) and cancer mortality (adjusted HR 3.83, 1.13 to 13.01). CONCLUSIONS Most commonly used immunosuppressive drugs do not seem to increase overall or cancer mortality. Our results suggesting that tumour necrosis factor inhibitors might increase mortality are less robust than the other findings; additional evidence is needed. The role of ataxia telangiectasia mutated (ATM), a DNA double-strand break recognition and response protein, in inflammation and inflammatory diseases is unclear. We have previously shown that high levels of systemic DNA damage are induced by intestinal inflammation in wild-type mice. To determine the effect of Atm deficiency in inflammation, we induced experimental colitis in Atm(-/-), Atm(+/-), and wild-type mice via dextran sulfate sodium (DSS) administration. Atm(-/-) mice had higher disease activity indices and rates of mortality compared with heterozygous and wild-type mice. Systemic DNA damage and immune response were characterized in peripheral blood throughout and after three cycles of treatment. Atm(-/-) mice showed increased sensitivity to levels of DNA strand breaks in peripheral leukocytes, as well as micronucleus formation in erythroblasts, compared with heterozygous and wild-type mice, especially during remission periods and after the end of treatment. Markers of reactive oxygen and nitrogen species-mediated damage, including 8-oxoguanine and nitrotyrosine, were present both in the distal colon and in peripheral leukocytes, with Atm(-/-) mice manifesting more 8-oxoguanine formation than wild-type mice. Atm(-/-) mice showed greater upregulation of inflammatory cytokines and significantly higher percentages of activated CD69+ and CD44+ T cells in the peripheral blood throughout treatment. ATM, therefore, may be a critical immunoregulatory factor dampening the deleterious effects of chronic DSS-induced inflammation, necessary for systemic genomic stability and homeostasis of the gut epithelial barrier. Recognition of modified histones by ‘reader’ proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific ‘Ser 31’ residue in a composite pocket formed by the tandem bromo–PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.
0.5
{ "query_id": "1125", "original_query_id": "1125", "context_doc_ids": [ "21009874", "5572127", "4455466" ], "gold_doc_ids_in_context": [ "21009874" ], "total_gold_docs_for_query": 1, "context_f1": 0.5, "context_size": 3, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290028", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "21009874" ], "negative_samples_considered": [ "4455466", "5572127" ], "comprehensive_gold_set_for_query": [ "21009874" ], "target_max_context_size_config": 6, "actual_context_size": 3, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1125
aug_950
In S. cerevisiae, the absence of RNA surveillance pathways causes sensitivity to high iron conditions. BACKGROUND Although cigarette smoking, excessive alcohol drinking, obesity, and several other well-studied unhealthy lifestyle-related factors each have been linked to the risk of multiple chronic diseases and premature death, little is known about the combined impact on mortality outcomes, in particular among Chinese and other non-Western populations. The objective of this study was to quantify the overall impact of lifestyle-related factors beyond that of active cigarette smoking and alcohol consumption on all-cause and cause-specific mortality in Chinese women. METHODS AND FINDINGS We used data from the Shanghai Women's Health Study, an ongoing population-based prospective cohort study in China. Participants included 71,243 women aged 40 to 70 years enrolled during 1996-2000 who never smoked or drank alcohol regularly. A healthy lifestyle score was created on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes (normal weight, lower waist-hip ratio, daily exercise, never exposed to spouse's smoking, higher daily fruit and vegetable intake). The score ranged from zero (least healthy) to five (most healthy) points. During an average follow-up of 9 years, 2,860 deaths occurred, including 775 from cardiovascular disease (CVD) and 1,351 from cancer. Adjusted hazard ratios for mortality decreased progressively with an increasing number of healthy lifestyle factors. Compared to women with a score of zero, hazard ratios (95% confidence intervals) for women with four to five factors were 0.57 (0.44-0.74) for total mortality, 0.29 (0.16-0.54) for CVD mortality, and 0.76 (0.54-1.06) for cancer mortality. The inverse association between the healthy lifestyle score and mortality was seen consistently regardless of chronic disease status at baseline. The population attributable risks for not having 4-5 healthy lifestyle factors were 33% for total deaths, 59% for CVD deaths, and 19% for cancer deaths. CONCLUSIONS In this first study, to our knowledge, to quantify the combined impact of lifestyle-related factors on mortality outcomes in Chinese women, a healthier lifestyle pattern-including being of normal weight, lower central adiposity, participation in physical activity, nonexposure to spousal smoking, and higher fruit and vegetable intake-was associated with reductions in total and cause-specific mortality among lifetime nonsmoking and nondrinking women, supporting the importance of overall lifestyle modification in disease prevention. Please see later in the article for the Editors' Summary. The pharmacological inhibition of general transcriptional regulators has the potential to block growth through targeting multiple tumorigenic signalling pathways simultaneously. Here, using an innovative cell-based screen, we identify a structurally unique small molecule (named JIB-04) that specifically inhibits the activity of the Jumonji family of histone demethylases in vitro, in cancer cells, and in tumours in vivo. Unlike known inhibitors, JIB-04 is not a competitive inhibitor of α-ketoglutarate. In cancer, but not in patient-matched normal cells, JIB-04 alters a subset of transcriptional pathways and blocks viability. In mice, JIB-04 reduces tumour burden and prolongs survival. Importantly, we find that patients with breast tumours that overexpress Jumonji demethylases have significantly lower survival. Thus, JIB-04, a novel inhibitor of Jumonji demethylases in vitro and in vivo, constitutes a unique potential therapeutic and research tool against cancer, and validates the use of unbiased cellular screens to discover chemical modulators with disease relevance. In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1-3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1-3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1-3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1-3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1-3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles. Calorie restriction slows aging and increases life span in many organisms. In yeast, a mechanistic explanation has been proposed whereby calorie restriction slows aging by activating Sir2. Here we report the identification of a Sir2-independent pathway responsible for a majority of the longevity benefit associated with calorie restriction. Deletion of FOB1 and overexpression of SIR2 have been previously found to increase life span by reducing the levels of toxic rDNA circles in aged mother cells. We find that combining calorie restriction with either of these genetic interventions dramatically enhances longevity, resulting in the longest-lived yeast strain reported thus far. Further, calorie restriction results in a greater life span extension in cells lacking both Sir2 and Fob1 than in cells where Sir2 is present. These findings indicate that Sir2 and calorie restriction act in parallel pathways to promote longevity in yeast and, perhaps, higher eukaryotes. Immune clearance and resource limitation (via red blood cell depletion) shape the peaks and troughs of malaria parasitemia, which in turn affect disease severity and transmission. Quantitatively partitioning the relative roles of these effects through time is challenging. Using data from rodent malaria, we estimated the effective propagation number, which reflects the relative importance of contrasting within-host control mechanisms through time and is sensitive to the inoculating parasite dose. Our analysis showed that the capacity of innate responses to restrict initial parasite growth saturates with parasite dose and that experimentally enhanced innate immunity can affect parasite density indirectly via resource depletion. Such a statistical approach offers a tool to improve targeting of drugs or vaccines for human therapy by revealing the dynamics and interactions of within-host regulatory mechanisms. The wobble modification in tRNAs, 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U), is required for the proper decoding of NNR codons in eukaryotes. The 2-thio group confers conformational rigidity of mcm(5)s(2)U by largely fixing the C3'-endo ribose puckering, ensuring stable and accurate codon-anticodon pairing. We have identified five genes in Saccharomyces cerevisiae, YIL008w (URM1), YHR111w (UBA4), YOR251c (TUM1), YNL119w (NCS2) and YGL211w (NCS6), that are required for 2-thiolation of mcm(5)s(2)U. An in vitro sulfur transfer experiment revealed that Tum1p stimulated the cysteine desulfurase of Nfs1p, and accepted persulfide sulfurs from Nfs1p. URM1 is a ubiquitin-related modifier, and UBA4 is an E1-like enzyme involved in protein urmylation. The carboxy-terminus of Urm1p was activated as an acyl-adenylate (-COAMP), then thiocarboxylated (-COSH) by Uba4p. The activated thiocarboxylate can be utilized in the subsequent reactions for 2-thiouridine formation, mediated by Ncs2p/Ncs6p. We could successfully reconstitute the 2-thiouridine formation in vitro using recombinant proteins. This study revealed that 2-thiouridine formation shares a pathway and chemical reactions with protein urmylation. The sulfur-flow of eukaryotic 2-thiouridine formation is distinct mechanism from the bacterial sulfur-relay system which is based on the persulfide chemistry.
In S. cerevisiae, the absence of RNA surveillance pathways causes sensitivity to high iron conditions. BACKGROUND Although cigarette smoking, excessive alcohol drinking, obesity, and several other well-studied unhealthy lifestyle-related factors each have been linked to the risk of multiple chronic diseases and premature death, little is known about the combined impact on mortality outcomes, in particular among Chinese and other non-Western populations. The objective of this study was to quantify the overall impact of lifestyle-related factors beyond that of active cigarette smoking and alcohol consumption on all-cause and cause-specific mortality in Chinese women. METHODS AND FINDINGS We used data from the Shanghai Women's Health Study, an ongoing population-based prospective cohort study in China. Participants included 71,243 women aged 40 to 70 years enrolled during 1996-2000 who never smoked or drank alcohol regularly. A healthy lifestyle score was created on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes (normal weight, lower waist-hip ratio, daily exercise, never exposed to spouse's smoking, higher daily fruit and vegetable intake). The score ranged from zero (least healthy) to five (most healthy) points. During an average follow-up of 9 years, 2,860 deaths occurred, including 775 from cardiovascular disease (CVD) and 1,351 from cancer. Adjusted hazard ratios for mortality decreased progressively with an increasing number of healthy lifestyle factors. Compared to women with a score of zero, hazard ratios (95% confidence intervals) for women with four to five factors were 0.57 (0.44-0.74) for total mortality, 0.29 (0.16-0.54) for CVD mortality, and 0.76 (0.54-1.06) for cancer mortality. The inverse association between the healthy lifestyle score and mortality was seen consistently regardless of chronic disease status at baseline. The population attributable risks for not having 4-5 healthy lifestyle factors were 33% for total deaths, 59% for CVD deaths, and 19% for cancer deaths. CONCLUSIONS In this first study, to our knowledge, to quantify the combined impact of lifestyle-related factors on mortality outcomes in Chinese women, a healthier lifestyle pattern-including being of normal weight, lower central adiposity, participation in physical activity, nonexposure to spousal smoking, and higher fruit and vegetable intake-was associated with reductions in total and cause-specific mortality among lifetime nonsmoking and nondrinking women, supporting the importance of overall lifestyle modification in disease prevention. Please see later in the article for the Editors' Summary. The pharmacological inhibition of general transcriptional regulators has the potential to block growth through targeting multiple tumorigenic signalling pathways simultaneously. Here, using an innovative cell-based screen, we identify a structurally unique small molecule (named JIB-04) that specifically inhibits the activity of the Jumonji family of histone demethylases in vitro, in cancer cells, and in tumours in vivo. Unlike known inhibitors, JIB-04 is not a competitive inhibitor of α-ketoglutarate. In cancer, but not in patient-matched normal cells, JIB-04 alters a subset of transcriptional pathways and blocks viability. In mice, JIB-04 reduces tumour burden and prolongs survival. Importantly, we find that patients with breast tumours that overexpress Jumonji demethylases have significantly lower survival. Thus, JIB-04, a novel inhibitor of Jumonji demethylases in vitro and in vivo, constitutes a unique potential therapeutic and research tool against cancer, and validates the use of unbiased cellular screens to discover chemical modulators with disease relevance. In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1-3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1-3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1-3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1-3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1-3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles. Calorie restriction slows aging and increases life span in many organisms. In yeast, a mechanistic explanation has been proposed whereby calorie restriction slows aging by activating Sir2. Here we report the identification of a Sir2-independent pathway responsible for a majority of the longevity benefit associated with calorie restriction. Deletion of FOB1 and overexpression of SIR2 have been previously found to increase life span by reducing the levels of toxic rDNA circles in aged mother cells. We find that combining calorie restriction with either of these genetic interventions dramatically enhances longevity, resulting in the longest-lived yeast strain reported thus far. Further, calorie restriction results in a greater life span extension in cells lacking both Sir2 and Fob1 than in cells where Sir2 is present. These findings indicate that Sir2 and calorie restriction act in parallel pathways to promote longevity in yeast and, perhaps, higher eukaryotes. Immune clearance and resource limitation (via red blood cell depletion) shape the peaks and troughs of malaria parasitemia, which in turn affect disease severity and transmission. Quantitatively partitioning the relative roles of these effects through time is challenging. Using data from rodent malaria, we estimated the effective propagation number, which reflects the relative importance of contrasting within-host control mechanisms through time and is sensitive to the inoculating parasite dose. Our analysis showed that the capacity of innate responses to restrict initial parasite growth saturates with parasite dose and that experimentally enhanced innate immunity can affect parasite density indirectly via resource depletion. Such a statistical approach offers a tool to improve targeting of drugs or vaccines for human therapy by revealing the dynamics and interactions of within-host regulatory mechanisms. The wobble modification in tRNAs, 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U), is required for the proper decoding of NNR codons in eukaryotes. The 2-thio group confers conformational rigidity of mcm(5)s(2)U by largely fixing the C3'-endo ribose puckering, ensuring stable and accurate codon-anticodon pairing. We have identified five genes in Saccharomyces cerevisiae, YIL008w (URM1), YHR111w (UBA4), YOR251c (TUM1), YNL119w (NCS2) and YGL211w (NCS6), that are required for 2-thiolation of mcm(5)s(2)U. An in vitro sulfur transfer experiment revealed that Tum1p stimulated the cysteine desulfurase of Nfs1p, and accepted persulfide sulfurs from Nfs1p. URM1 is a ubiquitin-related modifier, and UBA4 is an E1-like enzyme involved in protein urmylation. The carboxy-terminus of Urm1p was activated as an acyl-adenylate (-COAMP), then thiocarboxylated (-COSH) by Uba4p. The activated thiocarboxylate can be utilized in the subsequent reactions for 2-thiouridine formation, mediated by Ncs2p/Ncs6p. We could successfully reconstitute the 2-thiouridine formation in vitro using recombinant proteins. This study revealed that 2-thiouridine formation shares a pathway and chemical reactions with protein urmylation. The sulfur-flow of eukaryotic 2-thiouridine formation is distinct mechanism from the bacterial sulfur-relay system which is based on the persulfide chemistry.
0
{ "query_id": "565", "original_query_id": "565", "context_doc_ids": [ "13400643", "2890952", "1456068", "5289038", "7185591", "4394817" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290089", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "5289038", "7185591", "1456068", "2890952", "4394817", "13400643" ], "comprehensive_gold_set_for_query": [ "16120395" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
565
aug_951
The appearance of brown-like or beige cells primarily occurs in visceral fat, not subcutaneous fat. The cytosolic helicase retinoic acid-inducible gene-I (RIG-I) initiates immune responses to most RNA viruses by detecting viral 5'-triphosphorylated RNA (pppRNA). Although endogenous mRNA is also 5'-triphosphorylated, backbone modifications and the 5'-ppp-linked methylguanosine ((m7)G) cap prevent immunorecognition. Here we show that the methylation status of endogenous capped mRNA at the 5'-terminal nucleotide (N1) was crucial to prevent RIG-I activation. Moreover, we identified a single conserved amino acid (H830) in the RIG-I RNA binding pocket as the mediator of steric exclusion of N1-2'O-methylated RNA. H830A alteration (RIG-I(H830A)) restored binding of N1-2'O-methylated pppRNA. Consequently, endogenous mRNA activated the RIG-I(H830A) mutant but not wild-type RIG-I. Similarly, knockdown of the endogenous N1-2'O-methyltransferase led to considerable RIG-I stimulation in the absence of exogenous stimuli. Studies involving yellow-fever-virus-encoded 2'O-methyltransferase and RIG-I(H830A) revealed that viruses exploit this mechanism to escape RIG-I. Our data reveal a new role for cap N1-2'O-methylation in RIG-I tolerance of self-RNA. OBJECTIVE To determine whether higher past exposure to particulate air pollution is associated with prevalent high symptoms of anxiety. DESIGN Observational cohort study. SETTING Nurses' Health Study. PARTICIPANTS 71,271 women enrolled in the Nurses' Health Study residing throughout the contiguous United States who had valid estimates on exposure to particulate matter for at least one exposure period of interest and data on anxiety symptoms. MAIN OUTCOME MEASURES Meaningfully high symptoms of anxiety, defined as a score of 6 points or greater on the phobic anxiety subscale of the Crown-Crisp index, administered in 2004. RESULTS The 71,271 eligible women were aged between 57 and 85 years (mean 70 years) at the time of assessment of anxiety symptoms, with a prevalence of high anxiety symptoms of 15%. Exposure to particulate matter was characterized using estimated average exposure to particulate matter <2.5 μm in diameter (PM2.5) and 2.5 to 10 μm in diameter (PM2.5-10) in the one month, three months, six months, one year, and 15 years prior to assessment of anxiety symptoms, and residential distance to the nearest major road two years prior to assessment. Significantly increased odds of high anxiety symptoms were observed with higher exposure to PM2.5 for multiple averaging periods (for example, odds ratio per 10 µg/m(3) increase in prior one month average PM2.5: 1.12, 95% confidence interval 1.06 to 1.19; in prior 12 month average PM2.5: 1.15, 1.06 to 1.26). Models including multiple exposure windows suggested short term averaging periods were more relevant than long term averaging periods. There was no association between anxiety and exposure to PM2.5-10. Residential proximity to major roads was not related to anxiety symptoms in a dose dependent manner. CONCLUSIONS Exposure to fine particulate matter (PM2.5) was associated with high symptoms of anxiety, with more recent exposures potentially more relevant than more distant exposures. Research evaluating whether reductions in exposure to ambient PM2.5 would reduce the population level burden of clinically relevant symptoms of anxiety is warranted. White adipose tissue displays high plasticity. We developed a system for the inducible, permanent labeling of mature adipocytes that we called the AdipoChaser mouse. We monitored adipogenesis during development, high-fat diet (HFD) feeding and cold exposure. During cold-induced 'browning' of subcutaneous fat, most 'beige' adipocytes stem from de novo–differentiated adipocytes. During HFD feeding, epididymal fat initiates adipogenesis after 4 weeks, whereas subcutaneous fat undergoes hypertrophy for a period of up to 12 weeks. Gonadal fat develops postnatally, whereas subcutaneous fat develops between embryonic days 14 and 18. Our results highlight the extensive differences in adipogenic potential in various fat depots.
The appearance of brown-like or beige cells primarily occurs in visceral fat, not subcutaneous fat. The cytosolic helicase retinoic acid-inducible gene-I (RIG-I) initiates immune responses to most RNA viruses by detecting viral 5'-triphosphorylated RNA (pppRNA). Although endogenous mRNA is also 5'-triphosphorylated, backbone modifications and the 5'-ppp-linked methylguanosine ((m7)G) cap prevent immunorecognition. Here we show that the methylation status of endogenous capped mRNA at the 5'-terminal nucleotide (N1) was crucial to prevent RIG-I activation. Moreover, we identified a single conserved amino acid (H830) in the RIG-I RNA binding pocket as the mediator of steric exclusion of N1-2'O-methylated RNA. H830A alteration (RIG-I(H830A)) restored binding of N1-2'O-methylated pppRNA. Consequently, endogenous mRNA activated the RIG-I(H830A) mutant but not wild-type RIG-I. Similarly, knockdown of the endogenous N1-2'O-methyltransferase led to considerable RIG-I stimulation in the absence of exogenous stimuli. Studies involving yellow-fever-virus-encoded 2'O-methyltransferase and RIG-I(H830A) revealed that viruses exploit this mechanism to escape RIG-I. Our data reveal a new role for cap N1-2'O-methylation in RIG-I tolerance of self-RNA. OBJECTIVE To determine whether higher past exposure to particulate air pollution is associated with prevalent high symptoms of anxiety. DESIGN Observational cohort study. SETTING Nurses' Health Study. PARTICIPANTS 71,271 women enrolled in the Nurses' Health Study residing throughout the contiguous United States who had valid estimates on exposure to particulate matter for at least one exposure period of interest and data on anxiety symptoms. MAIN OUTCOME MEASURES Meaningfully high symptoms of anxiety, defined as a score of 6 points or greater on the phobic anxiety subscale of the Crown-Crisp index, administered in 2004. RESULTS The 71,271 eligible women were aged between 57 and 85 years (mean 70 years) at the time of assessment of anxiety symptoms, with a prevalence of high anxiety symptoms of 15%. Exposure to particulate matter was characterized using estimated average exposure to particulate matter <2.5 μm in diameter (PM2.5) and 2.5 to 10 μm in diameter (PM2.5-10) in the one month, three months, six months, one year, and 15 years prior to assessment of anxiety symptoms, and residential distance to the nearest major road two years prior to assessment. Significantly increased odds of high anxiety symptoms were observed with higher exposure to PM2.5 for multiple averaging periods (for example, odds ratio per 10 µg/m(3) increase in prior one month average PM2.5: 1.12, 95% confidence interval 1.06 to 1.19; in prior 12 month average PM2.5: 1.15, 1.06 to 1.26). Models including multiple exposure windows suggested short term averaging periods were more relevant than long term averaging periods. There was no association between anxiety and exposure to PM2.5-10. Residential proximity to major roads was not related to anxiety symptoms in a dose dependent manner. CONCLUSIONS Exposure to fine particulate matter (PM2.5) was associated with high symptoms of anxiety, with more recent exposures potentially more relevant than more distant exposures. Research evaluating whether reductions in exposure to ambient PM2.5 would reduce the population level burden of clinically relevant symptoms of anxiety is warranted. White adipose tissue displays high plasticity. We developed a system for the inducible, permanent labeling of mature adipocytes that we called the AdipoChaser mouse. We monitored adipogenesis during development, high-fat diet (HFD) feeding and cold exposure. During cold-induced 'browning' of subcutaneous fat, most 'beige' adipocytes stem from de novo–differentiated adipocytes. During HFD feeding, epididymal fat initiates adipogenesis after 4 weeks, whereas subcutaneous fat undergoes hypertrophy for a period of up to 12 weeks. Gonadal fat develops postnatally, whereas subcutaneous fat develops between embryonic days 14 and 18. Our results highlight the extensive differences in adipogenic potential in various fat depots.
0.5
{ "query_id": "1193", "original_query_id": "1193", "context_doc_ids": [ "24221369", "20532591", "791050" ], "gold_doc_ids_in_context": [ "20532591" ], "total_gold_docs_for_query": 1, "context_f1": 0.5, "context_size": 3, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290165", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "20532591" ], "negative_samples_considered": [ "791050", "24221369" ], "comprehensive_gold_set_for_query": [ "20532591" ], "target_max_context_size_config": 6, "actual_context_size": 3, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1193
aug_952
Individuals with Alzheimers who participate in six months of physical activity improve cognitive function for up to 18 months. In single-stranded ribonucleic acid (RNA) viruses, virus capsid assembly and genome packaging are intertwined processes. Using cryo-electron microscopy and single particle analysis we determined the asymmetric virion structure of bacteriophage MS2, which includes 178 copies of the coat protein, a single copy of the A-protein and the RNA genome. This reveals that in situ, the viral RNA genome can adopt a defined conformation. The RNA forms a branched network of stem-loops that almost all allocate near the capsid inner surface, while predominantly binding to coat protein dimers that are located in one-half of the capsid. This suggests that genomic RNA is highly involved in genome packaging and virion assembly. Seizures in focal epilepsies are sustained by a highly synchronous neuronal discharge that arises at restricted brain sites and subsequently spreads to large portions of the brain. Despite intense experimental research in this field, the earlier cellular events that initiate and sustain a focal seizure are still not well defined. Their identification is central to understand the pathophysiology of focal epilepsies and to develop new pharmacological therapies for drug-resistant forms of epilepsy. The prominent involvement of astrocytes in ictogenesis was recently proposed. We test here whether a cooperation between astrocytes and neurons is a prerequisite to support ictal (seizure-like) and interictal epileptiform events. Simultaneous patch-clamp recording and Ca2+ imaging techniques were performed in a new in vitro model of focal seizures induced by local applications of N-methyl-D-aspartic acid (NMDA) in rat entorhinal cortex slices. We found that a Ca2+ elevation in astrocytes correlates with both the initial development and the maintenance of a focal, seizure-like discharge. A delayed astrocyte activation during ictal discharges was also observed in other models (including the whole in vitro isolated guinea pig brain) in which the site of generation of seizure activity cannot be precisely monitored. In contrast, interictal discharges were not associated with Ca2+ changes in astrocytes. Selective inhibition or stimulation of astrocyte Ca2+ signalling blocked or enhanced, respectively, ictal discharges, but did not affect interictal discharge generation. Our data reveal that neurons engage astrocytes in a recurrent excitatory loop (possibly involving gliotransmission) that promotes seizure ignition and sustains the ictal discharge. This neuron-astrocyte interaction may represent a novel target to develop effective therapeutic strategies to control seizures. Background Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4α) and HNF1A/TCF1 (encoding HNF-1α), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice. Mammalian long intergenic noncoding RNAs (lincRNAs) are best known for modulating transcription. Here we report a posttranscriptional function for lincRNA-p21 as a modulator of translation. Association of the RNA-binding protein HuR with lincRNA-p21 favored the recruitment of let-7/Ago2 to lincRNA-p21, leading to lower lincRNA-p21 stability. Under reduced HuR levels, lincRNA-p21 accumulated in human cervical carcinoma HeLa cells, increasing its association with JUNB and CTNNB1 mRNAs and selectively lowering their translation. With elevated HuR, lincRNA-p21 levels declined, which in turn derepressed JunB and β-catenin translation and increased the levels of these proteins. We propose that HuR controls translation of a subset of target mRNAs by influencing lincRNA-p21 levels. Our findings uncover a role for lincRNA as a posttranscriptional inhibitor of translation. Correction for: Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al. (2007) A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis. PLoS Med 4(9): e278. doi:10.1371/journal.pmed.0040278 In Table 1, the allele ratio in column eight (Allele Ratiosb: Cases, Controls) refers to allele A: allele B and not allele1:allele2 as described in footnote b, with Allele A being the Susceptibility Allele as denoted in column seven. The footnote should read: bNumber of alleles were compared in cases versus controls: allele A: allele B cases, allele A: allele B controls. Allele A refers to the susceptibility alleles as given in column seven. Nucleosomes containing the histone variant H3.3 tend to be clustered in vivo in the neighborhood of transcriptionally active genes and over regulatory elements. It has not been clear, however, whether H3.3-containing nucleosomes possess unique properties that would affect transcription. We report here that H3.3 nucleosomes isolated from vertebrates, regardless of whether they are partnered with H2A or H2A.Z, are unusually sensitive to salt-dependent disruption, losing H2A/H2B or H2A.Z/H2B dimers. Immunoprecipitation studies of nucleosome core particles (NCPs) show that NCPs that contain both H3.3 and H2A.Z are even less stable than NCPs containing H3.3 and H2A. Intriguingly, NCPs containing H3 and H2A.Z are at least as stable as H3/H2A NCPs. These results establish an hierarchy of stabilities for native nucleosomes carrying different complements of variants, and suggest how H2A.Z could play different roles depending on its partners within the NCP. They also are consistent with the idea that H3.3 plays an active role in maintaining accessible chromatin structures in enhancer regions and transcribed regions. Consistent with this idea, promoters and enhancers at transcriptionally active genes and coding regions at highly expressed genes have nucleosomes that simultaneously carry both H3.3 and H2A.Z, and should therefore be extremely sensitive to disruption.
Individuals with Alzheimers who participate in six months of physical activity improve cognitive function for up to 18 months. In single-stranded ribonucleic acid (RNA) viruses, virus capsid assembly and genome packaging are intertwined processes. Using cryo-electron microscopy and single particle analysis we determined the asymmetric virion structure of bacteriophage MS2, which includes 178 copies of the coat protein, a single copy of the A-protein and the RNA genome. This reveals that in situ, the viral RNA genome can adopt a defined conformation. The RNA forms a branched network of stem-loops that almost all allocate near the capsid inner surface, while predominantly binding to coat protein dimers that are located in one-half of the capsid. This suggests that genomic RNA is highly involved in genome packaging and virion assembly. Seizures in focal epilepsies are sustained by a highly synchronous neuronal discharge that arises at restricted brain sites and subsequently spreads to large portions of the brain. Despite intense experimental research in this field, the earlier cellular events that initiate and sustain a focal seizure are still not well defined. Their identification is central to understand the pathophysiology of focal epilepsies and to develop new pharmacological therapies for drug-resistant forms of epilepsy. The prominent involvement of astrocytes in ictogenesis was recently proposed. We test here whether a cooperation between astrocytes and neurons is a prerequisite to support ictal (seizure-like) and interictal epileptiform events. Simultaneous patch-clamp recording and Ca2+ imaging techniques were performed in a new in vitro model of focal seizures induced by local applications of N-methyl-D-aspartic acid (NMDA) in rat entorhinal cortex slices. We found that a Ca2+ elevation in astrocytes correlates with both the initial development and the maintenance of a focal, seizure-like discharge. A delayed astrocyte activation during ictal discharges was also observed in other models (including the whole in vitro isolated guinea pig brain) in which the site of generation of seizure activity cannot be precisely monitored. In contrast, interictal discharges were not associated with Ca2+ changes in astrocytes. Selective inhibition or stimulation of astrocyte Ca2+ signalling blocked or enhanced, respectively, ictal discharges, but did not affect interictal discharge generation. Our data reveal that neurons engage astrocytes in a recurrent excitatory loop (possibly involving gliotransmission) that promotes seizure ignition and sustains the ictal discharge. This neuron-astrocyte interaction may represent a novel target to develop effective therapeutic strategies to control seizures. Background Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4α) and HNF1A/TCF1 (encoding HNF-1α), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice. Mammalian long intergenic noncoding RNAs (lincRNAs) are best known for modulating transcription. Here we report a posttranscriptional function for lincRNA-p21 as a modulator of translation. Association of the RNA-binding protein HuR with lincRNA-p21 favored the recruitment of let-7/Ago2 to lincRNA-p21, leading to lower lincRNA-p21 stability. Under reduced HuR levels, lincRNA-p21 accumulated in human cervical carcinoma HeLa cells, increasing its association with JUNB and CTNNB1 mRNAs and selectively lowering their translation. With elevated HuR, lincRNA-p21 levels declined, which in turn derepressed JunB and β-catenin translation and increased the levels of these proteins. We propose that HuR controls translation of a subset of target mRNAs by influencing lincRNA-p21 levels. Our findings uncover a role for lincRNA as a posttranscriptional inhibitor of translation. Correction for: Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al. (2007) A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis. PLoS Med 4(9): e278. doi:10.1371/journal.pmed.0040278 In Table 1, the allele ratio in column eight (Allele Ratiosb: Cases, Controls) refers to allele A: allele B and not allele1:allele2 as described in footnote b, with Allele A being the Susceptibility Allele as denoted in column seven. The footnote should read: bNumber of alleles were compared in cases versus controls: allele A: allele B cases, allele A: allele B controls. Allele A refers to the susceptibility alleles as given in column seven. Nucleosomes containing the histone variant H3.3 tend to be clustered in vivo in the neighborhood of transcriptionally active genes and over regulatory elements. It has not been clear, however, whether H3.3-containing nucleosomes possess unique properties that would affect transcription. We report here that H3.3 nucleosomes isolated from vertebrates, regardless of whether they are partnered with H2A or H2A.Z, are unusually sensitive to salt-dependent disruption, losing H2A/H2B or H2A.Z/H2B dimers. Immunoprecipitation studies of nucleosome core particles (NCPs) show that NCPs that contain both H3.3 and H2A.Z are even less stable than NCPs containing H3.3 and H2A. Intriguingly, NCPs containing H3 and H2A.Z are at least as stable as H3/H2A NCPs. These results establish an hierarchy of stabilities for native nucleosomes carrying different complements of variants, and suggest how H2A.Z could play different roles depending on its partners within the NCP. They also are consistent with the idea that H3.3 plays an active role in maintaining accessible chromatin structures in enhancer regions and transcribed regions. Consistent with this idea, promoters and enhancers at transcriptionally active genes and coding regions at highly expressed genes have nucleosomes that simultaneously carry both H3.3 and H2A.Z, and should therefore be extremely sensitive to disruption.
0
{ "query_id": "621", "original_query_id": "621", "context_doc_ids": [ "1967017", "1410197", "56893404", "6903077", "13763195", "25254425" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290207", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "13763195", "6903077", "56893404", "25254425", "1410197", "1967017" ], "comprehensive_gold_set_for_query": [ "1642727" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
621
aug_953
B3-Galectin decreases cell resistance to tyrosine kinase inhibitors (TKIs) by engaging the alternate KRAS-RalB signaling complex downstream of EGFR. Plants have evolved a tremendous ability to respond to environmental changes by adapting their growth and development. The interaction between hormonal and developmental signals is a critical mechanism in the generation of this enormous plasticity. A good example is the response to the hormone ethylene that depends on tissue type, developmental stage, and environmental conditions. By characterizing the Arabidopsis wei8 mutant, we have found that a small family of genes mediates tissue-specific responses to ethylene. Biochemical studies revealed that WEI8 encodes a long-anticipated tryptophan aminotransferase, TAA1, in the essential, yet genetically uncharacterized, indole-3-pyruvic acid (IPA) branch of the auxin biosynthetic pathway. Analysis of TAA1 and its paralogues revealed a link between local auxin production, tissue-specific ethylene effects, and organ development. Thus, the IPA route of auxin production is key to generating robust auxin gradients in response to environmental and developmental cues. Leprosy enables investigation of mechanisms by which the innate immune system contributes to host defense against infection, because in one form, the disease progresses, and in the other, the infection is limited. We report that Toll-like receptor (TLR) activation of human monocytes induces rapid differentiation into two distinct subsets: DC-SIGN+ CD16+ macrophages and CD1b+ DC-SIGN− dendritic cells. DC-SIGN+ phagocytic macrophages were expanded by TLR-mediated upregulation of interleukin (IL)-15 and IL-15 receptor. CD1b+ dendritic cells were expanded by TLR-mediated upregulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor, promoted T cell activation and secreted proinflammatory cytokines. Whereas DC-SIGN+ macrophages were detected in lesions and after TLR activation in all leprosy patients, CD1b+ dendritic cells were not detected in lesions or after TLR activation of peripheral monocytes in individuals with the progressive lepromatous form, except during reversal reactions in which bacilli were cleared by T helper type 1 (TH1) responses. In tuberculoid lepromatous lesions, DC-SIGN+ cells were positive for macrophage markers, but negative for dendritic cell markers. Thus, TLR-induced differentiation of monocytes into either macrophages or dendritic cells seems to crucially influence effective host defenses in human infectious disease. Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8−/−) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin– and αvβ5 integrin–dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications. BACKGROUND Human papillomavirus (HPV) testing is known to be more sensitive, but less specific than cytology for detecting cervical intraepithelial neoplasia (CIN). We assessed the efficacy of cervical-cancer screening policies that are based on HPV testing. METHODS Between March, 2004, and December, 2004, in two separate recruitment phases, women aged 25-60 years were randomly assigned to conventional cytology or to HPV testing in combination with liquid-based cytology (first phase) or alone (second phase). Randomisation was done by computer in two screening centres and by sequential opening of numbered sealed envelopes in the remaining seven centres. During phase one, women who were HPV-positive and aged 35-60 years were referred to colposcopy, whereas women aged 25-34 years were referred to colposcopy only if cytology was also abnormal or HPV testing was persistently positive. During phase two, women in the HPV group were referred for colposcopy if the HPV test was positive. Two rounds of screening occurred in each phase, and all women had cytology testing only at the second round. The primary endpoint was the detection of grade 2 and 3 CIN, and of invasive cervical cancers during the first and second screening rounds. Analysis was done by intention to screen. This trial is registered, number ISRCTN81678807. FINDINGS In total for both phases, 47,001 women were randomly assigned to the cytology group and 47,369 to HPV testing. 33,851 women from the cytology group and 32,998 from the HPV-testing group had a second round of screening. We also retrieved the histological diagnoses from screening done elsewhere. The detection of invasive cervical cancers was similar for the two groups in the first round of screening (nine in the cytology group vs seven in the HPV group, p=0.62); no cases were detected in the HPV group during round two, compared with nine in the cytology group (p=0.004). Overall, in the two rounds of screening, 18 invasive cancers were detected in the cytology group versus seven in the HPV group (p=0.028). Among women aged 35-60 years, at round one the relative detection (HPV vs cytology) was 2.00 (95% CI 1.44-2.77) for CIN2, 2.08 (1.47-2.95) for CIN3, and 2.03 (1.60-2.57) for CIN2 and 3 together. At round two the relative detection was 0.54 (0.23-1.28) for CIN2, 0.48 (0.21-1.11) for CIN3, and 0.51 (0.28-0.93) for CIN2 and 3 together. Among women aged 25-34 years, there was significant heterogeneity between phases in the relative detection of CIN3. At round one the relative detection was 0.93 (0.52-1.64) in phase one and 3.91 (2.02-7.57) in phase two. At round two the relative detection was 1.34 (0.46-3.84) in phase one and 0.20 (0.04-0.93) in phase two. Pooling both phases, the detection ratio of CIN2 for women aged 25-34 years was 4.09 (2.24-7.48) at round one and 0.64 (0.23-1.27) at round two. INTERPRETATION HPV-based screening is more effective than cytology in preventing invasive cervical cancer, by detecting persistent high-grade lesions earlier and providing a longer low-risk period. However, in younger women, HPV screening leads to over-diagnosis of regressive CIN2. FUNDING European Union, Italian Ministry of Health, Regional Health Administrations of Piemonte, Tuscany, Veneto and Emilia-Romagna, and Public Health Agency of Lazio. Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs). GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3), a regulator of cell survival and the NF-kappaB pathway, is overexpressed in GSCs relative to non-stem glioblastoma cells at both the mRNA and protein levels. To determine the functional significance of A20 in GSCs, we targeted A20 expression with lentiviral-mediated delivery of short hairpin RNA (shRNA). Inhibiting A20 expression decreased GSC growth and survival through mechanisms associated with decreased cell-cycle progression and decreased phosphorylation of p65/RelA. Elevated levels of A20 in GSCs contributed to apoptotic resistance: GSCs were less susceptible to TNFalpha-induced cell death than matched non-stem glioma cells, but A20 knockdown sensitized GSCs to TNFalpha-mediated apoptosis. The decreased survival of GSCs upon A20 knockdown contributed to the reduced ability of these cells to self-renew in primary and secondary neurosphere formation assays. The tumorigenic potential of GSCs was decreased with A20 targeting, resulting in increased survival of mice bearing human glioma xenografts. In silico analysis of a glioma patient genomic database indicates that A20 overexpression and amplification is inversely correlated with survival. Together these data indicate that A20 contributes to glioma maintenance through effects on the glioma stem cell subpopulation. Although inactivating mutations in A20 in lymphoma suggest A20 can act as a tumor suppressor, similar point mutations have not been identified through glioma genomic sequencing: in fact, our data suggest A20 may function as a tumor enhancer in glioma through promotion of GSC survival. A20 anticancer therapies should therefore be viewed with caution as effects will likely differ depending on the tumor type. Observational clinical and ex vivo studies have established a strong association between atrial fibrillation and inflammation. However, whether inflammation is the cause or the consequence of atrial fibrillation and which specific inflammatory mediators may increase the atria's susceptibility to fibrillation remain elusive. Here we provide experimental and clinical evidence for the mechanistic involvement of myeloperoxidase (MPO), a heme enzyme abundantly expressed by neutrophils, in the pathophysiology of atrial fibrillation. MPO-deficient mice pretreated with angiotensin II (AngII) to provoke leukocyte activation showed lower atrial tissue abundance of the MPO product 3-chlorotyrosine, reduced activity of matrix metalloproteinases and blunted atrial fibrosis as compared to wild-type mice. Upon right atrial electrophysiological stimulation, MPO-deficient mice were protected from atrial fibrillation, which was reversed when MPO was restored. Humans with atrial fibrillation had higher plasma concentrations of MPO and a larger MPO burden in right atrial tissue as compared to individuals devoid of atrial fibrillation. In the atria, MPO colocalized with markedly increased formation of 3-chlorotyrosine. Our data demonstrate that MPO is a crucial prerequisite for structural remodeling of the myocardium, leading to an increased vulnerability to atrial fibrillation.
B3-Galectin decreases cell resistance to tyrosine kinase inhibitors (TKIs) by engaging the alternate KRAS-RalB signaling complex downstream of EGFR. Plants have evolved a tremendous ability to respond to environmental changes by adapting their growth and development. The interaction between hormonal and developmental signals is a critical mechanism in the generation of this enormous plasticity. A good example is the response to the hormone ethylene that depends on tissue type, developmental stage, and environmental conditions. By characterizing the Arabidopsis wei8 mutant, we have found that a small family of genes mediates tissue-specific responses to ethylene. Biochemical studies revealed that WEI8 encodes a long-anticipated tryptophan aminotransferase, TAA1, in the essential, yet genetically uncharacterized, indole-3-pyruvic acid (IPA) branch of the auxin biosynthetic pathway. Analysis of TAA1 and its paralogues revealed a link between local auxin production, tissue-specific ethylene effects, and organ development. Thus, the IPA route of auxin production is key to generating robust auxin gradients in response to environmental and developmental cues. Leprosy enables investigation of mechanisms by which the innate immune system contributes to host defense against infection, because in one form, the disease progresses, and in the other, the infection is limited. We report that Toll-like receptor (TLR) activation of human monocytes induces rapid differentiation into two distinct subsets: DC-SIGN+ CD16+ macrophages and CD1b+ DC-SIGN− dendritic cells. DC-SIGN+ phagocytic macrophages were expanded by TLR-mediated upregulation of interleukin (IL)-15 and IL-15 receptor. CD1b+ dendritic cells were expanded by TLR-mediated upregulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor, promoted T cell activation and secreted proinflammatory cytokines. Whereas DC-SIGN+ macrophages were detected in lesions and after TLR activation in all leprosy patients, CD1b+ dendritic cells were not detected in lesions or after TLR activation of peripheral monocytes in individuals with the progressive lepromatous form, except during reversal reactions in which bacilli were cleared by T helper type 1 (TH1) responses. In tuberculoid lepromatous lesions, DC-SIGN+ cells were positive for macrophage markers, but negative for dendritic cell markers. Thus, TLR-induced differentiation of monocytes into either macrophages or dendritic cells seems to crucially influence effective host defenses in human infectious disease. Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8−/−) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin– and αvβ5 integrin–dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications. BACKGROUND Human papillomavirus (HPV) testing is known to be more sensitive, but less specific than cytology for detecting cervical intraepithelial neoplasia (CIN). We assessed the efficacy of cervical-cancer screening policies that are based on HPV testing. METHODS Between March, 2004, and December, 2004, in two separate recruitment phases, women aged 25-60 years were randomly assigned to conventional cytology or to HPV testing in combination with liquid-based cytology (first phase) or alone (second phase). Randomisation was done by computer in two screening centres and by sequential opening of numbered sealed envelopes in the remaining seven centres. During phase one, women who were HPV-positive and aged 35-60 years were referred to colposcopy, whereas women aged 25-34 years were referred to colposcopy only if cytology was also abnormal or HPV testing was persistently positive. During phase two, women in the HPV group were referred for colposcopy if the HPV test was positive. Two rounds of screening occurred in each phase, and all women had cytology testing only at the second round. The primary endpoint was the detection of grade 2 and 3 CIN, and of invasive cervical cancers during the first and second screening rounds. Analysis was done by intention to screen. This trial is registered, number ISRCTN81678807. FINDINGS In total for both phases, 47,001 women were randomly assigned to the cytology group and 47,369 to HPV testing. 33,851 women from the cytology group and 32,998 from the HPV-testing group had a second round of screening. We also retrieved the histological diagnoses from screening done elsewhere. The detection of invasive cervical cancers was similar for the two groups in the first round of screening (nine in the cytology group vs seven in the HPV group, p=0.62); no cases were detected in the HPV group during round two, compared with nine in the cytology group (p=0.004). Overall, in the two rounds of screening, 18 invasive cancers were detected in the cytology group versus seven in the HPV group (p=0.028). Among women aged 35-60 years, at round one the relative detection (HPV vs cytology) was 2.00 (95% CI 1.44-2.77) for CIN2, 2.08 (1.47-2.95) for CIN3, and 2.03 (1.60-2.57) for CIN2 and 3 together. At round two the relative detection was 0.54 (0.23-1.28) for CIN2, 0.48 (0.21-1.11) for CIN3, and 0.51 (0.28-0.93) for CIN2 and 3 together. Among women aged 25-34 years, there was significant heterogeneity between phases in the relative detection of CIN3. At round one the relative detection was 0.93 (0.52-1.64) in phase one and 3.91 (2.02-7.57) in phase two. At round two the relative detection was 1.34 (0.46-3.84) in phase one and 0.20 (0.04-0.93) in phase two. Pooling both phases, the detection ratio of CIN2 for women aged 25-34 years was 4.09 (2.24-7.48) at round one and 0.64 (0.23-1.27) at round two. INTERPRETATION HPV-based screening is more effective than cytology in preventing invasive cervical cancer, by detecting persistent high-grade lesions earlier and providing a longer low-risk period. However, in younger women, HPV screening leads to over-diagnosis of regressive CIN2. FUNDING European Union, Italian Ministry of Health, Regional Health Administrations of Piemonte, Tuscany, Veneto and Emilia-Romagna, and Public Health Agency of Lazio. Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs). GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3), a regulator of cell survival and the NF-kappaB pathway, is overexpressed in GSCs relative to non-stem glioblastoma cells at both the mRNA and protein levels. To determine the functional significance of A20 in GSCs, we targeted A20 expression with lentiviral-mediated delivery of short hairpin RNA (shRNA). Inhibiting A20 expression decreased GSC growth and survival through mechanisms associated with decreased cell-cycle progression and decreased phosphorylation of p65/RelA. Elevated levels of A20 in GSCs contributed to apoptotic resistance: GSCs were less susceptible to TNFalpha-induced cell death than matched non-stem glioma cells, but A20 knockdown sensitized GSCs to TNFalpha-mediated apoptosis. The decreased survival of GSCs upon A20 knockdown contributed to the reduced ability of these cells to self-renew in primary and secondary neurosphere formation assays. The tumorigenic potential of GSCs was decreased with A20 targeting, resulting in increased survival of mice bearing human glioma xenografts. In silico analysis of a glioma patient genomic database indicates that A20 overexpression and amplification is inversely correlated with survival. Together these data indicate that A20 contributes to glioma maintenance through effects on the glioma stem cell subpopulation. Although inactivating mutations in A20 in lymphoma suggest A20 can act as a tumor suppressor, similar point mutations have not been identified through glioma genomic sequencing: in fact, our data suggest A20 may function as a tumor enhancer in glioma through promotion of GSC survival. A20 anticancer therapies should therefore be viewed with caution as effects will likely differ depending on the tumor type. Observational clinical and ex vivo studies have established a strong association between atrial fibrillation and inflammation. However, whether inflammation is the cause or the consequence of atrial fibrillation and which specific inflammatory mediators may increase the atria's susceptibility to fibrillation remain elusive. Here we provide experimental and clinical evidence for the mechanistic involvement of myeloperoxidase (MPO), a heme enzyme abundantly expressed by neutrophils, in the pathophysiology of atrial fibrillation. MPO-deficient mice pretreated with angiotensin II (AngII) to provoke leukocyte activation showed lower atrial tissue abundance of the MPO product 3-chlorotyrosine, reduced activity of matrix metalloproteinases and blunted atrial fibrosis as compared to wild-type mice. Upon right atrial electrophysiological stimulation, MPO-deficient mice were protected from atrial fibrillation, which was reversed when MPO was restored. Humans with atrial fibrillation had higher plasma concentrations of MPO and a larger MPO burden in right atrial tissue as compared to individuals devoid of atrial fibrillation. In the atria, MPO colocalized with markedly increased formation of 3-chlorotyrosine. Our data demonstrate that MPO is a crucial prerequisite for structural remodeling of the myocardium, leading to an increased vulnerability to atrial fibrillation.
0
{ "query_id": "153", "original_query_id": "153", "context_doc_ids": [ "27873158", "5389095", "21498497", "10284593", "10504681", "33370" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290267", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "33370", "21498497", "10284593", "10504681", "27873158", "5389095" ], "comprehensive_gold_set_for_query": [ "4702639" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
153
aug_954
Hypothalamic glutamate neurotransmission is unrelated to energy balance. The importance of neuropeptides in the hypothalamus has been experimentally established. Due to difficulties in assessing function in vivo, the roles of the fast-acting neurotransmitters glutamate and GABA are largely unknown. Synaptic vesicular transporters (VGLUTs for glutamate and VGAT for GABA) are required for vesicular uptake and, consequently, synaptic release of neurotransmitters. Ventromedial hypothalamic (VMH) neurons are predominantly glutamatergic and express VGLUT2. To evaluate the role of glutamate release from VMH neurons, we generated mice lacking VGLUT2 selectively in SF1 neurons (a major subset of VMH neurons). These mice have hypoglycemia during fasting secondary to impaired fasting-induced increases in the glucose-raising pancreatic hormone glucagon and impaired induction in liver of mRNAs encoding PGC-1alpha and the gluconeogenic enzymes PEPCK and G6Pase. Similarly, these mice have defective counterregulatory responses to insulin-induced hypoglycemia and 2-deoxyglucose (an antimetabolite). Thus, glutamate release from VMH neurons is an important component of the neurocircuitry that functions to prevent hypoglycemia. In the hypothalamic arcuate nucleus (ARC), pro-opiomelanocortin (POMC) neurons inhibit feeding and neuropeptide-Y (NPY) neurons stimulate feeding. We tested whether neurons in the ventromedial hypothalamic nucleus (VMH), a known satiety center, activate anorexigenic neuronal pathways in the ARC by projecting either excitatory synaptic inputs to POMC neurons and/or inhibitory inputs to NPY neurons. Using laser scanning photostimulation in brain slices from transgenic mice, we found that POMC and NPY neurons, which are interspersed in the ARC, are nevertheless regulated by anatomically distinct synaptic inputs. POMC neurons received strong excitatory input from the medial VMH (mVMH), whereas NPY neurons did not and, instead, received weak inhibitory input only from within the ARC. The strength of the excitatory input from the mVMH to POMC neurons was diminished by fasting. These data identify a new molecularly defined circuit that is dynamically regulated by nutritional state in a manner consistent with the known role of the VMH as a satiety center. The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing brain regions, which include the paraventricular nucleus of hypothalamus (PVH), represent key brain sites that mediate melanocortin action. We conditionally restored MC4R expression in Sim1 neurons in the background of Mc4r-null mice. The restoration dramatically reduced obesity in Mc4r-null mice. The anti-obesity effect was completely reversed by selective disruption of glutamate release from those same Sim1 neurons. The reversal was caused by lower energy expenditure and hyperphagia. Corroboratively, selective disruption of glutamate release from adult PVH neurons led to rapid obesity development via reduced energy expenditure and hyperphagia. Thus, this study establishes glutamate as the primary neurotransmitter that mediates MC4Rs on Sim1 neurons in body weight regulation.
Hypothalamic glutamate neurotransmission is unrelated to energy balance. The importance of neuropeptides in the hypothalamus has been experimentally established. Due to difficulties in assessing function in vivo, the roles of the fast-acting neurotransmitters glutamate and GABA are largely unknown. Synaptic vesicular transporters (VGLUTs for glutamate and VGAT for GABA) are required for vesicular uptake and, consequently, synaptic release of neurotransmitters. Ventromedial hypothalamic (VMH) neurons are predominantly glutamatergic and express VGLUT2. To evaluate the role of glutamate release from VMH neurons, we generated mice lacking VGLUT2 selectively in SF1 neurons (a major subset of VMH neurons). These mice have hypoglycemia during fasting secondary to impaired fasting-induced increases in the glucose-raising pancreatic hormone glucagon and impaired induction in liver of mRNAs encoding PGC-1alpha and the gluconeogenic enzymes PEPCK and G6Pase. Similarly, these mice have defective counterregulatory responses to insulin-induced hypoglycemia and 2-deoxyglucose (an antimetabolite). Thus, glutamate release from VMH neurons is an important component of the neurocircuitry that functions to prevent hypoglycemia. In the hypothalamic arcuate nucleus (ARC), pro-opiomelanocortin (POMC) neurons inhibit feeding and neuropeptide-Y (NPY) neurons stimulate feeding. We tested whether neurons in the ventromedial hypothalamic nucleus (VMH), a known satiety center, activate anorexigenic neuronal pathways in the ARC by projecting either excitatory synaptic inputs to POMC neurons and/or inhibitory inputs to NPY neurons. Using laser scanning photostimulation in brain slices from transgenic mice, we found that POMC and NPY neurons, which are interspersed in the ARC, are nevertheless regulated by anatomically distinct synaptic inputs. POMC neurons received strong excitatory input from the medial VMH (mVMH), whereas NPY neurons did not and, instead, received weak inhibitory input only from within the ARC. The strength of the excitatory input from the mVMH to POMC neurons was diminished by fasting. These data identify a new molecularly defined circuit that is dynamically regulated by nutritional state in a manner consistent with the known role of the VMH as a satiety center. The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing brain regions, which include the paraventricular nucleus of hypothalamus (PVH), represent key brain sites that mediate melanocortin action. We conditionally restored MC4R expression in Sim1 neurons in the background of Mc4r-null mice. The restoration dramatically reduced obesity in Mc4r-null mice. The anti-obesity effect was completely reversed by selective disruption of glutamate release from those same Sim1 neurons. The reversal was caused by lower energy expenditure and hyperphagia. Corroboratively, selective disruption of glutamate release from adult PVH neurons led to rapid obesity development via reduced energy expenditure and hyperphagia. Thus, this study establishes glutamate as the primary neurotransmitter that mediates MC4Rs on Sim1 neurons in body weight regulation.
1
{ "query_id": "541", "original_query_id": "541", "context_doc_ids": [ "45154987", "25007443", "11886686" ], "gold_doc_ids_in_context": [ "25007443", "11886686", "45154987" ], "total_gold_docs_for_query": 3, "context_f1": 1, "context_size": 3, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290357", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "11886686", "45154987", "25007443" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "25007443", "11886686", "45154987" ], "target_max_context_size_config": 6, "actual_context_size": 3, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
541
aug_955
Induction of urokinase receptor signaling in podocytes causes foot process effacement and proteinuria. Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of αvβ3 integrin. Mice lacking uPAR (Plaur−/−) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active β3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate αvβ3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of αvβ3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability.
Induction of urokinase receptor signaling in podocytes causes foot process effacement and proteinuria. Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of αvβ3 integrin. Mice lacking uPAR (Plaur−/−) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active β3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate αvβ3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of αvβ3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability.
1
{ "query_id": "626", "original_query_id": "626", "context_doc_ids": [ "16355392" ], "gold_doc_ids_in_context": [ "16355392" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290387", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "16355392" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "16355392" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
626
aug_956
Homozygous deletion of murine Sbds gene from osterix-expressing mesenchymal stem and progenitor cells (MPCs) induces oxidative stress. Cancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6(-) progenitor cells do not give rise to metastatic lesions but, when treated with cytokines, acquire CD44v6 expression and metastatic capacity. Importantly, phosphatidylinositol 3-kinase (PI3K) inhibition selectively killed CD44v6 CR-CSCs and reduced metastatic growth. In patient cohorts, low levels of CD44v6 predict increased probability of survival. Thus, the metastatic process in colorectal cancer is initiated by CSCs through the expression of CD44v6, which is both a functional biomarker and therapeutic target. It is becoming “a truth universally acknowledged” that the education of undergraduate medical students will be enhanced through the use of computer assisted learning. Access to the wide range of online options illustrated in the figure must surely make learning more exciting, effective, and likely to be retained. This assumption is potentially but by no means inevitably correct. ### Box 1: Why fund computer assisted learning? Computer assisted learning is inevitable —Individual lecturers and departments are already beginning to introduce a wide range of computer based applications, sometimes in a haphazard way. Planned and coordinated development is better than indiscriminate expansion It is convenient and flexible —Courses supported by computer assisted learning applications may require fewer face to face lectures and seminars and place fewer geographical and temporal constraints on staff and students. Students at peripheral hospitals or primary care centres may benefit in particular Unique presentational benefits —Computer presentation is particularly suited to subjects that are visually intensive, detail oriented, and difficult to conceptualise, such as complex biochemical processes or microscopic images.1 Furthermore, “virtual” cases may reduce the need to use animal or human tissue in learning Personalised learning —Each learner can progress at his or her preferred pace. They can repeat, interrupt, and resume at will, which may have particular advantages for weaker students Economies of scale —Once an application has been set up, the incremental cost of offering it to additional students is relatively small Competitive advantage —Potential applicants may use the quality of information technology to discriminate between medical schools. A “leading edge” virtual campus is likely to attract good students Achieves the ultimate goal of higher education —The goal is to link people into learning communities. Computer applications, especially the internet and world wide web, are an extremely efficient way of doing this2 Expands pedagogical horizons —The most controversial argument for … RETURN TO TEXT Deamidation of N-terminal Gln by Nt(Q)-amidase, an N-terminal amidohydrolase, is a part of the N-end rule pathway of protein degradation. We detected the activity of Nt(Q)-amidase, termed Ntaq1, in mouse tissues, purified Ntaq1 from bovine brains, identified its gene, and began analyzing this enzyme. Ntaq1 is highly conserved among animals, plants, and some fungi, but its sequence is dissimilar to sequences of other amidases. An earlier mutant in the Drosophila Cg8253 gene that we show here to encode Nt(Q)-amidase has defective long-term memory. Other studies identified protein ligands of the uncharacterized human C8orf32 protein that we show here to be the Ntaq1 Nt(Q)-amidase. Remarkably, "high-throughput" studies have recently solved the crystal structure of C8orf32 (Ntaq1). Our site-directed mutagenesis of Ntaq1 and its crystal structure indicate that the active site and catalytic mechanism of Nt(Q)-amidase are similar to those of transglutaminases. Tissue regeneration requires dynamic cellular adaptation to the wound environment. It is currently unclear how this is orchestrated at the cellular level and how cell fate is affected by severe tissue damage. Here we dissect cell fate transitions during colonic regeneration in a mouse dextran sulfate sodium (DSS) colitis model, and we demonstrate that the epithelium is transiently reprogrammed into a primitive state. This is characterized by de novo expression of fetal markers as well as suppression of markers for adult stem and differentiated cells. The fate change is orchestrated by remodeling the extracellular matrix (ECM), increased FAK/Src signaling, and ultimately YAP/TAZ activation. In a defined cell culture system recapitulating the extracellular matrix remodeling observed in vivo, we show that a collagen 3D matrix supplemented with Wnt ligands is sufficient to sustain endogenous YAP/TAZ and induce conversion of cell fate. This provides a simple model for tissue regeneration, implicating cellular reprogramming as an essential element. Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system, but the underlying molecular mechanisms and relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the pre-leukemic disorder Shwachman-Diamond syndrome (SDS) induces mitochondrial dysfunction, oxidative stress, and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the SDS mouse model and a range of human pre-leukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome (MDS), the principal leukemia predisposition syndrome. Collectively, our findings identify mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as a targetable determinant of disease outcome in human pre-leukemia.
Homozygous deletion of murine Sbds gene from osterix-expressing mesenchymal stem and progenitor cells (MPCs) induces oxidative stress. Cancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6(-) progenitor cells do not give rise to metastatic lesions but, when treated with cytokines, acquire CD44v6 expression and metastatic capacity. Importantly, phosphatidylinositol 3-kinase (PI3K) inhibition selectively killed CD44v6 CR-CSCs and reduced metastatic growth. In patient cohorts, low levels of CD44v6 predict increased probability of survival. Thus, the metastatic process in colorectal cancer is initiated by CSCs through the expression of CD44v6, which is both a functional biomarker and therapeutic target. It is becoming “a truth universally acknowledged” that the education of undergraduate medical students will be enhanced through the use of computer assisted learning. Access to the wide range of online options illustrated in the figure must surely make learning more exciting, effective, and likely to be retained. This assumption is potentially but by no means inevitably correct. ### Box 1: Why fund computer assisted learning? Computer assisted learning is inevitable —Individual lecturers and departments are already beginning to introduce a wide range of computer based applications, sometimes in a haphazard way. Planned and coordinated development is better than indiscriminate expansion It is convenient and flexible —Courses supported by computer assisted learning applications may require fewer face to face lectures and seminars and place fewer geographical and temporal constraints on staff and students. Students at peripheral hospitals or primary care centres may benefit in particular Unique presentational benefits —Computer presentation is particularly suited to subjects that are visually intensive, detail oriented, and difficult to conceptualise, such as complex biochemical processes or microscopic images.1 Furthermore, “virtual” cases may reduce the need to use animal or human tissue in learning Personalised learning —Each learner can progress at his or her preferred pace. They can repeat, interrupt, and resume at will, which may have particular advantages for weaker students Economies of scale —Once an application has been set up, the incremental cost of offering it to additional students is relatively small Competitive advantage —Potential applicants may use the quality of information technology to discriminate between medical schools. A “leading edge” virtual campus is likely to attract good students Achieves the ultimate goal of higher education —The goal is to link people into learning communities. Computer applications, especially the internet and world wide web, are an extremely efficient way of doing this2 Expands pedagogical horizons —The most controversial argument for … RETURN TO TEXT Deamidation of N-terminal Gln by Nt(Q)-amidase, an N-terminal amidohydrolase, is a part of the N-end rule pathway of protein degradation. We detected the activity of Nt(Q)-amidase, termed Ntaq1, in mouse tissues, purified Ntaq1 from bovine brains, identified its gene, and began analyzing this enzyme. Ntaq1 is highly conserved among animals, plants, and some fungi, but its sequence is dissimilar to sequences of other amidases. An earlier mutant in the Drosophila Cg8253 gene that we show here to encode Nt(Q)-amidase has defective long-term memory. Other studies identified protein ligands of the uncharacterized human C8orf32 protein that we show here to be the Ntaq1 Nt(Q)-amidase. Remarkably, "high-throughput" studies have recently solved the crystal structure of C8orf32 (Ntaq1). Our site-directed mutagenesis of Ntaq1 and its crystal structure indicate that the active site and catalytic mechanism of Nt(Q)-amidase are similar to those of transglutaminases. Tissue regeneration requires dynamic cellular adaptation to the wound environment. It is currently unclear how this is orchestrated at the cellular level and how cell fate is affected by severe tissue damage. Here we dissect cell fate transitions during colonic regeneration in a mouse dextran sulfate sodium (DSS) colitis model, and we demonstrate that the epithelium is transiently reprogrammed into a primitive state. This is characterized by de novo expression of fetal markers as well as suppression of markers for adult stem and differentiated cells. The fate change is orchestrated by remodeling the extracellular matrix (ECM), increased FAK/Src signaling, and ultimately YAP/TAZ activation. In a defined cell culture system recapitulating the extracellular matrix remodeling observed in vivo, we show that a collagen 3D matrix supplemented with Wnt ligands is sufficient to sustain endogenous YAP/TAZ and induce conversion of cell fate. This provides a simple model for tissue regeneration, implicating cellular reprogramming as an essential element. Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system, but the underlying molecular mechanisms and relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the pre-leukemic disorder Shwachman-Diamond syndrome (SDS) induces mitochondrial dysfunction, oxidative stress, and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the SDS mouse model and a range of human pre-leukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome (MDS), the principal leukemia predisposition syndrome. Collectively, our findings identify mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as a targetable determinant of disease outcome in human pre-leukemia.
0.333333
{ "query_id": "526", "original_query_id": "526", "context_doc_ids": [ "12789595", "36540079", "13481880", "9558539", "3863543" ], "gold_doc_ids_in_context": [ "3863543" ], "total_gold_docs_for_query": 1, "context_f1": 0.33333333333333337, "context_size": 5, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290412", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "3863543" ], "negative_samples_considered": [ "13481880", "36540079", "9558539", "12789595" ], "comprehensive_gold_set_for_query": [ "3863543" ], "target_max_context_size_config": 6, "actual_context_size": 5, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
526
aug_957
Commelina yellow mottle virus (ComYMV) has three typical badnavirus ORFs, capable of encoding proteins 23, 15, and 216 kD. Combinatorial transcription factor (TF) interactions control cellular phenotypes and, therefore, underpin stem cell formation, maintenance, and differentiation. Here, we report the genome-wide binding patterns and combinatorial interactions for ten key regulators of blood stem/progenitor cells (SCL/TAL1, LYL1, LMO2, GATA2, RUNX1, MEIS1, PU.1, ERG, FLI-1, and GFI1B), thus providing the most comprehensive TF data set for any adult stem/progenitor cell type to date. Genome-wide computational analysis of complex binding patterns, followed by functional validation, revealed the following: first, a previously unrecognized combinatorial interaction between a heptad of TFs (SCL, LYL1, LMO2, GATA2, RUNX1, ERG, and FLI-1). Second, we implicate direct protein-protein interactions between four key regulators (RUNX1, GATA2, SCL, and ERG) in stabilizing complex binding to DNA. Third, Runx1(+/-)::Gata2(+/-) compound heterozygous mice are not viable with severe hematopoietic defects at midgestation. Taken together, this study demonstrates the power of genome-wide analysis in generating novel functional insights into the transcriptional control of stem and progenitor cells. OBJECTIVE To assess the association between use of macrolide antibiotics in mothers and infants from pregnancy onset until 120 days after birth and infantile hypertrophic pyloric stenosis (IHPS). DESIGN Nationwide register based cohort study. SETTING Denmark, 1996-2011. PARTICIPANTS 999,378 liveborn singletons and linked individual level information on macrolide prescriptions (maternal use during pregnancy, n=30,091; maternal use after birth, n=21,557; use in infants, n=6591), surgery for IHPS, and potential confounders. MAIN OUTCOME MEASURES Surgery for IHPS by three categories of macrolide use: in mothers during pregnancy, in mothers after birth, and in infants after birth. RESULTS 880 infants developed IHPS (0.9 cases per 1000 births). Compared with infants with no use of macrolides, the adjusted rate ratio for IHPS in infants with use of macrolides during days 0 to 13 after birth was 29.8 (95% confidence interval 16.4 to 54.1) and during days 14 to 120 was 3.24 (1.20 to 8.74); the corresponding absolute risk differences were 24.4 (95% confidence interval 13.0 to 44.1) and 0.65 (0.06 to 2.21) cases per 1000 infants exposed to macrolides, respectively. The rate ratio for maternal use of macrolides for days 0 to 13 after birth was 3.49 (1.92 to 6.34) and for days 14 to 120 was 0.70 (0.26 to 1.90); the corresponding absolute risk differences were 2.15 (0.82 to 4.64) and -0.11 (-0.26 to 0.31). The rate ratios for maternal use of macrolides during pregnancy were 1.02 (0.65 to 1.59) for weeks 0 to 27 and 1.77 (0.95 to 3.31) for weeks 28 to birth; the corresponding absolute risk differences were 0.01 (-0.31 to 0.50) and 0.67 (-0.06 to 2.02). CONCLUSIONS Treatment of young infants with macrolide antibiotics was strongly associated with IHPS and should therefore only be administered if potential treatment benefits outweigh the risk. Maternal use of macrolides during the first two weeks after birth was also associated with an increased risk of IHPS. A possible association was also found with use during late pregnancy. Activating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer. Different mutations in Gβ proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling. Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs). GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3), a regulator of cell survival and the NF-kappaB pathway, is overexpressed in GSCs relative to non-stem glioblastoma cells at both the mRNA and protein levels. To determine the functional significance of A20 in GSCs, we targeted A20 expression with lentiviral-mediated delivery of short hairpin RNA (shRNA). Inhibiting A20 expression decreased GSC growth and survival through mechanisms associated with decreased cell-cycle progression and decreased phosphorylation of p65/RelA. Elevated levels of A20 in GSCs contributed to apoptotic resistance: GSCs were less susceptible to TNFalpha-induced cell death than matched non-stem glioma cells, but A20 knockdown sensitized GSCs to TNFalpha-mediated apoptosis. The decreased survival of GSCs upon A20 knockdown contributed to the reduced ability of these cells to self-renew in primary and secondary neurosphere formation assays. The tumorigenic potential of GSCs was decreased with A20 targeting, resulting in increased survival of mice bearing human glioma xenografts. In silico analysis of a glioma patient genomic database indicates that A20 overexpression and amplification is inversely correlated with survival. Together these data indicate that A20 contributes to glioma maintenance through effects on the glioma stem cell subpopulation. Although inactivating mutations in A20 in lymphoma suggest A20 can act as a tumor suppressor, similar point mutations have not been identified through glioma genomic sequencing: in fact, our data suggest A20 may function as a tumor enhancer in glioma through promotion of GSC survival. A20 anticancer therapies should therefore be viewed with caution as effects will likely differ depending on the tumor type. Antigen-specific CD8+ T-cell tolerance, induced by myeloid-derived suppressor cells (MDSCs), is one of the main mechanisms of tumor escape. Using in vivo models, we show here that MDSCs directly disrupt the binding of specific peptide–major histocompatibility complex (pMHC) dimers to CD8-expressing T cells through nitration of tyrosines in a T-cell receptor (TCR)-CD8 complex. This process makes CD8-expressing T cells unable to bind pMHC and to respond to the specific peptide, although they retain their ability to respond to nonspecific stimulation. Nitration of TCR-CD8 is induced by MDSCs through hyperproduction of reactive oxygen species and peroxynitrite during direct cell-cell contact. Molecular modeling suggests specific sites of nitration that might affect the conformational flexibility of TCR-CD8 and its interaction with pMHC. These data identify a previously unknown mechanism of T-cell tolerance in cancer that is also pertinent to many pathological conditions associated with accumulation of MDSCs. CONTEXT The mechanisms that drive progression from fatty liver to steatohepatitis and cirrhosis are unknown. In animal models, obese mice with fatty livers are vulnerable to liver adenosine triphosphate (ATP) depletion and necrosis, suggesting that altered hepatic energy homeostasis may be involved. OBJECTIVE To determine if patients with fatty liver disease exhibit impaired recovery from hepatic ATP depletion. DESIGN Laboratory analysis of liver ATP stores monitored by nuclear magnetic resonance spectroscopy before and after transient hepatic ATP depletion was induced by fructose injection. The study was conducted between July 15 and August 30, 1998. SETTING University hospital. PATIENTS Eight consecutive adults with biopsy-proven nonalcoholic steatohepatitis and 7 healthy age- and sex-matched controls. MAIN OUTCOME MEASURE Level of ATP 1 hour after fructose infusion in patients vs controls. RESULTS In patients, serum aminotransferase levels were increased (P = .02 vs controls); albumin and bilirubin values were normal and clinical evidence of portal hypertension was absent in both groups. However, 2 patients had moderate fibrosis and 1 had cirrhosis on liver biopsy. Mean serum glucose, cholesterol, and triglyceride levels were similar between groups but patients weighed significantly more than controls (P = .02). Liver ATP levels were similar in the 2 groups before fructose infusion and decreased similarly in both after fructose infusion (P = .01 vs initial ATP levels). However, controls replenished their hepatic ATP stores during the 1-hour follow-up period (P<.02 vs minimum ATP) but patients did not. Hence, patients' hepatic ATP levels were lower than those of controls at the end of the study (P = .04). Body mass index (BMI) correlated inversely with ATP recovery, even in controls (R = -0.768; P = .07). Although BMI was greater in patients than controls (P = .02) and correlated strongly with fatty liver and serum aminotransferase elevations, neither of the latter 2 parameters nor the histologic severity of fibrosis strongly predicted hepatic ATP recovery. CONCLUSIONS These data suggest that recovery from hepatic ATP depletion becomes progressively less efficient as body mass increases in healthy controls and is severely impaired in patients with obesity-related nonalcoholic steatohepatitis.
Commelina yellow mottle virus (ComYMV) has three typical badnavirus ORFs, capable of encoding proteins 23, 15, and 216 kD. Combinatorial transcription factor (TF) interactions control cellular phenotypes and, therefore, underpin stem cell formation, maintenance, and differentiation. Here, we report the genome-wide binding patterns and combinatorial interactions for ten key regulators of blood stem/progenitor cells (SCL/TAL1, LYL1, LMO2, GATA2, RUNX1, MEIS1, PU.1, ERG, FLI-1, and GFI1B), thus providing the most comprehensive TF data set for any adult stem/progenitor cell type to date. Genome-wide computational analysis of complex binding patterns, followed by functional validation, revealed the following: first, a previously unrecognized combinatorial interaction between a heptad of TFs (SCL, LYL1, LMO2, GATA2, RUNX1, ERG, and FLI-1). Second, we implicate direct protein-protein interactions between four key regulators (RUNX1, GATA2, SCL, and ERG) in stabilizing complex binding to DNA. Third, Runx1(+/-)::Gata2(+/-) compound heterozygous mice are not viable with severe hematopoietic defects at midgestation. Taken together, this study demonstrates the power of genome-wide analysis in generating novel functional insights into the transcriptional control of stem and progenitor cells. OBJECTIVE To assess the association between use of macrolide antibiotics in mothers and infants from pregnancy onset until 120 days after birth and infantile hypertrophic pyloric stenosis (IHPS). DESIGN Nationwide register based cohort study. SETTING Denmark, 1996-2011. PARTICIPANTS 999,378 liveborn singletons and linked individual level information on macrolide prescriptions (maternal use during pregnancy, n=30,091; maternal use after birth, n=21,557; use in infants, n=6591), surgery for IHPS, and potential confounders. MAIN OUTCOME MEASURES Surgery for IHPS by three categories of macrolide use: in mothers during pregnancy, in mothers after birth, and in infants after birth. RESULTS 880 infants developed IHPS (0.9 cases per 1000 births). Compared with infants with no use of macrolides, the adjusted rate ratio for IHPS in infants with use of macrolides during days 0 to 13 after birth was 29.8 (95% confidence interval 16.4 to 54.1) and during days 14 to 120 was 3.24 (1.20 to 8.74); the corresponding absolute risk differences were 24.4 (95% confidence interval 13.0 to 44.1) and 0.65 (0.06 to 2.21) cases per 1000 infants exposed to macrolides, respectively. The rate ratio for maternal use of macrolides for days 0 to 13 after birth was 3.49 (1.92 to 6.34) and for days 14 to 120 was 0.70 (0.26 to 1.90); the corresponding absolute risk differences were 2.15 (0.82 to 4.64) and -0.11 (-0.26 to 0.31). The rate ratios for maternal use of macrolides during pregnancy were 1.02 (0.65 to 1.59) for weeks 0 to 27 and 1.77 (0.95 to 3.31) for weeks 28 to birth; the corresponding absolute risk differences were 0.01 (-0.31 to 0.50) and 0.67 (-0.06 to 2.02). CONCLUSIONS Treatment of young infants with macrolide antibiotics was strongly associated with IHPS and should therefore only be administered if potential treatment benefits outweigh the risk. Maternal use of macrolides during the first two weeks after birth was also associated with an increased risk of IHPS. A possible association was also found with use during late pregnancy. Activating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer. Different mutations in Gβ proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling. Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs). GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3), a regulator of cell survival and the NF-kappaB pathway, is overexpressed in GSCs relative to non-stem glioblastoma cells at both the mRNA and protein levels. To determine the functional significance of A20 in GSCs, we targeted A20 expression with lentiviral-mediated delivery of short hairpin RNA (shRNA). Inhibiting A20 expression decreased GSC growth and survival through mechanisms associated with decreased cell-cycle progression and decreased phosphorylation of p65/RelA. Elevated levels of A20 in GSCs contributed to apoptotic resistance: GSCs were less susceptible to TNFalpha-induced cell death than matched non-stem glioma cells, but A20 knockdown sensitized GSCs to TNFalpha-mediated apoptosis. The decreased survival of GSCs upon A20 knockdown contributed to the reduced ability of these cells to self-renew in primary and secondary neurosphere formation assays. The tumorigenic potential of GSCs was decreased with A20 targeting, resulting in increased survival of mice bearing human glioma xenografts. In silico analysis of a glioma patient genomic database indicates that A20 overexpression and amplification is inversely correlated with survival. Together these data indicate that A20 contributes to glioma maintenance through effects on the glioma stem cell subpopulation. Although inactivating mutations in A20 in lymphoma suggest A20 can act as a tumor suppressor, similar point mutations have not been identified through glioma genomic sequencing: in fact, our data suggest A20 may function as a tumor enhancer in glioma through promotion of GSC survival. A20 anticancer therapies should therefore be viewed with caution as effects will likely differ depending on the tumor type. Antigen-specific CD8+ T-cell tolerance, induced by myeloid-derived suppressor cells (MDSCs), is one of the main mechanisms of tumor escape. Using in vivo models, we show here that MDSCs directly disrupt the binding of specific peptide–major histocompatibility complex (pMHC) dimers to CD8-expressing T cells through nitration of tyrosines in a T-cell receptor (TCR)-CD8 complex. This process makes CD8-expressing T cells unable to bind pMHC and to respond to the specific peptide, although they retain their ability to respond to nonspecific stimulation. Nitration of TCR-CD8 is induced by MDSCs through hyperproduction of reactive oxygen species and peroxynitrite during direct cell-cell contact. Molecular modeling suggests specific sites of nitration that might affect the conformational flexibility of TCR-CD8 and its interaction with pMHC. These data identify a previously unknown mechanism of T-cell tolerance in cancer that is also pertinent to many pathological conditions associated with accumulation of MDSCs. CONTEXT The mechanisms that drive progression from fatty liver to steatohepatitis and cirrhosis are unknown. In animal models, obese mice with fatty livers are vulnerable to liver adenosine triphosphate (ATP) depletion and necrosis, suggesting that altered hepatic energy homeostasis may be involved. OBJECTIVE To determine if patients with fatty liver disease exhibit impaired recovery from hepatic ATP depletion. DESIGN Laboratory analysis of liver ATP stores monitored by nuclear magnetic resonance spectroscopy before and after transient hepatic ATP depletion was induced by fructose injection. The study was conducted between July 15 and August 30, 1998. SETTING University hospital. PATIENTS Eight consecutive adults with biopsy-proven nonalcoholic steatohepatitis and 7 healthy age- and sex-matched controls. MAIN OUTCOME MEASURE Level of ATP 1 hour after fructose infusion in patients vs controls. RESULTS In patients, serum aminotransferase levels were increased (P = .02 vs controls); albumin and bilirubin values were normal and clinical evidence of portal hypertension was absent in both groups. However, 2 patients had moderate fibrosis and 1 had cirrhosis on liver biopsy. Mean serum glucose, cholesterol, and triglyceride levels were similar between groups but patients weighed significantly more than controls (P = .02). Liver ATP levels were similar in the 2 groups before fructose infusion and decreased similarly in both after fructose infusion (P = .01 vs initial ATP levels). However, controls replenished their hepatic ATP stores during the 1-hour follow-up period (P<.02 vs minimum ATP) but patients did not. Hence, patients' hepatic ATP levels were lower than those of controls at the end of the study (P = .04). Body mass index (BMI) correlated inversely with ATP recovery, even in controls (R = -0.768; P = .07). Although BMI was greater in patients than controls (P = .02) and correlated strongly with fatty liver and serum aminotransferase elevations, neither of the latter 2 parameters nor the histologic severity of fibrosis strongly predicted hepatic ATP recovery. CONCLUSIONS These data suggest that recovery from hepatic ATP depletion becomes progressively less efficient as body mass increases in healthy controls and is severely impaired in patients with obesity-related nonalcoholic steatohepatitis.
0
{ "query_id": "277", "original_query_id": "277", "context_doc_ids": [ "10883736", "33370", "33387953", "5483793", "21239672", "13048272" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290482", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "10883736", "21239672", "13048272", "5483793", "33387953", "33370" ], "comprehensive_gold_set_for_query": [ "14376683" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
277
aug_958
Mouse models can be generated using "artificial spermatids." Haploid cells are amenable for genetic analysis. Recent success in the derivation of mouse haploid embryonic stem cells (haESCs) via parthenogenesis has enabled genetic screening in mammalian cells. However, successful generation of live animals from these haESCs, which is needed to extend the genetic analysis to the organism level, has not been achieved. Here, we report the derivation of haESCs from androgenetic blastocysts. These cells, designated as AG-haESCs, partially maintain paternal imprints, express classical ESC pluripotency markers, and contribute to various tissues, including the germline, upon injection into diploid blastocysts. Strikingly, live mice can be obtained upon injection of AG-haESCs into MII oocytes, and these mice bear haESC-carried genetic traits and develop into fertile adults. Furthermore, gene targeting via homologous recombination is feasible in the AG-haESCs. Our results demonstrate that AG-haESCs can be used as a genetically tractable fertilization agent for the production of live animals via injection into oocytes.
Mouse models can be generated using "artificial spermatids." Haploid cells are amenable for genetic analysis. Recent success in the derivation of mouse haploid embryonic stem cells (haESCs) via parthenogenesis has enabled genetic screening in mammalian cells. However, successful generation of live animals from these haESCs, which is needed to extend the genetic analysis to the organism level, has not been achieved. Here, we report the derivation of haESCs from androgenetic blastocysts. These cells, designated as AG-haESCs, partially maintain paternal imprints, express classical ESC pluripotency markers, and contribute to various tissues, including the germline, upon injection into diploid blastocysts. Strikingly, live mice can be obtained upon injection of AG-haESCs into MII oocytes, and these mice bear haESC-carried genetic traits and develop into fertile adults. Furthermore, gene targeting via homologous recombination is feasible in the AG-haESCs. Our results demonstrate that AG-haESCs can be used as a genetically tractable fertilization agent for the production of live animals via injection into oocytes.
1
{ "query_id": "810", "original_query_id": "810", "context_doc_ids": [ "13513790" ], "gold_doc_ids_in_context": [ "13513790" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290572", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "13513790" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "13513790" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
810
aug_959
Surfactin producing cells and exopolymer producing cells cooperate to generate "Van Gogh" bundles that have sliding abilities on specialized media. The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles") of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.
Surfactin producing cells and exopolymer producing cells cooperate to generate "Van Gogh" bundles that have sliding abilities on specialized media. The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles") of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.
1
{ "query_id": "1114", "original_query_id": "1114", "context_doc_ids": [ "12824568" ], "gold_doc_ids_in_context": [ "12824568" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290587", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "12824568" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "12824568" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1114
aug_960
Immune complex triggered cell death leads to extracellular release of nuclear DNA. We compared conscious and nonconscious processing of briefly flashed words using a visual masking procedure while recording intracranial electroencephalogram (iEEG) in ten patients. Nonconscious processing of masked words was observed in multiple cortical areas, mostly within an early time window (<300 ms), accompanied by induced gamma-band activity, but without coherent long-distance neural activity, suggesting a quickly dissipating feedforward wave. In contrast, conscious processing of unmasked words was characterized by the convergence of four distinct neurophysiological markers: sustained voltage changes, particularly in prefrontal cortex, large increases in spectral power in the gamma band, increases in long-distance phase synchrony in the beta range, and increases in long-range Granger causality. We argue that all of those measures provide distinct windows into the same distributed state of conscious processing. These results have a direct impact on current theoretical discussions concerning the neural correlates of conscious access. CONTEXT Although cerebral palsy (CP) among extremely premature infants has been reported as a major morbidity outcome, there are difficulties comparing published CP rates from many sites over various birth years. OBJECTIVE To assess the changes in population-based, gestational age-specific prevalence rates of CP among extremely premature infants over 30 years. DESIGN Prospective population-based longitudinal outcome study. SETTING AND PARTICIPANTS In Northern Alberta, 2318 infants 20 to 27 weeks' gestational age with birth weights of 500 to 1249 g were liveborn from 1974 through 2003. By 2 years of age, 1437 (62%) had died, 23 (1%) were lost to follow-up, and 858 (37%) had received multidisciplinary neurodevelopmental assessment. MAIN OUTCOME MEASURE Population-based prevalence rates of CP were determined. Logistic regression with linear spline was used to assess changes in CP prevalence over time. RESULTS At age 2 years, 122 (14.2%) of 858 survivors had CP. This diagnosis was confirmed for each child by age 3 years or older. Among those whose gestational age was 20 to 25 weeks, population-based survival increased from 4% to 31% (P<.001), while CP prevalence per 1000 live births increased monotonically from 0 to 110 until the years 1992-1994 (P<.001) and decreased thereafter to 22 in the years 2001-2003 (P<.001). Among those whose gestational age was 26 to 27 weeks, population-based survival increased from 23% to between 75% and 80% (P<.001), while CP prevalence per 1000 live births increased monotonically from 15 to 155 until the years 1992-1994 (P<.001) and then decreased to 16 in the years 2001-2003 (P<.001). For all survivors born in the years 2001-2003, CP prevalence was 19 per 1000 live births. CONCLUSION Population-based CP prevalence rates for children whose gestational age was 20 to 27 weeks and whose birth weight ranged from 500 to 1249 g show steady reductions in the last decade with stable or reducing mortality, reversing trends prior to 1992-1994. OBJECTIVE To evaluate the association of overall and specific headaches with volume of white matter hyperintensities, brain infarcts, and cognition. DESIGN Population based, cross sectional study. SETTING Epidemiology of Vascular Ageing study, Nantes, France. PARTICIPANTS 780 participants (mean age 69, 58.5% women) with detailed headache assessment. MAIN OUTCOME MEASURES Brain scans were evaluated for volume of white matter hyperintensities (by fully automated imaging processing) and for classification of infarcts (by visual reading with a standardised assessment grid). Cognitive function was assessed by a battery of tests including the mini-mental state examination. RESULTS 163 (20.9%) participants reported a history of severe headache and 116 had migraine, of whom 17 (14.7%) reported aura symptoms. An association was found between any history of severe headache and increasing volume of white matter hyperintensities. The adjusted odds ratio of being in the highest third for total volume of white matter hyperintensities was 2.0 (95% confidence interval 1.3 to 3.1, P for trend 0.002) for participants with any history of severe headache when compared with participants without severe headache being in the lowest third. The association pattern was similar for all headache types. Migraine with aura was the only headache type strongly associated with volume of deep white matter hyperintensities (highest third odds ratio 12.4, 1.6 to 99.4, P for trend 0.005) and with brain infarcts (3.4, 1.2 to 9.3). The location of infarcts was predominantly outside the cerebellum and brain stem. Evidence was lacking for cognitive impairment for any headache type with or without brain lesions. CONCLUSIONS In this population based study, any history of severe headache was associated with an increased volume of white matter hyperintensities. Migraine with aura was the only headache type associated with brain infarcts. Evidence that headache of any type by itself or in combination with brain lesions was associated with cognitive impairment was lacking. Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well. CONTEXT Dexamethasone is widely used to prevent postoperative nausea and vomiting (PONV) in pediatric tonsillectomy. OBJECTIVE To assess whether dexamethasone dose-dependently reduces the risk of PONV at 24 hours after tonsillectomy. DESIGN, SETTING, AND PATIENTS Randomized placebo-controlled trial conducted among 215 children undergoing elective tonsillectomy at a major public teaching hospital in Switzerland from February 2005 to December 2007. INTERVENTIONS Children were randomly assigned to receive dexamethasone (0.05, 0.15, or 0.5 mg/kg) or placebo intravenously after induction of anesthesia. Acetaminophen-codeine and ibuprofen were given as postoperative analgesia. Follow-up continued until the 10th postoperative day. MAIN OUTCOME MEASURES The primary end point was prevention of PONV at 24 hours; secondary end points were decrease in the need for ibuprofen at 24 hours and evaluation of adverse effects. RESULTS At 24 hours, 24 of 54 participants who received placebo (44%; 95% confidence interval [CI], 31%-59%) had experienced PONV compared with 20 of 53 (38%; 95% CI, 25%-52%), 13 of 54 (24%; 95% CI, 13%-38%), and 6 of 52 (12%; 95% CI, 4%-23%) who received dexamethasone at 0.05, 0.15, and 0.5 mg/kg, respectively (P<.001 for linear trend). Children who received dexamethasone received significantly less ibuprofen. There were 26 postoperative bleeding episodes in 22 children. Two of 53 (4%; 95% CI, 0.5%-13%) children who received placebo had bleeding compared with 6 of 53 (11%; 95% CI, 4%-23%), 2 of 51 (4%; 95% CI, 0.5%-13%), and 12 of 50 (24%; 95% CI, 13%-38%) who received dexamethasone at 0.05, 0.15, and 0.5 mg/kg, respectively (P = .003). Dexamethasone, 0.5 mg/kg, was associated with the highest bleeding risk (adjusted relative risk, 6.80; 95% CI, 1.77-16.5). Eight children had to undergo emergency reoperation because of bleeding, all of whom had received dexamethasone. The trial was stopped early for safety reasons. CONCLUSION In this study of children undergoing tonsillectomy, dexamethasone decreased the risk of PONV dose dependently but was associated with an increased risk of postoperative bleeding. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00403806. BACKGROUND Expanded access to antiretroviral therapy (ART) using universal test and treat (UTT) has been suggested as a strategy to eliminate HIV in South Africa within 7 y based on an influential mathematical modeling study. However, the underlying deterministic model was criticized widely, and other modeling studies did not always confirm the study's finding. The objective of our study is to better understand the implications of different model structures and assumptions, so as to arrive at the best possible predictions of the long-term impact of UTT and the possibility of elimination of HIV. METHODS AND FINDINGS We developed nine structurally different mathematical models of the South African HIV epidemic in a stepwise approach of increasing complexity and realism. The simplest model resembles the initial deterministic model, while the most comprehensive model is the stochastic microsimulation model STDSIM, which includes sexual networks and HIV stages with different degrees of infectiousness. We defined UTT as annual screening and immediate ART for all HIV-infected adults, starting at 13% in January 2012 and scaled up to 90% coverage by January 2019. All models predict elimination, yet those that capture more processes underlying the HIV transmission dynamics predict elimination at a later point in time, after 20 to 25 y. Importantly, the most comprehensive model predicts that the current strategy of ART at CD4 count ≤350 cells/µl will also lead to elimination, albeit 10 y later compared to UTT. Still, UTT remains cost-effective, as many additional life-years would be saved. The study's major limitations are that elimination was defined as incidence below 1/1,000 person-years rather than 0% prevalence, and drug resistance was not modeled. CONCLUSIONS Our results confirm previous predictions that the HIV epidemic in South Africa can be eliminated through universal testing and immediate treatment at 90% coverage. However, more realistic models show that elimination is likely to occur at a much later point in time than the initial model suggested. Also, UTT is a cost-effective intervention, but less cost-effective than previously predicted because the current South African ART treatment policy alone could already drive HIV into elimination. Please see later in the article for the Editors' Summary.
Immune complex triggered cell death leads to extracellular release of nuclear DNA. We compared conscious and nonconscious processing of briefly flashed words using a visual masking procedure while recording intracranial electroencephalogram (iEEG) in ten patients. Nonconscious processing of masked words was observed in multiple cortical areas, mostly within an early time window (<300 ms), accompanied by induced gamma-band activity, but without coherent long-distance neural activity, suggesting a quickly dissipating feedforward wave. In contrast, conscious processing of unmasked words was characterized by the convergence of four distinct neurophysiological markers: sustained voltage changes, particularly in prefrontal cortex, large increases in spectral power in the gamma band, increases in long-distance phase synchrony in the beta range, and increases in long-range Granger causality. We argue that all of those measures provide distinct windows into the same distributed state of conscious processing. These results have a direct impact on current theoretical discussions concerning the neural correlates of conscious access. CONTEXT Although cerebral palsy (CP) among extremely premature infants has been reported as a major morbidity outcome, there are difficulties comparing published CP rates from many sites over various birth years. OBJECTIVE To assess the changes in population-based, gestational age-specific prevalence rates of CP among extremely premature infants over 30 years. DESIGN Prospective population-based longitudinal outcome study. SETTING AND PARTICIPANTS In Northern Alberta, 2318 infants 20 to 27 weeks' gestational age with birth weights of 500 to 1249 g were liveborn from 1974 through 2003. By 2 years of age, 1437 (62%) had died, 23 (1%) were lost to follow-up, and 858 (37%) had received multidisciplinary neurodevelopmental assessment. MAIN OUTCOME MEASURE Population-based prevalence rates of CP were determined. Logistic regression with linear spline was used to assess changes in CP prevalence over time. RESULTS At age 2 years, 122 (14.2%) of 858 survivors had CP. This diagnosis was confirmed for each child by age 3 years or older. Among those whose gestational age was 20 to 25 weeks, population-based survival increased from 4% to 31% (P<.001), while CP prevalence per 1000 live births increased monotonically from 0 to 110 until the years 1992-1994 (P<.001) and decreased thereafter to 22 in the years 2001-2003 (P<.001). Among those whose gestational age was 26 to 27 weeks, population-based survival increased from 23% to between 75% and 80% (P<.001), while CP prevalence per 1000 live births increased monotonically from 15 to 155 until the years 1992-1994 (P<.001) and then decreased to 16 in the years 2001-2003 (P<.001). For all survivors born in the years 2001-2003, CP prevalence was 19 per 1000 live births. CONCLUSION Population-based CP prevalence rates for children whose gestational age was 20 to 27 weeks and whose birth weight ranged from 500 to 1249 g show steady reductions in the last decade with stable or reducing mortality, reversing trends prior to 1992-1994. OBJECTIVE To evaluate the association of overall and specific headaches with volume of white matter hyperintensities, brain infarcts, and cognition. DESIGN Population based, cross sectional study. SETTING Epidemiology of Vascular Ageing study, Nantes, France. PARTICIPANTS 780 participants (mean age 69, 58.5% women) with detailed headache assessment. MAIN OUTCOME MEASURES Brain scans were evaluated for volume of white matter hyperintensities (by fully automated imaging processing) and for classification of infarcts (by visual reading with a standardised assessment grid). Cognitive function was assessed by a battery of tests including the mini-mental state examination. RESULTS 163 (20.9%) participants reported a history of severe headache and 116 had migraine, of whom 17 (14.7%) reported aura symptoms. An association was found between any history of severe headache and increasing volume of white matter hyperintensities. The adjusted odds ratio of being in the highest third for total volume of white matter hyperintensities was 2.0 (95% confidence interval 1.3 to 3.1, P for trend 0.002) for participants with any history of severe headache when compared with participants without severe headache being in the lowest third. The association pattern was similar for all headache types. Migraine with aura was the only headache type strongly associated with volume of deep white matter hyperintensities (highest third odds ratio 12.4, 1.6 to 99.4, P for trend 0.005) and with brain infarcts (3.4, 1.2 to 9.3). The location of infarcts was predominantly outside the cerebellum and brain stem. Evidence was lacking for cognitive impairment for any headache type with or without brain lesions. CONCLUSIONS In this population based study, any history of severe headache was associated with an increased volume of white matter hyperintensities. Migraine with aura was the only headache type associated with brain infarcts. Evidence that headache of any type by itself or in combination with brain lesions was associated with cognitive impairment was lacking. Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well. CONTEXT Dexamethasone is widely used to prevent postoperative nausea and vomiting (PONV) in pediatric tonsillectomy. OBJECTIVE To assess whether dexamethasone dose-dependently reduces the risk of PONV at 24 hours after tonsillectomy. DESIGN, SETTING, AND PATIENTS Randomized placebo-controlled trial conducted among 215 children undergoing elective tonsillectomy at a major public teaching hospital in Switzerland from February 2005 to December 2007. INTERVENTIONS Children were randomly assigned to receive dexamethasone (0.05, 0.15, or 0.5 mg/kg) or placebo intravenously after induction of anesthesia. Acetaminophen-codeine and ibuprofen were given as postoperative analgesia. Follow-up continued until the 10th postoperative day. MAIN OUTCOME MEASURES The primary end point was prevention of PONV at 24 hours; secondary end points were decrease in the need for ibuprofen at 24 hours and evaluation of adverse effects. RESULTS At 24 hours, 24 of 54 participants who received placebo (44%; 95% confidence interval [CI], 31%-59%) had experienced PONV compared with 20 of 53 (38%; 95% CI, 25%-52%), 13 of 54 (24%; 95% CI, 13%-38%), and 6 of 52 (12%; 95% CI, 4%-23%) who received dexamethasone at 0.05, 0.15, and 0.5 mg/kg, respectively (P<.001 for linear trend). Children who received dexamethasone received significantly less ibuprofen. There were 26 postoperative bleeding episodes in 22 children. Two of 53 (4%; 95% CI, 0.5%-13%) children who received placebo had bleeding compared with 6 of 53 (11%; 95% CI, 4%-23%), 2 of 51 (4%; 95% CI, 0.5%-13%), and 12 of 50 (24%; 95% CI, 13%-38%) who received dexamethasone at 0.05, 0.15, and 0.5 mg/kg, respectively (P = .003). Dexamethasone, 0.5 mg/kg, was associated with the highest bleeding risk (adjusted relative risk, 6.80; 95% CI, 1.77-16.5). Eight children had to undergo emergency reoperation because of bleeding, all of whom had received dexamethasone. The trial was stopped early for safety reasons. CONCLUSION In this study of children undergoing tonsillectomy, dexamethasone decreased the risk of PONV dose dependently but was associated with an increased risk of postoperative bleeding. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00403806. BACKGROUND Expanded access to antiretroviral therapy (ART) using universal test and treat (UTT) has been suggested as a strategy to eliminate HIV in South Africa within 7 y based on an influential mathematical modeling study. However, the underlying deterministic model was criticized widely, and other modeling studies did not always confirm the study's finding. The objective of our study is to better understand the implications of different model structures and assumptions, so as to arrive at the best possible predictions of the long-term impact of UTT and the possibility of elimination of HIV. METHODS AND FINDINGS We developed nine structurally different mathematical models of the South African HIV epidemic in a stepwise approach of increasing complexity and realism. The simplest model resembles the initial deterministic model, while the most comprehensive model is the stochastic microsimulation model STDSIM, which includes sexual networks and HIV stages with different degrees of infectiousness. We defined UTT as annual screening and immediate ART for all HIV-infected adults, starting at 13% in January 2012 and scaled up to 90% coverage by January 2019. All models predict elimination, yet those that capture more processes underlying the HIV transmission dynamics predict elimination at a later point in time, after 20 to 25 y. Importantly, the most comprehensive model predicts that the current strategy of ART at CD4 count ≤350 cells/µl will also lead to elimination, albeit 10 y later compared to UTT. Still, UTT remains cost-effective, as many additional life-years would be saved. The study's major limitations are that elimination was defined as incidence below 1/1,000 person-years rather than 0% prevalence, and drug resistance was not modeled. CONCLUSIONS Our results confirm previous predictions that the HIV epidemic in South Africa can be eliminated through universal testing and immediate treatment at 90% coverage. However, more realistic models show that elimination is likely to occur at a much later point in time than the initial model suggested. Also, UTT is a cost-effective intervention, but less cost-effective than previously predicted because the current South African ART treatment policy alone could already drive HIV into elimination. Please see later in the article for the Editors' Summary.
0
{ "query_id": "555", "original_query_id": "555", "context_doc_ids": [ "13901073", "17930286", "1797622", "1710116", "33257464", "23349986" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290603", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "33257464", "1797622", "1710116", "17930286", "23349986", "13901073" ], "comprehensive_gold_set_for_query": [ "1049501" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
555
aug_961
The composition of myosin-II isoform switches from the A isoform to the B isoform during hematopoietic differentiation. The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomologous end-joining (NHEJ) mechanisms. A high mutation rate is detected in HRR products in BCR/ABL-positive cells, but not in the normal counterparts. In addition, large deletions are found in NHEJ products exclusively in BCR/ABL cells. We propose that the following series of events may contribute to genomic instability of Ph-positive leukemias: BCR/ABL --> ROSs --> oxidative DNA damage --> DSBs in proliferating cells --> unfaithful HRR and NHEJ repair. Importance Although non–vitamin K antagonist oral anticoagulants (NOACs) are increasingly used to prevent thromboembolic disease, there are limited data on NOAC-related intracerebral hemorrhage (ICH). Objective To assess the association between preceding oral anticoagulant use (warfarin, NOACs, and no oral anticoagulants [OACs]) and in-hospital mortality among patients with ICH. Design, Setting, and Participants Retrospective cohort study of 141 311 patients with ICH admitted from October 2013 to December 2016 to 1662 Get With The Guidelines–Stroke hospitals. Exposures Anticoagulation therapy before ICH, defined as any use of OACs within 7 days prior to hospital arrival. Main Outcomes and Measures In-hospital mortality. Results Among 141 311 patients with ICH (mean [SD] age, 68.3 [15.3] years; 48.1% women), 15 036 (10.6%) were taking warfarin and 4918 (3.5%) were taking NOACs preceding ICH, and 39 585 (28.0%) and 5783 (4.1%) were taking concomitant single and dual antiplatelet agents, respectively. Patients with prior use of warfarin or NOACs were older and had higher prevalence of atrial fibrillation and prior stroke. Acute ICH stroke severity (measured by the National Institutes of Health Stroke Scale) was not significantly different across the 3 groups (median, 9 [interquartile range, 2-21] for warfarin, 8 [2-20] for NOACs, and 8 [2-19] for no OACs). The unadjusted in-hospital mortality rates were 32.6% for warfarin, 26.5% for NOACs, and 22.5% for no OACs. Compared with patients without prior use of OACs, the risk of in-hospital mortality was higher among patients with prior use of warfarin (adjusted risk difference [ARD], 9.0% [97.5% CI, 7.9% to 10.1%]; adjusted odds ratio [AOR], 1.62 [97.5% CI, 1.53 to 1.71]) and higher among patients with prior use of NOACs (ARD, 3.3% [97.5% CI, 1.7% to 4.8%]; AOR, 1.21 [97.5% CI, 1.11-1.32]). Compared with patients with prior use of warfarin, patients with prior use of NOACs had a lower risk of in-hospital mortality (ARD, −5.7% [97.5% CI, −7.3% to −4.2%]; AOR, 0.75 [97.5% CI, 0.69 to 0.81]). The difference in mortality between NOAC-treated patients and warfarin-treated patients was numerically greater among patients with prior use of dual antiplatelet agents (32.7% vs 47.1%; ARD, −15.0% [95.5% CI, −26.3% to −3.8%]; AOR, 0.50 [97.5% CI, 0.29 to 0.86]) than among those taking these agents without prior antiplatelet therapy (26.4% vs 31.7%; ARD, −5.0% [97.5% CI, −6.8% to −3.2%]; AOR, 0.77 [97.5% CI, 0.70 to 0.85]), although the interaction P value (.07) was not statistically significant. Conclusions and Relevance Among patients with ICH, prior use of NOACs or warfarin was associated with higher in-hospital mortality compared with no OACs. Prior use of NOACs, compared with prior use of warfarin, was associated with lower risk of in-hospital mortality. CONTEXT Recent animal studies have found that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) lipid-lowering drugs (statins) substantially increase bone formation, but whether statin use in humans results in clinically meaningful bone formation or a reduction in the risk of osteoporotic fractures is not known. OBJECTIVE To determine whether the use of statins is associated with reduced hip fracture risk. DESIGN Case-control study. SETTING AND PATIENTS A total of 6110 New Jersey residents aged 65 years or older and enrolled in Medicare and either Medicaid or the Pharmacy Assistance for the Aged and Disabled program. Case patients (n=1222) underwent surgical repair of a hip fracture in 1994. Control patients (n=4888) were identified at a ratio of 4:1 and frequency-matched to case patients for age and sex. MAIN OUTCOME MEASURE Adjusted odds ratio (OR) of hip fracture by statin use in the 180 days and 3 years prior to the index date (the earliest date of admission for surgery), adjusted for demographic and clinical characteristics and health care utilization. RESULTS Use of statins in either the prior 180 days (adjusted OR, 0.50; 95% confidence interval [CI], 0.33-0.76) or prior 3 years (adjusted OR, 0.57; 95% CI, 0.40-0.82) was associated with a significant reduction in the risk of hip fracture, even after controlling for variables such as race, insurance status, psychoactive medications, estrogen and thiazide use, ischemic heart disease, cancer, and diabetes mellitus. No significant relationship was observed between use of nonstatin lipid-lowering agents and hip fracture risk. Clear relationships were observed between the degree of reduction in hip fracture risk and the extent of statin use; there was no evidence of such relationships with nonstatin lipid-lowering agents. After adjusting for extent of statin use in the prior 3 years, current use (on the index date) was associated with a 71% reduction in risk (adjusted OR, 0.29; 95% CI, 0.10-0.81). The relationship between statin use and hip fracture risk persisted after controlling for variables such as the number of medications, the Charlson comorbidity index score, and hospitalization or nursing home stay in the last 180 days, as well as after excluding patients who were in a nursing home prior to their index date or who died in the year after their index date. Use of nonstatin lipid-lowering agents was not observed to be associated with reduction in hip fracture risk in any of these alternative models or analyses. CONCLUSIONS These findings support an association between statin use by elderly patients and reduction in the risk of hip fracture. Controlled trials are needed to exclude the possibility of unmeasured confounders. JAMA. 2000;283:3211-3216 Self-renewal and differentiation of stem cells depend on asymmetric division and polarized motility processes that in other cell types are modulated by nonmuscle myosin-II (MII) forces and matrix mechanics. Here, mass spectrometry-calibrated intracellular flow cytometry of human hematopoiesis reveals MIIB to be a major isoform that is strongly polarized in hematopoietic stem cells and progenitors (HSC/Ps) and thereby downregulated in differentiated cells via asymmetric division. MIIA is constitutive and activated by dephosphorylation during cytokine-triggered differentiation of cells grown on stiff, endosteum-like matrix, but not soft, marrow-like matrix. In vivo, MIIB is required for generation of blood, while MIIA is required for sustained HSC/P engraftment. Reversible inhibition of both isoforms in culture with blebbistatin enriches for long-term hematopoietic multilineage reconstituting cells by 5-fold or more as assessed in vivo. Megakaryocytes also become more polyploid, producing 4-fold more platelets. MII is thus a multifunctional node in polarized division and niche sensing. Human tumors show a high level of genetic heterogeneity, but the processes that influence the timing and route of metastatic dissemination of the subclones are unknown. Here we have used whole-exome sequencing of 103 matched benign, malignant and metastatic skin tumors from genetically heterogeneous mice to demonstrate that most metastases disseminate synchronously from the primary tumor, supporting parallel rather than linear evolution as the predominant model of metastasis. Shared mutations between primary carcinomas and their matched metastases have the distinct A-to-T signature of the initiating carcinogen dimethylbenzanthracene, but non-shared mutations are primarily G-to-T, a signature associated with oxidative stress. The existence of carcinomas that either did or did not metastasize in the same host animal suggests that there are tumor-intrinsic factors that influence metastatic seeding. We also demonstrate the importance of germline polymorphisms in determining allele-specific mutations, and we identify somatic genetic alterations that are specifically related to initiation of carcinogenesis by Hras or Kras mutations. Mouse tumors that mimic the genetic heterogeneity of human cancers can aid our understanding of the clonal evolution of metastasis and provide a realistic model for the testing of novel therapies.
The composition of myosin-II isoform switches from the A isoform to the B isoform during hematopoietic differentiation. The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomologous end-joining (NHEJ) mechanisms. A high mutation rate is detected in HRR products in BCR/ABL-positive cells, but not in the normal counterparts. In addition, large deletions are found in NHEJ products exclusively in BCR/ABL cells. We propose that the following series of events may contribute to genomic instability of Ph-positive leukemias: BCR/ABL --> ROSs --> oxidative DNA damage --> DSBs in proliferating cells --> unfaithful HRR and NHEJ repair. Importance Although non–vitamin K antagonist oral anticoagulants (NOACs) are increasingly used to prevent thromboembolic disease, there are limited data on NOAC-related intracerebral hemorrhage (ICH). Objective To assess the association between preceding oral anticoagulant use (warfarin, NOACs, and no oral anticoagulants [OACs]) and in-hospital mortality among patients with ICH. Design, Setting, and Participants Retrospective cohort study of 141 311 patients with ICH admitted from October 2013 to December 2016 to 1662 Get With The Guidelines–Stroke hospitals. Exposures Anticoagulation therapy before ICH, defined as any use of OACs within 7 days prior to hospital arrival. Main Outcomes and Measures In-hospital mortality. Results Among 141 311 patients with ICH (mean [SD] age, 68.3 [15.3] years; 48.1% women), 15 036 (10.6%) were taking warfarin and 4918 (3.5%) were taking NOACs preceding ICH, and 39 585 (28.0%) and 5783 (4.1%) were taking concomitant single and dual antiplatelet agents, respectively. Patients with prior use of warfarin or NOACs were older and had higher prevalence of atrial fibrillation and prior stroke. Acute ICH stroke severity (measured by the National Institutes of Health Stroke Scale) was not significantly different across the 3 groups (median, 9 [interquartile range, 2-21] for warfarin, 8 [2-20] for NOACs, and 8 [2-19] for no OACs). The unadjusted in-hospital mortality rates were 32.6% for warfarin, 26.5% for NOACs, and 22.5% for no OACs. Compared with patients without prior use of OACs, the risk of in-hospital mortality was higher among patients with prior use of warfarin (adjusted risk difference [ARD], 9.0% [97.5% CI, 7.9% to 10.1%]; adjusted odds ratio [AOR], 1.62 [97.5% CI, 1.53 to 1.71]) and higher among patients with prior use of NOACs (ARD, 3.3% [97.5% CI, 1.7% to 4.8%]; AOR, 1.21 [97.5% CI, 1.11-1.32]). Compared with patients with prior use of warfarin, patients with prior use of NOACs had a lower risk of in-hospital mortality (ARD, −5.7% [97.5% CI, −7.3% to −4.2%]; AOR, 0.75 [97.5% CI, 0.69 to 0.81]). The difference in mortality between NOAC-treated patients and warfarin-treated patients was numerically greater among patients with prior use of dual antiplatelet agents (32.7% vs 47.1%; ARD, −15.0% [95.5% CI, −26.3% to −3.8%]; AOR, 0.50 [97.5% CI, 0.29 to 0.86]) than among those taking these agents without prior antiplatelet therapy (26.4% vs 31.7%; ARD, −5.0% [97.5% CI, −6.8% to −3.2%]; AOR, 0.77 [97.5% CI, 0.70 to 0.85]), although the interaction P value (.07) was not statistically significant. Conclusions and Relevance Among patients with ICH, prior use of NOACs or warfarin was associated with higher in-hospital mortality compared with no OACs. Prior use of NOACs, compared with prior use of warfarin, was associated with lower risk of in-hospital mortality. CONTEXT Recent animal studies have found that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) lipid-lowering drugs (statins) substantially increase bone formation, but whether statin use in humans results in clinically meaningful bone formation or a reduction in the risk of osteoporotic fractures is not known. OBJECTIVE To determine whether the use of statins is associated with reduced hip fracture risk. DESIGN Case-control study. SETTING AND PATIENTS A total of 6110 New Jersey residents aged 65 years or older and enrolled in Medicare and either Medicaid or the Pharmacy Assistance for the Aged and Disabled program. Case patients (n=1222) underwent surgical repair of a hip fracture in 1994. Control patients (n=4888) were identified at a ratio of 4:1 and frequency-matched to case patients for age and sex. MAIN OUTCOME MEASURE Adjusted odds ratio (OR) of hip fracture by statin use in the 180 days and 3 years prior to the index date (the earliest date of admission for surgery), adjusted for demographic and clinical characteristics and health care utilization. RESULTS Use of statins in either the prior 180 days (adjusted OR, 0.50; 95% confidence interval [CI], 0.33-0.76) or prior 3 years (adjusted OR, 0.57; 95% CI, 0.40-0.82) was associated with a significant reduction in the risk of hip fracture, even after controlling for variables such as race, insurance status, psychoactive medications, estrogen and thiazide use, ischemic heart disease, cancer, and diabetes mellitus. No significant relationship was observed between use of nonstatin lipid-lowering agents and hip fracture risk. Clear relationships were observed between the degree of reduction in hip fracture risk and the extent of statin use; there was no evidence of such relationships with nonstatin lipid-lowering agents. After adjusting for extent of statin use in the prior 3 years, current use (on the index date) was associated with a 71% reduction in risk (adjusted OR, 0.29; 95% CI, 0.10-0.81). The relationship between statin use and hip fracture risk persisted after controlling for variables such as the number of medications, the Charlson comorbidity index score, and hospitalization or nursing home stay in the last 180 days, as well as after excluding patients who were in a nursing home prior to their index date or who died in the year after their index date. Use of nonstatin lipid-lowering agents was not observed to be associated with reduction in hip fracture risk in any of these alternative models or analyses. CONCLUSIONS These findings support an association between statin use by elderly patients and reduction in the risk of hip fracture. Controlled trials are needed to exclude the possibility of unmeasured confounders. JAMA. 2000;283:3211-3216 Self-renewal and differentiation of stem cells depend on asymmetric division and polarized motility processes that in other cell types are modulated by nonmuscle myosin-II (MII) forces and matrix mechanics. Here, mass spectrometry-calibrated intracellular flow cytometry of human hematopoiesis reveals MIIB to be a major isoform that is strongly polarized in hematopoietic stem cells and progenitors (HSC/Ps) and thereby downregulated in differentiated cells via asymmetric division. MIIA is constitutive and activated by dephosphorylation during cytokine-triggered differentiation of cells grown on stiff, endosteum-like matrix, but not soft, marrow-like matrix. In vivo, MIIB is required for generation of blood, while MIIA is required for sustained HSC/P engraftment. Reversible inhibition of both isoforms in culture with blebbistatin enriches for long-term hematopoietic multilineage reconstituting cells by 5-fold or more as assessed in vivo. Megakaryocytes also become more polyploid, producing 4-fold more platelets. MII is thus a multifunctional node in polarized division and niche sensing. Human tumors show a high level of genetic heterogeneity, but the processes that influence the timing and route of metastatic dissemination of the subclones are unknown. Here we have used whole-exome sequencing of 103 matched benign, malignant and metastatic skin tumors from genetically heterogeneous mice to demonstrate that most metastases disseminate synchronously from the primary tumor, supporting parallel rather than linear evolution as the predominant model of metastasis. Shared mutations between primary carcinomas and their matched metastases have the distinct A-to-T signature of the initiating carcinogen dimethylbenzanthracene, but non-shared mutations are primarily G-to-T, a signature associated with oxidative stress. The existence of carcinomas that either did or did not metastasize in the same host animal suggests that there are tumor-intrinsic factors that influence metastatic seeding. We also demonstrate the importance of germline polymorphisms in determining allele-specific mutations, and we identify somatic genetic alterations that are specifically related to initiation of carcinogenesis by Hras or Kras mutations. Mouse tumors that mimic the genetic heterogeneity of human cancers can aid our understanding of the clonal evolution of metastasis and provide a realistic model for the testing of novel therapies.
0.333333
{ "query_id": "1206", "original_query_id": "1206", "context_doc_ids": [ "4687948", "3898784", "13023410", "19736671", "18909530" ], "gold_doc_ids_in_context": [ "18909530" ], "total_gold_docs_for_query": 1, "context_f1": 0.33333333333333337, "context_size": 5, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290734", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "18909530" ], "negative_samples_considered": [ "4687948", "3898784", "19736671", "13023410" ], "comprehensive_gold_set_for_query": [ "18909530" ], "target_max_context_size_config": 6, "actual_context_size": 5, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1206
aug_962
GATA3 regulates self-renewal capacity in bone marrow hematopoietic stem cells. Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin(-)Sca1(+)c-Kit(hi)CD150(+)CD48(-)) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well documented that GATA-3 is expressed in HSCs, a role for GATA-3 in any prethymic progenitor cell has not been established. In the present study, we show that Gata3-null mutant mice generate fewer LT-HSCs and that fewer Gata3-null LT-HSCs are in cycle. Furthermore, Gata3 mutant hematopoietic progenitor cells fail to be recruited into an increased cycling state after 5-fluorouracil-induced myelosuppression. Therefore, GATA-3 is required for the maintenance of a normal number of LT-HSCs and for their entry into the cell cycle.
GATA3 regulates self-renewal capacity in bone marrow hematopoietic stem cells. Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin(-)Sca1(+)c-Kit(hi)CD150(+)CD48(-)) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well documented that GATA-3 is expressed in HSCs, a role for GATA-3 in any prethymic progenitor cell has not been established. In the present study, we show that Gata3-null mutant mice generate fewer LT-HSCs and that fewer Gata3-null LT-HSCs are in cycle. Furthermore, Gata3 mutant hematopoietic progenitor cells fail to be recruited into an increased cycling state after 5-fluorouracil-induced myelosuppression. Therefore, GATA-3 is required for the maintenance of a normal number of LT-HSCs and for their entry into the cell cycle.
1
{ "query_id": "445", "original_query_id": "445", "context_doc_ids": [ "10165258" ], "gold_doc_ids_in_context": [ "10165258" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290814", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "10165258" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "10165258" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
445
aug_963
Cell autonomous sex determination in somatic cells occurs in Galliformes. CONTEXT In patients with brain metastases, it is unclear whether adding up-front whole-brain radiation therapy (WBRT) to stereotactic radiosurgery (SRS) has beneficial effects on mortality or neurologic function compared with SRS alone. OBJECTIVE To determine if WBRT combined with SRS results in improvements in survival, brain tumor control, functional preservation rate, and frequency of neurologic death. DESIGN, SETTING, AND PATIENTS Randomized controlled trial of 132 patients with 1 to 4 brain metastases, each less than 3 cm in diameter, enrolled at 11 hospitals in Japan between October 1999 and December 2003. INTERVENTIONS Patients were randomly assigned to receive WBRT plus SRS (65 patients) or SRS alone (67 patients). MAIN OUTCOME MEASURES The primary end point was overall survival; secondary end points were brain tumor recurrence, salvage brain treatment, functional preservation, toxic effects of radiation, and cause of death. RESULTS The median survival time and the 1-year actuarial survival rate were 7.5 months and 38.5% (95% confidence interval, 26.7%-50.3%) in the WBRT + SRS group and 8.0 months and 28.4% (95% confidence interval, 17.6%-39.2%) for SRS alone (P = .42). The 12-month brain tumor recurrence rate was 46.8% in the WBRT + SRS group and 76.4% for SRS alone group (P<.001). Salvage brain treatment was less frequently required in the WBRT + SRS group (n = 10) than with SRS alone (n = 29) (P<.001). Death was attributed to neurologic causes in 22.8% of patients in the WBRT + SRS group and in 19.3% of those treated with SRS alone (P = .64). There were no significant differences in systemic and neurologic functional preservation and toxic effects of radiation. CONCLUSIONS Compared with SRS alone, the use of WBRT plus SRS did not improve survival for patients with 1 to 4 brain metastases, but intracranial relapse occurred considerably more frequently in those who did not receive WBRT. Consequently, salvage treatment is frequently required when up-front WBRT is not used. TRIAL REGISTRATION umin.ac.jp/ctr Identifier: C000000412. OBJECTIVES To investigate the association between antidepressant treatment and risk of several potential adverse outcomes in older people with depression and to examine risks by class of antidepressant, duration of use, and dose. DESIGN Cohort study of people aged 65 and over diagnosed as having depression. SETTING 570 general practices in the United Kingdom supplying data to the QResearch primary care database. PARTICIPANTS 60,746 patients diagnosed as having a new episode of depression between the ages of 65 and 100 years from 1 January 1996 to 31 December 2007 and followed up until 31 December 2008. MAIN OUTCOME MEASURES Hazard ratios associated with antidepressant use for all cause mortality, attempted suicide/self harm, myocardial infarction, stroke/transient ischaemic attack, falls, fractures, upper gastrointestinal bleeding, epilepsy/seizures, road traffic accidents, adverse drug reactions, and hyponatraemia, adjusted for a range of potential confounding variables. Hazard ratios were calculated for antidepressant class (tricyclic and related antidepressants, selective serotonin reuptake inhibitors, other antidepressants), dose, and duration of use and for commonly prescribed individual drugs. RESULTS 54,038 (89.0%) patients received at least one prescription for an antidepressant during follow-up. A total of 1,398,359 antidepressant prescriptions were issued: 764,659 (54.7%) for selective serotonin reuptake inhibitors, 442,192 (31.6%) for tricyclic antidepressants, 2203 (0.2%) for monoamine oxidase inhibitors, and 189,305 (13.5%) for the group of other antidepressants. The associations with the adverse outcomes differed significantly between the antidepressant classes for seven outcomes. Selective serotonin reuptake inhibitors were associated with the highest adjusted hazard ratios for falls (1.66, 95% confidence interval 1.58 to 1.73) and hyponatraemia (1.52, 1.33 to 1.75) compared with when antidepressants were not being used. The group of other antidepressants was associated with the highest adjusted hazard ratios for all cause mortality (1.66, 1.56 to 1.77), attempted suicide/self harm (5.16, 3.90 to 6.83), stroke/transient ischaemic attack (1.37, 1.22 to 1.55), fracture (1.64, 1.46 to 1.84), and epilepsy/seizures (2.24, 1.60 to 3.15), compared with when antidepressants were not being used. Tricyclic antidepressants did not have the highest hazard ratio for any of the outcomes. Significantly different associations also existed between the individual drugs for the same seven outcomes; trazodone (tricyclic antidepressant), mirtazapine, and venlafaxine (both in the group of other antidepressants) were associated with the highest rates for some of these outcomes. Absolute risks over 1 year for all cause mortality were 7.04% for patients while not taking antidepressants, 8.12% for those taking tricyclic antidepressants, 10.61% for selective serotonin reuptake inhibitors, and 11.43% for other antidepressants. CONCLUSIONS Selective serotonin reuptake inhibitors and drugs in the group of other antidepressants were associated with an increased risk of several adverse outcomes compared with tricyclic antidepressants. Among individual drugs, trazodone, mirtazapine, and venlafaxine were associated with the highest risks for some outcomes. As this is an observational study, it is susceptible to confounding by indication, channelling bias, and residual confounding, so differences in characteristics between patients prescribed different antidepressant drugs that could account for some of the associations between the drugs and the adverse outcomes may remain. Further research is needed to confirm these findings, but the risks and benefits of different antidepressants should be carefully evaluated when these drugs are prescribed to older people. Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case–control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10−5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10−4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10−9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification. Somatic cell nuclear transfer (SCNT) technology has recently been used to generate animals with a common genetic composition. In this study, we report the derivation of a pluripotent embryonic stem (ES) cell line (SCNT-hES-1) from a cloned human blastocyst. The SCNT-hES-1 cells displayed typical ES cell morphology and cell surface markers and were capable of differentiating into embryoid bodies in vitro and of forming teratomas in vivo containing cell derivatives from all three embryonic germ layers in severe combined immunodeficient mice. After continuous proliferation for more than 70 passages, SCNT-hES-1 cells maintained normal karyotypes and were genetically identical to the somatic nuclear donor cells. Although we cannot completely exclude the possibility that the cells had a parthenogenetic origin, imprinting analyses support a SCNT origin of the derived human ES cells. Plasmodium falciparum malaria, an infectious disease caused by a parasitic protozoan, claims the lives of nearly a million children each year in Africa alone and is a top public health concern. Evidence is accumulating that resistance to artemisinin derivatives, the frontline therapy for the asexual blood stage of the infection, is developing in southeast Asia. Renewed initiatives to eliminate malaria will benefit from an expanded repertoire of antimalarials, including new drugs that kill circulating P. falciparum gametocytes, thereby preventing transmission. Our current understanding of the biology of asexual blood-stage parasites and gametocytes and the ability to culture them in vitro lends optimism that high-throughput screenings of large chemical libraries will produce a new generation of antimalarial drugs. There is also a need for new therapies to reduce the high mortality of severe malaria. An understanding of the pathophysiology of severe disease may identify rational targets for drugs that improve survival. OBJECTIVE To determine whether individual fruits are differentially associated with risk of type 2 diabetes. DESIGN Prospective longitudinal cohort study. SETTING Health professionals in the United States. PARTICIPANTS 66,105 women from the Nurses' Health Study (1984-2008), 85,104 women from the Nurses' Health Study II (1991-2009), and 36,173 men from the Health Professionals Follow-up Study (1986-2008) who were free of major chronic diseases at baseline in these studies. MAIN OUTCOME MEASURE Incident cases of type 2 diabetes, identified through self report and confirmed by supplementary questionnaires. RESULTS During 3,464,641 person years of follow-up, 12,198 participants developed type 2 diabetes. After adjustment for personal, lifestyle, and dietary risk factors of diabetes, the pooled hazard ratio of type 2 diabetes for every three servings/week of total whole fruit consumption was 0.98 (95% confidence interval 0.97 [corrected] to 0.99). With mutual adjustment of individual fruits, the pooled hazard ratios of type 2 diabetes for every three servings/week were 0.74 (0.66 to 0.83) for blueberries, 0.88 (0.83 to 0.93) for grapes and raisins, 0.89 (0.79 to 1.01) for prunes, 0.93 (0.90 to 0.96) for apples and pears, 0.95 (0.91 to 0.98) for bananas, 0.95 (0.91 to 0.99) for grapefruit, 0.97 (0.92 to 1.02) for peaches, plums, and apricots, 0.99 (0.95 to 1.03) for oranges, 1.03 (0.96 to 1.10) for strawberries, and 1.10 (1.02 to 1.18) for cantaloupe. The pooled hazard ratio for the same increment in fruit juice consumption was 1.08 (1.05 to 1.11). The associations with risk of type 2 diabetes differed significantly among individual fruits (P<0.001 in all cohorts). CONCLUSION Our findings suggest the presence of heterogeneity in the associations between individual fruit consumption and risk of type 2 diabetes. Greater consumption of specific whole fruits, particularly blueberries, grapes, and apples, is significantly associated with a lower risk of type 2 diabetes, whereas greater consumption of fruit juice is associated with a higher risk.
Cell autonomous sex determination in somatic cells occurs in Galliformes. CONTEXT In patients with brain metastases, it is unclear whether adding up-front whole-brain radiation therapy (WBRT) to stereotactic radiosurgery (SRS) has beneficial effects on mortality or neurologic function compared with SRS alone. OBJECTIVE To determine if WBRT combined with SRS results in improvements in survival, brain tumor control, functional preservation rate, and frequency of neurologic death. DESIGN, SETTING, AND PATIENTS Randomized controlled trial of 132 patients with 1 to 4 brain metastases, each less than 3 cm in diameter, enrolled at 11 hospitals in Japan between October 1999 and December 2003. INTERVENTIONS Patients were randomly assigned to receive WBRT plus SRS (65 patients) or SRS alone (67 patients). MAIN OUTCOME MEASURES The primary end point was overall survival; secondary end points were brain tumor recurrence, salvage brain treatment, functional preservation, toxic effects of radiation, and cause of death. RESULTS The median survival time and the 1-year actuarial survival rate were 7.5 months and 38.5% (95% confidence interval, 26.7%-50.3%) in the WBRT + SRS group and 8.0 months and 28.4% (95% confidence interval, 17.6%-39.2%) for SRS alone (P = .42). The 12-month brain tumor recurrence rate was 46.8% in the WBRT + SRS group and 76.4% for SRS alone group (P<.001). Salvage brain treatment was less frequently required in the WBRT + SRS group (n = 10) than with SRS alone (n = 29) (P<.001). Death was attributed to neurologic causes in 22.8% of patients in the WBRT + SRS group and in 19.3% of those treated with SRS alone (P = .64). There were no significant differences in systemic and neurologic functional preservation and toxic effects of radiation. CONCLUSIONS Compared with SRS alone, the use of WBRT plus SRS did not improve survival for patients with 1 to 4 brain metastases, but intracranial relapse occurred considerably more frequently in those who did not receive WBRT. Consequently, salvage treatment is frequently required when up-front WBRT is not used. TRIAL REGISTRATION umin.ac.jp/ctr Identifier: C000000412. OBJECTIVES To investigate the association between antidepressant treatment and risk of several potential adverse outcomes in older people with depression and to examine risks by class of antidepressant, duration of use, and dose. DESIGN Cohort study of people aged 65 and over diagnosed as having depression. SETTING 570 general practices in the United Kingdom supplying data to the QResearch primary care database. PARTICIPANTS 60,746 patients diagnosed as having a new episode of depression between the ages of 65 and 100 years from 1 January 1996 to 31 December 2007 and followed up until 31 December 2008. MAIN OUTCOME MEASURES Hazard ratios associated with antidepressant use for all cause mortality, attempted suicide/self harm, myocardial infarction, stroke/transient ischaemic attack, falls, fractures, upper gastrointestinal bleeding, epilepsy/seizures, road traffic accidents, adverse drug reactions, and hyponatraemia, adjusted for a range of potential confounding variables. Hazard ratios were calculated for antidepressant class (tricyclic and related antidepressants, selective serotonin reuptake inhibitors, other antidepressants), dose, and duration of use and for commonly prescribed individual drugs. RESULTS 54,038 (89.0%) patients received at least one prescription for an antidepressant during follow-up. A total of 1,398,359 antidepressant prescriptions were issued: 764,659 (54.7%) for selective serotonin reuptake inhibitors, 442,192 (31.6%) for tricyclic antidepressants, 2203 (0.2%) for monoamine oxidase inhibitors, and 189,305 (13.5%) for the group of other antidepressants. The associations with the adverse outcomes differed significantly between the antidepressant classes for seven outcomes. Selective serotonin reuptake inhibitors were associated with the highest adjusted hazard ratios for falls (1.66, 95% confidence interval 1.58 to 1.73) and hyponatraemia (1.52, 1.33 to 1.75) compared with when antidepressants were not being used. The group of other antidepressants was associated with the highest adjusted hazard ratios for all cause mortality (1.66, 1.56 to 1.77), attempted suicide/self harm (5.16, 3.90 to 6.83), stroke/transient ischaemic attack (1.37, 1.22 to 1.55), fracture (1.64, 1.46 to 1.84), and epilepsy/seizures (2.24, 1.60 to 3.15), compared with when antidepressants were not being used. Tricyclic antidepressants did not have the highest hazard ratio for any of the outcomes. Significantly different associations also existed between the individual drugs for the same seven outcomes; trazodone (tricyclic antidepressant), mirtazapine, and venlafaxine (both in the group of other antidepressants) were associated with the highest rates for some of these outcomes. Absolute risks over 1 year for all cause mortality were 7.04% for patients while not taking antidepressants, 8.12% for those taking tricyclic antidepressants, 10.61% for selective serotonin reuptake inhibitors, and 11.43% for other antidepressants. CONCLUSIONS Selective serotonin reuptake inhibitors and drugs in the group of other antidepressants were associated with an increased risk of several adverse outcomes compared with tricyclic antidepressants. Among individual drugs, trazodone, mirtazapine, and venlafaxine were associated with the highest risks for some outcomes. As this is an observational study, it is susceptible to confounding by indication, channelling bias, and residual confounding, so differences in characteristics between patients prescribed different antidepressant drugs that could account for some of the associations between the drugs and the adverse outcomes may remain. Further research is needed to confirm these findings, but the risks and benefits of different antidepressants should be carefully evaluated when these drugs are prescribed to older people. Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case–control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10−5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10−4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10−9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification. Somatic cell nuclear transfer (SCNT) technology has recently been used to generate animals with a common genetic composition. In this study, we report the derivation of a pluripotent embryonic stem (ES) cell line (SCNT-hES-1) from a cloned human blastocyst. The SCNT-hES-1 cells displayed typical ES cell morphology and cell surface markers and were capable of differentiating into embryoid bodies in vitro and of forming teratomas in vivo containing cell derivatives from all three embryonic germ layers in severe combined immunodeficient mice. After continuous proliferation for more than 70 passages, SCNT-hES-1 cells maintained normal karyotypes and were genetically identical to the somatic nuclear donor cells. Although we cannot completely exclude the possibility that the cells had a parthenogenetic origin, imprinting analyses support a SCNT origin of the derived human ES cells. Plasmodium falciparum malaria, an infectious disease caused by a parasitic protozoan, claims the lives of nearly a million children each year in Africa alone and is a top public health concern. Evidence is accumulating that resistance to artemisinin derivatives, the frontline therapy for the asexual blood stage of the infection, is developing in southeast Asia. Renewed initiatives to eliminate malaria will benefit from an expanded repertoire of antimalarials, including new drugs that kill circulating P. falciparum gametocytes, thereby preventing transmission. Our current understanding of the biology of asexual blood-stage parasites and gametocytes and the ability to culture them in vitro lends optimism that high-throughput screenings of large chemical libraries will produce a new generation of antimalarial drugs. There is also a need for new therapies to reduce the high mortality of severe malaria. An understanding of the pathophysiology of severe disease may identify rational targets for drugs that improve survival. OBJECTIVE To determine whether individual fruits are differentially associated with risk of type 2 diabetes. DESIGN Prospective longitudinal cohort study. SETTING Health professionals in the United States. PARTICIPANTS 66,105 women from the Nurses' Health Study (1984-2008), 85,104 women from the Nurses' Health Study II (1991-2009), and 36,173 men from the Health Professionals Follow-up Study (1986-2008) who were free of major chronic diseases at baseline in these studies. MAIN OUTCOME MEASURE Incident cases of type 2 diabetes, identified through self report and confirmed by supplementary questionnaires. RESULTS During 3,464,641 person years of follow-up, 12,198 participants developed type 2 diabetes. After adjustment for personal, lifestyle, and dietary risk factors of diabetes, the pooled hazard ratio of type 2 diabetes for every three servings/week of total whole fruit consumption was 0.98 (95% confidence interval 0.97 [corrected] to 0.99). With mutual adjustment of individual fruits, the pooled hazard ratios of type 2 diabetes for every three servings/week were 0.74 (0.66 to 0.83) for blueberries, 0.88 (0.83 to 0.93) for grapes and raisins, 0.89 (0.79 to 1.01) for prunes, 0.93 (0.90 to 0.96) for apples and pears, 0.95 (0.91 to 0.98) for bananas, 0.95 (0.91 to 0.99) for grapefruit, 0.97 (0.92 to 1.02) for peaches, plums, and apricots, 0.99 (0.95 to 1.03) for oranges, 1.03 (0.96 to 1.10) for strawberries, and 1.10 (1.02 to 1.18) for cantaloupe. The pooled hazard ratio for the same increment in fruit juice consumption was 1.08 (1.05 to 1.11). The associations with risk of type 2 diabetes differed significantly among individual fruits (P<0.001 in all cohorts). CONCLUSION Our findings suggest the presence of heterogeneity in the associations between individual fruit consumption and risk of type 2 diabetes. Greater consumption of specific whole fruits, particularly blueberries, grapes, and apples, is significantly associated with a lower risk of type 2 diabetes, whereas greater consumption of fruit juice is associated with a higher risk.
0
{ "query_id": "235", "original_query_id": "235", "context_doc_ids": [ "3944632", "10546779", "4414547", "5691302", "1974176", "6503185" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290837", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "3944632", "6503185", "1974176", "5691302", "10546779", "4414547" ], "comprehensive_gold_set_for_query": [ "4388470" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
235
aug_964
A single nucleotide variant the gene DGKK is strongly associated with increased risk of hypospadias. Blind individuals often demonstrate enhanced nonvisual perceptual abilities. However, the neural substrate that underlies this improved performance remains to be fully understood. An earlier behavioral study demonstrated that some early-blind people localize sounds more accurately than sighted controls using monaural cues. In order to investigate the neural basis of these behavioral differences in humans, we carried out functional imaging studies using positron emission tomography and a speaker array that permitted pseudo-free-field presentations within the scanner. During binaural sound localization, a sighted control group showed decreased cerebral blood flow in the occipital lobe, which was not seen in early-blind individuals. During monaural sound localization (one ear plugged), the subgroup of early-blind subjects who were behaviorally superior at sound localization displayed two activation foci in the occipital cortex. This effect was not seen in blind persons who did not have superior monaural sound localization abilities, nor in sighted individuals. The degree of activation of one of these foci was strongly correlated with sound localization accuracy across the entire group of blind subjects. The results show that those blind persons who perform better than sighted persons recruit occipital areas to carry out auditory localization under monaural conditions. We therefore conclude that computations carried out in the occipital cortex specifically underlie the enhanced capacity to use monaural cues. Our findings shed light not only on intermodal compensatory mechanisms, but also on individual differences in these mechanisms and on inhibitory patterns that differ between sighted individuals and those deprived of vision early in life. The only proven requirement for ascorbic acid (vitamin C) is in preventing scurvy, presumably because it is a cofactor for hydroxylases required for post-translational modifications that stabilize collagen. We have created mice deficient in the mouse ortholog (solute carrier family 23 member 1 or Slc23a1) of a rat ascorbic-acid transporter, Svct2 (ref. 4). Cultured embryonic fibroblasts from homozygous Slc23a1−/− mice had less than 5% of normal ascorbic-acid uptake. Ascorbic-acid levels were undetectable or markedly reduced in the blood and tissues of Slc23a1−/− mice. Prenatal supplementation of pregnant females did not elevate blood ascorbic acid in Slc23a1−/− fetuses, suggesting Slc23a1 is important in placental ascorbic-acid transport. Slc23a1−/− mice died within a few minutes of birth with respiratory failure and intraparenchymal brain hemorrhage. Lungs showed no postnatal expansion but had normal surfactant protein B levels. Brain hemorrhage was unlikely to be simply a form of scurvy since Slc23a1−/− mice showed no hemorrhage in any other tissues and their skin had normal skin 4-hydroxyproline levels despite low ascorbic-acid content. We conclude that Slc23a1 is required for transport of ascorbic acid into many tissues and across the placenta. Deficiency of the transporter is lethal in newborn mice, thereby revealing a previously unrecognized requirement for ascorbic acid in the perinatal period. The early events leading to the development of rheumatoid arthritis (RA) remain unclear, but formation of autoantibodies to citrullinated protein antigens (ACPAs) is considered a key pathogenic event. Neutrophils isolated from patients with various autoimmune diseases display enhanced neutrophil extracellular trap (NET) formation, a phenomenon that exposes autoantigens in the context of immunostimulatory molecules. We investigated whether aberrant NETosis occurs in RA, determined its triggers, and examined its deleterious inflammatory consequences. Enhanced NETosis was observed in circulating and RA synovial fluid neutrophils compared to neutrophils from healthy controls and from patients with osteoarthritis (OA). Further, netting neutrophils infiltrated RA synovial tissue, rheumatoid nodules, and skin. NETosis correlated with ACPA presence and levels and with systemic inflammatory markers. RA sera and immunoglobulin fractions from RA patients with high levels of ACPA and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these autoantibodies displayed distinct protein content. Indeed, during NETosis, neutrophils externalized the citrullinated autoantigens implicated in RA pathogenesis, and anti-citrullinated vimentin antibodies potently induced NET formation. Moreover, the inflammatory cytokines interleukin-17A (IL-17A) and tumor necrosis factor-α (TNF-α) induced NETosis in RA neutrophils. In turn, NETs significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including induction of IL-6, IL-8, chemokines, and adhesion molecules. These observations implicate accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and immunostimulatory molecules that may promote aberrant adaptive and innate immune responses in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease. Ataxia telangiectasia is a neurodegenerative disease caused by mutation of the Atm gene. Here we report that ataxia telangiectasia mutated (ATM) deficiency causes nuclear accumulation of histone deacetylase 4 (HDAC4) in neurons and promotes neurodegeneration. Nuclear HDAC4 binds to chromatin, as well as to myocyte enhancer factor 2A (MEF2A) and cAMP-responsive element binding protein (CREB), leading to histone deacetylation and altered neuronal gene expression. Blocking either HDAC4 activity or its nuclear accumulation blunts these neurodegenerative changes and rescues several behavioral abnormalities of ATM-deficient mice. Full rescue of the neurodegeneration, however, also requires the presence of HDAC4 in the cytoplasm, suggesting that the ataxia telangiectasia phenotype results both from a loss of cytoplasmic HDAC4 as well as its nuclear accumulation. To remain cytoplasmic, HDAC4 must be phosphorylated. The activity of the HDAC4 phosphatase, protein phosphatase 2A (PP2A), is downregulated by ATM-mediated phosphorylation. In ATM deficiency, enhanced PP2A activity leads to HDAC4 dephosphorylation and the nuclear accumulation of HDAC4. Our results define a crucial role of the cellular localization of HDAC4 in the events leading to ataxia telangiectasia neurodegeneration. BACKGROUND The annual number of hospital admissions and in-hospital deaths due to severe acute lower respiratory infections (ALRI) in young children worldwide is unknown. We aimed to estimate the incidence of admissions and deaths for such infections in children younger than 5 years in 2010. METHODS We estimated the incidence of admissions for severe and very severe ALRI in children younger than 5 years, stratified by age and region, with data from a systematic review of studies published between Jan 1, 1990, and March 31, 2012, and from 28 unpublished population-based studies. We applied these incidence estimates to population estimates for 2010, to calculate the global and regional burden in children admitted with severe ALRI in that year. We estimated in-hospital mortality due to severe and very severe ALRI by combining incidence estimates with case fatality ratios from hospital-based studies. FINDINGS We identified 89 eligible studies and estimated that in 2010, 11·9 million (95% CI 10·3-13·9 million) episodes of severe and 3·0 million (2·1-4·2 million) episodes of very severe ALRI resulted in hospital admissions in young children worldwide. Incidence was higher in boys than in girls, the sex disparity being greatest in South Asian studies. On the basis of data from 37 hospital studies reporting case fatality ratios for severe ALRI, we estimated that roughly 265,000 (95% CI 160,000-450,000) in-hospital deaths took place in young children, with 99% of these deaths in developing countries. Therefore, the data suggest that although 62% of children with severe ALRI are treated in hospitals, 81% of deaths happen outside hospitals. INTERPRETATION Severe ALRI is a substantial burden on health services worldwide and a major cause of hospital referral and admission in young children. Improved hospital access and reduced inequities, such as those related to sex and rural status, could substantially decrease mortality related to such infection. Community-based management of severe disease could be an important complementary strategy to reduce pneumonia mortality and health inequities. FUNDING WHO. BACKGROUND The heritable haemoglobinopathy alpha(+)-thalassaemia is caused by the reduced synthesis of alpha-globin chains that form part of normal adult haemoglobin (Hb). Individuals homozygous for alpha(+)-thalassaemia have microcytosis and an increased erythrocyte count. Alpha(+)-thalassaemia homozygosity confers considerable protection against severe malaria, including severe malarial anaemia (SMA) (Hb concentration < 50 g/l), but does not influence parasite count. We tested the hypothesis that the erythrocyte indices associated with alpha(+)-thalassaemia homozygosity provide a haematological benefit during acute malaria. METHODS AND FINDINGS Data from children living on the north coast of Papua New Guinea who had participated in a case-control study of the protection afforded by alpha(+)-thalassaemia against severe malaria were reanalysed to assess the genotype-specific reduction in erythrocyte count and Hb levels associated with acute malarial disease. We observed a reduction in median erythrocyte count of approximately 1.5 x 10(12)/l in all children with acute falciparum malaria relative to values in community children (p < 0.001). We developed a simple mathematical model of the linear relationship between Hb concentration and erythrocyte count. This model predicted that children homozygous for alpha(+)-thalassaemia lose less Hb than children of normal genotype for a reduction in erythrocyte count of >1.1 x 10(12)/l as a result of the reduced mean cell Hb in homozygous alpha(+)-thalassaemia. In addition, children homozygous for alpha(+)-thalassaemia require a 10% greater reduction in erythrocyte count than children of normal genotype (p = 0.02) for Hb concentration to fall to 50 g/l, the cutoff for SMA. We estimated that the haematological profile in children homozygous for alpha(+)-thalassaemia reduces the risk of SMA during acute malaria compared to children of normal genotype (relative risk 0.52; 95% confidence interval [CI] 0.24-1.12, p = 0.09). CONCLUSIONS The increased erythrocyte count and microcytosis in children homozygous for alpha(+)-thalassaemia may contribute substantially to their protection against SMA. A lower concentration of Hb per erythrocyte and a larger population of erythrocytes may be a biologically advantageous strategy against the significant reduction in erythrocyte count that occurs during acute infection with the malaria parasite Plasmodium falciparum. This haematological profile may reduce the risk of anaemia by other Plasmodium species, as well as other causes of anaemia. Other host polymorphisms that induce an increased erythrocyte count and microcytosis may confer a similar advantage.
A single nucleotide variant the gene DGKK is strongly associated with increased risk of hypospadias. Blind individuals often demonstrate enhanced nonvisual perceptual abilities. However, the neural substrate that underlies this improved performance remains to be fully understood. An earlier behavioral study demonstrated that some early-blind people localize sounds more accurately than sighted controls using monaural cues. In order to investigate the neural basis of these behavioral differences in humans, we carried out functional imaging studies using positron emission tomography and a speaker array that permitted pseudo-free-field presentations within the scanner. During binaural sound localization, a sighted control group showed decreased cerebral blood flow in the occipital lobe, which was not seen in early-blind individuals. During monaural sound localization (one ear plugged), the subgroup of early-blind subjects who were behaviorally superior at sound localization displayed two activation foci in the occipital cortex. This effect was not seen in blind persons who did not have superior monaural sound localization abilities, nor in sighted individuals. The degree of activation of one of these foci was strongly correlated with sound localization accuracy across the entire group of blind subjects. The results show that those blind persons who perform better than sighted persons recruit occipital areas to carry out auditory localization under monaural conditions. We therefore conclude that computations carried out in the occipital cortex specifically underlie the enhanced capacity to use monaural cues. Our findings shed light not only on intermodal compensatory mechanisms, but also on individual differences in these mechanisms and on inhibitory patterns that differ between sighted individuals and those deprived of vision early in life. The only proven requirement for ascorbic acid (vitamin C) is in preventing scurvy, presumably because it is a cofactor for hydroxylases required for post-translational modifications that stabilize collagen. We have created mice deficient in the mouse ortholog (solute carrier family 23 member 1 or Slc23a1) of a rat ascorbic-acid transporter, Svct2 (ref. 4). Cultured embryonic fibroblasts from homozygous Slc23a1−/− mice had less than 5% of normal ascorbic-acid uptake. Ascorbic-acid levels were undetectable or markedly reduced in the blood and tissues of Slc23a1−/− mice. Prenatal supplementation of pregnant females did not elevate blood ascorbic acid in Slc23a1−/− fetuses, suggesting Slc23a1 is important in placental ascorbic-acid transport. Slc23a1−/− mice died within a few minutes of birth with respiratory failure and intraparenchymal brain hemorrhage. Lungs showed no postnatal expansion but had normal surfactant protein B levels. Brain hemorrhage was unlikely to be simply a form of scurvy since Slc23a1−/− mice showed no hemorrhage in any other tissues and their skin had normal skin 4-hydroxyproline levels despite low ascorbic-acid content. We conclude that Slc23a1 is required for transport of ascorbic acid into many tissues and across the placenta. Deficiency of the transporter is lethal in newborn mice, thereby revealing a previously unrecognized requirement for ascorbic acid in the perinatal period. The early events leading to the development of rheumatoid arthritis (RA) remain unclear, but formation of autoantibodies to citrullinated protein antigens (ACPAs) is considered a key pathogenic event. Neutrophils isolated from patients with various autoimmune diseases display enhanced neutrophil extracellular trap (NET) formation, a phenomenon that exposes autoantigens in the context of immunostimulatory molecules. We investigated whether aberrant NETosis occurs in RA, determined its triggers, and examined its deleterious inflammatory consequences. Enhanced NETosis was observed in circulating and RA synovial fluid neutrophils compared to neutrophils from healthy controls and from patients with osteoarthritis (OA). Further, netting neutrophils infiltrated RA synovial tissue, rheumatoid nodules, and skin. NETosis correlated with ACPA presence and levels and with systemic inflammatory markers. RA sera and immunoglobulin fractions from RA patients with high levels of ACPA and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these autoantibodies displayed distinct protein content. Indeed, during NETosis, neutrophils externalized the citrullinated autoantigens implicated in RA pathogenesis, and anti-citrullinated vimentin antibodies potently induced NET formation. Moreover, the inflammatory cytokines interleukin-17A (IL-17A) and tumor necrosis factor-α (TNF-α) induced NETosis in RA neutrophils. In turn, NETs significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including induction of IL-6, IL-8, chemokines, and adhesion molecules. These observations implicate accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and immunostimulatory molecules that may promote aberrant adaptive and innate immune responses in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease. Ataxia telangiectasia is a neurodegenerative disease caused by mutation of the Atm gene. Here we report that ataxia telangiectasia mutated (ATM) deficiency causes nuclear accumulation of histone deacetylase 4 (HDAC4) in neurons and promotes neurodegeneration. Nuclear HDAC4 binds to chromatin, as well as to myocyte enhancer factor 2A (MEF2A) and cAMP-responsive element binding protein (CREB), leading to histone deacetylation and altered neuronal gene expression. Blocking either HDAC4 activity or its nuclear accumulation blunts these neurodegenerative changes and rescues several behavioral abnormalities of ATM-deficient mice. Full rescue of the neurodegeneration, however, also requires the presence of HDAC4 in the cytoplasm, suggesting that the ataxia telangiectasia phenotype results both from a loss of cytoplasmic HDAC4 as well as its nuclear accumulation. To remain cytoplasmic, HDAC4 must be phosphorylated. The activity of the HDAC4 phosphatase, protein phosphatase 2A (PP2A), is downregulated by ATM-mediated phosphorylation. In ATM deficiency, enhanced PP2A activity leads to HDAC4 dephosphorylation and the nuclear accumulation of HDAC4. Our results define a crucial role of the cellular localization of HDAC4 in the events leading to ataxia telangiectasia neurodegeneration. BACKGROUND The annual number of hospital admissions and in-hospital deaths due to severe acute lower respiratory infections (ALRI) in young children worldwide is unknown. We aimed to estimate the incidence of admissions and deaths for such infections in children younger than 5 years in 2010. METHODS We estimated the incidence of admissions for severe and very severe ALRI in children younger than 5 years, stratified by age and region, with data from a systematic review of studies published between Jan 1, 1990, and March 31, 2012, and from 28 unpublished population-based studies. We applied these incidence estimates to population estimates for 2010, to calculate the global and regional burden in children admitted with severe ALRI in that year. We estimated in-hospital mortality due to severe and very severe ALRI by combining incidence estimates with case fatality ratios from hospital-based studies. FINDINGS We identified 89 eligible studies and estimated that in 2010, 11·9 million (95% CI 10·3-13·9 million) episodes of severe and 3·0 million (2·1-4·2 million) episodes of very severe ALRI resulted in hospital admissions in young children worldwide. Incidence was higher in boys than in girls, the sex disparity being greatest in South Asian studies. On the basis of data from 37 hospital studies reporting case fatality ratios for severe ALRI, we estimated that roughly 265,000 (95% CI 160,000-450,000) in-hospital deaths took place in young children, with 99% of these deaths in developing countries. Therefore, the data suggest that although 62% of children with severe ALRI are treated in hospitals, 81% of deaths happen outside hospitals. INTERPRETATION Severe ALRI is a substantial burden on health services worldwide and a major cause of hospital referral and admission in young children. Improved hospital access and reduced inequities, such as those related to sex and rural status, could substantially decrease mortality related to such infection. Community-based management of severe disease could be an important complementary strategy to reduce pneumonia mortality and health inequities. FUNDING WHO. BACKGROUND The heritable haemoglobinopathy alpha(+)-thalassaemia is caused by the reduced synthesis of alpha-globin chains that form part of normal adult haemoglobin (Hb). Individuals homozygous for alpha(+)-thalassaemia have microcytosis and an increased erythrocyte count. Alpha(+)-thalassaemia homozygosity confers considerable protection against severe malaria, including severe malarial anaemia (SMA) (Hb concentration < 50 g/l), but does not influence parasite count. We tested the hypothesis that the erythrocyte indices associated with alpha(+)-thalassaemia homozygosity provide a haematological benefit during acute malaria. METHODS AND FINDINGS Data from children living on the north coast of Papua New Guinea who had participated in a case-control study of the protection afforded by alpha(+)-thalassaemia against severe malaria were reanalysed to assess the genotype-specific reduction in erythrocyte count and Hb levels associated with acute malarial disease. We observed a reduction in median erythrocyte count of approximately 1.5 x 10(12)/l in all children with acute falciparum malaria relative to values in community children (p < 0.001). We developed a simple mathematical model of the linear relationship between Hb concentration and erythrocyte count. This model predicted that children homozygous for alpha(+)-thalassaemia lose less Hb than children of normal genotype for a reduction in erythrocyte count of >1.1 x 10(12)/l as a result of the reduced mean cell Hb in homozygous alpha(+)-thalassaemia. In addition, children homozygous for alpha(+)-thalassaemia require a 10% greater reduction in erythrocyte count than children of normal genotype (p = 0.02) for Hb concentration to fall to 50 g/l, the cutoff for SMA. We estimated that the haematological profile in children homozygous for alpha(+)-thalassaemia reduces the risk of SMA during acute malaria compared to children of normal genotype (relative risk 0.52; 95% confidence interval [CI] 0.24-1.12, p = 0.09). CONCLUSIONS The increased erythrocyte count and microcytosis in children homozygous for alpha(+)-thalassaemia may contribute substantially to their protection against SMA. A lower concentration of Hb per erythrocyte and a larger population of erythrocytes may be a biologically advantageous strategy against the significant reduction in erythrocyte count that occurs during acute infection with the malaria parasite Plasmodium falciparum. This haematological profile may reduce the risk of anaemia by other Plasmodium species, as well as other causes of anaemia. Other host polymorphisms that induce an increased erythrocyte count and microcytosis may confer a similar advantage.
0
{ "query_id": "46", "original_query_id": "46", "context_doc_ids": [ "18174210", "11328820", "9167230", "19799455", "313394", "3113630" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.290943", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "11328820", "3113630", "19799455", "9167230", "18174210", "313394" ], "comprehensive_gold_set_for_query": [ "380526" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
46
aug_965
DRD1 proteins enable Pol V transcription in vivo. Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an "alternative inflammasome" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans. Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD. Breast cancer may originate in utero. We reviewed the available evidence on the association between birthweight and the risk of breast cancer. To date, 26 research papers addressing this issue have been published. The majority of studies identified a positive link between birthweight and premenopausal, but not postmenopausal, breast cancer. The relative risk estimate for breast cancer comparing women with high birthweight to women with low birthweight combining all studies including both pre- and postmenopausal breast cancer was 1.23 (95% confidence interval 1.13-1.34). The mechanisms underlying this association likely include elevated levels of growth factors that may increase the number of susceptible stem cells in the mammary gland or initiate tumors through DNA mutations. Loss of imprinting (LOI) of growth hormone genes relevant for intrauterine growth, such as insulin-like growth factor 2 (IGF2), leads to abnormally high levels of these hormones evidenced by high birthweight. LOI of IGF2 has also been found in mammary tumor tissue. The role of environmental factors that stimulate such epigenetic regulation of gene expression remains to be elucidated. Over the past two decades there have been significant achievements in the control of a handful of important human tropical infections [1]. These achievements include the substantive reductions in the prevalence and incidence of the so-called neglected diseases such as lymphatic filariasis, onchocerciasis, guinea worm, leprosy, and trachoma (Box 1) [2]. Each of these neglected diseases is a poverty-promoting and often stigmatizing condition occurring primarily in rural areas of low-income countries (Box 2) [3]. They are ancient afflictions, described in the Bible and other ancient texts, which have burdened humanity for millennia [3]. But now, as a result of aggressive regional vertical interventions, there is a possibility that some neglected tropical infections could be eventually controlled to the point of elimination in some areas of endemicity [2–8]. In the case of guinea worm infection, disease eradication might also soon be possible [9]. Box 2. Common Features of the Neglected Tropical Diseases Ancient afflictions that have burdened humanity for centuries Poverty-promoting conditions Associated with stigma Rural areas of low-income countries and fragile states No commercial markets for products that target these diseases Interventions, when applied, have a history of success The antibacterial peptide microcin J25 (MccJ25) inhibits transcription by bacterial RNA polymerase (RNAP). Biochemical results indicate that inhibition of transcription occurs at the level of NTP uptake or NTP binding by RNAP. Genetic results indicate that inhibition of transcription requires an extensive determinant, comprising more than 50 amino acid residues, within the RNAP secondary channel (also known as the "NTP-uptake channel" or "pore"). Biophysical results indicate that inhibition of transcription involves binding of MccJ25 within the RNAP secondary channel. Molecular modeling indicates that binding of MccJ25 within the RNAP secondary channel obstructs the RNAP secondary channel. We conclude that MccJ25 inhibits transcription by binding within and obstructing the RNAP secondary channel--acting essentially as a "cork in a bottle. " Obstruction of the RNAP secondary channel represents an attractive target for drug discovery. Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.
DRD1 proteins enable Pol V transcription in vivo. Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an "alternative inflammasome" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans. Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD. Breast cancer may originate in utero. We reviewed the available evidence on the association between birthweight and the risk of breast cancer. To date, 26 research papers addressing this issue have been published. The majority of studies identified a positive link between birthweight and premenopausal, but not postmenopausal, breast cancer. The relative risk estimate for breast cancer comparing women with high birthweight to women with low birthweight combining all studies including both pre- and postmenopausal breast cancer was 1.23 (95% confidence interval 1.13-1.34). The mechanisms underlying this association likely include elevated levels of growth factors that may increase the number of susceptible stem cells in the mammary gland or initiate tumors through DNA mutations. Loss of imprinting (LOI) of growth hormone genes relevant for intrauterine growth, such as insulin-like growth factor 2 (IGF2), leads to abnormally high levels of these hormones evidenced by high birthweight. LOI of IGF2 has also been found in mammary tumor tissue. The role of environmental factors that stimulate such epigenetic regulation of gene expression remains to be elucidated. Over the past two decades there have been significant achievements in the control of a handful of important human tropical infections [1]. These achievements include the substantive reductions in the prevalence and incidence of the so-called neglected diseases such as lymphatic filariasis, onchocerciasis, guinea worm, leprosy, and trachoma (Box 1) [2]. Each of these neglected diseases is a poverty-promoting and often stigmatizing condition occurring primarily in rural areas of low-income countries (Box 2) [3]. They are ancient afflictions, described in the Bible and other ancient texts, which have burdened humanity for millennia [3]. But now, as a result of aggressive regional vertical interventions, there is a possibility that some neglected tropical infections could be eventually controlled to the point of elimination in some areas of endemicity [2–8]. In the case of guinea worm infection, disease eradication might also soon be possible [9]. Box 2. Common Features of the Neglected Tropical Diseases Ancient afflictions that have burdened humanity for centuries Poverty-promoting conditions Associated with stigma Rural areas of low-income countries and fragile states No commercial markets for products that target these diseases Interventions, when applied, have a history of success The antibacterial peptide microcin J25 (MccJ25) inhibits transcription by bacterial RNA polymerase (RNAP). Biochemical results indicate that inhibition of transcription occurs at the level of NTP uptake or NTP binding by RNAP. Genetic results indicate that inhibition of transcription requires an extensive determinant, comprising more than 50 amino acid residues, within the RNAP secondary channel (also known as the "NTP-uptake channel" or "pore"). Biophysical results indicate that inhibition of transcription involves binding of MccJ25 within the RNAP secondary channel. Molecular modeling indicates that binding of MccJ25 within the RNAP secondary channel obstructs the RNAP secondary channel. We conclude that MccJ25 inhibits transcription by binding within and obstructing the RNAP secondary channel--acting essentially as a "cork in a bottle. " Obstruction of the RNAP secondary channel represents an attractive target for drug discovery. Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.
0
{ "query_id": "305", "original_query_id": "305", "context_doc_ids": [ "34469966", "18956141", "8002887", "27123743", "1215116", "4740447" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.291038", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "1215116", "18956141", "27123743", "34469966", "8002887", "4740447" ], "comprehensive_gold_set_for_query": [ "14797520" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
305
aug_966
Integrating classroom-based collaborative learning with Web-based collaborative learning offers the best class performance. It is becoming “a truth universally acknowledged” that the education of undergraduate medical students will be enhanced through the use of computer assisted learning. Access to the wide range of online options illustrated in the figure must surely make learning more exciting, effective, and likely to be retained. This assumption is potentially but by no means inevitably correct. ### Box 1: Why fund computer assisted learning? Computer assisted learning is inevitable —Individual lecturers and departments are already beginning to introduce a wide range of computer based applications, sometimes in a haphazard way. Planned and coordinated development is better than indiscriminate expansion It is convenient and flexible —Courses supported by computer assisted learning applications may require fewer face to face lectures and seminars and place fewer geographical and temporal constraints on staff and students. Students at peripheral hospitals or primary care centres may benefit in particular Unique presentational benefits —Computer presentation is particularly suited to subjects that are visually intensive, detail oriented, and difficult to conceptualise, such as complex biochemical processes or microscopic images.1 Furthermore, “virtual” cases may reduce the need to use animal or human tissue in learning Personalised learning —Each learner can progress at his or her preferred pace. They can repeat, interrupt, and resume at will, which may have particular advantages for weaker students Economies of scale —Once an application has been set up, the incremental cost of offering it to additional students is relatively small Competitive advantage —Potential applicants may use the quality of information technology to discriminate between medical schools. A “leading edge” virtual campus is likely to attract good students Achieves the ultimate goal of higher education —The goal is to link people into learning communities. Computer applications, especially the internet and world wide web, are an extremely efficient way of doing this2 Expands pedagogical horizons —The most controversial argument for … RETURN TO TEXT
Integrating classroom-based collaborative learning with Web-based collaborative learning offers the best class performance. It is becoming “a truth universally acknowledged” that the education of undergraduate medical students will be enhanced through the use of computer assisted learning. Access to the wide range of online options illustrated in the figure must surely make learning more exciting, effective, and likely to be retained. This assumption is potentially but by no means inevitably correct. ### Box 1: Why fund computer assisted learning? Computer assisted learning is inevitable —Individual lecturers and departments are already beginning to introduce a wide range of computer based applications, sometimes in a haphazard way. Planned and coordinated development is better than indiscriminate expansion It is convenient and flexible —Courses supported by computer assisted learning applications may require fewer face to face lectures and seminars and place fewer geographical and temporal constraints on staff and students. Students at peripheral hospitals or primary care centres may benefit in particular Unique presentational benefits —Computer presentation is particularly suited to subjects that are visually intensive, detail oriented, and difficult to conceptualise, such as complex biochemical processes or microscopic images.1 Furthermore, “virtual” cases may reduce the need to use animal or human tissue in learning Personalised learning —Each learner can progress at his or her preferred pace. They can repeat, interrupt, and resume at will, which may have particular advantages for weaker students Economies of scale —Once an application has been set up, the incremental cost of offering it to additional students is relatively small Competitive advantage —Potential applicants may use the quality of information technology to discriminate between medical schools. A “leading edge” virtual campus is likely to attract good students Achieves the ultimate goal of higher education —The goal is to link people into learning communities. Computer applications, especially the internet and world wide web, are an extremely efficient way of doing this2 Expands pedagogical horizons —The most controversial argument for … RETURN TO TEXT
1
{ "query_id": "650", "original_query_id": "650", "context_doc_ids": [ "12789595" ], "gold_doc_ids_in_context": [ "12789595" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.291103", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "12789595" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "12789595" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
650
aug_967
Allogeneic mechanical circulatory support is not as effective as autologous mechanical circulatory support for treating acute myocardial infarction. The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire(+) mTECs at this key developmental stage, prior to αβ T cell repertoire selection, was jointly directed by Rankl(+) lymphoid tissue inducer cells and invariant Vγ5(+) dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire(+) mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of Vγ5(+) γδ T cells during thymus medulla formation for αβ T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire(+) mTEC maturation. The purpose of this study was to examine differences in resting, submaximal, and maximal (VO2max) oxygen consumption (VO2) in African-American (n = 44) and Caucasian (n = 31) prepubertal children aged 5-10 yr. Resting VO2 was measured via indirect calorimetry in the fasted state. Submaximal VO2 and VO2max were determined during an all out, progressive treadmill exercise test appropriate for children. Dual-energy X-ray absorptiometry was used to determine total fat mass (FM), soft lean tissue mass (LTM), and leg soft LTM. Doubly labeled water was used to determine total energy expenditure (TEE) and activity energy expenditure (AEE). A significant effect of ethnicity (P < 0.01) was found for VO2max but not resting or submaximal VO2, with African-American children having absolute VO2max approximately 15% lower than Caucasian children (1.21 +/- 0.032 vs. 1.43 +/- 0.031 l/min, respectively). The lower VO2max persisted in African-American children after adjustment for soft LTM (1.23 +/- 0.025 vs. 1.39 +/- 0.031 l/min; P < 0.01), leg soft LTM (1.20 +/- 0.031 vs. 1.43 +/- 0.042 l/min; P < 0.01), and soft LTM and FM (1.23 +/- 0.025 vs. 1.39 +/- 0.031 l/min; P < 0.01). The lower VO2max persisted also after adjustment for TEE (1.20 +/- 0.02 vs. 1.38 +/- 0.0028 l/min P < 0.001) and AEE (1.20 +/- 0.024 vs. 1.38 +/- 0.028 l/min; P < 0.001). In conclusion, our data indicate that African-American and Caucasian children have similar rates of VO2 at rest and during submaximal exercise, but VO2max is approximately 15% lower in African-American children, independent of soft LTM, FM, leg LTM, TEE, and AEE. BACKGROUND Human papillomavirus (HPV) testing is known to be more sensitive, but less specific than cytology for detecting cervical intraepithelial neoplasia (CIN). We assessed the efficacy of cervical-cancer screening policies that are based on HPV testing. METHODS Between March, 2004, and December, 2004, in two separate recruitment phases, women aged 25-60 years were randomly assigned to conventional cytology or to HPV testing in combination with liquid-based cytology (first phase) or alone (second phase). Randomisation was done by computer in two screening centres and by sequential opening of numbered sealed envelopes in the remaining seven centres. During phase one, women who were HPV-positive and aged 35-60 years were referred to colposcopy, whereas women aged 25-34 years were referred to colposcopy only if cytology was also abnormal or HPV testing was persistently positive. During phase two, women in the HPV group were referred for colposcopy if the HPV test was positive. Two rounds of screening occurred in each phase, and all women had cytology testing only at the second round. The primary endpoint was the detection of grade 2 and 3 CIN, and of invasive cervical cancers during the first and second screening rounds. Analysis was done by intention to screen. This trial is registered, number ISRCTN81678807. FINDINGS In total for both phases, 47,001 women were randomly assigned to the cytology group and 47,369 to HPV testing. 33,851 women from the cytology group and 32,998 from the HPV-testing group had a second round of screening. We also retrieved the histological diagnoses from screening done elsewhere. The detection of invasive cervical cancers was similar for the two groups in the first round of screening (nine in the cytology group vs seven in the HPV group, p=0.62); no cases were detected in the HPV group during round two, compared with nine in the cytology group (p=0.004). Overall, in the two rounds of screening, 18 invasive cancers were detected in the cytology group versus seven in the HPV group (p=0.028). Among women aged 35-60 years, at round one the relative detection (HPV vs cytology) was 2.00 (95% CI 1.44-2.77) for CIN2, 2.08 (1.47-2.95) for CIN3, and 2.03 (1.60-2.57) for CIN2 and 3 together. At round two the relative detection was 0.54 (0.23-1.28) for CIN2, 0.48 (0.21-1.11) for CIN3, and 0.51 (0.28-0.93) for CIN2 and 3 together. Among women aged 25-34 years, there was significant heterogeneity between phases in the relative detection of CIN3. At round one the relative detection was 0.93 (0.52-1.64) in phase one and 3.91 (2.02-7.57) in phase two. At round two the relative detection was 1.34 (0.46-3.84) in phase one and 0.20 (0.04-0.93) in phase two. Pooling both phases, the detection ratio of CIN2 for women aged 25-34 years was 4.09 (2.24-7.48) at round one and 0.64 (0.23-1.27) at round two. INTERPRETATION HPV-based screening is more effective than cytology in preventing invasive cervical cancer, by detecting persistent high-grade lesions earlier and providing a longer low-risk period. However, in younger women, HPV screening leads to over-diagnosis of regressive CIN2. FUNDING European Union, Italian Ministry of Health, Regional Health Administrations of Piemonte, Tuscany, Veneto and Emilia-Romagna, and Public Health Agency of Lazio. CONTEXT Mesenchymal stem cells (MSCs) are under evaluation as a therapy for ischemic cardiomyopathy (ICM). Both autologous and allogeneic MSC therapies are possible; however, their safety and efficacy have not been compared. OBJECTIVE To test whether allogeneic MSCs are as safe and effective as autologous MSCs in patients with left ventricular (LV) dysfunction due to ICM. DESIGN, SETTING, AND PATIENTS A phase 1/2 randomized comparison (POSEIDON study) in a US tertiary-care referral hospital of allogeneic and autologous MSCs in 30 patients with LV dysfunction due to ICM between April 2, 2010, and September 14, 2011, with 13-month follow-up. INTERVENTION Twenty million, 100 million, or 200 million cells (5 patients in each cell type per dose level) were delivered by transendocardial stem cell injection into 10 LV sites. MAIN OUTCOME MEASURES Thirty-day postcatheterization incidence of predefined treatment-emergent serious adverse events (SAEs). Efficacy assessments included 6-minute walk test, exercise peak VO2, Minnesota Living with Heart Failure Questionnaire (MLHFQ), New York Heart Association class, LV volumes, ejection fraction (EF), early enhancement defect (EED; infarct size), and sphericity index. RESULTS Within 30 days, 1 patient in each group (treatment-emergent SAE rate, 6.7%) was hospitalized for heart failure, less than the prespecified stopping event rate of 25%. The 1-year incidence of SAEs was 33.3% (n = 5) in the allogeneic group and 53.3% (n = 8) in the autologous group (P = .46). At 1 year, there were no ventricular arrhythmia SAEs observed among allogeneic recipients compared with 4 patients (26.7%) in the autologous group (P = .10). Relative to baseline, autologous but not allogeneic MSC therapy was associated with an improvement in the 6-minute walk test and the MLHFQ score, but neither improved exercise VO2 max. Allogeneic and autologous MSCs reduced mean EED by −33.21% (95% CI, −43.61% to −22.81%; P < .001) and sphericity index but did not increase EF. Allogeneic MSCs reduced LV end-diastolic volumes. Low-dose concentration MSCs (20 million cells) produced greatest reductions in LV volumes and increased EF. Allogeneic MSCs did not stimulate significant donor-specific alloimmune reactions. CONCLUSIONS In this early-stage study of patients with ICM, transendocardial injection of allogeneic and autologous MSCs without a placebo control were both associated with low rates of treatment-emergent SAEs, including immunologic reactions. In aggregate, MSC injection favorably affected patient functional capacity, quality of life, and ventricular remodeling. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01087996. Fever is commonly used to diagnose disease and is consistently associated with increased mortality in critically ill patients. However, the molecular controls of elevated body temperature are poorly understood. We discovered that the expression of RNA-binding motif protein 3 (RBM3), known to respond to cold stress and to modulate microRNA (miRNA) expression, was reduced in 30 patients with fever, and in THP-1-derived macrophages maintained at a fever-like temperature (40 °C). Notably, RBM3 expression is reduced during fever whether or not infection is demonstrable. Reduced RBM3 expression resulted in increased expression of RBM3-targeted temperature-sensitive miRNAs, we termed thermomiRs. ThermomiRs such as miR-142-5p and miR-143 in turn target endogenous pyrogens including IL-6, IL6ST, TLR2, PGE2 and TNF to complete a negative feedback mechanism, which may be crucial to prevent pathological hyperthermia. Using normal PBMCs that were exogenously exposed to fever-like temperature (40 °C), we further demonstrate the trend by which decreased levels of RBM3 were associated with increased levels of miR-142-5p and miR-143 and vice versa over a 24 h time course. Collectively, our results indicate the existence of a negative feedback loop that regulates fever via reduced RBM3 levels and increased expression of miR-142-5p and miR-143. Cardiovascular disease is a leading cause of death worldwide. The limited capability of heart tissue to regenerate has prompted methodological developments for creating de novo cardiomyocytes, both in vitro and in vivo. Beyond uses in cell replacement therapy, patient-specific cardiomyocytes may find applications in drug testing, drug discovery, and disease modeling. Recently, approaches for generating cardiomyocytes have expanded to encompass three major sources of starting cells: human pluripotent stem cells (hPSCs), adult heart-derived cardiac progenitor cells (CPCs), and reprogrammed fibroblasts. We discuss state-of-the-art methods for generating de novo cardiomyocytes from hPSCs and reprogrammed fibroblasts, highlighting potential applications and future challenges.
Allogeneic mechanical circulatory support is not as effective as autologous mechanical circulatory support for treating acute myocardial infarction. The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire(+) mTECs at this key developmental stage, prior to αβ T cell repertoire selection, was jointly directed by Rankl(+) lymphoid tissue inducer cells and invariant Vγ5(+) dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire(+) mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of Vγ5(+) γδ T cells during thymus medulla formation for αβ T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire(+) mTEC maturation. The purpose of this study was to examine differences in resting, submaximal, and maximal (VO2max) oxygen consumption (VO2) in African-American (n = 44) and Caucasian (n = 31) prepubertal children aged 5-10 yr. Resting VO2 was measured via indirect calorimetry in the fasted state. Submaximal VO2 and VO2max were determined during an all out, progressive treadmill exercise test appropriate for children. Dual-energy X-ray absorptiometry was used to determine total fat mass (FM), soft lean tissue mass (LTM), and leg soft LTM. Doubly labeled water was used to determine total energy expenditure (TEE) and activity energy expenditure (AEE). A significant effect of ethnicity (P < 0.01) was found for VO2max but not resting or submaximal VO2, with African-American children having absolute VO2max approximately 15% lower than Caucasian children (1.21 +/- 0.032 vs. 1.43 +/- 0.031 l/min, respectively). The lower VO2max persisted in African-American children after adjustment for soft LTM (1.23 +/- 0.025 vs. 1.39 +/- 0.031 l/min; P < 0.01), leg soft LTM (1.20 +/- 0.031 vs. 1.43 +/- 0.042 l/min; P < 0.01), and soft LTM and FM (1.23 +/- 0.025 vs. 1.39 +/- 0.031 l/min; P < 0.01). The lower VO2max persisted also after adjustment for TEE (1.20 +/- 0.02 vs. 1.38 +/- 0.0028 l/min P < 0.001) and AEE (1.20 +/- 0.024 vs. 1.38 +/- 0.028 l/min; P < 0.001). In conclusion, our data indicate that African-American and Caucasian children have similar rates of VO2 at rest and during submaximal exercise, but VO2max is approximately 15% lower in African-American children, independent of soft LTM, FM, leg LTM, TEE, and AEE. BACKGROUND Human papillomavirus (HPV) testing is known to be more sensitive, but less specific than cytology for detecting cervical intraepithelial neoplasia (CIN). We assessed the efficacy of cervical-cancer screening policies that are based on HPV testing. METHODS Between March, 2004, and December, 2004, in two separate recruitment phases, women aged 25-60 years were randomly assigned to conventional cytology or to HPV testing in combination with liquid-based cytology (first phase) or alone (second phase). Randomisation was done by computer in two screening centres and by sequential opening of numbered sealed envelopes in the remaining seven centres. During phase one, women who were HPV-positive and aged 35-60 years were referred to colposcopy, whereas women aged 25-34 years were referred to colposcopy only if cytology was also abnormal or HPV testing was persistently positive. During phase two, women in the HPV group were referred for colposcopy if the HPV test was positive. Two rounds of screening occurred in each phase, and all women had cytology testing only at the second round. The primary endpoint was the detection of grade 2 and 3 CIN, and of invasive cervical cancers during the first and second screening rounds. Analysis was done by intention to screen. This trial is registered, number ISRCTN81678807. FINDINGS In total for both phases, 47,001 women were randomly assigned to the cytology group and 47,369 to HPV testing. 33,851 women from the cytology group and 32,998 from the HPV-testing group had a second round of screening. We also retrieved the histological diagnoses from screening done elsewhere. The detection of invasive cervical cancers was similar for the two groups in the first round of screening (nine in the cytology group vs seven in the HPV group, p=0.62); no cases were detected in the HPV group during round two, compared with nine in the cytology group (p=0.004). Overall, in the two rounds of screening, 18 invasive cancers were detected in the cytology group versus seven in the HPV group (p=0.028). Among women aged 35-60 years, at round one the relative detection (HPV vs cytology) was 2.00 (95% CI 1.44-2.77) for CIN2, 2.08 (1.47-2.95) for CIN3, and 2.03 (1.60-2.57) for CIN2 and 3 together. At round two the relative detection was 0.54 (0.23-1.28) for CIN2, 0.48 (0.21-1.11) for CIN3, and 0.51 (0.28-0.93) for CIN2 and 3 together. Among women aged 25-34 years, there was significant heterogeneity between phases in the relative detection of CIN3. At round one the relative detection was 0.93 (0.52-1.64) in phase one and 3.91 (2.02-7.57) in phase two. At round two the relative detection was 1.34 (0.46-3.84) in phase one and 0.20 (0.04-0.93) in phase two. Pooling both phases, the detection ratio of CIN2 for women aged 25-34 years was 4.09 (2.24-7.48) at round one and 0.64 (0.23-1.27) at round two. INTERPRETATION HPV-based screening is more effective than cytology in preventing invasive cervical cancer, by detecting persistent high-grade lesions earlier and providing a longer low-risk period. However, in younger women, HPV screening leads to over-diagnosis of regressive CIN2. FUNDING European Union, Italian Ministry of Health, Regional Health Administrations of Piemonte, Tuscany, Veneto and Emilia-Romagna, and Public Health Agency of Lazio. CONTEXT Mesenchymal stem cells (MSCs) are under evaluation as a therapy for ischemic cardiomyopathy (ICM). Both autologous and allogeneic MSC therapies are possible; however, their safety and efficacy have not been compared. OBJECTIVE To test whether allogeneic MSCs are as safe and effective as autologous MSCs in patients with left ventricular (LV) dysfunction due to ICM. DESIGN, SETTING, AND PATIENTS A phase 1/2 randomized comparison (POSEIDON study) in a US tertiary-care referral hospital of allogeneic and autologous MSCs in 30 patients with LV dysfunction due to ICM between April 2, 2010, and September 14, 2011, with 13-month follow-up. INTERVENTION Twenty million, 100 million, or 200 million cells (5 patients in each cell type per dose level) were delivered by transendocardial stem cell injection into 10 LV sites. MAIN OUTCOME MEASURES Thirty-day postcatheterization incidence of predefined treatment-emergent serious adverse events (SAEs). Efficacy assessments included 6-minute walk test, exercise peak VO2, Minnesota Living with Heart Failure Questionnaire (MLHFQ), New York Heart Association class, LV volumes, ejection fraction (EF), early enhancement defect (EED; infarct size), and sphericity index. RESULTS Within 30 days, 1 patient in each group (treatment-emergent SAE rate, 6.7%) was hospitalized for heart failure, less than the prespecified stopping event rate of 25%. The 1-year incidence of SAEs was 33.3% (n = 5) in the allogeneic group and 53.3% (n = 8) in the autologous group (P = .46). At 1 year, there were no ventricular arrhythmia SAEs observed among allogeneic recipients compared with 4 patients (26.7%) in the autologous group (P = .10). Relative to baseline, autologous but not allogeneic MSC therapy was associated with an improvement in the 6-minute walk test and the MLHFQ score, but neither improved exercise VO2 max. Allogeneic and autologous MSCs reduced mean EED by −33.21% (95% CI, −43.61% to −22.81%; P < .001) and sphericity index but did not increase EF. Allogeneic MSCs reduced LV end-diastolic volumes. Low-dose concentration MSCs (20 million cells) produced greatest reductions in LV volumes and increased EF. Allogeneic MSCs did not stimulate significant donor-specific alloimmune reactions. CONCLUSIONS In this early-stage study of patients with ICM, transendocardial injection of allogeneic and autologous MSCs without a placebo control were both associated with low rates of treatment-emergent SAEs, including immunologic reactions. In aggregate, MSC injection favorably affected patient functional capacity, quality of life, and ventricular remodeling. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01087996. Fever is commonly used to diagnose disease and is consistently associated with increased mortality in critically ill patients. However, the molecular controls of elevated body temperature are poorly understood. We discovered that the expression of RNA-binding motif protein 3 (RBM3), known to respond to cold stress and to modulate microRNA (miRNA) expression, was reduced in 30 patients with fever, and in THP-1-derived macrophages maintained at a fever-like temperature (40 °C). Notably, RBM3 expression is reduced during fever whether or not infection is demonstrable. Reduced RBM3 expression resulted in increased expression of RBM3-targeted temperature-sensitive miRNAs, we termed thermomiRs. ThermomiRs such as miR-142-5p and miR-143 in turn target endogenous pyrogens including IL-6, IL6ST, TLR2, PGE2 and TNF to complete a negative feedback mechanism, which may be crucial to prevent pathological hyperthermia. Using normal PBMCs that were exogenously exposed to fever-like temperature (40 °C), we further demonstrate the trend by which decreased levels of RBM3 were associated with increased levels of miR-142-5p and miR-143 and vice versa over a 24 h time course. Collectively, our results indicate the existence of a negative feedback loop that regulates fever via reduced RBM3 levels and increased expression of miR-142-5p and miR-143. Cardiovascular disease is a leading cause of death worldwide. The limited capability of heart tissue to regenerate has prompted methodological developments for creating de novo cardiomyocytes, both in vitro and in vivo. Beyond uses in cell replacement therapy, patient-specific cardiomyocytes may find applications in drug testing, drug discovery, and disease modeling. Recently, approaches for generating cardiomyocytes have expanded to encompass three major sources of starting cells: human pluripotent stem cells (hPSCs), adult heart-derived cardiac progenitor cells (CPCs), and reprogrammed fibroblasts. We discuss state-of-the-art methods for generating de novo cardiomyocytes from hPSCs and reprogrammed fibroblasts, highlighting potential applications and future challenges.
0.285714
{ "query_id": "104", "original_query_id": "104", "context_doc_ids": [ "27873158", "21387297", "6766459", "301838", "40164383", "26112696" ], "gold_doc_ids_in_context": [ "40164383" ], "total_gold_docs_for_query": 1, "context_f1": 0.2857142857142857, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.291135", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "40164383" ], "negative_samples_considered": [ "26112696", "301838", "27873158", "21387297", "6766459" ], "comprehensive_gold_set_for_query": [ "40164383" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
104
aug_968
Less than 10% of patients exposed to radiation have activated markers of mesenchymal stem cells. Previous studies investigating the role of smooth muscle cells (SMCs) and macrophages in the pathogenesis of atherosclerosis have provided controversial results owing to the use of unreliable methods for clearly identifying each of these cell types. Here, using Myh11-CreERT2 ROSA floxed STOP eYFP Apoe−/− mice to perform SMC lineage tracing, we find that traditional methods for detecting SMCs based on immunostaining for SMC markers fail to detect >80% of SMC-derived cells within advanced atherosclerotic lesions. These unidentified SMC-derived cells exhibit phenotypes of other cell lineages, including macrophages and mesenchymal stem cells (MSCs). SMC-specific conditional knockout of Krüppel-like factor 4 (Klf4) resulted in reduced numbers of SMC-derived MSC- and macrophage-like cells, a marked reduction in lesion size, and increases in multiple indices of plaque stability, including an increase in fibrous cap thickness as compared to wild-type controls. On the basis of in vivo KLF4 chromatin immunoprecipitation–sequencing (ChIP-seq) analyses and studies of cholesterol-treated cultured SMCs, we identified >800 KLF4 target genes, including many that regulate pro-inflammatory responses of SMCs. Our findings indicate that the contribution of SMCs to atherosclerotic plaques has been greatly underestimated, and that KLF4-dependent transitions in SMC phenotype are critical in lesion pathogenesis.
Less than 10% of patients exposed to radiation have activated markers of mesenchymal stem cells. Previous studies investigating the role of smooth muscle cells (SMCs) and macrophages in the pathogenesis of atherosclerosis have provided controversial results owing to the use of unreliable methods for clearly identifying each of these cell types. Here, using Myh11-CreERT2 ROSA floxed STOP eYFP Apoe−/− mice to perform SMC lineage tracing, we find that traditional methods for detecting SMCs based on immunostaining for SMC markers fail to detect >80% of SMC-derived cells within advanced atherosclerotic lesions. These unidentified SMC-derived cells exhibit phenotypes of other cell lineages, including macrophages and mesenchymal stem cells (MSCs). SMC-specific conditional knockout of Krüppel-like factor 4 (Klf4) resulted in reduced numbers of SMC-derived MSC- and macrophage-like cells, a marked reduction in lesion size, and increases in multiple indices of plaque stability, including an increase in fibrous cap thickness as compared to wild-type controls. On the basis of in vivo KLF4 chromatin immunoprecipitation–sequencing (ChIP-seq) analyses and studies of cholesterol-treated cultured SMCs, we identified >800 KLF4 target genes, including many that regulate pro-inflammatory responses of SMCs. Our findings indicate that the contribution of SMCs to atherosclerotic plaques has been greatly underestimated, and that KLF4-dependent transitions in SMC phenotype are critical in lesion pathogenesis.
1
{ "query_id": "689", "original_query_id": "689", "context_doc_ids": [ "22080671" ], "gold_doc_ids_in_context": [ "22080671" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.291234", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "22080671" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "22080671" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
689
aug_969
Low nucleosome occupancy correlates with high methylation levels across species. Dnmt1 epigenetically propagates symmetrical CG methylation in many eukaryotes. Their genomes are typically depleted of CG dinucleotides because of imperfect repair of deaminated methylcytosines. Here, we extensively survey diverse species lacking Dnmt1 and show that, surprisingly, symmetrical CG methylation is nonetheless frequently present and catalyzed by a different DNA methyltransferase family, Dnmt5. Numerous Dnmt5-containing organisms that diverged more than a billion years ago exhibit clustered methylation, specifically in nucleosome linkers. Clustered methylation occurs at unprecedented densities and directly disfavors nucleosomes, contributing to nucleosome positioning between clusters. Dense methylation is enabled by a regime of genomic sequence evolution that enriches CG dinucleotides and drives the highest CG frequencies known. Species with linker methylation have small, transcriptionally active nuclei that approach the physical limits of chromatin compaction. These features constitute a previously unappreciated genome architecture, in which dense methylation influences nucleosome positions, likely facilitating nuclear processes under extreme spatial constraints.
Low nucleosome occupancy correlates with high methylation levels across species. Dnmt1 epigenetically propagates symmetrical CG methylation in many eukaryotes. Their genomes are typically depleted of CG dinucleotides because of imperfect repair of deaminated methylcytosines. Here, we extensively survey diverse species lacking Dnmt1 and show that, surprisingly, symmetrical CG methylation is nonetheless frequently present and catalyzed by a different DNA methyltransferase family, Dnmt5. Numerous Dnmt5-containing organisms that diverged more than a billion years ago exhibit clustered methylation, specifically in nucleosome linkers. Clustered methylation occurs at unprecedented densities and directly disfavors nucleosomes, contributing to nucleosome positioning between clusters. Dense methylation is enabled by a regime of genomic sequence evolution that enriches CG dinucleotides and drives the highest CG frequencies known. Species with linker methylation have small, transcriptionally active nuclei that approach the physical limits of chromatin compaction. These features constitute a previously unappreciated genome architecture, in which dense methylation influences nucleosome positions, likely facilitating nuclear processes under extreme spatial constraints.
1
{ "query_id": "717", "original_query_id": "717", "context_doc_ids": [ "17587795" ], "gold_doc_ids_in_context": [ "17587795" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.291255", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "17587795" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "17587795" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
717
aug_970
Lack of FGF21 in mice increases life expectancy. Interleukin-18 (IL18) participates in atherogenesis through several putative mechanisms. Interruption of IL18 action reduces atherosclerosis in mice. Here, we show that absence of the IL18 receptor (IL18r) does not affect atherosclerosis in apolipoprotein E–deficient (Apoe−/−) mice, nor does it affect IL18 cell surface binding to or signaling in endothelial cells. As identified initially by co-immunoprecipitation with IL18, we found that IL18 interacts with the Na-Cl co-transporter (NCC; also known as SLC12A3), a 12-transmembrane-domain ion transporter protein preferentially expressed in the kidney. NCC is expressed in atherosclerotic lesions, where it colocalizes with IL18r. In Apoe−/− mice, combined deficiency of IL18r and NCC, but not single deficiency of either protein, protects mice from atherosclerosis. Peritoneal macrophages from Apoe−/− mice or from Apoe−/− mice lacking IL18r or NCC show IL18 binding and induction of cell signaling and cytokine and chemokine expression, but macrophages from Apoe−/− mice with combined deficiency of IL18r and NCC have a blunted response. An interaction between NCC and IL18r on macrophages was detected by co-immunoprecipitation. IL18 binds to the cell surface of NCC-transfected COS-7 cells, which do not express IL18r, and induces cell signaling and cytokine expression. This study identifies NCC as an IL18-binding protein that collaborates with IL18r in cell signaling, inflammatory molecule expression, and experimental atherogenesis. Macrophages are distributed in tissues throughout the body and contribute to both homeostasis and disease. Recently, it has become evident that most adult tissue macrophages originate during embryonic development and not from circulating monocytes. Each tissue has its own composition of embryonically derived and adult-derived macrophages, but it is unclear whether macrophages of distinct origins are functionally interchangeable or have unique roles at steady state. This new understanding also prompts reconsideration of the function of circulating monocytes. Classical Ly6c(hi) monocytes patrol the extravascular space in resting organs, and Ly6c(lo) nonclassical monocytes patrol the vasculature. Inflammation triggers monocytes to differentiate into macrophages, but whether resident and newly recruited macrophages possess similar functions during inflammation is unclear. Here, we define the tools used for identifying the complex origin of tissue macrophages and discuss the relative contributions of tissue niche versus ontological origin to the regulation of macrophage functions during steady state and inflammation. BACKGROUND Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. METHODS AND RESULTS The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E(-/-) mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E(-/-) mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E(-/-)mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E(-/-) mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. CONCLUSIONS FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels. Activation of the mammalian Notch receptor after ligand binding relies on a succession of events including metalloprotease-cleavage, endocytosis, monoubiquitination, and eventually processing by the gamma-secretase, giving rise to a soluble, transcriptionally active molecule. The Notch1 receptor was proposed to be monoubiquitinated before its gamma-secretase cleavage; the targeted lysine has been localized to its submembrane domain. Investigating how this step might be regulated by a deubiquitinase (DUB) activity will provide new insight for understanding Notch receptor activation and downstream signaling. An immunofluorescence-based screening of an shRNA library allowed us to identify eIF3f, previously known as one of the subunits of the translation initiation factor eIF3, as a DUB targeting the activated Notch receptor. We show that eIF3f has an intrinsic DUB activity. Knocking down eIF3f leads to an accumulation of monoubiquitinated forms of activated Notch, an effect counteracted by murine WT eIF3f but not by a catalytically inactive mutant. We also show that eIF3f is recruited to activated Notch on endocytic vesicles by the putative E3 ubiquitin ligase Deltex1, which serves as a bridging factor. Finally, catalytically inactive forms of eIF3f as well as shRNAs targeting eIF3f repress Notch activation in a coculture assay, showing that eIF3f is a new positive regulator of the Notch pathway. Our results support two new and provocative conclusions: (1) The activated form of Notch needs to be deubiquitinated before being processed by the gamma-secretase activity and entering the nucleus, where it fulfills its transcriptional function. (2) The enzyme accounting for this deubiquitinase activity is eIF3f, known so far as a translation initiation factor. These data improve our knowledge of Notch signaling but also open new avenues of research on the Zomes family and the translation initiation factors.
Lack of FGF21 in mice increases life expectancy. Interleukin-18 (IL18) participates in atherogenesis through several putative mechanisms. Interruption of IL18 action reduces atherosclerosis in mice. Here, we show that absence of the IL18 receptor (IL18r) does not affect atherosclerosis in apolipoprotein E–deficient (Apoe−/−) mice, nor does it affect IL18 cell surface binding to or signaling in endothelial cells. As identified initially by co-immunoprecipitation with IL18, we found that IL18 interacts with the Na-Cl co-transporter (NCC; also known as SLC12A3), a 12-transmembrane-domain ion transporter protein preferentially expressed in the kidney. NCC is expressed in atherosclerotic lesions, where it colocalizes with IL18r. In Apoe−/− mice, combined deficiency of IL18r and NCC, but not single deficiency of either protein, protects mice from atherosclerosis. Peritoneal macrophages from Apoe−/− mice or from Apoe−/− mice lacking IL18r or NCC show IL18 binding and induction of cell signaling and cytokine and chemokine expression, but macrophages from Apoe−/− mice with combined deficiency of IL18r and NCC have a blunted response. An interaction between NCC and IL18r on macrophages was detected by co-immunoprecipitation. IL18 binds to the cell surface of NCC-transfected COS-7 cells, which do not express IL18r, and induces cell signaling and cytokine expression. This study identifies NCC as an IL18-binding protein that collaborates with IL18r in cell signaling, inflammatory molecule expression, and experimental atherogenesis. Macrophages are distributed in tissues throughout the body and contribute to both homeostasis and disease. Recently, it has become evident that most adult tissue macrophages originate during embryonic development and not from circulating monocytes. Each tissue has its own composition of embryonically derived and adult-derived macrophages, but it is unclear whether macrophages of distinct origins are functionally interchangeable or have unique roles at steady state. This new understanding also prompts reconsideration of the function of circulating monocytes. Classical Ly6c(hi) monocytes patrol the extravascular space in resting organs, and Ly6c(lo) nonclassical monocytes patrol the vasculature. Inflammation triggers monocytes to differentiate into macrophages, but whether resident and newly recruited macrophages possess similar functions during inflammation is unclear. Here, we define the tools used for identifying the complex origin of tissue macrophages and discuss the relative contributions of tissue niche versus ontological origin to the regulation of macrophage functions during steady state and inflammation. BACKGROUND Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. METHODS AND RESULTS The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E(-/-) mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E(-/-) mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E(-/-)mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E(-/-) mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. CONCLUSIONS FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels. Activation of the mammalian Notch receptor after ligand binding relies on a succession of events including metalloprotease-cleavage, endocytosis, monoubiquitination, and eventually processing by the gamma-secretase, giving rise to a soluble, transcriptionally active molecule. The Notch1 receptor was proposed to be monoubiquitinated before its gamma-secretase cleavage; the targeted lysine has been localized to its submembrane domain. Investigating how this step might be regulated by a deubiquitinase (DUB) activity will provide new insight for understanding Notch receptor activation and downstream signaling. An immunofluorescence-based screening of an shRNA library allowed us to identify eIF3f, previously known as one of the subunits of the translation initiation factor eIF3, as a DUB targeting the activated Notch receptor. We show that eIF3f has an intrinsic DUB activity. Knocking down eIF3f leads to an accumulation of monoubiquitinated forms of activated Notch, an effect counteracted by murine WT eIF3f but not by a catalytically inactive mutant. We also show that eIF3f is recruited to activated Notch on endocytic vesicles by the putative E3 ubiquitin ligase Deltex1, which serves as a bridging factor. Finally, catalytically inactive forms of eIF3f as well as shRNAs targeting eIF3f repress Notch activation in a coculture assay, showing that eIF3f is a new positive regulator of the Notch pathway. Our results support two new and provocative conclusions: (1) The activated form of Notch needs to be deubiquitinated before being processed by the gamma-secretase activity and entering the nucleus, where it fulfills its transcriptional function. (2) The enzyme accounting for this deubiquitinase activity is eIF3f, known so far as a translation initiation factor. These data improve our knowledge of Notch signaling but also open new avenues of research on the Zomes family and the translation initiation factors.
0.4
{ "query_id": "680", "original_query_id": "680", "context_doc_ids": [ "24384587", "9505448", "22406695", "9315213" ], "gold_doc_ids_in_context": [ "9315213" ], "total_gold_docs_for_query": 1, "context_f1": 0.4, "context_size": 4, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.291270", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "9315213" ], "negative_samples_considered": [ "24384587", "9505448", "22406695" ], "comprehensive_gold_set_for_query": [ "9315213" ], "target_max_context_size_config": 6, "actual_context_size": 4, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
680
aug_971
Understanding epigenetic regulation of replication is essential for the reational design of episomally replicating vectors. Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of Atg7 (encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance. DNA replication in mammals is regulated via the coordinate firing of clusters of replicons that duplicate megabase-sized chromosome segments at specific times during S-phase. Cytogenetic studies show that these "replicon clusters" coalesce as subchromosomal units that persist through multiple cell generations, but the molecular boundaries of such units have remained elusive. Moreover, the extent to which changes in replication timing occur during differentiation and their relationship to transcription changes has not been rigorously investigated. We have constructed high-resolution replication-timing profiles in mouse embryonic stem cells (mESCs) before and after differentiation to neural precursor cells. We demonstrate that chromosomes can be segmented into multimegabase domains of coordinate replication, which we call "replication domains," separated by transition regions whose replication kinetics are consistent with large originless segments. The molecular boundaries of replication domains are remarkably well conserved between distantly related ESC lines and induced pluripotent stem cells. Unexpectedly, ESC differentiation was accompanied by the consolidation of smaller differentially replicating domains into larger coordinately replicated units whose replication time was more aligned to isochore GC content and the density of LINE-1 transposable elements, but not gene density. Replication-timing changes were coordinated with transcription changes for weak promoters more than strong promoters, and were accompanied by rearrangements in subnuclear position. We conclude that replication profiles are cell-type specific, and changes in these profiles reveal chromosome segments that undergo large changes in organization during differentiation. Moreover, smaller replication domains and a higher density of timing transition regions that interrupt isochore replication timing define a novel characteristic of the pluripotent state. BACKGROUND Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk. METHODS AND FINDINGS We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km² prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks. CONCLUSIONS Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary. We describe a second primase in human cells, PrimPol, which has the ability to start DNA chains with deoxynucleotides unlike regular primases, which use exclusively ribonucleotides. Moreover, PrimPol is also a DNA polymerase tailored to bypass the most common oxidative lesions in DNA, such as abasic sites and 8-oxoguanine. Subcellular fractionation and immunodetection studies indicated that PrimPol is present in both nuclear and mitochondrial DNA compartments. PrimPol activity is detectable in mitochondrial lysates from human and mouse cells but is absent from mitochondria derived from PRIMPOL knockout mice. PRIMPOL gene silencing or ablation in human and mouse cells impaired mitochondrial DNA replication. On the basis of the synergy observed with replicative DNA polymerases Polγ and Polε, PrimPol is proposed to facilitate replication fork progression by acting as a translesion DNA polymerase or as a specific DNA primase reinitiating downstream of lesions that block synthesis during both mitochondrial and nuclear DNA replication. Ataxia telangiectasia is a neurodegenerative disease caused by mutation of the Atm gene. Here we report that ataxia telangiectasia mutated (ATM) deficiency causes nuclear accumulation of histone deacetylase 4 (HDAC4) in neurons and promotes neurodegeneration. Nuclear HDAC4 binds to chromatin, as well as to myocyte enhancer factor 2A (MEF2A) and cAMP-responsive element binding protein (CREB), leading to histone deacetylation and altered neuronal gene expression. Blocking either HDAC4 activity or its nuclear accumulation blunts these neurodegenerative changes and rescues several behavioral abnormalities of ATM-deficient mice. Full rescue of the neurodegeneration, however, also requires the presence of HDAC4 in the cytoplasm, suggesting that the ataxia telangiectasia phenotype results both from a loss of cytoplasmic HDAC4 as well as its nuclear accumulation. To remain cytoplasmic, HDAC4 must be phosphorylated. The activity of the HDAC4 phosphatase, protein phosphatase 2A (PP2A), is downregulated by ATM-mediated phosphorylation. In ATM deficiency, enhanced PP2A activity leads to HDAC4 dephosphorylation and the nuclear accumulation of HDAC4. Our results define a crucial role of the cellular localization of HDAC4 in the events leading to ataxia telangiectasia neurodegeneration.
Understanding epigenetic regulation of replication is essential for the reational design of episomally replicating vectors. Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of Atg7 (encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance. DNA replication in mammals is regulated via the coordinate firing of clusters of replicons that duplicate megabase-sized chromosome segments at specific times during S-phase. Cytogenetic studies show that these "replicon clusters" coalesce as subchromosomal units that persist through multiple cell generations, but the molecular boundaries of such units have remained elusive. Moreover, the extent to which changes in replication timing occur during differentiation and their relationship to transcription changes has not been rigorously investigated. We have constructed high-resolution replication-timing profiles in mouse embryonic stem cells (mESCs) before and after differentiation to neural precursor cells. We demonstrate that chromosomes can be segmented into multimegabase domains of coordinate replication, which we call "replication domains," separated by transition regions whose replication kinetics are consistent with large originless segments. The molecular boundaries of replication domains are remarkably well conserved between distantly related ESC lines and induced pluripotent stem cells. Unexpectedly, ESC differentiation was accompanied by the consolidation of smaller differentially replicating domains into larger coordinately replicated units whose replication time was more aligned to isochore GC content and the density of LINE-1 transposable elements, but not gene density. Replication-timing changes were coordinated with transcription changes for weak promoters more than strong promoters, and were accompanied by rearrangements in subnuclear position. We conclude that replication profiles are cell-type specific, and changes in these profiles reveal chromosome segments that undergo large changes in organization during differentiation. Moreover, smaller replication domains and a higher density of timing transition regions that interrupt isochore replication timing define a novel characteristic of the pluripotent state. BACKGROUND Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk. METHODS AND FINDINGS We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km² prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks. CONCLUSIONS Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary. We describe a second primase in human cells, PrimPol, which has the ability to start DNA chains with deoxynucleotides unlike regular primases, which use exclusively ribonucleotides. Moreover, PrimPol is also a DNA polymerase tailored to bypass the most common oxidative lesions in DNA, such as abasic sites and 8-oxoguanine. Subcellular fractionation and immunodetection studies indicated that PrimPol is present in both nuclear and mitochondrial DNA compartments. PrimPol activity is detectable in mitochondrial lysates from human and mouse cells but is absent from mitochondria derived from PRIMPOL knockout mice. PRIMPOL gene silencing or ablation in human and mouse cells impaired mitochondrial DNA replication. On the basis of the synergy observed with replicative DNA polymerases Polγ and Polε, PrimPol is proposed to facilitate replication fork progression by acting as a translesion DNA polymerase or as a specific DNA primase reinitiating downstream of lesions that block synthesis during both mitochondrial and nuclear DNA replication. Ataxia telangiectasia is a neurodegenerative disease caused by mutation of the Atm gene. Here we report that ataxia telangiectasia mutated (ATM) deficiency causes nuclear accumulation of histone deacetylase 4 (HDAC4) in neurons and promotes neurodegeneration. Nuclear HDAC4 binds to chromatin, as well as to myocyte enhancer factor 2A (MEF2A) and cAMP-responsive element binding protein (CREB), leading to histone deacetylation and altered neuronal gene expression. Blocking either HDAC4 activity or its nuclear accumulation blunts these neurodegenerative changes and rescues several behavioral abnormalities of ATM-deficient mice. Full rescue of the neurodegeneration, however, also requires the presence of HDAC4 in the cytoplasm, suggesting that the ataxia telangiectasia phenotype results both from a loss of cytoplasmic HDAC4 as well as its nuclear accumulation. To remain cytoplasmic, HDAC4 must be phosphorylated. The activity of the HDAC4 phosphatase, protein phosphatase 2A (PP2A), is downregulated by ATM-mediated phosphorylation. In ATM deficiency, enhanced PP2A activity leads to HDAC4 dephosphorylation and the nuclear accumulation of HDAC4. Our results define a crucial role of the cellular localization of HDAC4 in the events leading to ataxia telangiectasia neurodegeneration.
0.333333
{ "query_id": "1342", "original_query_id": "1342", "context_doc_ids": [ "17368516", "8148122", "2097256", "3113630", "6227220" ], "gold_doc_ids_in_context": [ "8148122" ], "total_gold_docs_for_query": 1, "context_f1": 0.33333333333333337, "context_size": 5, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.291473", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "8148122" ], "negative_samples_considered": [ "17368516", "2097256", "6227220", "3113630" ], "comprehensive_gold_set_for_query": [ "8148122" ], "target_max_context_size_config": 6, "actual_context_size": 5, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1342
aug_972
A deficiency of vitamin B6 decreases blood levels of homocysteine. OBJECTIVE To establish the mental health needs of homeless children and families before and after rehousing. DESIGN Cross sectional, longitudinal study. SETTING City of Birmingham. SUBJECTS 58 rehoused families with 103 children aged 2-16 years and 21 comparison families of low socioeconomic status in stable housing, with 54 children. MAIN OUTCOME MEASURES Children's mental health problems and level of communication; mothers' mental health problems and social support one year after rehousing. RESULTS Mental health problems remained significantly higher in rehoused mothers and their children than in the comparison group (mothers 26% v 5%, P = 0.04; children 39% v 11%, P = 0.0003). Homeless mothers continued to have significantly less social support at follow up. Mothers with a history of abuse and poor social integration were more likely to have children with persistent mental health problems. CONCLUSIONS Homeless families have a high level of complex needs that cannot be met by conventional health services and arrangements. Local strategies for rapid rehousing into permanent accommodation, effective social support and health care for parents and children, and protection from violence and intimidation should be developed and implemented. Importance Postmarket safety events of novel pharmaceuticals and biologics occur when new safety risks are identified after initial regulatory approval of these therapeutics. These safety events can change how novel therapeutics are used in clinical practice and inform patient and clinician decision making. Objectives To characterize the frequency of postmarket safety events among novel therapeutics approved by the US Food and Drug Administration (FDA), and to examine whether any novel therapeutic characteristics known at the time of FDA approval were associated with increased risk. Design and Setting Cohort study of all novel therapeutics approved by the FDA between January 1, 2001, and December 31, 2010, followed up through February 28, 2017. Exposures Novel therapeutic characteristics known at the time of FDA approval, including drug class, therapeutic area, priority review, accelerated approval, orphan status, near–regulatory deadline approval, and regulatory review time. Main Outcomes and Measures A composite of (1) withdrawals due to safety concerns, (2) FDA issuance of incremental boxed warnings added in the postmarket period, and (3) FDA issuance of safety communications. Results From 2001 through 2010, the FDA approved 222 novel therapeutics (183 pharmaceuticals and 39 biologics). There were 123 new postmarket safety events (3 withdrawals, 61 boxed warnings, and 59 safety communications) during a median follow-up period of 11.7 years (interquartile range [IQR], 8.7-13.8 years), affecting 71 (32.0%) of the novel therapeutics. The median time from approval to first postmarket safety event was 4.2 years (IQR, 2.5-6.0 years), and the proportion of novel therapeutics affected by a postmarket safety event at 10 years was 30.8% (95% CI, 25.1%-37.5%). In multivariable analysis, postmarket safety events were statistically significantly more frequent among biologics (incidence rate ratio [IRR] = 1.93; 95% CI, 1.06-3.52; P = .03), therapeutics indicated for the treatment of psychiatric disease (IRR = 3.78; 95% CI, 1.77-8.06; P < .001), those receiving accelerated approval (IRR = 2.20; 95% CI, 1.15-4.21; P = .02), and those with near–regulatory deadline approval (IRR = 1.90; 95% CI, 1.19-3.05; P = .008); events were statistically significantly less frequent among those with regulatory review times less than 200 days (IRR = 0.46; 95% CI, 0.24-0.87; P = .02). Conclusions and Relevance Among 222 novel therapeutics approved by the FDA from 2001 through 2010, 32% were affected by a postmarket safety event. Biologics, psychiatric therapeutics, and accelerated and near–regulatory deadline approval were statistically significantly associated with higher rates of events, highlighting the need for continuous monitoring of the safety of novel therapeutics throughout their life cycle. Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members. Objective To explore the in vitro maintenance and characterization of human embryonic stem cells(hESCs).Methods hESCs were cultured on feeder layer with ES culture medium,which consists of 20% Knockout Serum Replacement,Knockout DMEM and 10 ng/mL bFGF.Undifferentiated status of hESCs was identified by cell morphology,and the expressions of cell surface marker SSEA-1,SSEA-3 and TRA-1-60.G banding technique was employed for cell karyotype analysis. Pluropotency of cells were analyzed via in vitro embyoid body(EB) formation and in vivo terotoma formation. Results Most of cells showed undifferentiated properties in cell morphology and normal karyotype throughout extended culture periods. They maintained undifferentiated status with positive immunoreactivity to SSEA-3,SSEA-4 and TRA-1-60.in vitro EB formation and in vivo teratoma formation demonstrated the pluripotency of human ES cells. Conclusion The fundamental requirement to hESCs for research and clinical application were their undifferentiated status and pluropotency in culture. Our result demonstrated their potential for these purposes. The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses. Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.
A deficiency of vitamin B6 decreases blood levels of homocysteine. OBJECTIVE To establish the mental health needs of homeless children and families before and after rehousing. DESIGN Cross sectional, longitudinal study. SETTING City of Birmingham. SUBJECTS 58 rehoused families with 103 children aged 2-16 years and 21 comparison families of low socioeconomic status in stable housing, with 54 children. MAIN OUTCOME MEASURES Children's mental health problems and level of communication; mothers' mental health problems and social support one year after rehousing. RESULTS Mental health problems remained significantly higher in rehoused mothers and their children than in the comparison group (mothers 26% v 5%, P = 0.04; children 39% v 11%, P = 0.0003). Homeless mothers continued to have significantly less social support at follow up. Mothers with a history of abuse and poor social integration were more likely to have children with persistent mental health problems. CONCLUSIONS Homeless families have a high level of complex needs that cannot be met by conventional health services and arrangements. Local strategies for rapid rehousing into permanent accommodation, effective social support and health care for parents and children, and protection from violence and intimidation should be developed and implemented. Importance Postmarket safety events of novel pharmaceuticals and biologics occur when new safety risks are identified after initial regulatory approval of these therapeutics. These safety events can change how novel therapeutics are used in clinical practice and inform patient and clinician decision making. Objectives To characterize the frequency of postmarket safety events among novel therapeutics approved by the US Food and Drug Administration (FDA), and to examine whether any novel therapeutic characteristics known at the time of FDA approval were associated with increased risk. Design and Setting Cohort study of all novel therapeutics approved by the FDA between January 1, 2001, and December 31, 2010, followed up through February 28, 2017. Exposures Novel therapeutic characteristics known at the time of FDA approval, including drug class, therapeutic area, priority review, accelerated approval, orphan status, near–regulatory deadline approval, and regulatory review time. Main Outcomes and Measures A composite of (1) withdrawals due to safety concerns, (2) FDA issuance of incremental boxed warnings added in the postmarket period, and (3) FDA issuance of safety communications. Results From 2001 through 2010, the FDA approved 222 novel therapeutics (183 pharmaceuticals and 39 biologics). There were 123 new postmarket safety events (3 withdrawals, 61 boxed warnings, and 59 safety communications) during a median follow-up period of 11.7 years (interquartile range [IQR], 8.7-13.8 years), affecting 71 (32.0%) of the novel therapeutics. The median time from approval to first postmarket safety event was 4.2 years (IQR, 2.5-6.0 years), and the proportion of novel therapeutics affected by a postmarket safety event at 10 years was 30.8% (95% CI, 25.1%-37.5%). In multivariable analysis, postmarket safety events were statistically significantly more frequent among biologics (incidence rate ratio [IRR] = 1.93; 95% CI, 1.06-3.52; P = .03), therapeutics indicated for the treatment of psychiatric disease (IRR = 3.78; 95% CI, 1.77-8.06; P < .001), those receiving accelerated approval (IRR = 2.20; 95% CI, 1.15-4.21; P = .02), and those with near–regulatory deadline approval (IRR = 1.90; 95% CI, 1.19-3.05; P = .008); events were statistically significantly less frequent among those with regulatory review times less than 200 days (IRR = 0.46; 95% CI, 0.24-0.87; P = .02). Conclusions and Relevance Among 222 novel therapeutics approved by the FDA from 2001 through 2010, 32% were affected by a postmarket safety event. Biologics, psychiatric therapeutics, and accelerated and near–regulatory deadline approval were statistically significantly associated with higher rates of events, highlighting the need for continuous monitoring of the safety of novel therapeutics throughout their life cycle. Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members. Objective To explore the in vitro maintenance and characterization of human embryonic stem cells(hESCs).Methods hESCs were cultured on feeder layer with ES culture medium,which consists of 20% Knockout Serum Replacement,Knockout DMEM and 10 ng/mL bFGF.Undifferentiated status of hESCs was identified by cell morphology,and the expressions of cell surface marker SSEA-1,SSEA-3 and TRA-1-60.G banding technique was employed for cell karyotype analysis. Pluropotency of cells were analyzed via in vitro embyoid body(EB) formation and in vivo terotoma formation. Results Most of cells showed undifferentiated properties in cell morphology and normal karyotype throughout extended culture periods. They maintained undifferentiated status with positive immunoreactivity to SSEA-3,SSEA-4 and TRA-1-60.in vitro EB formation and in vivo teratoma formation demonstrated the pluripotency of human ES cells. Conclusion The fundamental requirement to hESCs for research and clinical application were their undifferentiated status and pluropotency in culture. Our result demonstrated their potential for these purposes. The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses. Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.
0
{ "query_id": "37", "original_query_id": "37", "context_doc_ids": [ "4547102", "8883846", "3578380", "87610599", "25649714", "13868795" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 2, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.291621", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "4547102", "13868795", "87610599", "8883846", "3578380", "25649714" ], "comprehensive_gold_set_for_query": [ "11705328", "5152028" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
37
aug_973
GATA3 regulates cell cycle progression in bone marrow hematopoietic stem cells. RNA processing is carried out in close proximity to the site of transcription, suggesting a regulatory link between transcription and pre-mRNA splicing. Using an in vitro transcription/splicing assay, we demonstrate that an association of RNA polymerase II (Pol II) transcription and pre-mRNA splicing is required for efficient gene expression. Pol II-synthesized RNAs containing functional splice sites are protected from nuclear degradation, presumably because the local concentration of the splicing machinery is sufficiently high to ensure its association over interactions with nucleases. Furthermore, the process of transcription influences alternative splicing of newly synthesized pre-mRNAs. Because other RNA polymerases do not provide similar protection from nucleases, and their RNA products display altered splicing patterns, the link between transcription and RNA processing is RNA Pol II-specific. We propose that the connection between transcription by Pol II and pre-mRNA splicing guarantees an extended half-life and proper processing of nascent pre-mRNAs. CONTEXT Long-term travelers, defined here as those traveling for periods of 6 months or longer, face particular challenges regarding malaria prevention. Current guidelines for malaria prevention primarily address prevention of Plasmodium falciparum infections in short-term travelers. OBJECTIVES To examine the risk of malaria in long-term travelers, recent developments in personal protective measures, and the safety and tolerability of malaria chemoprophylaxis during long-term use and to consider prevention strategies including continuous chemoprophylaxis, stand-by emergency self-treatment, seasonal prophylaxis, and strategies to prevent primary infection and relapses from P vivax malaria. EVIDENCE ACQUISITION Comprehensive search of scientific publications including MEDLINE via both OVID and PubMED for relevant studies and articles with a cutoff date of July 2006, using the search terms long-term travel and malaria prevention, long-term malaria chemoprophylaxis, and insect repellent and malaria. Additional references were obtained from searching the bibliographies of the selected articles, from dissertations, and from the proceedings of relevant conferences on travel medicine. There were no language restrictions. EVIDENCE SYNTHESIS Long-term travelers have a higher risk of malaria than short-term travelers. Long-term travelers underuse personal protective measures and adhere poorly to continuous chemoprophylaxis regimens. A number of strategies are used during long-term stays: discontinuation of chemoprophylaxis after the initial period, sequential regimens with different medications for chemoprophylaxis, stand-by emergency self-treatment, and seasonal chemoprophylaxis targeting high-incidence periods or locations. All strategies have advantages and drawbacks. Counterfeit drugs sold in countries endemic for malaria pose serious concern for long-term travelers who purchase their medications overseas. Vivax malaria causes significant illness in travelers, but relapses of vivax malaria are not prevented with the current first-line chemoprophylaxis regimens. Consensus guidelines are needed for prevention of malaria in long-term travelers. CONCLUSIONS Prevention of malaria in long-term travelers is a complex issue and requires expert advice from travel medicine specialists. Recommendations for prevention of malaria in long-term travelers must be individualized. Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin(-)Sca1(+)c-Kit(hi)CD150(+)CD48(-)) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well documented that GATA-3 is expressed in HSCs, a role for GATA-3 in any prethymic progenitor cell has not been established. In the present study, we show that Gata3-null mutant mice generate fewer LT-HSCs and that fewer Gata3-null LT-HSCs are in cycle. Furthermore, Gata3 mutant hematopoietic progenitor cells fail to be recruited into an increased cycling state after 5-fluorouracil-induced myelosuppression. Therefore, GATA-3 is required for the maintenance of a normal number of LT-HSCs and for their entry into the cell cycle. More than ever, clinicians need regularly updated reviews given the continuously increasing amount of new information regarding innovative cervical cancer prevention methods. A summary is given from recent meta-analyses and systematic reviews on 3 possible clinical applications of human papillomavirus (HPV) testing: triage of women with equivocal or low-grade cytologic abnormalities; prediction of the therapeutic outcome after treatment of cervical intraepithelial neoplasia (CIN) lesions, and last not but not least, primary screening for cervical cancer and pre-cancer. Consistent evidence is available indicating that HPV-triage with the Hybrid Capture(®) 2 assay (Qiagen Gaithersburg, Inc., MD, USA [previously Digene Corp.] (HC2) is more accurate (higher sensitivity, similar specificity) than repeat cytology to triage women with equivocal Pap smear results. Several other tests show at least similar accuracy but mRNA testing with the APTIMA(®) (Gen-Probe Inc., San Diego, CA, USA) test is similarly sensitive but more specific compared to HC2. In triage of low-grade squamous intraepithelial lesions (LSIL), HC2 is more sensitive but its specificity is substantially lower compared to repeat cytology. The APTIMA(®) test is more specific than HC2 without showing a loss in sensitivity. Identification of DNA of HPV types 16 and/or 18, or RNA from the five most carcinogenic HPV types allow selecting women at highest risk for CIN3+ but the sensitivity and negative predictive value of these markers are lower than full-range high-risk HPV (hrHPV) testing. After conservative treatment of cervical pre-cancer, HPV testing picks up more quickly, with higher sensitivity and not lower specificity, residual or recurrent high-grade CIN than follow-up cytology. Primary screening for hrHPV generally detects more CIN2, CIN3 or cancer compared to cytology at cut-off atypical squamous cells of undetermined significance (ASC-US) or LSIL, but is less specific. Combined HPV and cytology screening provides a further small gain in sensitivity at the expense of a considerable loss in specificity if positive by either test is referred to colposcopy, in comparison with HPV testing only. Randomised trials and follow-up of cohort studies consistently demonstrate a significantly lower cumulative incidence of CIN3+ and even of cancer, in women aged 30 years or older, who were at enrollment hrHPV DNA negative compared to those who were cytologically negative. The difference in cumulative risk of CIN3+ or cancer for double negative (cytology & HPV) versus only HPV-negative women is small. HC2, GP5+/6+ PCR (polymerase chain reaction), cobas(®) 4800 PCR (Roche Molecular Systems Inc., Alameda, CA, USA) and Real Time PCR (Abbott Molecular, Des Plaines, IL, USA) can be considered as clinically validated for use in primary screening. The loss in specificity associated with primary HPV-based screening can be compensated by appropriate algorithms involving reflex cytology and/or HPV genotyping for HPV16 or 18. There exists a substantial evidence base to support that HPV testing is advantageous both in triage of women with equivocal abnormal cytology, in surveillance after treatment of CIN lesions and in primary screening of women aged 30 years or older. However, the possible advantages offered by HPV-based screening require a well organised program with good compliance with screening and triage policies. This article forms part of a special supplement entitled "Comprehensive Control of HPV Infections and Related Diseases" Vaccine Volume 30, Supplement 5, 2012. Historically, the ribosome has been viewed as a complex ribozyme with constitutive rather than regulatory capacity in mRNA translation. Here we identify mutations of the Ribosomal Protein L38 (Rpl38) gene in mice exhibiting surprising tissue-specific patterning defects, including pronounced homeotic transformations of the axial skeleton. In Rpl38 mutant embryos, global protein synthesis is unchanged; however the translation of a select subset of Homeobox mRNAs is perturbed. Our data reveal that RPL38 facilitates 80S complex formation on these mRNAs as a regulatory component of the ribosome to confer transcript-specific translational control. We further show that Rpl38 expression is markedly enriched in regions of the embryo where loss-of-function phenotypes occur. Unexpectedly, a ribosomal protein (RP) expression screen reveals dynamic regulation of individual RPs within the vertebrate embryo. Collectively, these findings suggest that RP activity may be highly regulated to impart a new layer of specificity in the control of gene expression and mammalian development.
GATA3 regulates cell cycle progression in bone marrow hematopoietic stem cells. RNA processing is carried out in close proximity to the site of transcription, suggesting a regulatory link between transcription and pre-mRNA splicing. Using an in vitro transcription/splicing assay, we demonstrate that an association of RNA polymerase II (Pol II) transcription and pre-mRNA splicing is required for efficient gene expression. Pol II-synthesized RNAs containing functional splice sites are protected from nuclear degradation, presumably because the local concentration of the splicing machinery is sufficiently high to ensure its association over interactions with nucleases. Furthermore, the process of transcription influences alternative splicing of newly synthesized pre-mRNAs. Because other RNA polymerases do not provide similar protection from nucleases, and their RNA products display altered splicing patterns, the link between transcription and RNA processing is RNA Pol II-specific. We propose that the connection between transcription by Pol II and pre-mRNA splicing guarantees an extended half-life and proper processing of nascent pre-mRNAs. CONTEXT Long-term travelers, defined here as those traveling for periods of 6 months or longer, face particular challenges regarding malaria prevention. Current guidelines for malaria prevention primarily address prevention of Plasmodium falciparum infections in short-term travelers. OBJECTIVES To examine the risk of malaria in long-term travelers, recent developments in personal protective measures, and the safety and tolerability of malaria chemoprophylaxis during long-term use and to consider prevention strategies including continuous chemoprophylaxis, stand-by emergency self-treatment, seasonal prophylaxis, and strategies to prevent primary infection and relapses from P vivax malaria. EVIDENCE ACQUISITION Comprehensive search of scientific publications including MEDLINE via both OVID and PubMED for relevant studies and articles with a cutoff date of July 2006, using the search terms long-term travel and malaria prevention, long-term malaria chemoprophylaxis, and insect repellent and malaria. Additional references were obtained from searching the bibliographies of the selected articles, from dissertations, and from the proceedings of relevant conferences on travel medicine. There were no language restrictions. EVIDENCE SYNTHESIS Long-term travelers have a higher risk of malaria than short-term travelers. Long-term travelers underuse personal protective measures and adhere poorly to continuous chemoprophylaxis regimens. A number of strategies are used during long-term stays: discontinuation of chemoprophylaxis after the initial period, sequential regimens with different medications for chemoprophylaxis, stand-by emergency self-treatment, and seasonal chemoprophylaxis targeting high-incidence periods or locations. All strategies have advantages and drawbacks. Counterfeit drugs sold in countries endemic for malaria pose serious concern for long-term travelers who purchase their medications overseas. Vivax malaria causes significant illness in travelers, but relapses of vivax malaria are not prevented with the current first-line chemoprophylaxis regimens. Consensus guidelines are needed for prevention of malaria in long-term travelers. CONCLUSIONS Prevention of malaria in long-term travelers is a complex issue and requires expert advice from travel medicine specialists. Recommendations for prevention of malaria in long-term travelers must be individualized. Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin(-)Sca1(+)c-Kit(hi)CD150(+)CD48(-)) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well documented that GATA-3 is expressed in HSCs, a role for GATA-3 in any prethymic progenitor cell has not been established. In the present study, we show that Gata3-null mutant mice generate fewer LT-HSCs and that fewer Gata3-null LT-HSCs are in cycle. Furthermore, Gata3 mutant hematopoietic progenitor cells fail to be recruited into an increased cycling state after 5-fluorouracil-induced myelosuppression. Therefore, GATA-3 is required for the maintenance of a normal number of LT-HSCs and for their entry into the cell cycle. More than ever, clinicians need regularly updated reviews given the continuously increasing amount of new information regarding innovative cervical cancer prevention methods. A summary is given from recent meta-analyses and systematic reviews on 3 possible clinical applications of human papillomavirus (HPV) testing: triage of women with equivocal or low-grade cytologic abnormalities; prediction of the therapeutic outcome after treatment of cervical intraepithelial neoplasia (CIN) lesions, and last not but not least, primary screening for cervical cancer and pre-cancer. Consistent evidence is available indicating that HPV-triage with the Hybrid Capture(®) 2 assay (Qiagen Gaithersburg, Inc., MD, USA [previously Digene Corp.] (HC2) is more accurate (higher sensitivity, similar specificity) than repeat cytology to triage women with equivocal Pap smear results. Several other tests show at least similar accuracy but mRNA testing with the APTIMA(®) (Gen-Probe Inc., San Diego, CA, USA) test is similarly sensitive but more specific compared to HC2. In triage of low-grade squamous intraepithelial lesions (LSIL), HC2 is more sensitive but its specificity is substantially lower compared to repeat cytology. The APTIMA(®) test is more specific than HC2 without showing a loss in sensitivity. Identification of DNA of HPV types 16 and/or 18, or RNA from the five most carcinogenic HPV types allow selecting women at highest risk for CIN3+ but the sensitivity and negative predictive value of these markers are lower than full-range high-risk HPV (hrHPV) testing. After conservative treatment of cervical pre-cancer, HPV testing picks up more quickly, with higher sensitivity and not lower specificity, residual or recurrent high-grade CIN than follow-up cytology. Primary screening for hrHPV generally detects more CIN2, CIN3 or cancer compared to cytology at cut-off atypical squamous cells of undetermined significance (ASC-US) or LSIL, but is less specific. Combined HPV and cytology screening provides a further small gain in sensitivity at the expense of a considerable loss in specificity if positive by either test is referred to colposcopy, in comparison with HPV testing only. Randomised trials and follow-up of cohort studies consistently demonstrate a significantly lower cumulative incidence of CIN3+ and even of cancer, in women aged 30 years or older, who were at enrollment hrHPV DNA negative compared to those who were cytologically negative. The difference in cumulative risk of CIN3+ or cancer for double negative (cytology & HPV) versus only HPV-negative women is small. HC2, GP5+/6+ PCR (polymerase chain reaction), cobas(®) 4800 PCR (Roche Molecular Systems Inc., Alameda, CA, USA) and Real Time PCR (Abbott Molecular, Des Plaines, IL, USA) can be considered as clinically validated for use in primary screening. The loss in specificity associated with primary HPV-based screening can be compensated by appropriate algorithms involving reflex cytology and/or HPV genotyping for HPV16 or 18. There exists a substantial evidence base to support that HPV testing is advantageous both in triage of women with equivocal abnormal cytology, in surveillance after treatment of CIN lesions and in primary screening of women aged 30 years or older. However, the possible advantages offered by HPV-based screening require a well organised program with good compliance with screening and triage policies. This article forms part of a special supplement entitled "Comprehensive Control of HPV Infections and Related Diseases" Vaccine Volume 30, Supplement 5, 2012. Historically, the ribosome has been viewed as a complex ribozyme with constitutive rather than regulatory capacity in mRNA translation. Here we identify mutations of the Ribosomal Protein L38 (Rpl38) gene in mice exhibiting surprising tissue-specific patterning defects, including pronounced homeotic transformations of the axial skeleton. In Rpl38 mutant embryos, global protein synthesis is unchanged; however the translation of a select subset of Homeobox mRNAs is perturbed. Our data reveal that RPL38 facilitates 80S complex formation on these mRNAs as a regulatory component of the ribosome to confer transcript-specific translational control. We further show that Rpl38 expression is markedly enriched in regions of the embryo where loss-of-function phenotypes occur. Unexpectedly, a ribosomal protein (RP) expression screen reveals dynamic regulation of individual RPs within the vertebrate embryo. Collectively, these findings suggest that RP activity may be highly regulated to impart a new layer of specificity in the control of gene expression and mammalian development.
0.333333
{ "query_id": "444", "original_query_id": "444", "context_doc_ids": [ "12486491", "10165258", "28617573", "32390525", "4162857" ], "gold_doc_ids_in_context": [ "10165258" ], "total_gold_docs_for_query": 1, "context_f1": 0.33333333333333337, "context_size": 5, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.291716", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "10165258" ], "negative_samples_considered": [ "12486491", "4162857", "32390525", "28617573" ], "comprehensive_gold_set_for_query": [ "10165258" ], "target_max_context_size_config": 6, "actual_context_size": 5, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
444
aug_974
p16INK4A degradation is encoded by CDKN2A. Background The catalytically active 66-kDa subunit of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) consists of DNA polymerase, connection, and ribonuclease H (RNase H) domains. Almost all known RT inhibitor resistance mutations identified to date map to the polymerase domain of the enzyme. However, the connection and RNase H domains are not routinely analysed in clinical samples and none of the genotyping assays available for patient management sequence the entire RT coding region. The British Columbia Centre for Excellence in HIV/AIDS (the Centre) genotypes clinical isolates up to codon 400 in RT, and our retrospective statistical analyses of the Centre’s database have identified an N348I mutation in the RT connection domain in treatment-experienced individuals. The objective of this multidisciplinary study was to establish the in vivo relevance of this mutation and its role in drug resistance. Methods and Findings The prevalence of N348I in clinical isolates, the time taken for it to emerge under selective drug pressure, and its association with changes in viral load, specific drug treatment, and known drug resistance mutations was analysed from genotypes, viral loads, and treatment histories from the Centre’s database. N348I increased in prevalence from below 1% in 368 treatmentnao ¨ve individuals to 12.1% in 1,009 treatment-experienced patients (p ¼ 7.7 3 10 � 12 ). N348I appeared early in therapy and was highly associated with thymidine analogue mutations (TAMs) M41L and T215Y/F (p , 0.001), the lamivudine resistance mutations M184V/I (p , 0.001), and non-nucleoside RTI (NNRTI) resistance mutations K103N and Y181C/I (p , 0.001). The association with TAMs and NNRTI resistance mutations was consistent with the selection of N348I in patients treated with regimens that included both zidovudine and nevirapine (odds ratio 2.62, 95% confidence interval 1.43–4.81). The appearance of N348I was associated with a significant increase in viral load (p , 0.001), which was as large as the viral load increases observed for any of the TAMs. However, this analysis did not account for the simultaneous selection of other RT or protease inhibitor resistance mutations on viral load. To delineate the role of this mutation in RT inhibitor resistance, N348I was introduced into HIV-1 molecular clones containing different genetic backbones. N348I decreased zidovudine susceptibility 2- to 4-fold in the context of wildtype HIV-1 or when combined with TAMs. N348I also decreased susceptibility to nevirapine (7.4fold) and efavirenz (2.5-fold) and significantly potentiated resistance to these drugs when combined with K103N. Biochemical analyses of recombinant RT containing N348I provide supporting evidence for the role of this mutation in zidovudine and NNRTI resistance and give some insight into the molecular mechanism of resistance. Conclusions Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD. Monitoring cancer and aging in vivo remains experimentally challenging. Here, we describe a luciferase knockin mouse (p16(LUC)), which faithfully reports expression of p16(INK4a), a tumor suppressor and aging biomarker. Lifelong assessment of luminescence in p16(+/LUC) mice revealed an exponential increase with aging, which was highly variable in a cohort of contemporaneously housed, syngeneic mice. Expression of p16(INK4a) with aging did not predict cancer development, suggesting that the accumulation of senescent cells is not a principal determinant of cancer-related death. In 14 of 14 tested tumor models, expression of p16(LUC) was focally activated by early neoplastic events, enabling visualization of tumors with sensitivity exceeding other imaging modalities. Activation of p16(INK4a) was noted in the emerging neoplasm and surrounding stromal cells. This work suggests that p16(INK4a) activation is a characteristic of all emerging cancers, making the p16(LUC) allele a sensitive, unbiased reporter of neoplastic transformation. It is established that tumor cell-derived VEGF acts on endothelial cells to promote angiogenesis and tumor growth. Here, we demonstrate that in K5-SOS-dependent mouse skin tumors, autocrine VEGF is required for tumor cell proliferation in a cell-autonomous and angiogenesis-independent manner. VEGF is upregulated in SOS-expressing tumors, and its deletion in epidermal cells delays tumorigenesis by suppressing angiogenesis and tumor cell proliferation. Epidermis-specific Flt1 deletion also impairs tumorigenesis and proliferation. Surprisingly, complete tumor inhibition occurs in the absence of VEGF in EGFR mutant mice, demonstrating that VEGFR and EGFR synergize in neoplastic cells to promote tumor growth. Mechanistically, K5-SOS upregulates VEGF, Flt1, and Neuropilin-1 in an Erk-dependent manner, thereby activating an autocrine proliferation loop, whereas EGFR prevents tumor cells from apoptosis. Moreover, Flt1 is upregulated in human SCC, and its inhibition in SCC cells impairs proliferation. Thus, in addition to regulating angiogenesis, VEGF has to be considered as a potent growth factor for epidermal tumors.
p16INK4A degradation is encoded by CDKN2A. Background The catalytically active 66-kDa subunit of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) consists of DNA polymerase, connection, and ribonuclease H (RNase H) domains. Almost all known RT inhibitor resistance mutations identified to date map to the polymerase domain of the enzyme. However, the connection and RNase H domains are not routinely analysed in clinical samples and none of the genotyping assays available for patient management sequence the entire RT coding region. The British Columbia Centre for Excellence in HIV/AIDS (the Centre) genotypes clinical isolates up to codon 400 in RT, and our retrospective statistical analyses of the Centre’s database have identified an N348I mutation in the RT connection domain in treatment-experienced individuals. The objective of this multidisciplinary study was to establish the in vivo relevance of this mutation and its role in drug resistance. Methods and Findings The prevalence of N348I in clinical isolates, the time taken for it to emerge under selective drug pressure, and its association with changes in viral load, specific drug treatment, and known drug resistance mutations was analysed from genotypes, viral loads, and treatment histories from the Centre’s database. N348I increased in prevalence from below 1% in 368 treatmentnao ¨ve individuals to 12.1% in 1,009 treatment-experienced patients (p ¼ 7.7 3 10 � 12 ). N348I appeared early in therapy and was highly associated with thymidine analogue mutations (TAMs) M41L and T215Y/F (p , 0.001), the lamivudine resistance mutations M184V/I (p , 0.001), and non-nucleoside RTI (NNRTI) resistance mutations K103N and Y181C/I (p , 0.001). The association with TAMs and NNRTI resistance mutations was consistent with the selection of N348I in patients treated with regimens that included both zidovudine and nevirapine (odds ratio 2.62, 95% confidence interval 1.43–4.81). The appearance of N348I was associated with a significant increase in viral load (p , 0.001), which was as large as the viral load increases observed for any of the TAMs. However, this analysis did not account for the simultaneous selection of other RT or protease inhibitor resistance mutations on viral load. To delineate the role of this mutation in RT inhibitor resistance, N348I was introduced into HIV-1 molecular clones containing different genetic backbones. N348I decreased zidovudine susceptibility 2- to 4-fold in the context of wildtype HIV-1 or when combined with TAMs. N348I also decreased susceptibility to nevirapine (7.4fold) and efavirenz (2.5-fold) and significantly potentiated resistance to these drugs when combined with K103N. Biochemical analyses of recombinant RT containing N348I provide supporting evidence for the role of this mutation in zidovudine and NNRTI resistance and give some insight into the molecular mechanism of resistance. Conclusions Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD. Monitoring cancer and aging in vivo remains experimentally challenging. Here, we describe a luciferase knockin mouse (p16(LUC)), which faithfully reports expression of p16(INK4a), a tumor suppressor and aging biomarker. Lifelong assessment of luminescence in p16(+/LUC) mice revealed an exponential increase with aging, which was highly variable in a cohort of contemporaneously housed, syngeneic mice. Expression of p16(INK4a) with aging did not predict cancer development, suggesting that the accumulation of senescent cells is not a principal determinant of cancer-related death. In 14 of 14 tested tumor models, expression of p16(LUC) was focally activated by early neoplastic events, enabling visualization of tumors with sensitivity exceeding other imaging modalities. Activation of p16(INK4a) was noted in the emerging neoplasm and surrounding stromal cells. This work suggests that p16(INK4a) activation is a characteristic of all emerging cancers, making the p16(LUC) allele a sensitive, unbiased reporter of neoplastic transformation. It is established that tumor cell-derived VEGF acts on endothelial cells to promote angiogenesis and tumor growth. Here, we demonstrate that in K5-SOS-dependent mouse skin tumors, autocrine VEGF is required for tumor cell proliferation in a cell-autonomous and angiogenesis-independent manner. VEGF is upregulated in SOS-expressing tumors, and its deletion in epidermal cells delays tumorigenesis by suppressing angiogenesis and tumor cell proliferation. Epidermis-specific Flt1 deletion also impairs tumorigenesis and proliferation. Surprisingly, complete tumor inhibition occurs in the absence of VEGF in EGFR mutant mice, demonstrating that VEGFR and EGFR synergize in neoplastic cells to promote tumor growth. Mechanistically, K5-SOS upregulates VEGF, Flt1, and Neuropilin-1 in an Erk-dependent manner, thereby activating an autocrine proliferation loop, whereas EGFR prevents tumor cells from apoptosis. Moreover, Flt1 is upregulated in human SCC, and its inhibition in SCC cells impairs proliferation. Thus, in addition to regulating angiogenesis, VEGF has to be considered as a potent growth factor for epidermal tumors.
0.4
{ "query_id": "1398", "original_query_id": "1398", "context_doc_ids": [ "18956141", "17844478", "17717391", "15319019" ], "gold_doc_ids_in_context": [ "17717391" ], "total_gold_docs_for_query": 1, "context_f1": 0.4, "context_size": 4, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.291805", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "17717391" ], "negative_samples_considered": [ "17844478", "18956141", "15319019" ], "comprehensive_gold_set_for_query": [ "17717391" ], "target_max_context_size_config": 6, "actual_context_size": 4, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1398
aug_975
Human embryonic stem cells have the capacity to give rise to differentiated progeny representative of all three embryonic germ layers. Embryonic stem (ES) cell lines derived from human blastocysts have the developmental potential to form derivatives of all three embryonic germ layers even after prolonged culture. Here we describe the clonal derivation of two human ES cell lines, H9.1 and H9.2. At the time of the clonal derivation of the H9.1 and H9.2 ES cell lines, the parental ES cell line, H9, had already been continuously cultured for 6 months. After an additional 8 months of culture, H9.1 and H9.2 ES cell lines continued to: (1) actively proliferate, (2) express high levels of telomerase, and (3) retain normal karyotypes. Telomere lengths, while somewhat variable, were maintained between 8 and 12 kb in high-passage H9.1 and H9.2 cells. High-passage H9.1 and H9.2 cells both formed teratomas in SCID-beige mice that included differentiated derivatives of all three embryonic germ layers. These results demonstrate the pluripotency of single human ES cells, the maintenance of pluripotency during an extended period of culture, and the long-term self-renewing properties of cultured human ES cells. The remarkable developmental potential, proliferative capacity, and karyotypic stability of human ES cells distinguish them from adult cells. In single-stranded ribonucleic acid (RNA) viruses, virus capsid assembly and genome packaging are intertwined processes. Using cryo-electron microscopy and single particle analysis we determined the asymmetric virion structure of bacteriophage MS2, which includes 178 copies of the coat protein, a single copy of the A-protein and the RNA genome. This reveals that in situ, the viral RNA genome can adopt a defined conformation. The RNA forms a branched network of stem-loops that almost all allocate near the capsid inner surface, while predominantly binding to coat protein dimers that are located in one-half of the capsid. This suggests that genomic RNA is highly involved in genome packaging and virion assembly. Two-component signal transduction pathways comprising histidine protein kinases (HPKs) and their response regulators (RRs) are widely used to control bacterial responses to environmental challenges. Some bacteria have over 150 different two-component pathways, and the specificity of the phosphotransfer reactions within these systems is tightly controlled to prevent unwanted crosstalk. One of the best understood two-component signalling pathways is the chemotaxis pathway. Here, we present the 1.40 A crystal structure of the histidine-containing phosphotransfer domain of the chemotaxis HPK, CheA(3), in complex with its cognate RR, CheY(6). A methionine finger on CheY(6) that nestles in a hydrophobic pocket in CheA(3) was shown to be important for the interaction and was found to only occur in the cognate RRs of CheA(3), CheY(6), and CheB(2). Site-directed mutagenesis of this methionine in combination with two adjacent residues abolished binding, as shown by surface plasmon resonance studies, and phosphotransfer from CheA(3)-P to CheY(6). Introduction of this methionine and an adjacent alanine residue into a range of noncognate CheYs, dramatically changed their specificity, allowing protein interaction and rapid phosphotransfer from CheA(3)-P. The structure presented here has allowed us to identify specificity determinants for the CheA-CheY interaction and subsequently to successfully reengineer phosphotransfer signalling. In summary, our results provide valuable insight into how cells mediate specificity in one of the most abundant signalling pathways in biology, two-component signal transduction. Notch receptors expressed on hematopoietic stem cells interact with their ligands on bone marrow stromal cells and thereby control cell fate decisions and survival. We recently demonstrated that Notch signaling is involved in proliferation and survival of B cell-derived tumor cells of classic Hodgkin disease and described a novel mechanism for the oncogenic capacity of Notch. In this study we investigated whether Notch signaling is involved in the tight interactions between neoplastic plasma cells and their bone marrow microenvironment, which are essential for tumor cell growth in multiple myeloma (MM). Here we demonstrate that Notch receptors and their ligand Jagged1 are highly expressed in cultured and primary MM cells, whereas nonneoplastic counterparts show low to undetectable levels of Notch. Functional data indicate that ligand-induced Notch signaling is a growth factor for MM cells and suggest that these interactions contribute to myelomagenesis in vivo.
Human embryonic stem cells have the capacity to give rise to differentiated progeny representative of all three embryonic germ layers. Embryonic stem (ES) cell lines derived from human blastocysts have the developmental potential to form derivatives of all three embryonic germ layers even after prolonged culture. Here we describe the clonal derivation of two human ES cell lines, H9.1 and H9.2. At the time of the clonal derivation of the H9.1 and H9.2 ES cell lines, the parental ES cell line, H9, had already been continuously cultured for 6 months. After an additional 8 months of culture, H9.1 and H9.2 ES cell lines continued to: (1) actively proliferate, (2) express high levels of telomerase, and (3) retain normal karyotypes. Telomere lengths, while somewhat variable, were maintained between 8 and 12 kb in high-passage H9.1 and H9.2 cells. High-passage H9.1 and H9.2 cells both formed teratomas in SCID-beige mice that included differentiated derivatives of all three embryonic germ layers. These results demonstrate the pluripotency of single human ES cells, the maintenance of pluripotency during an extended period of culture, and the long-term self-renewing properties of cultured human ES cells. The remarkable developmental potential, proliferative capacity, and karyotypic stability of human ES cells distinguish them from adult cells. In single-stranded ribonucleic acid (RNA) viruses, virus capsid assembly and genome packaging are intertwined processes. Using cryo-electron microscopy and single particle analysis we determined the asymmetric virion structure of bacteriophage MS2, which includes 178 copies of the coat protein, a single copy of the A-protein and the RNA genome. This reveals that in situ, the viral RNA genome can adopt a defined conformation. The RNA forms a branched network of stem-loops that almost all allocate near the capsid inner surface, while predominantly binding to coat protein dimers that are located in one-half of the capsid. This suggests that genomic RNA is highly involved in genome packaging and virion assembly. Two-component signal transduction pathways comprising histidine protein kinases (HPKs) and their response regulators (RRs) are widely used to control bacterial responses to environmental challenges. Some bacteria have over 150 different two-component pathways, and the specificity of the phosphotransfer reactions within these systems is tightly controlled to prevent unwanted crosstalk. One of the best understood two-component signalling pathways is the chemotaxis pathway. Here, we present the 1.40 A crystal structure of the histidine-containing phosphotransfer domain of the chemotaxis HPK, CheA(3), in complex with its cognate RR, CheY(6). A methionine finger on CheY(6) that nestles in a hydrophobic pocket in CheA(3) was shown to be important for the interaction and was found to only occur in the cognate RRs of CheA(3), CheY(6), and CheB(2). Site-directed mutagenesis of this methionine in combination with two adjacent residues abolished binding, as shown by surface plasmon resonance studies, and phosphotransfer from CheA(3)-P to CheY(6). Introduction of this methionine and an adjacent alanine residue into a range of noncognate CheYs, dramatically changed their specificity, allowing protein interaction and rapid phosphotransfer from CheA(3)-P. The structure presented here has allowed us to identify specificity determinants for the CheA-CheY interaction and subsequently to successfully reengineer phosphotransfer signalling. In summary, our results provide valuable insight into how cells mediate specificity in one of the most abundant signalling pathways in biology, two-component signal transduction. Notch receptors expressed on hematopoietic stem cells interact with their ligands on bone marrow stromal cells and thereby control cell fate decisions and survival. We recently demonstrated that Notch signaling is involved in proliferation and survival of B cell-derived tumor cells of classic Hodgkin disease and described a novel mechanism for the oncogenic capacity of Notch. In this study we investigated whether Notch signaling is involved in the tight interactions between neoplastic plasma cells and their bone marrow microenvironment, which are essential for tumor cell growth in multiple myeloma (MM). Here we demonstrate that Notch receptors and their ligand Jagged1 are highly expressed in cultured and primary MM cells, whereas nonneoplastic counterparts show low to undetectable levels of Notch. Functional data indicate that ligand-induced Notch signaling is a growth factor for MM cells and suggest that these interactions contribute to myelomagenesis in vivo.
0.285714
{ "query_id": "531", "original_query_id": "531", "context_doc_ids": [ "16361581", "25413327", "6903077", "11603066" ], "gold_doc_ids_in_context": [ "25413327" ], "total_gold_docs_for_query": 3, "context_f1": 0.28571428571428575, "context_size": 4, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.291870", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "25413327" ], "negative_samples_considered": [ "11603066", "6903077", "16361581" ], "comprehensive_gold_set_for_query": [ "36651210", "25413327", "10546779" ], "target_max_context_size_config": 6, "actual_context_size": 4, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
531
aug_976
Combination nicotine replacement therapies with varenicline or bupropion are more effective after 12 weeks of reatment compared to varenicline monotherapy. IMPORTANCE Combining pharmacotherapies for tobacco-dependence treatment may increase smoking abstinence. OBJECTIVE To determine efficacy and safety of varenicline and bupropion sustained-release (SR; combination therapy) compared with varenicline (monotherapy) in cigarette smokers. DESIGN, SETTING, AND PARTICIPANTS Randomized, blinded, placebo-controlled multicenter clinical trial with a 12-week treatment period and follow-up through week 52 conducted between October 2009 and April 2013 at 3 midwestern clinical research sites. Five hundred six adult (≥18 years) cigarette smokers were randomly assigned and 315 (62%) completed the study. INTERVENTIONS Twelve weeks of varenicline and bupropion SR or varenicline and placebo. MAIN OUTCOMES AND MEASURES Primary outcome was abstinence rates at week 12, defined as prolonged (no smoking from 2 weeks after the target quit date) abstinence and 7-day point-prevalence (no smoking past 7 days) abstinence. Secondary outcomes were prolonged and point-prevalence smoking abstinence rates at weeks 26 and 52. Outcomes were biochemically confirmed. RESULTS At 12 weeks, 53.0% of the combination therapy group achieved prolonged smoking abstinence and 56.2% achieved 7-day point-prevalence smoking abstinence compared with 43.2% and 48.6% in varenicline monotherapy (odds ratio [OR], 1.49; 95% CI, 1.05-2.12; P = .03 and OR, 1.36; 95% CI, 0.95-1.93; P = .09, respectively). At 26 weeks, 36.6% of the combination therapy group achieved prolonged and 38.2% achieved 7-day point-prevalence smoking abstinence compared with 27.6% and 31.9% in varenicline monotherapy (OR, 1.52; 95% CI, 1.04-2.22; P = .03 and OR, 1.32; 95% CI, 0.91-1.91; P = .14, respectively). At 52 weeks, 30.9% of the combination therapy group achieved prolonged and 36.6% achieved 7-day point-prevalence smoking abstinence compared with 24.5% and 29.2% in varenicline monotherapy (OR, 1.39; 95% CI, 0.93-2.07; P = .11 and OR, 1.40; 95% CI, 0.96-2.05; P = .08, respectively). Participants receiving combination therapy reported more anxiety (7.2% vs 3.1%; P = .04) and depressive symptoms (3.6% vs 0.8%; P = .03). CONCLUSIONS AND RELEVANCE Among cigarette smokers, combined use of varenicline and bupropion, compared with varenicline alone, increased prolonged abstinence but not 7-day point prevalence at 12 and 26 weeks. Neither outcome was significantly different at 52 weeks. Further research is required to determine the role of combination therapy in smoking cessation. TRIAL REGISTRATION clinicaltrials.gov Identifier: http://clinicaltrials.gov/show/NCT00935818. The pharmacological inhibition of general transcriptional regulators has the potential to block growth through targeting multiple tumorigenic signalling pathways simultaneously. Here, using an innovative cell-based screen, we identify a structurally unique small molecule (named JIB-04) that specifically inhibits the activity of the Jumonji family of histone demethylases in vitro, in cancer cells, and in tumours in vivo. Unlike known inhibitors, JIB-04 is not a competitive inhibitor of α-ketoglutarate. In cancer, but not in patient-matched normal cells, JIB-04 alters a subset of transcriptional pathways and blocks viability. In mice, JIB-04 reduces tumour burden and prolongs survival. Importantly, we find that patients with breast tumours that overexpress Jumonji demethylases have significantly lower survival. Thus, JIB-04, a novel inhibitor of Jumonji demethylases in vitro and in vivo, constitutes a unique potential therapeutic and research tool against cancer, and validates the use of unbiased cellular screens to discover chemical modulators with disease relevance. OBJECTIVES We investigated the role of cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in cachexia development in newly diagnosed nonsmall cell lung cancer (NSCLC) patients. METHODS : We evaluated 44 (M/F:41/3) NSCLC patients and 12 (M/F:10/2) age matched healthy smokers. NSCLC cases with a weight loss of > or =10% consisted the cachectic group (n:23, M/F:21/2) and the ones with <10% weight loss consisted the noncachectic group (n:21, M/F:19/2). RESULTS Body mass index (BMI) of cachectics was significantly lower than that of noncachectics (21.0 +/- 2.9 versus 24.5 +/- 3.6, P = 0.02) and controls (21.0 +/- 2.9 versus 25.5 +/- 2.6, P = 0.01). Serum TNF-alpha level did not differ between cachectic and noncachectics (37.3 +/- 39.1 and 51.6 +/- 84.2 pg/mL, respectively). However, it was significantly higher in NSCLC patients compared with controls (44.1 +/- 64.3 and 15.1 +/- 14.3 pg/mL, P = 0.03). Serum IL-6 level was not different between 3 groups (6.4 +/- 4.1, 8.9 +/- 16.3, and 4.1 +/- 3.5 pg/mL, respectively) but it correlated significantly with TNF-alpha (r = 0.4, P = 0.006) and BMI (r = -0.3, P = 0.03). Erythrocyte sedimentation rate (ESR) correlated significantly with TNF-alpha (r = 0.4, P = 0.003) and BMI (r = -0.3, P = 0.03). Among 44 cases, survival of 12 and 17 patients was recorded in cachectics and noncachectics, with no statistical difference (12.2 +/- 3.7 and 11.2 +/- 1.0 months, respectively). CONCLUSIONS TNF-alpha and IL-6 levels did not differ significantly between cachectics and noncachectics. However, significant correlations between IL-6, BMI, and TNF-alpha suggested that these cytokines acted as cofactors in weight loss. Survival was neither influenced by BMI, nor the cytokine levels in the present study. The significant correlation of ESR with TNF-alpha suggested that ESR could provide valuable clue for considerable weight loss in the follow-up of NSCLC patients.
Combination nicotine replacement therapies with varenicline or bupropion are more effective after 12 weeks of reatment compared to varenicline monotherapy. IMPORTANCE Combining pharmacotherapies for tobacco-dependence treatment may increase smoking abstinence. OBJECTIVE To determine efficacy and safety of varenicline and bupropion sustained-release (SR; combination therapy) compared with varenicline (monotherapy) in cigarette smokers. DESIGN, SETTING, AND PARTICIPANTS Randomized, blinded, placebo-controlled multicenter clinical trial with a 12-week treatment period and follow-up through week 52 conducted between October 2009 and April 2013 at 3 midwestern clinical research sites. Five hundred six adult (≥18 years) cigarette smokers were randomly assigned and 315 (62%) completed the study. INTERVENTIONS Twelve weeks of varenicline and bupropion SR or varenicline and placebo. MAIN OUTCOMES AND MEASURES Primary outcome was abstinence rates at week 12, defined as prolonged (no smoking from 2 weeks after the target quit date) abstinence and 7-day point-prevalence (no smoking past 7 days) abstinence. Secondary outcomes were prolonged and point-prevalence smoking abstinence rates at weeks 26 and 52. Outcomes were biochemically confirmed. RESULTS At 12 weeks, 53.0% of the combination therapy group achieved prolonged smoking abstinence and 56.2% achieved 7-day point-prevalence smoking abstinence compared with 43.2% and 48.6% in varenicline monotherapy (odds ratio [OR], 1.49; 95% CI, 1.05-2.12; P = .03 and OR, 1.36; 95% CI, 0.95-1.93; P = .09, respectively). At 26 weeks, 36.6% of the combination therapy group achieved prolonged and 38.2% achieved 7-day point-prevalence smoking abstinence compared with 27.6% and 31.9% in varenicline monotherapy (OR, 1.52; 95% CI, 1.04-2.22; P = .03 and OR, 1.32; 95% CI, 0.91-1.91; P = .14, respectively). At 52 weeks, 30.9% of the combination therapy group achieved prolonged and 36.6% achieved 7-day point-prevalence smoking abstinence compared with 24.5% and 29.2% in varenicline monotherapy (OR, 1.39; 95% CI, 0.93-2.07; P = .11 and OR, 1.40; 95% CI, 0.96-2.05; P = .08, respectively). Participants receiving combination therapy reported more anxiety (7.2% vs 3.1%; P = .04) and depressive symptoms (3.6% vs 0.8%; P = .03). CONCLUSIONS AND RELEVANCE Among cigarette smokers, combined use of varenicline and bupropion, compared with varenicline alone, increased prolonged abstinence but not 7-day point prevalence at 12 and 26 weeks. Neither outcome was significantly different at 52 weeks. Further research is required to determine the role of combination therapy in smoking cessation. TRIAL REGISTRATION clinicaltrials.gov Identifier: http://clinicaltrials.gov/show/NCT00935818. The pharmacological inhibition of general transcriptional regulators has the potential to block growth through targeting multiple tumorigenic signalling pathways simultaneously. Here, using an innovative cell-based screen, we identify a structurally unique small molecule (named JIB-04) that specifically inhibits the activity of the Jumonji family of histone demethylases in vitro, in cancer cells, and in tumours in vivo. Unlike known inhibitors, JIB-04 is not a competitive inhibitor of α-ketoglutarate. In cancer, but not in patient-matched normal cells, JIB-04 alters a subset of transcriptional pathways and blocks viability. In mice, JIB-04 reduces tumour burden and prolongs survival. Importantly, we find that patients with breast tumours that overexpress Jumonji demethylases have significantly lower survival. Thus, JIB-04, a novel inhibitor of Jumonji demethylases in vitro and in vivo, constitutes a unique potential therapeutic and research tool against cancer, and validates the use of unbiased cellular screens to discover chemical modulators with disease relevance. OBJECTIVES We investigated the role of cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in cachexia development in newly diagnosed nonsmall cell lung cancer (NSCLC) patients. METHODS : We evaluated 44 (M/F:41/3) NSCLC patients and 12 (M/F:10/2) age matched healthy smokers. NSCLC cases with a weight loss of > or =10% consisted the cachectic group (n:23, M/F:21/2) and the ones with <10% weight loss consisted the noncachectic group (n:21, M/F:19/2). RESULTS Body mass index (BMI) of cachectics was significantly lower than that of noncachectics (21.0 +/- 2.9 versus 24.5 +/- 3.6, P = 0.02) and controls (21.0 +/- 2.9 versus 25.5 +/- 2.6, P = 0.01). Serum TNF-alpha level did not differ between cachectic and noncachectics (37.3 +/- 39.1 and 51.6 +/- 84.2 pg/mL, respectively). However, it was significantly higher in NSCLC patients compared with controls (44.1 +/- 64.3 and 15.1 +/- 14.3 pg/mL, P = 0.03). Serum IL-6 level was not different between 3 groups (6.4 +/- 4.1, 8.9 +/- 16.3, and 4.1 +/- 3.5 pg/mL, respectively) but it correlated significantly with TNF-alpha (r = 0.4, P = 0.006) and BMI (r = -0.3, P = 0.03). Erythrocyte sedimentation rate (ESR) correlated significantly with TNF-alpha (r = 0.4, P = 0.003) and BMI (r = -0.3, P = 0.03). Among 44 cases, survival of 12 and 17 patients was recorded in cachectics and noncachectics, with no statistical difference (12.2 +/- 3.7 and 11.2 +/- 1.0 months, respectively). CONCLUSIONS TNF-alpha and IL-6 levels did not differ significantly between cachectics and noncachectics. However, significant correlations between IL-6, BMI, and TNF-alpha suggested that these cytokines acted as cofactors in weight loss. Survival was neither influenced by BMI, nor the cytokine levels in the present study. The significant correlation of ESR with TNF-alpha suggested that ESR could provide valuable clue for considerable weight loss in the follow-up of NSCLC patients.
0.5
{ "query_id": "272", "original_query_id": "272", "context_doc_ids": [ "13400643", "11614737", "39264456" ], "gold_doc_ids_in_context": [ "11614737" ], "total_gold_docs_for_query": 1, "context_f1": 0.5, "context_size": 3, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.291910", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "11614737" ], "negative_samples_considered": [ "13400643", "39264456" ], "comprehensive_gold_set_for_query": [ "11614737" ], "target_max_context_size_config": 6, "actual_context_size": 3, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
272
aug_977
The innate immune response struggles to remove small numbers of parasites. Histone levels are tightly regulated to prevent harmful effects such as genomic instability and hypersensitivity to DNA-damaging agents due to the accumulation of these highly basic proteins when DNA replication slows down or stops. Although chromosomal histones are stable, excess (non-chromatin bound) histones are rapidly degraded in a Rad53 (radiation sensitive 53) kinase-dependent manner in Saccharomyces cerevisiae. Here we demonstrate that excess histones associate with Rad53 in vivo and seem to undergo modifications such as tyrosine phosphorylation and polyubiquitylation, before their proteolysis by the proteasome. We have identified the Tyr 99 residue of histone H3 as being critical for the efficient ubiquitylation and degradation of this histone. We have also identified the ubiquitin conjugating enzymes (E2) Ubc4 and Ubc5, as well as the ubiquitin ligase (E3) Tom1 (temperature dependent organization in mitotic nucleus 1), as enzymes involved in the ubiquitylation of excess histones. Regulated histone proteolysis has major implications for the maintenance of epigenetic marks on chromatin, genomic stability and the packaging of sperm DNA. OBJECTIVES We investigated the role of cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in cachexia development in newly diagnosed nonsmall cell lung cancer (NSCLC) patients. METHODS : We evaluated 44 (M/F:41/3) NSCLC patients and 12 (M/F:10/2) age matched healthy smokers. NSCLC cases with a weight loss of > or =10% consisted the cachectic group (n:23, M/F:21/2) and the ones with <10% weight loss consisted the noncachectic group (n:21, M/F:19/2). RESULTS Body mass index (BMI) of cachectics was significantly lower than that of noncachectics (21.0 +/- 2.9 versus 24.5 +/- 3.6, P = 0.02) and controls (21.0 +/- 2.9 versus 25.5 +/- 2.6, P = 0.01). Serum TNF-alpha level did not differ between cachectic and noncachectics (37.3 +/- 39.1 and 51.6 +/- 84.2 pg/mL, respectively). However, it was significantly higher in NSCLC patients compared with controls (44.1 +/- 64.3 and 15.1 +/- 14.3 pg/mL, P = 0.03). Serum IL-6 level was not different between 3 groups (6.4 +/- 4.1, 8.9 +/- 16.3, and 4.1 +/- 3.5 pg/mL, respectively) but it correlated significantly with TNF-alpha (r = 0.4, P = 0.006) and BMI (r = -0.3, P = 0.03). Erythrocyte sedimentation rate (ESR) correlated significantly with TNF-alpha (r = 0.4, P = 0.003) and BMI (r = -0.3, P = 0.03). Among 44 cases, survival of 12 and 17 patients was recorded in cachectics and noncachectics, with no statistical difference (12.2 +/- 3.7 and 11.2 +/- 1.0 months, respectively). CONCLUSIONS TNF-alpha and IL-6 levels did not differ significantly between cachectics and noncachectics. However, significant correlations between IL-6, BMI, and TNF-alpha suggested that these cytokines acted as cofactors in weight loss. Survival was neither influenced by BMI, nor the cytokine levels in the present study. The significant correlation of ESR with TNF-alpha suggested that ESR could provide valuable clue for considerable weight loss in the follow-up of NSCLC patients. Immune clearance and resource limitation (via red blood cell depletion) shape the peaks and troughs of malaria parasitemia, which in turn affect disease severity and transmission. Quantitatively partitioning the relative roles of these effects through time is challenging. Using data from rodent malaria, we estimated the effective propagation number, which reflects the relative importance of contrasting within-host control mechanisms through time and is sensitive to the inoculating parasite dose. Our analysis showed that the capacity of innate responses to restrict initial parasite growth saturates with parasite dose and that experimentally enhanced innate immunity can affect parasite density indirectly via resource depletion. Such a statistical approach offers a tool to improve targeting of drugs or vaccines for human therapy by revealing the dynamics and interactions of within-host regulatory mechanisms. CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages. Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid and protein phosphatase, PTEN, has a novel role in the nucleus by functioning as an indispensible regulator with SRF to maintain the differentiated SM phenotype. PTEN interacts with the N-terminal domain of SRF and PTEN-SRF interaction promotes SRF binding to essential promoter elements in SM-specific genes. Factors inducing phenotypic switching promote loss of nuclear PTEN through nucleo-cytoplasmic translocation resulting in reduced myogenically active SRF, but enhanced SRF activity on target genes involved in proliferation. Overall decreased expression of PTEN was observed in intimal SMCs of human atherosclerotic lesions underlying the potential clinical importance of these findings. Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output.
The innate immune response struggles to remove small numbers of parasites. Histone levels are tightly regulated to prevent harmful effects such as genomic instability and hypersensitivity to DNA-damaging agents due to the accumulation of these highly basic proteins when DNA replication slows down or stops. Although chromosomal histones are stable, excess (non-chromatin bound) histones are rapidly degraded in a Rad53 (radiation sensitive 53) kinase-dependent manner in Saccharomyces cerevisiae. Here we demonstrate that excess histones associate with Rad53 in vivo and seem to undergo modifications such as tyrosine phosphorylation and polyubiquitylation, before their proteolysis by the proteasome. We have identified the Tyr 99 residue of histone H3 as being critical for the efficient ubiquitylation and degradation of this histone. We have also identified the ubiquitin conjugating enzymes (E2) Ubc4 and Ubc5, as well as the ubiquitin ligase (E3) Tom1 (temperature dependent organization in mitotic nucleus 1), as enzymes involved in the ubiquitylation of excess histones. Regulated histone proteolysis has major implications for the maintenance of epigenetic marks on chromatin, genomic stability and the packaging of sperm DNA. OBJECTIVES We investigated the role of cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in cachexia development in newly diagnosed nonsmall cell lung cancer (NSCLC) patients. METHODS : We evaluated 44 (M/F:41/3) NSCLC patients and 12 (M/F:10/2) age matched healthy smokers. NSCLC cases with a weight loss of > or =10% consisted the cachectic group (n:23, M/F:21/2) and the ones with <10% weight loss consisted the noncachectic group (n:21, M/F:19/2). RESULTS Body mass index (BMI) of cachectics was significantly lower than that of noncachectics (21.0 +/- 2.9 versus 24.5 +/- 3.6, P = 0.02) and controls (21.0 +/- 2.9 versus 25.5 +/- 2.6, P = 0.01). Serum TNF-alpha level did not differ between cachectic and noncachectics (37.3 +/- 39.1 and 51.6 +/- 84.2 pg/mL, respectively). However, it was significantly higher in NSCLC patients compared with controls (44.1 +/- 64.3 and 15.1 +/- 14.3 pg/mL, P = 0.03). Serum IL-6 level was not different between 3 groups (6.4 +/- 4.1, 8.9 +/- 16.3, and 4.1 +/- 3.5 pg/mL, respectively) but it correlated significantly with TNF-alpha (r = 0.4, P = 0.006) and BMI (r = -0.3, P = 0.03). Erythrocyte sedimentation rate (ESR) correlated significantly with TNF-alpha (r = 0.4, P = 0.003) and BMI (r = -0.3, P = 0.03). Among 44 cases, survival of 12 and 17 patients was recorded in cachectics and noncachectics, with no statistical difference (12.2 +/- 3.7 and 11.2 +/- 1.0 months, respectively). CONCLUSIONS TNF-alpha and IL-6 levels did not differ significantly between cachectics and noncachectics. However, significant correlations between IL-6, BMI, and TNF-alpha suggested that these cytokines acted as cofactors in weight loss. Survival was neither influenced by BMI, nor the cytokine levels in the present study. The significant correlation of ESR with TNF-alpha suggested that ESR could provide valuable clue for considerable weight loss in the follow-up of NSCLC patients. Immune clearance and resource limitation (via red blood cell depletion) shape the peaks and troughs of malaria parasitemia, which in turn affect disease severity and transmission. Quantitatively partitioning the relative roles of these effects through time is challenging. Using data from rodent malaria, we estimated the effective propagation number, which reflects the relative importance of contrasting within-host control mechanisms through time and is sensitive to the inoculating parasite dose. Our analysis showed that the capacity of innate responses to restrict initial parasite growth saturates with parasite dose and that experimentally enhanced innate immunity can affect parasite density indirectly via resource depletion. Such a statistical approach offers a tool to improve targeting of drugs or vaccines for human therapy by revealing the dynamics and interactions of within-host regulatory mechanisms. CRISPR-Cas (clustered, regularly interspaced short palindromic repeats coupled with CRISPR-associated proteins) is a bacterial immunity system that protects against invading phages or plasmids. In the process of CRISPR adaptation, short pieces of DNA ('spacers') are acquired from foreign elements and integrated into the CRISPR array. So far, it has remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of self is mediated by the RecBCD double-stranded DNA break repair complex. Our results suggest that, in Escherichia coli, acquisition of new spacers largely depends on RecBCD-mediated processing of double-stranded DNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers both from high copy plasmids and from phages. Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid and protein phosphatase, PTEN, has a novel role in the nucleus by functioning as an indispensible regulator with SRF to maintain the differentiated SM phenotype. PTEN interacts with the N-terminal domain of SRF and PTEN-SRF interaction promotes SRF binding to essential promoter elements in SM-specific genes. Factors inducing phenotypic switching promote loss of nuclear PTEN through nucleo-cytoplasmic translocation resulting in reduced myogenically active SRF, but enhanced SRF activity on target genes involved in proliferation. Overall decreased expression of PTEN was observed in intimal SMCs of human atherosclerotic lesions underlying the potential clinical importance of these findings. Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output.
0.285714
{ "query_id": "1223", "original_query_id": "1223", "context_doc_ids": [ "16939583", "14637235", "39264456", "34071621", "5289038", "3512154" ], "gold_doc_ids_in_context": [ "5289038" ], "total_gold_docs_for_query": 1, "context_f1": 0.2857142857142857, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.291965", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "5289038" ], "negative_samples_considered": [ "16939583", "39264456", "3512154", "14637235", "34071621" ], "comprehensive_gold_set_for_query": [ "5289038" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1223
aug_978
Tumor development occurs in conjunction with suppression of pro-inflammatory cytokines. Paraneoplastic thrombocytosis is associated with many solid tumors and often correlates with reduced survival. Recent studies suggest that a pathogenic feed back loop may be operative between platelets and tumor cells, with reciprocal interactions between tumor growth/metastasis and thrombocytosis/platelet activation. Specific molecular pathways have been identified in which tumors can stimulate platelet production and activation; activated platelets can, in turn, promote tumor growth and metastasis. Taken together, these findings provide exciting new potential targets for therapeutic intervention. BACKGROUND Birth size, perhaps a proxy for prenatal environment, might be a correlate of subsequent breast cancer risk, but findings from epidemiological studies have been inconsistent. We re-analysed individual participant data from published and unpublished studies to obtain more precise estimates of the magnitude and shape of the birth size-breast cancer association. METHODS AND FINDINGS Studies were identified through computer-assisted and manual searches, and personal communication with investigators. Individual participant data from 32 studies, comprising 22,058 breast cancer cases, were obtained. Random effect models were used, if appropriate, to combine study-specific estimates of effect. Birth weight was positively associated with breast cancer risk in studies based on birth records (pooled relative risk [RR] per one standard deviation [SD] [= 0.5 kg] increment in birth weight: 1.06; 95% confidence interval [CI] 1.02-1.09) and parental recall when the participants were children (1.02; 95% CI 0.99-1.05), but not in those based on adult self-reports, or maternal recall during the woman's adulthood (0.98; 95% CI 0.95-1.01) (p for heterogeneity between data sources = 0.003). Relative to women who weighed 3.000-3.499 kg, the risk was 0.96 (CI 0.80-1.16) in those who weighed < 2.500 kg, and 1.12 (95% CI 1.00-1.25) in those who weighed > or = 4.000 kg (p for linear trend = 0.001) in birth record data. Birth length and head circumference from birth records were also positively associated with breast cancer risk (pooled RR per one SD increment: 1.06 [95% CI 1.03-1.10] and 1.09 [95% CI 1.03-1.15], respectively). Simultaneous adjustment for these three birth size variables showed that length was the strongest independent predictor of risk. The birth size effects did not appear to be confounded or mediated by established breast cancer risk factors and were not modified by age or menopausal status. The cumulative incidence of breast cancer per 100 women by age 80 y in the study populations was estimated to be 10.0, 10.0, 10.4, and 11.5 in those who were, respectively, in the bottom, second, third, and top fourths of the birth length distribution. CONCLUSIONS This pooled analysis of individual participant data is consistent with birth size, and in particular birth length, being an independent correlate of breast cancer risk in adulthood. DNA polymerases mu (pol mu), lambda (pol lambda), and terminal deoxynucleotidyltransferase (TdT) are enzymes of the pol X family that share homology in sequence and functional domain organization. We showed previously that pol mu participates in light chain but surprisingly not heavy chain gene rearrangement. We show here that immunoglobulin heavy chain junctions from pol lambda-deficient animals have shorter length with normal N-additions, thus indicating that pol lambda is recruited during heavy chain rearrangement at a step that precedes the action of TdT. In contrast to previous in vitro studies, analysis of animals with combined inactivation of these enzymes revealed no overlapping or compensatory activities for V(D)J recombination between pol mu, pol lambda, and TdT. This complex usage of polymerases with distinct catalytic specificities may correspond to the specific function that the third hypervariable region assumes for each immunoglobulin chain, with pol lambda maintaining a large heavy chain junctional heterogeneity and pol mu ensuring a restricted light chain junctional variability. Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells.
Tumor development occurs in conjunction with suppression of pro-inflammatory cytokines. Paraneoplastic thrombocytosis is associated with many solid tumors and often correlates with reduced survival. Recent studies suggest that a pathogenic feed back loop may be operative between platelets and tumor cells, with reciprocal interactions between tumor growth/metastasis and thrombocytosis/platelet activation. Specific molecular pathways have been identified in which tumors can stimulate platelet production and activation; activated platelets can, in turn, promote tumor growth and metastasis. Taken together, these findings provide exciting new potential targets for therapeutic intervention. BACKGROUND Birth size, perhaps a proxy for prenatal environment, might be a correlate of subsequent breast cancer risk, but findings from epidemiological studies have been inconsistent. We re-analysed individual participant data from published and unpublished studies to obtain more precise estimates of the magnitude and shape of the birth size-breast cancer association. METHODS AND FINDINGS Studies were identified through computer-assisted and manual searches, and personal communication with investigators. Individual participant data from 32 studies, comprising 22,058 breast cancer cases, were obtained. Random effect models were used, if appropriate, to combine study-specific estimates of effect. Birth weight was positively associated with breast cancer risk in studies based on birth records (pooled relative risk [RR] per one standard deviation [SD] [= 0.5 kg] increment in birth weight: 1.06; 95% confidence interval [CI] 1.02-1.09) and parental recall when the participants were children (1.02; 95% CI 0.99-1.05), but not in those based on adult self-reports, or maternal recall during the woman's adulthood (0.98; 95% CI 0.95-1.01) (p for heterogeneity between data sources = 0.003). Relative to women who weighed 3.000-3.499 kg, the risk was 0.96 (CI 0.80-1.16) in those who weighed < 2.500 kg, and 1.12 (95% CI 1.00-1.25) in those who weighed > or = 4.000 kg (p for linear trend = 0.001) in birth record data. Birth length and head circumference from birth records were also positively associated with breast cancer risk (pooled RR per one SD increment: 1.06 [95% CI 1.03-1.10] and 1.09 [95% CI 1.03-1.15], respectively). Simultaneous adjustment for these three birth size variables showed that length was the strongest independent predictor of risk. The birth size effects did not appear to be confounded or mediated by established breast cancer risk factors and were not modified by age or menopausal status. The cumulative incidence of breast cancer per 100 women by age 80 y in the study populations was estimated to be 10.0, 10.0, 10.4, and 11.5 in those who were, respectively, in the bottom, second, third, and top fourths of the birth length distribution. CONCLUSIONS This pooled analysis of individual participant data is consistent with birth size, and in particular birth length, being an independent correlate of breast cancer risk in adulthood. DNA polymerases mu (pol mu), lambda (pol lambda), and terminal deoxynucleotidyltransferase (TdT) are enzymes of the pol X family that share homology in sequence and functional domain organization. We showed previously that pol mu participates in light chain but surprisingly not heavy chain gene rearrangement. We show here that immunoglobulin heavy chain junctions from pol lambda-deficient animals have shorter length with normal N-additions, thus indicating that pol lambda is recruited during heavy chain rearrangement at a step that precedes the action of TdT. In contrast to previous in vitro studies, analysis of animals with combined inactivation of these enzymes revealed no overlapping or compensatory activities for V(D)J recombination between pol mu, pol lambda, and TdT. This complex usage of polymerases with distinct catalytic specificities may correspond to the specific function that the third hypervariable region assumes for each immunoglobulin chain, with pol lambda maintaining a large heavy chain junctional heterogeneity and pol mu ensuring a restricted light chain junctional variability. Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells.
0.4
{ "query_id": "1330", "original_query_id": "1330", "context_doc_ids": [ "14075252", "16322674", "14332945", "32275758" ], "gold_doc_ids_in_context": [ "14075252" ], "total_gold_docs_for_query": 1, "context_f1": 0.4, "context_size": 4, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.292019", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "14075252" ], "negative_samples_considered": [ "14332945", "32275758", "16322674" ], "comprehensive_gold_set_for_query": [ "14075252" ], "target_max_context_size_config": 6, "actual_context_size": 4, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1330
aug_979
Peroxynitrite is required for induction of T cell tolerance. Antigen-specific CD8+ T-cell tolerance, induced by myeloid-derived suppressor cells (MDSCs), is one of the main mechanisms of tumor escape. Using in vivo models, we show here that MDSCs directly disrupt the binding of specific peptide–major histocompatibility complex (pMHC) dimers to CD8-expressing T cells through nitration of tyrosines in a T-cell receptor (TCR)-CD8 complex. This process makes CD8-expressing T cells unable to bind pMHC and to respond to the specific peptide, although they retain their ability to respond to nonspecific stimulation. Nitration of TCR-CD8 is induced by MDSCs through hyperproduction of reactive oxygen species and peroxynitrite during direct cell-cell contact. Molecular modeling suggests specific sites of nitration that might affect the conformational flexibility of TCR-CD8 and its interaction with pMHC. These data identify a previously unknown mechanism of T-cell tolerance in cancer that is also pertinent to many pathological conditions associated with accumulation of MDSCs. OBJECTIVE To assess the effect of 25-hydroxyvitamin D (25-OHD) levels on pregnancy outcomes and birth variables. DESIGN Systematic review and meta-analysis. DATA SOURCES Medline (1966 to August 2012), PubMed (2008 to August 2012), Embase (1980 to August 2012), CINAHL (1981 to August 2012), the Cochrane database of systematic reviews, and the Cochrane database of registered clinical trials. STUDY SELECTION Studies reporting on the association between serum 25-OHD levels during pregnancy and the outcomes of interest (pre-eclampsia, gestational diabetes, bacterial vaginosis, caesarean section, small for gestational age infants, birth weight, birth length, and head circumference). DATA EXTRACTION Two authors independently extracted data from original research articles, including key indicators of study quality. We pooled the most adjusted odds ratios and weighted mean differences. Associations were tested in subgroups representing different patient characteristics and study quality. RESULTS 3357 studies were identified and reviewed for eligibility. 31 eligible studies were included in the final analysis. Insufficient serum levels of 25-OHD were associated with gestational diabetes (pooled odds ratio 1.49, 95% confidence interval 1.18 to 1.89), pre-eclampsia (1.79, 1.25 to 2.58), and small for gestational age infants (1.85, 1.52 to 2.26). Pregnant women with low serum 25-OHD levels had an increased risk of bacterial vaginosis and low birthweight infants but not delivery by caesarean section. CONCLUSION Vitamin D insufficiency is associated with an increased risk of gestational diabetes, pre-eclampsia, and small for gestational age infants. Pregnant women with low 25-OHD levels had an increased risk of bacterial vaginosis and lower birth weight infants, but not delivery by caesarean section. CONTEXT Bioterrorist attacks involving letters and mail-handling systems in Washington, DC, resulted in Bacillus anthracis (anthrax) spore contamination in the Hart Senate Office Building and other facilities in the US Capitol's vicinity. OBJECTIVE To provide information about the nature and extent of indoor secondary aerosolization of B anthracis spores. DESIGN Stationary and personal air samples, surface dust, and swab samples were collected under semiquiescent (minimal activities) and then simulated active office conditions to estimate secondary aerosolization of B anthracis spores. Nominal size characteristics, airborne concentrations, and surface contamination of B anthracis particles (colony-forming units) were evaluated. RESULTS Viable B anthracis spores reaerosolized under semiquiescent conditions, with a marked increase in reaerosolization during simulated active office conditions. Increases were observed for B anthracis collected on open sheep blood agar plates (P<.001) and personal air monitors (P =.01) during active office conditions. More than 80% of the B anthracis particles collected on stationary monitors were within an alveolar respirable size range of 0.95 to 3.5 micro m. CONCLUSIONS Bacillus anthracis spores used in a recent terrorist incident reaerosolized under common office activities. These findings have important implications for appropriate respiratory protection, remediation, and reoccupancy of contaminated office environments.
Peroxynitrite is required for induction of T cell tolerance. Antigen-specific CD8+ T-cell tolerance, induced by myeloid-derived suppressor cells (MDSCs), is one of the main mechanisms of tumor escape. Using in vivo models, we show here that MDSCs directly disrupt the binding of specific peptide–major histocompatibility complex (pMHC) dimers to CD8-expressing T cells through nitration of tyrosines in a T-cell receptor (TCR)-CD8 complex. This process makes CD8-expressing T cells unable to bind pMHC and to respond to the specific peptide, although they retain their ability to respond to nonspecific stimulation. Nitration of TCR-CD8 is induced by MDSCs through hyperproduction of reactive oxygen species and peroxynitrite during direct cell-cell contact. Molecular modeling suggests specific sites of nitration that might affect the conformational flexibility of TCR-CD8 and its interaction with pMHC. These data identify a previously unknown mechanism of T-cell tolerance in cancer that is also pertinent to many pathological conditions associated with accumulation of MDSCs. OBJECTIVE To assess the effect of 25-hydroxyvitamin D (25-OHD) levels on pregnancy outcomes and birth variables. DESIGN Systematic review and meta-analysis. DATA SOURCES Medline (1966 to August 2012), PubMed (2008 to August 2012), Embase (1980 to August 2012), CINAHL (1981 to August 2012), the Cochrane database of systematic reviews, and the Cochrane database of registered clinical trials. STUDY SELECTION Studies reporting on the association between serum 25-OHD levels during pregnancy and the outcomes of interest (pre-eclampsia, gestational diabetes, bacterial vaginosis, caesarean section, small for gestational age infants, birth weight, birth length, and head circumference). DATA EXTRACTION Two authors independently extracted data from original research articles, including key indicators of study quality. We pooled the most adjusted odds ratios and weighted mean differences. Associations were tested in subgroups representing different patient characteristics and study quality. RESULTS 3357 studies were identified and reviewed for eligibility. 31 eligible studies were included in the final analysis. Insufficient serum levels of 25-OHD were associated with gestational diabetes (pooled odds ratio 1.49, 95% confidence interval 1.18 to 1.89), pre-eclampsia (1.79, 1.25 to 2.58), and small for gestational age infants (1.85, 1.52 to 2.26). Pregnant women with low serum 25-OHD levels had an increased risk of bacterial vaginosis and low birthweight infants but not delivery by caesarean section. CONCLUSION Vitamin D insufficiency is associated with an increased risk of gestational diabetes, pre-eclampsia, and small for gestational age infants. Pregnant women with low 25-OHD levels had an increased risk of bacterial vaginosis and lower birth weight infants, but not delivery by caesarean section. CONTEXT Bioterrorist attacks involving letters and mail-handling systems in Washington, DC, resulted in Bacillus anthracis (anthrax) spore contamination in the Hart Senate Office Building and other facilities in the US Capitol's vicinity. OBJECTIVE To provide information about the nature and extent of indoor secondary aerosolization of B anthracis spores. DESIGN Stationary and personal air samples, surface dust, and swab samples were collected under semiquiescent (minimal activities) and then simulated active office conditions to estimate secondary aerosolization of B anthracis spores. Nominal size characteristics, airborne concentrations, and surface contamination of B anthracis particles (colony-forming units) were evaluated. RESULTS Viable B anthracis spores reaerosolized under semiquiescent conditions, with a marked increase in reaerosolization during simulated active office conditions. Increases were observed for B anthracis collected on open sheep blood agar plates (P<.001) and personal air monitors (P =.01) during active office conditions. More than 80% of the B anthracis particles collected on stationary monitors were within an alveolar respirable size range of 0.95 to 3.5 micro m. CONCLUSIONS Bacillus anthracis spores used in a recent terrorist incident reaerosolized under common office activities. These findings have important implications for appropriate respiratory protection, remediation, and reoccupancy of contaminated office environments.
0.5
{ "query_id": "935", "original_query_id": "935", "context_doc_ids": [ "33872649", "5483793", "2425364" ], "gold_doc_ids_in_context": [ "5483793" ], "total_gold_docs_for_query": 1, "context_f1": 0.5, "context_size": 3, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.292094", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "5483793" ], "negative_samples_considered": [ "2425364", "33872649" ], "comprehensive_gold_set_for_query": [ "5483793" ], "target_max_context_size_config": 6, "actual_context_size": 3, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
935
aug_980
A high microerythrocyte count protects against severe anemia in homozygous alpha (+)- thalassemia trait subjects. CONTEXT Diagnostic lumbar punctures (LPs), commonly used to rule out meningitis, are associated with adverse events. OBJECTIVE To systematically review the evidence about diagnostic LP techniques that may decrease the risk of adverse events and the evidence about test accuracy of cerebrospinal fluid (CSF) analysis in adult patients with suspected bacterial meningitis. DATA SOURCES We searched the Cochrane Library, MEDLINE (using Ovid and PubMed) from 1966 to January 2006 and EMBASE from 1980 to January 2006 without language restrictions to identify relevant studies and identified others from the bibliographies of retrieved articles. STUDY SELECTION We included randomized trials of patients aged 18 years or older undergoing interventions to facilitate a successful diagnostic LP or to potentially reduce adverse events. Studies assessing the accuracy of biochemical analysis of the CSF for possible bacterial meningitis were also identified. DATA EXTRACTION Two investigators independently appraised study quality and extracted relevant data. For studies of the LP technique, data on the intervention and the outcome were extracted. For studies of the laboratory diagnosis of bacterial meningitis, data on the reference standard and test accuracy were extracted. DATA SYNTHESIS We found 15 randomized trials. A random-effects model was used for quantitative synthesis. Five studies of 587 patients compared atraumatic needles with standard needles and found a nonsignificant decrease in the odds of headache with an atraumatic needle (absolute risk reduction [ARR], 12.3%; 95% confidence interval [CI], -1.72% to 26.2%). Reinsertion of the stylet before needle removal decreased the risk of headache (ARR, 11.3%; 95% CI, 6.50%-16.2%). The combined results from 4 studies of 717 patients showed a nonsignificant decrease in headache in patients who were mobilized after LP (ARR, 2.9%; 95% CI, -3.4 to 9.3%). Four studies on the accuracy of biochemical analysis of CSF in patients with suspected meningitis met inclusion criteria. A CSF-blood glucose ratio of 0.4 or less (likelihood ratio [LR], 18; 95% CI, 12-27]), CSF white blood cell count of 500/muL or higher (LR, 15; 95% CI, 10-22), and CSF lactate level of 31.53 mg/dL or more (> or =3.5 mmol/L; LR, 21; 95% CI, 14-32) accurately diagnosed bacterial meningitis. CONCLUSIONS These data suggest that small-gauge, atraumatic needles may decrease the risk of headache after diagnostic LP. Reinsertion of the stylet before needle removal should occur and patients do not require bed rest after the procedure. Future research should focus on evaluating interventions to optimize the success of a diagnostic LP and to enhance training in procedural skills. AgRP neuron activity drives feeding and weight gain whereas that of nearby POMC neurons does the opposite. However, the role of excitatory glutamatergic input in controlling these neurons is unknown. To address this question, we generated mice lacking NMDA receptors (NMDARs) on either AgRP or POMC neurons. Deletion of NMDARs from AgRP neurons markedly reduced weight, body fat and food intake whereas deletion from POMC neurons had no effect. Activation of AgRP neurons by fasting, as assessed by c-Fos, Agrp and Npy mRNA expression, AMPA receptor-mediated EPSCs, depolarization and firing rates, required NMDARs. Furthermore, AgRP but not POMC neurons have dendritic spines and increased glutamatergic input onto AgRP neurons caused by fasting was paralleled by an increase in spines, suggesting fasting induced synaptogenesis and spinogenesis. Thus glutamatergic synaptic transmission and its modulation by NMDARs play key roles in controlling AgRP neurons and determining the cellular and behavioral response to fasting. Importance Postmarket safety events of novel pharmaceuticals and biologics occur when new safety risks are identified after initial regulatory approval of these therapeutics. These safety events can change how novel therapeutics are used in clinical practice and inform patient and clinician decision making. Objectives To characterize the frequency of postmarket safety events among novel therapeutics approved by the US Food and Drug Administration (FDA), and to examine whether any novel therapeutic characteristics known at the time of FDA approval were associated with increased risk. Design and Setting Cohort study of all novel therapeutics approved by the FDA between January 1, 2001, and December 31, 2010, followed up through February 28, 2017. Exposures Novel therapeutic characteristics known at the time of FDA approval, including drug class, therapeutic area, priority review, accelerated approval, orphan status, near–regulatory deadline approval, and regulatory review time. Main Outcomes and Measures A composite of (1) withdrawals due to safety concerns, (2) FDA issuance of incremental boxed warnings added in the postmarket period, and (3) FDA issuance of safety communications. Results From 2001 through 2010, the FDA approved 222 novel therapeutics (183 pharmaceuticals and 39 biologics). There were 123 new postmarket safety events (3 withdrawals, 61 boxed warnings, and 59 safety communications) during a median follow-up period of 11.7 years (interquartile range [IQR], 8.7-13.8 years), affecting 71 (32.0%) of the novel therapeutics. The median time from approval to first postmarket safety event was 4.2 years (IQR, 2.5-6.0 years), and the proportion of novel therapeutics affected by a postmarket safety event at 10 years was 30.8% (95% CI, 25.1%-37.5%). In multivariable analysis, postmarket safety events were statistically significantly more frequent among biologics (incidence rate ratio [IRR] = 1.93; 95% CI, 1.06-3.52; P = .03), therapeutics indicated for the treatment of psychiatric disease (IRR = 3.78; 95% CI, 1.77-8.06; P < .001), those receiving accelerated approval (IRR = 2.20; 95% CI, 1.15-4.21; P = .02), and those with near–regulatory deadline approval (IRR = 1.90; 95% CI, 1.19-3.05; P = .008); events were statistically significantly less frequent among those with regulatory review times less than 200 days (IRR = 0.46; 95% CI, 0.24-0.87; P = .02). Conclusions and Relevance Among 222 novel therapeutics approved by the FDA from 2001 through 2010, 32% were affected by a postmarket safety event. Biologics, psychiatric therapeutics, and accelerated and near–regulatory deadline approval were statistically significantly associated with higher rates of events, highlighting the need for continuous monitoring of the safety of novel therapeutics throughout their life cycle. The microtubule (MT) cytoskeleton is required for many aspects of cell function, including the transport of intracellular materials, the maintenance of cell polarity, and the regulation of mitosis. These functions are coordinated by MT-associated proteins (MAPs), which work in concert with each other, binding MTs and altering their properties. We have used a MT cosedimentation assay, combined with 1D and 2D PAGE and mass spectrometry, to identify over 250 MAPs from early Drosophila embryos. We have taken two complementary approaches to analyse the cellular function of novel MAPs isolated using this approach. First, we have carried out an RNA interference (RNAi) screen, identifying 21 previously uncharacterised genes involved in MT organisation. Second, we have undertaken a bioinformatics analysis based on binary protein interaction data to produce putative interaction networks of MAPs. By combining both approaches, we have identified and validated MAP complexes with potentially important roles in cell cycle regulation and mitosis. This study therefore demonstrates that biologically relevant data can be harvested using such a multidisciplinary approach, and identifies new MAPs, many of which appear to be important in cell division. BACKGROUND Elderly and frail patients with cancer, although often treated with chemotherapy, are under-represented in clinical trials. We designed FOCUS2 to investigate reduced-dose chemotherapy options and to seek objective predictors of outcome in frail patients with advanced colorectal cancer. METHODS We undertook an open, 2 × 2 factorial trial in 61 UK centres for patients with previously untreated advanced colorectal cancer who were considered unfit for full-dose chemotherapy. After comprehensive health assessment (CHA), patients were randomly assigned by minimisation to: 48-h intravenous fluorouracil with levofolinate (group A); oxaliplatin and fluorouracil (group B); capecitabine (group C); or oxaliplatin and capecitabine (group D). Treatment allocation was not masked. Starting doses were 80% of standard doses, with discretionary escalation to full dose after 6 weeks. The two primary outcome measures were: addition of oxaliplatin ([A vs B] + [C vs D]), assessed with progression-free survival (PFS); and substitution of fluorouracil with capecitabine ([A vs C] + [B vs D]), assessed by change from baseline to 12 weeks in global quality of life (QoL). Analysis was by intention to treat. Baseline clinical and CHA data were modelled against outcomes with a novel composite measure, overall treatment utility (OTU). This study is registered, number ISRCTN21221452. FINDINGS 459 patients were randomly assigned (115 to each of groups A-C, 114 to group D). Factorial comparison of addition of oxaliplatin versus no addition suggested some improvement in PFS, but the finding was not significant (median 5·8 months [IQR 3·3-7·5] vs 4·5 months [2·8-6·4]; hazard ratio 0·84, 95% CI 0·69-1·01, p=0·07). Replacement of fluorouracil with capecitabine did not improve global QoL: 69 of 124 (56%) patients receiving fluorouracil reported improvement in global QoL compared with 69 of 123 (56%) receiving capecitabine. The risk of having any grade 3 or worse toxic effect was not significantly increased with oxaliplatin (83/219 [38%] vs 70/221 [32%]; p=0·17), but was higher with capecitabine than with fluorouracil (88/222 [40%] vs 65/218 [30%]; p=0·03). In multivariable analysis, fewer baseline symptoms (odds ratio 1·32, 95% CI 1·14-1·52), less widespread disease (1·51, 1·05-2·19), and use of oxaliplatin (0·57, 0·39-0·82) were predictive of better OTU. INTERPRETATION FOCUS2 shows that with an appropriate design, including reduced starting doses of chemotherapy, frail and elderly patients can participate in a randomised controlled trial. On balance, a combination including oxaliplatin was preferable to single-agent fluoropyrimidines, although the primary endpoint of PFS was not met. Capecitabine did not improve QoL compared with fluorouracil. Comprehensive baseline assessment holds promise as an objective predictor of treatment benefit. FUNDING Cancer Research UK and the Medical Research Council. Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. By analyzing telomerase-positive cells and their human TERC knockout-derived ALT human cell lines, we show that ALT cells harbor more fragile telomeres representing telomere replication problems. ALT-associated replication defects trigger mitotic DNA synthesis (MiDAS) at telomeres in a RAD52-dependent, but RAD51-independent, manner. Telomeric MiDAS is a conservative DNA synthesis process, potentially mediated by break-induced replication, similar to type II ALT survivors in Saccharomyces cerevisiae Replication stresses induced by ectopic oncogenic expression of cyclin E, G-quadruplexes, or R-loop formation facilitate the ALT pathway and lead to telomere clustering, a hallmark of ALT cancers. The TIMELESS/TIPIN complex suppresses telomere clustering and telomeric MiDAS, whereas the SMC5/6 complex promotes them. In summary, ALT cells exhibit more telomere replication defects that result in persistent DNA damage responses at telomeres, leading to the engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) that is triggered by DNA replication stress, a potential driver of genomic duplications in cancer.
A high microerythrocyte count protects against severe anemia in homozygous alpha (+)- thalassemia trait subjects. CONTEXT Diagnostic lumbar punctures (LPs), commonly used to rule out meningitis, are associated with adverse events. OBJECTIVE To systematically review the evidence about diagnostic LP techniques that may decrease the risk of adverse events and the evidence about test accuracy of cerebrospinal fluid (CSF) analysis in adult patients with suspected bacterial meningitis. DATA SOURCES We searched the Cochrane Library, MEDLINE (using Ovid and PubMed) from 1966 to January 2006 and EMBASE from 1980 to January 2006 without language restrictions to identify relevant studies and identified others from the bibliographies of retrieved articles. STUDY SELECTION We included randomized trials of patients aged 18 years or older undergoing interventions to facilitate a successful diagnostic LP or to potentially reduce adverse events. Studies assessing the accuracy of biochemical analysis of the CSF for possible bacterial meningitis were also identified. DATA EXTRACTION Two investigators independently appraised study quality and extracted relevant data. For studies of the LP technique, data on the intervention and the outcome were extracted. For studies of the laboratory diagnosis of bacterial meningitis, data on the reference standard and test accuracy were extracted. DATA SYNTHESIS We found 15 randomized trials. A random-effects model was used for quantitative synthesis. Five studies of 587 patients compared atraumatic needles with standard needles and found a nonsignificant decrease in the odds of headache with an atraumatic needle (absolute risk reduction [ARR], 12.3%; 95% confidence interval [CI], -1.72% to 26.2%). Reinsertion of the stylet before needle removal decreased the risk of headache (ARR, 11.3%; 95% CI, 6.50%-16.2%). The combined results from 4 studies of 717 patients showed a nonsignificant decrease in headache in patients who were mobilized after LP (ARR, 2.9%; 95% CI, -3.4 to 9.3%). Four studies on the accuracy of biochemical analysis of CSF in patients with suspected meningitis met inclusion criteria. A CSF-blood glucose ratio of 0.4 or less (likelihood ratio [LR], 18; 95% CI, 12-27]), CSF white blood cell count of 500/muL or higher (LR, 15; 95% CI, 10-22), and CSF lactate level of 31.53 mg/dL or more (> or =3.5 mmol/L; LR, 21; 95% CI, 14-32) accurately diagnosed bacterial meningitis. CONCLUSIONS These data suggest that small-gauge, atraumatic needles may decrease the risk of headache after diagnostic LP. Reinsertion of the stylet before needle removal should occur and patients do not require bed rest after the procedure. Future research should focus on evaluating interventions to optimize the success of a diagnostic LP and to enhance training in procedural skills. AgRP neuron activity drives feeding and weight gain whereas that of nearby POMC neurons does the opposite. However, the role of excitatory glutamatergic input in controlling these neurons is unknown. To address this question, we generated mice lacking NMDA receptors (NMDARs) on either AgRP or POMC neurons. Deletion of NMDARs from AgRP neurons markedly reduced weight, body fat and food intake whereas deletion from POMC neurons had no effect. Activation of AgRP neurons by fasting, as assessed by c-Fos, Agrp and Npy mRNA expression, AMPA receptor-mediated EPSCs, depolarization and firing rates, required NMDARs. Furthermore, AgRP but not POMC neurons have dendritic spines and increased glutamatergic input onto AgRP neurons caused by fasting was paralleled by an increase in spines, suggesting fasting induced synaptogenesis and spinogenesis. Thus glutamatergic synaptic transmission and its modulation by NMDARs play key roles in controlling AgRP neurons and determining the cellular and behavioral response to fasting. Importance Postmarket safety events of novel pharmaceuticals and biologics occur when new safety risks are identified after initial regulatory approval of these therapeutics. These safety events can change how novel therapeutics are used in clinical practice and inform patient and clinician decision making. Objectives To characterize the frequency of postmarket safety events among novel therapeutics approved by the US Food and Drug Administration (FDA), and to examine whether any novel therapeutic characteristics known at the time of FDA approval were associated with increased risk. Design and Setting Cohort study of all novel therapeutics approved by the FDA between January 1, 2001, and December 31, 2010, followed up through February 28, 2017. Exposures Novel therapeutic characteristics known at the time of FDA approval, including drug class, therapeutic area, priority review, accelerated approval, orphan status, near–regulatory deadline approval, and regulatory review time. Main Outcomes and Measures A composite of (1) withdrawals due to safety concerns, (2) FDA issuance of incremental boxed warnings added in the postmarket period, and (3) FDA issuance of safety communications. Results From 2001 through 2010, the FDA approved 222 novel therapeutics (183 pharmaceuticals and 39 biologics). There were 123 new postmarket safety events (3 withdrawals, 61 boxed warnings, and 59 safety communications) during a median follow-up period of 11.7 years (interquartile range [IQR], 8.7-13.8 years), affecting 71 (32.0%) of the novel therapeutics. The median time from approval to first postmarket safety event was 4.2 years (IQR, 2.5-6.0 years), and the proportion of novel therapeutics affected by a postmarket safety event at 10 years was 30.8% (95% CI, 25.1%-37.5%). In multivariable analysis, postmarket safety events were statistically significantly more frequent among biologics (incidence rate ratio [IRR] = 1.93; 95% CI, 1.06-3.52; P = .03), therapeutics indicated for the treatment of psychiatric disease (IRR = 3.78; 95% CI, 1.77-8.06; P < .001), those receiving accelerated approval (IRR = 2.20; 95% CI, 1.15-4.21; P = .02), and those with near–regulatory deadline approval (IRR = 1.90; 95% CI, 1.19-3.05; P = .008); events were statistically significantly less frequent among those with regulatory review times less than 200 days (IRR = 0.46; 95% CI, 0.24-0.87; P = .02). Conclusions and Relevance Among 222 novel therapeutics approved by the FDA from 2001 through 2010, 32% were affected by a postmarket safety event. Biologics, psychiatric therapeutics, and accelerated and near–regulatory deadline approval were statistically significantly associated with higher rates of events, highlighting the need for continuous monitoring of the safety of novel therapeutics throughout their life cycle. The microtubule (MT) cytoskeleton is required for many aspects of cell function, including the transport of intracellular materials, the maintenance of cell polarity, and the regulation of mitosis. These functions are coordinated by MT-associated proteins (MAPs), which work in concert with each other, binding MTs and altering their properties. We have used a MT cosedimentation assay, combined with 1D and 2D PAGE and mass spectrometry, to identify over 250 MAPs from early Drosophila embryos. We have taken two complementary approaches to analyse the cellular function of novel MAPs isolated using this approach. First, we have carried out an RNA interference (RNAi) screen, identifying 21 previously uncharacterised genes involved in MT organisation. Second, we have undertaken a bioinformatics analysis based on binary protein interaction data to produce putative interaction networks of MAPs. By combining both approaches, we have identified and validated MAP complexes with potentially important roles in cell cycle regulation and mitosis. This study therefore demonstrates that biologically relevant data can be harvested using such a multidisciplinary approach, and identifies new MAPs, many of which appear to be important in cell division. BACKGROUND Elderly and frail patients with cancer, although often treated with chemotherapy, are under-represented in clinical trials. We designed FOCUS2 to investigate reduced-dose chemotherapy options and to seek objective predictors of outcome in frail patients with advanced colorectal cancer. METHODS We undertook an open, 2 × 2 factorial trial in 61 UK centres for patients with previously untreated advanced colorectal cancer who were considered unfit for full-dose chemotherapy. After comprehensive health assessment (CHA), patients were randomly assigned by minimisation to: 48-h intravenous fluorouracil with levofolinate (group A); oxaliplatin and fluorouracil (group B); capecitabine (group C); or oxaliplatin and capecitabine (group D). Treatment allocation was not masked. Starting doses were 80% of standard doses, with discretionary escalation to full dose after 6 weeks. The two primary outcome measures were: addition of oxaliplatin ([A vs B] + [C vs D]), assessed with progression-free survival (PFS); and substitution of fluorouracil with capecitabine ([A vs C] + [B vs D]), assessed by change from baseline to 12 weeks in global quality of life (QoL). Analysis was by intention to treat. Baseline clinical and CHA data were modelled against outcomes with a novel composite measure, overall treatment utility (OTU). This study is registered, number ISRCTN21221452. FINDINGS 459 patients were randomly assigned (115 to each of groups A-C, 114 to group D). Factorial comparison of addition of oxaliplatin versus no addition suggested some improvement in PFS, but the finding was not significant (median 5·8 months [IQR 3·3-7·5] vs 4·5 months [2·8-6·4]; hazard ratio 0·84, 95% CI 0·69-1·01, p=0·07). Replacement of fluorouracil with capecitabine did not improve global QoL: 69 of 124 (56%) patients receiving fluorouracil reported improvement in global QoL compared with 69 of 123 (56%) receiving capecitabine. The risk of having any grade 3 or worse toxic effect was not significantly increased with oxaliplatin (83/219 [38%] vs 70/221 [32%]; p=0·17), but was higher with capecitabine than with fluorouracil (88/222 [40%] vs 65/218 [30%]; p=0·03). In multivariable analysis, fewer baseline symptoms (odds ratio 1·32, 95% CI 1·14-1·52), less widespread disease (1·51, 1·05-2·19), and use of oxaliplatin (0·57, 0·39-0·82) were predictive of better OTU. INTERPRETATION FOCUS2 shows that with an appropriate design, including reduced starting doses of chemotherapy, frail and elderly patients can participate in a randomised controlled trial. On balance, a combination including oxaliplatin was preferable to single-agent fluoropyrimidines, although the primary endpoint of PFS was not met. Capecitabine did not improve QoL compared with fluorouracil. Comprehensive baseline assessment holds promise as an objective predictor of treatment benefit. FUNDING Cancer Research UK and the Medical Research Council. Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. By analyzing telomerase-positive cells and their human TERC knockout-derived ALT human cell lines, we show that ALT cells harbor more fragile telomeres representing telomere replication problems. ALT-associated replication defects trigger mitotic DNA synthesis (MiDAS) at telomeres in a RAD52-dependent, but RAD51-independent, manner. Telomeric MiDAS is a conservative DNA synthesis process, potentially mediated by break-induced replication, similar to type II ALT survivors in Saccharomyces cerevisiae Replication stresses induced by ectopic oncogenic expression of cyclin E, G-quadruplexes, or R-loop formation facilitate the ALT pathway and lead to telomere clustering, a hallmark of ALT cancers. The TIMELESS/TIPIN complex suppresses telomere clustering and telomeric MiDAS, whereas the SMC5/6 complex promotes them. In summary, ALT cells exhibit more telomere replication defects that result in persistent DNA damage responses at telomeres, leading to the engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) that is triggered by DNA replication stress, a potential driver of genomic duplications in cancer.
0
{ "query_id": "41", "original_query_id": "41", "context_doc_ids": [ "10534299", "15476777", "8087082", "3578380", "4319844", "52874170" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.292144", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "3578380", "8087082", "4319844", "15476777", "10534299", "52874170" ], "comprehensive_gold_set_for_query": [ "18174210" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
41
aug_981
Urbanization is an important risk factor related to the transmission of dengue fever. Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein. The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor-related orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR-ROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa. BACKGROUND Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. METHODS AND FINDINGS Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive and negative clusters were greater availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children. CONCLUSIONS Our data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection prompting local spraying could contain recent virus introductions and reduce the longitudinal risk of virus spread within rural areas. Our results should prompt future cluster studies to explore how host immune and behavioral aspects may impact DENV transmission and prevention strategies. Cluster methodology could serve as a useful research tool for investigation of other temporally and spatially clustered infectious diseases.
Urbanization is an important risk factor related to the transmission of dengue fever. Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein. The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor-related orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR-ROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa. BACKGROUND Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. METHODS AND FINDINGS Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive and negative clusters were greater availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children. CONCLUSIONS Our data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection prompting local spraying could contain recent virus introductions and reduce the longitudinal risk of virus spread within rural areas. Our results should prompt future cluster studies to explore how host immune and behavioral aspects may impact DENV transmission and prevention strategies. Cluster methodology could serve as a useful research tool for investigation of other temporally and spatially clustered infectious diseases.
0.5
{ "query_id": "1353", "original_query_id": "1353", "context_doc_ids": [ "18816720", "4421578", "17671145" ], "gold_doc_ids_in_context": [ "18816720" ], "total_gold_docs_for_query": 1, "context_f1": 0.5, "context_size": 3, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.292253", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "18816720" ], "negative_samples_considered": [ "4421578", "17671145" ], "comprehensive_gold_set_for_query": [ "18816720" ], "target_max_context_size_config": 6, "actual_context_size": 3, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1353
aug_982
A deficiency of vitamin B6 decreases blood levels of homocysteine. OBJECTIVE To establish the mental health needs of homeless children and families before and after rehousing. DESIGN Cross sectional, longitudinal study. SETTING City of Birmingham. SUBJECTS 58 rehoused families with 103 children aged 2-16 years and 21 comparison families of low socioeconomic status in stable housing, with 54 children. MAIN OUTCOME MEASURES Children's mental health problems and level of communication; mothers' mental health problems and social support one year after rehousing. RESULTS Mental health problems remained significantly higher in rehoused mothers and their children than in the comparison group (mothers 26% v 5%, P = 0.04; children 39% v 11%, P = 0.0003). Homeless mothers continued to have significantly less social support at follow up. Mothers with a history of abuse and poor social integration were more likely to have children with persistent mental health problems. CONCLUSIONS Homeless families have a high level of complex needs that cannot be met by conventional health services and arrangements. Local strategies for rapid rehousing into permanent accommodation, effective social support and health care for parents and children, and protection from violence and intimidation should be developed and implemented. Importance Postmarket safety events of novel pharmaceuticals and biologics occur when new safety risks are identified after initial regulatory approval of these therapeutics. These safety events can change how novel therapeutics are used in clinical practice and inform patient and clinician decision making. Objectives To characterize the frequency of postmarket safety events among novel therapeutics approved by the US Food and Drug Administration (FDA), and to examine whether any novel therapeutic characteristics known at the time of FDA approval were associated with increased risk. Design and Setting Cohort study of all novel therapeutics approved by the FDA between January 1, 2001, and December 31, 2010, followed up through February 28, 2017. Exposures Novel therapeutic characteristics known at the time of FDA approval, including drug class, therapeutic area, priority review, accelerated approval, orphan status, near–regulatory deadline approval, and regulatory review time. Main Outcomes and Measures A composite of (1) withdrawals due to safety concerns, (2) FDA issuance of incremental boxed warnings added in the postmarket period, and (3) FDA issuance of safety communications. Results From 2001 through 2010, the FDA approved 222 novel therapeutics (183 pharmaceuticals and 39 biologics). There were 123 new postmarket safety events (3 withdrawals, 61 boxed warnings, and 59 safety communications) during a median follow-up period of 11.7 years (interquartile range [IQR], 8.7-13.8 years), affecting 71 (32.0%) of the novel therapeutics. The median time from approval to first postmarket safety event was 4.2 years (IQR, 2.5-6.0 years), and the proportion of novel therapeutics affected by a postmarket safety event at 10 years was 30.8% (95% CI, 25.1%-37.5%). In multivariable analysis, postmarket safety events were statistically significantly more frequent among biologics (incidence rate ratio [IRR] = 1.93; 95% CI, 1.06-3.52; P = .03), therapeutics indicated for the treatment of psychiatric disease (IRR = 3.78; 95% CI, 1.77-8.06; P < .001), those receiving accelerated approval (IRR = 2.20; 95% CI, 1.15-4.21; P = .02), and those with near–regulatory deadline approval (IRR = 1.90; 95% CI, 1.19-3.05; P = .008); events were statistically significantly less frequent among those with regulatory review times less than 200 days (IRR = 0.46; 95% CI, 0.24-0.87; P = .02). Conclusions and Relevance Among 222 novel therapeutics approved by the FDA from 2001 through 2010, 32% were affected by a postmarket safety event. Biologics, psychiatric therapeutics, and accelerated and near–regulatory deadline approval were statistically significantly associated with higher rates of events, highlighting the need for continuous monitoring of the safety of novel therapeutics throughout their life cycle. Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members. Objective To explore the in vitro maintenance and characterization of human embryonic stem cells(hESCs).Methods hESCs were cultured on feeder layer with ES culture medium,which consists of 20% Knockout Serum Replacement,Knockout DMEM and 10 ng/mL bFGF.Undifferentiated status of hESCs was identified by cell morphology,and the expressions of cell surface marker SSEA-1,SSEA-3 and TRA-1-60.G banding technique was employed for cell karyotype analysis. Pluropotency of cells were analyzed via in vitro embyoid body(EB) formation and in vivo terotoma formation. Results Most of cells showed undifferentiated properties in cell morphology and normal karyotype throughout extended culture periods. They maintained undifferentiated status with positive immunoreactivity to SSEA-3,SSEA-4 and TRA-1-60.in vitro EB formation and in vivo teratoma formation demonstrated the pluripotency of human ES cells. Conclusion The fundamental requirement to hESCs for research and clinical application were their undifferentiated status and pluropotency in culture. Our result demonstrated their potential for these purposes. The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses. Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.
A deficiency of vitamin B6 decreases blood levels of homocysteine. OBJECTIVE To establish the mental health needs of homeless children and families before and after rehousing. DESIGN Cross sectional, longitudinal study. SETTING City of Birmingham. SUBJECTS 58 rehoused families with 103 children aged 2-16 years and 21 comparison families of low socioeconomic status in stable housing, with 54 children. MAIN OUTCOME MEASURES Children's mental health problems and level of communication; mothers' mental health problems and social support one year after rehousing. RESULTS Mental health problems remained significantly higher in rehoused mothers and their children than in the comparison group (mothers 26% v 5%, P = 0.04; children 39% v 11%, P = 0.0003). Homeless mothers continued to have significantly less social support at follow up. Mothers with a history of abuse and poor social integration were more likely to have children with persistent mental health problems. CONCLUSIONS Homeless families have a high level of complex needs that cannot be met by conventional health services and arrangements. Local strategies for rapid rehousing into permanent accommodation, effective social support and health care for parents and children, and protection from violence and intimidation should be developed and implemented. Importance Postmarket safety events of novel pharmaceuticals and biologics occur when new safety risks are identified after initial regulatory approval of these therapeutics. These safety events can change how novel therapeutics are used in clinical practice and inform patient and clinician decision making. Objectives To characterize the frequency of postmarket safety events among novel therapeutics approved by the US Food and Drug Administration (FDA), and to examine whether any novel therapeutic characteristics known at the time of FDA approval were associated with increased risk. Design and Setting Cohort study of all novel therapeutics approved by the FDA between January 1, 2001, and December 31, 2010, followed up through February 28, 2017. Exposures Novel therapeutic characteristics known at the time of FDA approval, including drug class, therapeutic area, priority review, accelerated approval, orphan status, near–regulatory deadline approval, and regulatory review time. Main Outcomes and Measures A composite of (1) withdrawals due to safety concerns, (2) FDA issuance of incremental boxed warnings added in the postmarket period, and (3) FDA issuance of safety communications. Results From 2001 through 2010, the FDA approved 222 novel therapeutics (183 pharmaceuticals and 39 biologics). There were 123 new postmarket safety events (3 withdrawals, 61 boxed warnings, and 59 safety communications) during a median follow-up period of 11.7 years (interquartile range [IQR], 8.7-13.8 years), affecting 71 (32.0%) of the novel therapeutics. The median time from approval to first postmarket safety event was 4.2 years (IQR, 2.5-6.0 years), and the proportion of novel therapeutics affected by a postmarket safety event at 10 years was 30.8% (95% CI, 25.1%-37.5%). In multivariable analysis, postmarket safety events were statistically significantly more frequent among biologics (incidence rate ratio [IRR] = 1.93; 95% CI, 1.06-3.52; P = .03), therapeutics indicated for the treatment of psychiatric disease (IRR = 3.78; 95% CI, 1.77-8.06; P < .001), those receiving accelerated approval (IRR = 2.20; 95% CI, 1.15-4.21; P = .02), and those with near–regulatory deadline approval (IRR = 1.90; 95% CI, 1.19-3.05; P = .008); events were statistically significantly less frequent among those with regulatory review times less than 200 days (IRR = 0.46; 95% CI, 0.24-0.87; P = .02). Conclusions and Relevance Among 222 novel therapeutics approved by the FDA from 2001 through 2010, 32% were affected by a postmarket safety event. Biologics, psychiatric therapeutics, and accelerated and near–regulatory deadline approval were statistically significantly associated with higher rates of events, highlighting the need for continuous monitoring of the safety of novel therapeutics throughout their life cycle. Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members. Objective To explore the in vitro maintenance and characterization of human embryonic stem cells(hESCs).Methods hESCs were cultured on feeder layer with ES culture medium,which consists of 20% Knockout Serum Replacement,Knockout DMEM and 10 ng/mL bFGF.Undifferentiated status of hESCs was identified by cell morphology,and the expressions of cell surface marker SSEA-1,SSEA-3 and TRA-1-60.G banding technique was employed for cell karyotype analysis. Pluropotency of cells were analyzed via in vitro embyoid body(EB) formation and in vivo terotoma formation. Results Most of cells showed undifferentiated properties in cell morphology and normal karyotype throughout extended culture periods. They maintained undifferentiated status with positive immunoreactivity to SSEA-3,SSEA-4 and TRA-1-60.in vitro EB formation and in vivo teratoma formation demonstrated the pluripotency of human ES cells. Conclusion The fundamental requirement to hESCs for research and clinical application were their undifferentiated status and pluropotency in culture. Our result demonstrated their potential for these purposes. The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV-1 [2]. Although it is not known what magnitude and breadth of neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4+ T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine–cysteine loop structures on the gp120 molecule [6–8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses. Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.
0
{ "query_id": "37", "original_query_id": "37", "context_doc_ids": [ "4547102", "8883846", "3578380", "87610599", "25649714", "13868795" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 2, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.292307", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "4547102", "13868795", "87610599", "8883846", "3578380", "25649714" ], "comprehensive_gold_set_for_query": [ "11705328", "5152028" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
37
aug_983
DRD1 proteins enable Pol V transcription in vivo. Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an "alternative inflammasome" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans. Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD. Breast cancer may originate in utero. We reviewed the available evidence on the association between birthweight and the risk of breast cancer. To date, 26 research papers addressing this issue have been published. The majority of studies identified a positive link between birthweight and premenopausal, but not postmenopausal, breast cancer. The relative risk estimate for breast cancer comparing women with high birthweight to women with low birthweight combining all studies including both pre- and postmenopausal breast cancer was 1.23 (95% confidence interval 1.13-1.34). The mechanisms underlying this association likely include elevated levels of growth factors that may increase the number of susceptible stem cells in the mammary gland or initiate tumors through DNA mutations. Loss of imprinting (LOI) of growth hormone genes relevant for intrauterine growth, such as insulin-like growth factor 2 (IGF2), leads to abnormally high levels of these hormones evidenced by high birthweight. LOI of IGF2 has also been found in mammary tumor tissue. The role of environmental factors that stimulate such epigenetic regulation of gene expression remains to be elucidated. Over the past two decades there have been significant achievements in the control of a handful of important human tropical infections [1]. These achievements include the substantive reductions in the prevalence and incidence of the so-called neglected diseases such as lymphatic filariasis, onchocerciasis, guinea worm, leprosy, and trachoma (Box 1) [2]. Each of these neglected diseases is a poverty-promoting and often stigmatizing condition occurring primarily in rural areas of low-income countries (Box 2) [3]. They are ancient afflictions, described in the Bible and other ancient texts, which have burdened humanity for millennia [3]. But now, as a result of aggressive regional vertical interventions, there is a possibility that some neglected tropical infections could be eventually controlled to the point of elimination in some areas of endemicity [2–8]. In the case of guinea worm infection, disease eradication might also soon be possible [9]. Box 2. Common Features of the Neglected Tropical Diseases Ancient afflictions that have burdened humanity for centuries Poverty-promoting conditions Associated with stigma Rural areas of low-income countries and fragile states No commercial markets for products that target these diseases Interventions, when applied, have a history of success The antibacterial peptide microcin J25 (MccJ25) inhibits transcription by bacterial RNA polymerase (RNAP). Biochemical results indicate that inhibition of transcription occurs at the level of NTP uptake or NTP binding by RNAP. Genetic results indicate that inhibition of transcription requires an extensive determinant, comprising more than 50 amino acid residues, within the RNAP secondary channel (also known as the "NTP-uptake channel" or "pore"). Biophysical results indicate that inhibition of transcription involves binding of MccJ25 within the RNAP secondary channel. Molecular modeling indicates that binding of MccJ25 within the RNAP secondary channel obstructs the RNAP secondary channel. We conclude that MccJ25 inhibits transcription by binding within and obstructing the RNAP secondary channel--acting essentially as a "cork in a bottle. " Obstruction of the RNAP secondary channel represents an attractive target for drug discovery. Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.
DRD1 proteins enable Pol V transcription in vivo. Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an "alternative inflammasome" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans. Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD. Breast cancer may originate in utero. We reviewed the available evidence on the association between birthweight and the risk of breast cancer. To date, 26 research papers addressing this issue have been published. The majority of studies identified a positive link between birthweight and premenopausal, but not postmenopausal, breast cancer. The relative risk estimate for breast cancer comparing women with high birthweight to women with low birthweight combining all studies including both pre- and postmenopausal breast cancer was 1.23 (95% confidence interval 1.13-1.34). The mechanisms underlying this association likely include elevated levels of growth factors that may increase the number of susceptible stem cells in the mammary gland or initiate tumors through DNA mutations. Loss of imprinting (LOI) of growth hormone genes relevant for intrauterine growth, such as insulin-like growth factor 2 (IGF2), leads to abnormally high levels of these hormones evidenced by high birthweight. LOI of IGF2 has also been found in mammary tumor tissue. The role of environmental factors that stimulate such epigenetic regulation of gene expression remains to be elucidated. Over the past two decades there have been significant achievements in the control of a handful of important human tropical infections [1]. These achievements include the substantive reductions in the prevalence and incidence of the so-called neglected diseases such as lymphatic filariasis, onchocerciasis, guinea worm, leprosy, and trachoma (Box 1) [2]. Each of these neglected diseases is a poverty-promoting and often stigmatizing condition occurring primarily in rural areas of low-income countries (Box 2) [3]. They are ancient afflictions, described in the Bible and other ancient texts, which have burdened humanity for millennia [3]. But now, as a result of aggressive regional vertical interventions, there is a possibility that some neglected tropical infections could be eventually controlled to the point of elimination in some areas of endemicity [2–8]. In the case of guinea worm infection, disease eradication might also soon be possible [9]. Box 2. Common Features of the Neglected Tropical Diseases Ancient afflictions that have burdened humanity for centuries Poverty-promoting conditions Associated with stigma Rural areas of low-income countries and fragile states No commercial markets for products that target these diseases Interventions, when applied, have a history of success The antibacterial peptide microcin J25 (MccJ25) inhibits transcription by bacterial RNA polymerase (RNAP). Biochemical results indicate that inhibition of transcription occurs at the level of NTP uptake or NTP binding by RNAP. Genetic results indicate that inhibition of transcription requires an extensive determinant, comprising more than 50 amino acid residues, within the RNAP secondary channel (also known as the "NTP-uptake channel" or "pore"). Biophysical results indicate that inhibition of transcription involves binding of MccJ25 within the RNAP secondary channel. Molecular modeling indicates that binding of MccJ25 within the RNAP secondary channel obstructs the RNAP secondary channel. We conclude that MccJ25 inhibits transcription by binding within and obstructing the RNAP secondary channel--acting essentially as a "cork in a bottle. " Obstruction of the RNAP secondary channel represents an attractive target for drug discovery. Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.
0
{ "query_id": "305", "original_query_id": "305", "context_doc_ids": [ "34469966", "18956141", "8002887", "27123743", "1215116", "4740447" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.292399", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "1215116", "18956141", "27123743", "34469966", "8002887", "4740447" ], "comprehensive_gold_set_for_query": [ "14797520" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
305
aug_984
MeCP2 influences the synaptic maturation of neurons. BACKGROUND Although unstable coronary artery disease is the most common reason for admission to a coronary care unit, the long-term prognosis of patients with this diagnosis is unknown. This is particularly true for patients with diabetes mellitus, who are known to have a high morbidity and mortality after an acute myocardial infarction. METHODS AND RESULTS Prospectively collected data from 6 different countries in the Organization to Assess Strategies for Ischemic Syndromes (OASIS) registry were analyzed to determine the 2-year prognosis of diabetic and nondiabetic patients who were hospitalized with unstable angina or non-Q-wave myocardial infarction. Overall, 1718 of 8013 registry patients (21%) had diabetes. Diabetic patients had a higher rate of coronary bypass surgery than nondiabetic patients (23% versus 20%, P:<0.001) but had similar rates of catheterization and angioplasty. Diabetes independently predicted mortality (relative risk [RR], 1.57; 95% CI, 1.38 to 1.81; P:<0.001), as well as cardiovascular death, new myocardial infarction, stroke, and new congestive heart failure. Moreover, compared with their nondiabetic counterparts, women had a significantly higher risk than men (RR, 1.98; 95% CI, 1.60 to 2.44; and RR, 1.28; 95% CI, 1.06 to 1.56, respectively). Interestingly, diabetic patients without prior cardiovascular disease had the same event rates for all outcomes as nondiabetic patients with previous vascular disease. CONCLUSIONS Hospitalization for unstable angina or non-Q-wave myocardial infarction predicts a high 2-year morbidity and mortality; this is especially evident for patients with diabetes. Diabetic patients with no previous cardiovascular disease have the same long-term morbidity and mortality as nondiabetic patients with established cardiovascular disease after hospitalization for unstable coronary artery disease. The ER-associated degradation (ERAD) pathway serves as an important cellular safeguard by directing incorrectly folded and unassembled proteins from the ER to the proteasome. Still, however, little is known about the components mediating ERAD of membrane proteins. Here we show that the evolutionary conserved rhomboid family protein RHBDL4 is a ubiquitin-dependent ER-resident intramembrane protease that is upregulated upon ER stress. RHBDL4 cleaves single-spanning and polytopic membrane proteins with unstable transmembrane helices, leading to their degradation by the canonical ERAD machinery. RHBDL4 specifically binds the AAA+-ATPase p97, suggesting that proteolytic processing and dislocation into the cytosol are functionally linked. The phylogenetic relationship between rhomboids and the ERAD factor derlin suggests that substrates for intramembrane proteolysis and protein dislocation are recruited by a shared mechanism. Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an "alternative inflammasome" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans. As the nervous system develops, there is an inherent variability in the connections formed between differentiating neurons. Despite this variability, neural circuits form that are functional and remarkably robust. One way in which neurons deal with variability in their inputs is through compensatory, homeostatic changes in their electrical properties. Here, we show that neurons also make compensatory adjustments to their structure. We analysed the development of dendrites on an identified central neuron (aCC) in the late Drosophila embryo at the stage when it receives its first connections and first becomes electrically active. At the same time, we charted the distribution of presynaptic sites on the developing postsynaptic arbor. Genetic manipulations of the presynaptic partners demonstrate that the postsynaptic dendritic arbor adjusts its growth to compensate for changes in the activity and density of synaptic sites. Blocking the synthesis or evoked release of presynaptic neurotransmitter results in greater dendritic extension. Conversely, an increase in the density of presynaptic release sites induces a reduction in the extent of the dendritic arbor. These growth adjustments occur locally in the arbor and are the result of the promotion or inhibition of growth of neurites in the proximity of presynaptic sites. We provide evidence that suggest a role for the postsynaptic activity state of protein kinase A in mediating this structural adjustment, which modifies dendritic growth in response to synaptic activity. These findings suggest that the dendritic arbor, at least during early stages of connectivity, behaves as a homeostatic device that adjusts its size and geometry to the level and the distribution of input received. The growing arbor thus counterbalances naturally occurring variations in synaptic density and activity so as to ensure that an appropriate level of input is achieved. BACKGROUND Expanded access to antiretroviral therapy (ART) using universal test and treat (UTT) has been suggested as a strategy to eliminate HIV in South Africa within 7 y based on an influential mathematical modeling study. However, the underlying deterministic model was criticized widely, and other modeling studies did not always confirm the study's finding. The objective of our study is to better understand the implications of different model structures and assumptions, so as to arrive at the best possible predictions of the long-term impact of UTT and the possibility of elimination of HIV. METHODS AND FINDINGS We developed nine structurally different mathematical models of the South African HIV epidemic in a stepwise approach of increasing complexity and realism. The simplest model resembles the initial deterministic model, while the most comprehensive model is the stochastic microsimulation model STDSIM, which includes sexual networks and HIV stages with different degrees of infectiousness. We defined UTT as annual screening and immediate ART for all HIV-infected adults, starting at 13% in January 2012 and scaled up to 90% coverage by January 2019. All models predict elimination, yet those that capture more processes underlying the HIV transmission dynamics predict elimination at a later point in time, after 20 to 25 y. Importantly, the most comprehensive model predicts that the current strategy of ART at CD4 count ≤350 cells/µl will also lead to elimination, albeit 10 y later compared to UTT. Still, UTT remains cost-effective, as many additional life-years would be saved. The study's major limitations are that elimination was defined as incidence below 1/1,000 person-years rather than 0% prevalence, and drug resistance was not modeled. CONCLUSIONS Our results confirm previous predictions that the HIV epidemic in South Africa can be eliminated through universal testing and immediate treatment at 90% coverage. However, more realistic models show that elimination is likely to occur at a much later point in time than the initial model suggested. Also, UTT is a cost-effective intervention, but less cost-effective than previously predicted because the current South African ART treatment policy alone could already drive HIV into elimination. Please see later in the article for the Editors' Summary.
MeCP2 influences the synaptic maturation of neurons. BACKGROUND Although unstable coronary artery disease is the most common reason for admission to a coronary care unit, the long-term prognosis of patients with this diagnosis is unknown. This is particularly true for patients with diabetes mellitus, who are known to have a high morbidity and mortality after an acute myocardial infarction. METHODS AND RESULTS Prospectively collected data from 6 different countries in the Organization to Assess Strategies for Ischemic Syndromes (OASIS) registry were analyzed to determine the 2-year prognosis of diabetic and nondiabetic patients who were hospitalized with unstable angina or non-Q-wave myocardial infarction. Overall, 1718 of 8013 registry patients (21%) had diabetes. Diabetic patients had a higher rate of coronary bypass surgery than nondiabetic patients (23% versus 20%, P:<0.001) but had similar rates of catheterization and angioplasty. Diabetes independently predicted mortality (relative risk [RR], 1.57; 95% CI, 1.38 to 1.81; P:<0.001), as well as cardiovascular death, new myocardial infarction, stroke, and new congestive heart failure. Moreover, compared with their nondiabetic counterparts, women had a significantly higher risk than men (RR, 1.98; 95% CI, 1.60 to 2.44; and RR, 1.28; 95% CI, 1.06 to 1.56, respectively). Interestingly, diabetic patients without prior cardiovascular disease had the same event rates for all outcomes as nondiabetic patients with previous vascular disease. CONCLUSIONS Hospitalization for unstable angina or non-Q-wave myocardial infarction predicts a high 2-year morbidity and mortality; this is especially evident for patients with diabetes. Diabetic patients with no previous cardiovascular disease have the same long-term morbidity and mortality as nondiabetic patients with established cardiovascular disease after hospitalization for unstable coronary artery disease. The ER-associated degradation (ERAD) pathway serves as an important cellular safeguard by directing incorrectly folded and unassembled proteins from the ER to the proteasome. Still, however, little is known about the components mediating ERAD of membrane proteins. Here we show that the evolutionary conserved rhomboid family protein RHBDL4 is a ubiquitin-dependent ER-resident intramembrane protease that is upregulated upon ER stress. RHBDL4 cleaves single-spanning and polytopic membrane proteins with unstable transmembrane helices, leading to their degradation by the canonical ERAD machinery. RHBDL4 specifically binds the AAA+-ATPase p97, suggesting that proteolytic processing and dislocation into the cytosol are functionally linked. The phylogenetic relationship between rhomboids and the ERAD factor derlin suggests that substrates for intramembrane proteolysis and protein dislocation are recruited by a shared mechanism. Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an "alternative inflammasome" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans. As the nervous system develops, there is an inherent variability in the connections formed between differentiating neurons. Despite this variability, neural circuits form that are functional and remarkably robust. One way in which neurons deal with variability in their inputs is through compensatory, homeostatic changes in their electrical properties. Here, we show that neurons also make compensatory adjustments to their structure. We analysed the development of dendrites on an identified central neuron (aCC) in the late Drosophila embryo at the stage when it receives its first connections and first becomes electrically active. At the same time, we charted the distribution of presynaptic sites on the developing postsynaptic arbor. Genetic manipulations of the presynaptic partners demonstrate that the postsynaptic dendritic arbor adjusts its growth to compensate for changes in the activity and density of synaptic sites. Blocking the synthesis or evoked release of presynaptic neurotransmitter results in greater dendritic extension. Conversely, an increase in the density of presynaptic release sites induces a reduction in the extent of the dendritic arbor. These growth adjustments occur locally in the arbor and are the result of the promotion or inhibition of growth of neurites in the proximity of presynaptic sites. We provide evidence that suggest a role for the postsynaptic activity state of protein kinase A in mediating this structural adjustment, which modifies dendritic growth in response to synaptic activity. These findings suggest that the dendritic arbor, at least during early stages of connectivity, behaves as a homeostatic device that adjusts its size and geometry to the level and the distribution of input received. The growing arbor thus counterbalances naturally occurring variations in synaptic density and activity so as to ensure that an appropriate level of input is achieved. BACKGROUND Expanded access to antiretroviral therapy (ART) using universal test and treat (UTT) has been suggested as a strategy to eliminate HIV in South Africa within 7 y based on an influential mathematical modeling study. However, the underlying deterministic model was criticized widely, and other modeling studies did not always confirm the study's finding. The objective of our study is to better understand the implications of different model structures and assumptions, so as to arrive at the best possible predictions of the long-term impact of UTT and the possibility of elimination of HIV. METHODS AND FINDINGS We developed nine structurally different mathematical models of the South African HIV epidemic in a stepwise approach of increasing complexity and realism. The simplest model resembles the initial deterministic model, while the most comprehensive model is the stochastic microsimulation model STDSIM, which includes sexual networks and HIV stages with different degrees of infectiousness. We defined UTT as annual screening and immediate ART for all HIV-infected adults, starting at 13% in January 2012 and scaled up to 90% coverage by January 2019. All models predict elimination, yet those that capture more processes underlying the HIV transmission dynamics predict elimination at a later point in time, after 20 to 25 y. Importantly, the most comprehensive model predicts that the current strategy of ART at CD4 count ≤350 cells/µl will also lead to elimination, albeit 10 y later compared to UTT. Still, UTT remains cost-effective, as many additional life-years would be saved. The study's major limitations are that elimination was defined as incidence below 1/1,000 person-years rather than 0% prevalence, and drug resistance was not modeled. CONCLUSIONS Our results confirm previous predictions that the HIV epidemic in South Africa can be eliminated through universal testing and immediate treatment at 90% coverage. However, more realistic models show that elimination is likely to occur at a much later point in time than the initial model suggested. Also, UTT is a cost-effective intervention, but less cost-effective than previously predicted because the current South African ART treatment policy alone could already drive HIV into elimination. Please see later in the article for the Editors' Summary.
0.333333
{ "query_id": "761", "original_query_id": "761", "context_doc_ids": [ "34469966", "5884524", "13901073", "10009203", "8533245" ], "gold_doc_ids_in_context": [ "10009203" ], "total_gold_docs_for_query": 1, "context_f1": 0.33333333333333337, "context_size": 5, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.292466", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "10009203" ], "negative_samples_considered": [ "5884524", "34469966", "13901073", "8533245" ], "comprehensive_gold_set_for_query": [ "10009203" ], "target_max_context_size_config": 6, "actual_context_size": 5, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
761
aug_985
ART has no effect on the infectiveness of HIV-positive people. Amitriptyline is the medication of first choice in the treatment of chronic tension-type headache. In 197 patients with chronic tension-type headache (87M and 110F with a mean age of 38 +/- 13 (18-68)) efficacy and tolerability of 60-90 mg amitriptylinoxide (AO) were compared with 50-75 mg amitriptyline (AM) and placebo (PL) in a double-blind, parallel-group trial consisting of a four weeks' baseline phase and 12 weeks of treatment. The primary study endpoint was a reduction of at least 50% of the product of headache duration and frequency and a reduction of at least 50% in headache intensity. Statistics used were Fisher's exact test and analysis of variance. No significant difference emerged between AO, AM and PL with respect to the primary study endpoint. Treatment response occurred in 30.3% of the AO, 22.4% of the AM and 21.9% of the PL group. A reduction in headache duration and frequency of at least 50% was found in 39.4% on AO, in 25.4% on AM and in 26.6% on PL (PAO-PL = .1384, PAM-PL = 1.000, PAO-AM = .0973). A reduction in headache intensity of at least 50% was found in 31.8% on AO, in 26.9% on AM and in 26.6% on PL (PAO-PL = .5657, PAM-PL = 1.000, PAO-AM = .5715). Trend analysis with respect to a significant reduction of headache intensity (p < 0.05) and the product of headache duration and frequency revealed a superior effect of AO.(ABSTRACT TRUNCATED AT 250 WORDS) The metabolic stress-sensing enzyme AMP-activated protein kinase (AMPK) is responsible for regulating metabolism in response to energy supply and demand. Drugs that activate AMPK may be useful in the treatment of metabolic diseases including type 2 diabetes. We have determined the crystal structure of AMPK in complex with its activator 5-(5-hydroxyl-isoxazol-3-yl)-furan-2-phosphonic acid (C2), revealing two C2-binding sites in the γ-subunit distinct from nucleotide sites. C2 acts synergistically with the drug A769662 to activate AMPK α1-containing complexes independent of upstream kinases. Our results show that dual drug therapies could be effective AMPK-targeting strategies to treat metabolic diseases. OBJECTIVE Pancreatic ductal adenocarcinoma (PDA) is characterised by stromal desmoplasia and vascular dysfunction, which critically impair drug delivery. This study examines the role of an abundant extracellular matrix component, the megadalton glycosaminoglycan hyaluronan (HA), as a novel therapeutic target in PDA. METHODS Using a genetically engineered mouse model of PDA, the authors enzymatically depleted HA by a clinically formulated PEGylated human recombinant PH20 hyaluronidase (PEGPH20) and examined tumour perfusion, vascular permeability and drug delivery. The preclinical utility of PEGPH20 in combination with gemcitabine was assessed by short-term and survival studies. RESULTS PEGPH20 rapidly and sustainably depleted HA, inducing the re-expansion of PDA blood vessels and increasing the intratumoral delivery of two chemotherapeutic agents, doxorubicin and gemcitabine. Moreover, PEGPH20 triggered fenestrations and interendothelial junctional gaps in PDA tumour endothelia and promoted a tumour-specific increase in macromolecular permeability. Finally, combination therapy with PEGPH20 and gemcitabine led to inhibition of PDA tumour growth and prolonged survival over gemcitabine monotherapy, suggesting immediate clinical utility. CONCLUSIONS The authors demonstrate that HA impedes the intratumoral vasculature in PDA and propose that its enzymatic depletion be explored as a means to improve drug delivery and response in patients with pancreatic cancer. Hepatic stellate cells (HSCs) play critical roles in liver fibrosis and hepatocellular carcinoma (HCC). Vitamin D receptor (VDR) activation in HSCs inhibits liver inflammation and fibrosis. We found that p62/SQSTM1, a protein upregulated in liver parenchymal cells but downregulated in HCC-associated HSCs, negatively controls HSC activation. Total body or HSC-specific p62 ablation potentiates HSCs and enhances inflammation, fibrosis, and HCC progression. p62 directly interacts with VDR and RXR promoting their heterodimerization, which is critical for VDR:RXR target gene recruitment. Loss of p62 in HSCs impairs the repression of fibrosis and inflammation by VDR agonists. This demonstrates that p62 is a negative regulator of liver inflammation and fibrosis through its ability to promote VDR signaling in HSCs, whose activation supports HCC. Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues. Although MSU crystals were first identified as the aetiological agent of gout in the eighteenth century and more recently as a ‘danger signal’ released from dying cells, little is known about the molecular mechanisms underlying MSU- or CPPD-induced inflammation. Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1β and IL-18. Macrophages from mice deficient in various components of the inflammasome such as caspase-1, ASC and NALP3 are defective in crystal-induced IL-1β activation. Moreover, an impaired neutrophil influx is found in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or mice deficient in the IL-1β receptor (IL-1R). These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases. The functional heart is comprised of distinct mesoderm-derived lineages including cardiomyocytes, endothelial cells and vascular smooth muscle cells. Studies in the mouse embryo and the mouse embryonic stem cell differentiation model have provided evidence indicating that these three lineages develop from a common Flk-1+ (kinase insert domain protein receptor, also known as Kdr) cardiovascular progenitor that represents one of the earliest stages in mesoderm specification to the cardiovascular lineages. To determine whether a comparable progenitor is present during human cardiogenesis, we analysed the development of the cardiovascular lineages in human embryonic stem cell differentiation cultures. Here we show that after induction with combinations of activin A, bone morphogenetic protein 4 (BMP4), basic fibroblast growth factor (bFGF, also known as FGF2), vascular endothelial growth factor (VEGF, also known as VEGFA) and dickkopf homolog 1 (DKK1) in serum-free media, human embryonic-stem-cell-derived embryoid bodies generate a KDRlow/C-KIT(CD117)neg population that displays cardiac, endothelial and vascular smooth muscle potential in vitro and, after transplantation, in vivo. When plated in monolayer cultures, these KDRlow/C-KITneg cells differentiate to generate populations consisting of greater than 50% contracting cardiomyocytes. Populations derived from the KDRlow/C-KITneg fraction give rise to colonies that contain all three lineages when plated in methylcellulose cultures. Results from limiting dilution studies and cell-mixing experiments support the interpretation that these colonies are clones, indicating that they develop from a cardiovascular colony-forming cell. Together, these findings identify a human cardiovascular progenitor that defines one of the earliest stages of human cardiac development.
ART has no effect on the infectiveness of HIV-positive people. Amitriptyline is the medication of first choice in the treatment of chronic tension-type headache. In 197 patients with chronic tension-type headache (87M and 110F with a mean age of 38 +/- 13 (18-68)) efficacy and tolerability of 60-90 mg amitriptylinoxide (AO) were compared with 50-75 mg amitriptyline (AM) and placebo (PL) in a double-blind, parallel-group trial consisting of a four weeks' baseline phase and 12 weeks of treatment. The primary study endpoint was a reduction of at least 50% of the product of headache duration and frequency and a reduction of at least 50% in headache intensity. Statistics used were Fisher's exact test and analysis of variance. No significant difference emerged between AO, AM and PL with respect to the primary study endpoint. Treatment response occurred in 30.3% of the AO, 22.4% of the AM and 21.9% of the PL group. A reduction in headache duration and frequency of at least 50% was found in 39.4% on AO, in 25.4% on AM and in 26.6% on PL (PAO-PL = .1384, PAM-PL = 1.000, PAO-AM = .0973). A reduction in headache intensity of at least 50% was found in 31.8% on AO, in 26.9% on AM and in 26.6% on PL (PAO-PL = .5657, PAM-PL = 1.000, PAO-AM = .5715). Trend analysis with respect to a significant reduction of headache intensity (p < 0.05) and the product of headache duration and frequency revealed a superior effect of AO.(ABSTRACT TRUNCATED AT 250 WORDS) The metabolic stress-sensing enzyme AMP-activated protein kinase (AMPK) is responsible for regulating metabolism in response to energy supply and demand. Drugs that activate AMPK may be useful in the treatment of metabolic diseases including type 2 diabetes. We have determined the crystal structure of AMPK in complex with its activator 5-(5-hydroxyl-isoxazol-3-yl)-furan-2-phosphonic acid (C2), revealing two C2-binding sites in the γ-subunit distinct from nucleotide sites. C2 acts synergistically with the drug A769662 to activate AMPK α1-containing complexes independent of upstream kinases. Our results show that dual drug therapies could be effective AMPK-targeting strategies to treat metabolic diseases. OBJECTIVE Pancreatic ductal adenocarcinoma (PDA) is characterised by stromal desmoplasia and vascular dysfunction, which critically impair drug delivery. This study examines the role of an abundant extracellular matrix component, the megadalton glycosaminoglycan hyaluronan (HA), as a novel therapeutic target in PDA. METHODS Using a genetically engineered mouse model of PDA, the authors enzymatically depleted HA by a clinically formulated PEGylated human recombinant PH20 hyaluronidase (PEGPH20) and examined tumour perfusion, vascular permeability and drug delivery. The preclinical utility of PEGPH20 in combination with gemcitabine was assessed by short-term and survival studies. RESULTS PEGPH20 rapidly and sustainably depleted HA, inducing the re-expansion of PDA blood vessels and increasing the intratumoral delivery of two chemotherapeutic agents, doxorubicin and gemcitabine. Moreover, PEGPH20 triggered fenestrations and interendothelial junctional gaps in PDA tumour endothelia and promoted a tumour-specific increase in macromolecular permeability. Finally, combination therapy with PEGPH20 and gemcitabine led to inhibition of PDA tumour growth and prolonged survival over gemcitabine monotherapy, suggesting immediate clinical utility. CONCLUSIONS The authors demonstrate that HA impedes the intratumoral vasculature in PDA and propose that its enzymatic depletion be explored as a means to improve drug delivery and response in patients with pancreatic cancer. Hepatic stellate cells (HSCs) play critical roles in liver fibrosis and hepatocellular carcinoma (HCC). Vitamin D receptor (VDR) activation in HSCs inhibits liver inflammation and fibrosis. We found that p62/SQSTM1, a protein upregulated in liver parenchymal cells but downregulated in HCC-associated HSCs, negatively controls HSC activation. Total body or HSC-specific p62 ablation potentiates HSCs and enhances inflammation, fibrosis, and HCC progression. p62 directly interacts with VDR and RXR promoting their heterodimerization, which is critical for VDR:RXR target gene recruitment. Loss of p62 in HSCs impairs the repression of fibrosis and inflammation by VDR agonists. This demonstrates that p62 is a negative regulator of liver inflammation and fibrosis through its ability to promote VDR signaling in HSCs, whose activation supports HCC. Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues. Although MSU crystals were first identified as the aetiological agent of gout in the eighteenth century and more recently as a ‘danger signal’ released from dying cells, little is known about the molecular mechanisms underlying MSU- or CPPD-induced inflammation. Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1β and IL-18. Macrophages from mice deficient in various components of the inflammasome such as caspase-1, ASC and NALP3 are defective in crystal-induced IL-1β activation. Moreover, an impaired neutrophil influx is found in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or mice deficient in the IL-1β receptor (IL-1R). These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases. The functional heart is comprised of distinct mesoderm-derived lineages including cardiomyocytes, endothelial cells and vascular smooth muscle cells. Studies in the mouse embryo and the mouse embryonic stem cell differentiation model have provided evidence indicating that these three lineages develop from a common Flk-1+ (kinase insert domain protein receptor, also known as Kdr) cardiovascular progenitor that represents one of the earliest stages in mesoderm specification to the cardiovascular lineages. To determine whether a comparable progenitor is present during human cardiogenesis, we analysed the development of the cardiovascular lineages in human embryonic stem cell differentiation cultures. Here we show that after induction with combinations of activin A, bone morphogenetic protein 4 (BMP4), basic fibroblast growth factor (bFGF, also known as FGF2), vascular endothelial growth factor (VEGF, also known as VEGFA) and dickkopf homolog 1 (DKK1) in serum-free media, human embryonic-stem-cell-derived embryoid bodies generate a KDRlow/C-KIT(CD117)neg population that displays cardiac, endothelial and vascular smooth muscle potential in vitro and, after transplantation, in vivo. When plated in monolayer cultures, these KDRlow/C-KITneg cells differentiate to generate populations consisting of greater than 50% contracting cardiomyocytes. Populations derived from the KDRlow/C-KITneg fraction give rise to colonies that contain all three lineages when plated in methylcellulose cultures. Results from limiting dilution studies and cell-mixing experiments support the interpretation that these colonies are clones, indicating that they develop from a cardiovascular colony-forming cell. Together, these findings identify a human cardiovascular progenitor that defines one of the earliest stages of human cardiac development.
0
{ "query_id": "60", "original_query_id": "60", "context_doc_ids": [ "2692522", "4427392", "2565138", "23865182", "3701541", "19313533" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 2, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.292541", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "19313533", "23865182", "3701541", "4427392", "2692522", "2565138" ], "comprehensive_gold_set_for_query": [ "13901073", "13899137" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
60
aug_986
In S. cerevisiae, the absence of RNA surveillance pathways causes sensitivity to high iron conditions. BACKGROUND Although cigarette smoking, excessive alcohol drinking, obesity, and several other well-studied unhealthy lifestyle-related factors each have been linked to the risk of multiple chronic diseases and premature death, little is known about the combined impact on mortality outcomes, in particular among Chinese and other non-Western populations. The objective of this study was to quantify the overall impact of lifestyle-related factors beyond that of active cigarette smoking and alcohol consumption on all-cause and cause-specific mortality in Chinese women. METHODS AND FINDINGS We used data from the Shanghai Women's Health Study, an ongoing population-based prospective cohort study in China. Participants included 71,243 women aged 40 to 70 years enrolled during 1996-2000 who never smoked or drank alcohol regularly. A healthy lifestyle score was created on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes (normal weight, lower waist-hip ratio, daily exercise, never exposed to spouse's smoking, higher daily fruit and vegetable intake). The score ranged from zero (least healthy) to five (most healthy) points. During an average follow-up of 9 years, 2,860 deaths occurred, including 775 from cardiovascular disease (CVD) and 1,351 from cancer. Adjusted hazard ratios for mortality decreased progressively with an increasing number of healthy lifestyle factors. Compared to women with a score of zero, hazard ratios (95% confidence intervals) for women with four to five factors were 0.57 (0.44-0.74) for total mortality, 0.29 (0.16-0.54) for CVD mortality, and 0.76 (0.54-1.06) for cancer mortality. The inverse association between the healthy lifestyle score and mortality was seen consistently regardless of chronic disease status at baseline. The population attributable risks for not having 4-5 healthy lifestyle factors were 33% for total deaths, 59% for CVD deaths, and 19% for cancer deaths. CONCLUSIONS In this first study, to our knowledge, to quantify the combined impact of lifestyle-related factors on mortality outcomes in Chinese women, a healthier lifestyle pattern-including being of normal weight, lower central adiposity, participation in physical activity, nonexposure to spousal smoking, and higher fruit and vegetable intake-was associated with reductions in total and cause-specific mortality among lifetime nonsmoking and nondrinking women, supporting the importance of overall lifestyle modification in disease prevention. Please see later in the article for the Editors' Summary. The pharmacological inhibition of general transcriptional regulators has the potential to block growth through targeting multiple tumorigenic signalling pathways simultaneously. Here, using an innovative cell-based screen, we identify a structurally unique small molecule (named JIB-04) that specifically inhibits the activity of the Jumonji family of histone demethylases in vitro, in cancer cells, and in tumours in vivo. Unlike known inhibitors, JIB-04 is not a competitive inhibitor of α-ketoglutarate. In cancer, but not in patient-matched normal cells, JIB-04 alters a subset of transcriptional pathways and blocks viability. In mice, JIB-04 reduces tumour burden and prolongs survival. Importantly, we find that patients with breast tumours that overexpress Jumonji demethylases have significantly lower survival. Thus, JIB-04, a novel inhibitor of Jumonji demethylases in vitro and in vivo, constitutes a unique potential therapeutic and research tool against cancer, and validates the use of unbiased cellular screens to discover chemical modulators with disease relevance. In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1-3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1-3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1-3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1-3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1-3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles. Calorie restriction slows aging and increases life span in many organisms. In yeast, a mechanistic explanation has been proposed whereby calorie restriction slows aging by activating Sir2. Here we report the identification of a Sir2-independent pathway responsible for a majority of the longevity benefit associated with calorie restriction. Deletion of FOB1 and overexpression of SIR2 have been previously found to increase life span by reducing the levels of toxic rDNA circles in aged mother cells. We find that combining calorie restriction with either of these genetic interventions dramatically enhances longevity, resulting in the longest-lived yeast strain reported thus far. Further, calorie restriction results in a greater life span extension in cells lacking both Sir2 and Fob1 than in cells where Sir2 is present. These findings indicate that Sir2 and calorie restriction act in parallel pathways to promote longevity in yeast and, perhaps, higher eukaryotes. Immune clearance and resource limitation (via red blood cell depletion) shape the peaks and troughs of malaria parasitemia, which in turn affect disease severity and transmission. Quantitatively partitioning the relative roles of these effects through time is challenging. Using data from rodent malaria, we estimated the effective propagation number, which reflects the relative importance of contrasting within-host control mechanisms through time and is sensitive to the inoculating parasite dose. Our analysis showed that the capacity of innate responses to restrict initial parasite growth saturates with parasite dose and that experimentally enhanced innate immunity can affect parasite density indirectly via resource depletion. Such a statistical approach offers a tool to improve targeting of drugs or vaccines for human therapy by revealing the dynamics and interactions of within-host regulatory mechanisms. The wobble modification in tRNAs, 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U), is required for the proper decoding of NNR codons in eukaryotes. The 2-thio group confers conformational rigidity of mcm(5)s(2)U by largely fixing the C3'-endo ribose puckering, ensuring stable and accurate codon-anticodon pairing. We have identified five genes in Saccharomyces cerevisiae, YIL008w (URM1), YHR111w (UBA4), YOR251c (TUM1), YNL119w (NCS2) and YGL211w (NCS6), that are required for 2-thiolation of mcm(5)s(2)U. An in vitro sulfur transfer experiment revealed that Tum1p stimulated the cysteine desulfurase of Nfs1p, and accepted persulfide sulfurs from Nfs1p. URM1 is a ubiquitin-related modifier, and UBA4 is an E1-like enzyme involved in protein urmylation. The carboxy-terminus of Urm1p was activated as an acyl-adenylate (-COAMP), then thiocarboxylated (-COSH) by Uba4p. The activated thiocarboxylate can be utilized in the subsequent reactions for 2-thiouridine formation, mediated by Ncs2p/Ncs6p. We could successfully reconstitute the 2-thiouridine formation in vitro using recombinant proteins. This study revealed that 2-thiouridine formation shares a pathway and chemical reactions with protein urmylation. The sulfur-flow of eukaryotic 2-thiouridine formation is distinct mechanism from the bacterial sulfur-relay system which is based on the persulfide chemistry.
In S. cerevisiae, the absence of RNA surveillance pathways causes sensitivity to high iron conditions. BACKGROUND Although cigarette smoking, excessive alcohol drinking, obesity, and several other well-studied unhealthy lifestyle-related factors each have been linked to the risk of multiple chronic diseases and premature death, little is known about the combined impact on mortality outcomes, in particular among Chinese and other non-Western populations. The objective of this study was to quantify the overall impact of lifestyle-related factors beyond that of active cigarette smoking and alcohol consumption on all-cause and cause-specific mortality in Chinese women. METHODS AND FINDINGS We used data from the Shanghai Women's Health Study, an ongoing population-based prospective cohort study in China. Participants included 71,243 women aged 40 to 70 years enrolled during 1996-2000 who never smoked or drank alcohol regularly. A healthy lifestyle score was created on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes (normal weight, lower waist-hip ratio, daily exercise, never exposed to spouse's smoking, higher daily fruit and vegetable intake). The score ranged from zero (least healthy) to five (most healthy) points. During an average follow-up of 9 years, 2,860 deaths occurred, including 775 from cardiovascular disease (CVD) and 1,351 from cancer. Adjusted hazard ratios for mortality decreased progressively with an increasing number of healthy lifestyle factors. Compared to women with a score of zero, hazard ratios (95% confidence intervals) for women with four to five factors were 0.57 (0.44-0.74) for total mortality, 0.29 (0.16-0.54) for CVD mortality, and 0.76 (0.54-1.06) for cancer mortality. The inverse association between the healthy lifestyle score and mortality was seen consistently regardless of chronic disease status at baseline. The population attributable risks for not having 4-5 healthy lifestyle factors were 33% for total deaths, 59% for CVD deaths, and 19% for cancer deaths. CONCLUSIONS In this first study, to our knowledge, to quantify the combined impact of lifestyle-related factors on mortality outcomes in Chinese women, a healthier lifestyle pattern-including being of normal weight, lower central adiposity, participation in physical activity, nonexposure to spousal smoking, and higher fruit and vegetable intake-was associated with reductions in total and cause-specific mortality among lifetime nonsmoking and nondrinking women, supporting the importance of overall lifestyle modification in disease prevention. Please see later in the article for the Editors' Summary. The pharmacological inhibition of general transcriptional regulators has the potential to block growth through targeting multiple tumorigenic signalling pathways simultaneously. Here, using an innovative cell-based screen, we identify a structurally unique small molecule (named JIB-04) that specifically inhibits the activity of the Jumonji family of histone demethylases in vitro, in cancer cells, and in tumours in vivo. Unlike known inhibitors, JIB-04 is not a competitive inhibitor of α-ketoglutarate. In cancer, but not in patient-matched normal cells, JIB-04 alters a subset of transcriptional pathways and blocks viability. In mice, JIB-04 reduces tumour burden and prolongs survival. Importantly, we find that patients with breast tumours that overexpress Jumonji demethylases have significantly lower survival. Thus, JIB-04, a novel inhibitor of Jumonji demethylases in vitro and in vivo, constitutes a unique potential therapeutic and research tool against cancer, and validates the use of unbiased cellular screens to discover chemical modulators with disease relevance. In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1-3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1-3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1-3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1-3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1-3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles. Calorie restriction slows aging and increases life span in many organisms. In yeast, a mechanistic explanation has been proposed whereby calorie restriction slows aging by activating Sir2. Here we report the identification of a Sir2-independent pathway responsible for a majority of the longevity benefit associated with calorie restriction. Deletion of FOB1 and overexpression of SIR2 have been previously found to increase life span by reducing the levels of toxic rDNA circles in aged mother cells. We find that combining calorie restriction with either of these genetic interventions dramatically enhances longevity, resulting in the longest-lived yeast strain reported thus far. Further, calorie restriction results in a greater life span extension in cells lacking both Sir2 and Fob1 than in cells where Sir2 is present. These findings indicate that Sir2 and calorie restriction act in parallel pathways to promote longevity in yeast and, perhaps, higher eukaryotes. Immune clearance and resource limitation (via red blood cell depletion) shape the peaks and troughs of malaria parasitemia, which in turn affect disease severity and transmission. Quantitatively partitioning the relative roles of these effects through time is challenging. Using data from rodent malaria, we estimated the effective propagation number, which reflects the relative importance of contrasting within-host control mechanisms through time and is sensitive to the inoculating parasite dose. Our analysis showed that the capacity of innate responses to restrict initial parasite growth saturates with parasite dose and that experimentally enhanced innate immunity can affect parasite density indirectly via resource depletion. Such a statistical approach offers a tool to improve targeting of drugs or vaccines for human therapy by revealing the dynamics and interactions of within-host regulatory mechanisms. The wobble modification in tRNAs, 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U), is required for the proper decoding of NNR codons in eukaryotes. The 2-thio group confers conformational rigidity of mcm(5)s(2)U by largely fixing the C3'-endo ribose puckering, ensuring stable and accurate codon-anticodon pairing. We have identified five genes in Saccharomyces cerevisiae, YIL008w (URM1), YHR111w (UBA4), YOR251c (TUM1), YNL119w (NCS2) and YGL211w (NCS6), that are required for 2-thiolation of mcm(5)s(2)U. An in vitro sulfur transfer experiment revealed that Tum1p stimulated the cysteine desulfurase of Nfs1p, and accepted persulfide sulfurs from Nfs1p. URM1 is a ubiquitin-related modifier, and UBA4 is an E1-like enzyme involved in protein urmylation. The carboxy-terminus of Urm1p was activated as an acyl-adenylate (-COAMP), then thiocarboxylated (-COSH) by Uba4p. The activated thiocarboxylate can be utilized in the subsequent reactions for 2-thiouridine formation, mediated by Ncs2p/Ncs6p. We could successfully reconstitute the 2-thiouridine formation in vitro using recombinant proteins. This study revealed that 2-thiouridine formation shares a pathway and chemical reactions with protein urmylation. The sulfur-flow of eukaryotic 2-thiouridine formation is distinct mechanism from the bacterial sulfur-relay system which is based on the persulfide chemistry.
0
{ "query_id": "565", "original_query_id": "565", "context_doc_ids": [ "13400643", "2890952", "1456068", "5289038", "7185591", "4394817" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.292613", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "5289038", "7185591", "1456068", "2890952", "4394817", "13400643" ], "comprehensive_gold_set_for_query": [ "16120395" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
565
aug_987
1-1% of colorectal cancer patients are diagnosed with regional or distant metastases. Apart from HIV two exogenous retroviruses (human T cell leukaemia viruses type I (HTLV-I) and type II (HTLV-II)) infect humans. HTLV-I infection is endemic in Japan, the Caribbean, Africa, and Melanesia and is found among immigrants from these regions in Europe. HTLV-I infection is associated with a 1-5% lifetime risk of adult T cell leukaemia/lymphoma, 1 a 0.25% lifetime risk of HTLV-I associated myelopathy, 2 and other inflammatory conditions (uveitis, alveolitis, and arthritis).1 HTLV-II infection is endemic in some native American and African peoples and among injecting drug users and has been associated with neurological disease.1 Between 1986 and 1992, 100 cases of HTLV-I associated myelopathy and 44 cases of adult T cell leukaemia/lymphoma were diagnosed in the United Kingdom.3 Adult T cell leukaemia/lymphoma was first described in 1977 and patients with it have a mean life expectancy of only six months, so most of the 44 cases were probably incident cases. … Myeloid-derived suppressor cells (MDSCs) play critical roles in primary and metastatic cancer progression. MDSC regulation is widely variable even among patients harbouring the same type of malignancy, and the mechanisms governing such heterogeneity are largely unknown. Here, integrating human tumour genomics and syngeneic mammary tumour models, we demonstrate that mTOR signalling in cancer cells dictates a mammary tumour's ability to stimulate MDSC accumulation through regulating G-CSF. Inhibiting this pathway or its activators (for example, FGFR) impairs tumour progression, which is partially rescued by restoring MDSCs or G-CSF. Tumour-initiating cells (TICs) exhibit elevated G-CSF. MDSCs reciprocally increase TIC frequency through activating Notch in tumour cells, forming a feedforward loop. Analyses of primary breast cancers and patient-derived xenografts corroborate these mechanisms in patients. These findings establish a non-canonical oncogenic role of mTOR signalling in recruiting pro-tumorigenic MDSCs and show how defined cancer subsets may evolve to promote and depend on a distinct immune microenvironment. Relapsed childhood acute lymphoblastic leukemia (ALL) carries a poor prognosis, despite intensive retreatment, owing to intrinsic drug resistance. The biological pathways that mediate resistance are unknown. Here, we report the transcriptome profiles of matched diagnosis and relapse bone marrow specimens from ten individuals with pediatric B-lymphoblastic leukemia using RNA sequencing. Transcriptome sequencing identified 20 newly acquired, novel nonsynonymous mutations not present at initial diagnosis, with 2 individuals harboring relapse-specific mutations in the same gene, NT5C2, encoding a 5'-nucleotidase. Full-exon sequencing of NT5C2 was completed in 61 further relapse specimens, identifying additional mutations in 5 cases. Enzymatic analysis of mutant proteins showed that base substitutions conferred increased enzymatic activity and resistance to treatment with nucleoside analog therapies. Clinically, all individuals who harbored NT5C2 mutations relapsed early, within 36 months of initial diagnosis (P = 0.03). These results suggest that mutations in NT5C2 are associated with the outgrowth of drug-resistant clones in ALL. Cardiovascular disease is a leading cause of death worldwide. The limited capability of heart tissue to regenerate has prompted methodological developments for creating de novo cardiomyocytes, both in vitro and in vivo. Beyond uses in cell replacement therapy, patient-specific cardiomyocytes may find applications in drug testing, drug discovery, and disease modeling. Recently, approaches for generating cardiomyocytes have expanded to encompass three major sources of starting cells: human pluripotent stem cells (hPSCs), adult heart-derived cardiac progenitor cells (CPCs), and reprogrammed fibroblasts. We discuss state-of-the-art methods for generating de novo cardiomyocytes from hPSCs and reprogrammed fibroblasts, highlighting potential applications and future challenges. Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid and protein phosphatase, PTEN, has a novel role in the nucleus by functioning as an indispensible regulator with SRF to maintain the differentiated SM phenotype. PTEN interacts with the N-terminal domain of SRF and PTEN-SRF interaction promotes SRF binding to essential promoter elements in SM-specific genes. Factors inducing phenotypic switching promote loss of nuclear PTEN through nucleo-cytoplasmic translocation resulting in reduced myogenically active SRF, but enhanced SRF activity on target genes involved in proliferation. Overall decreased expression of PTEN was observed in intimal SMCs of human atherosclerotic lesions underlying the potential clinical importance of these findings. OBJECTIVES To determine the extent to which type of hospital admission (emergency compared with elective) and surgical procedure varied by socioeconomic circumstances, age, sex, and year of admission for colorectal, breast, and lung cancer. DESIGN Repeated cross sectional study with data from individual patients, 1 April 1999 to 31 March 2006. SETTING Hospital episode statistics (HES) dataset. PARTICIPANTS 564 821 patients aged 50 and over admitted with a diagnosis of colorectal, breast, or lung cancer. MAIN OUTCOME MEASURES Proportion of patients admitted as emergencies, and the proportion receiving the recommended surgical treatment. RESULTS Patients from deprived areas, older people, and women were more likely to be admitted as emergencies. For example, the adjusted odds ratio for patients with breast cancer in the least compared with most deprived fifth of deprivation was 0.63 (95% confidence interval 0.60 to 0.66) and the adjusted odds ratio for patients with lung cancer aged 80-89 compared with those aged 50-59 was 3.13 (2.93 to 3.34). There were some improvements in disparities between age groups but not for patients living in deprived areas over time. Patients from deprived areas were less likely to receive preferred procedures for rectal, breast, and lung cancer. These findings did not improve with time. For example, 67.4% (3529/5237) of patients in the most deprived fifth of deprivation had anterior resection for rectal cancer compared with 75.5% (4497/5959) of patients in the least deprived fifth (1.34, 1.22 to 1.47). Over half (54.0%, 11 256/20 849) of patients in the most deprived fifth of deprivation had breast conserving surgery compared with 63.7% (18 445/28 960) of patients in the least deprived fifth (1.21, 1.16 to 1.26). Men were less likely than women to undergo anterior resection and lung cancer resection and older people were less likely to receive breast conserving surgery and lung cancer resection. For example, the adjusted odds ratio for lung cancer patients aged 80-89 compared with those aged 50-59 was 0.52 (0.46 to 0.59). Conclusions Despite the implementation of the NHS Cancer Plan, social factors still strongly influence access to and the provision of care.
1-1% of colorectal cancer patients are diagnosed with regional or distant metastases. Apart from HIV two exogenous retroviruses (human T cell leukaemia viruses type I (HTLV-I) and type II (HTLV-II)) infect humans. HTLV-I infection is endemic in Japan, the Caribbean, Africa, and Melanesia and is found among immigrants from these regions in Europe. HTLV-I infection is associated with a 1-5% lifetime risk of adult T cell leukaemia/lymphoma, 1 a 0.25% lifetime risk of HTLV-I associated myelopathy, 2 and other inflammatory conditions (uveitis, alveolitis, and arthritis).1 HTLV-II infection is endemic in some native American and African peoples and among injecting drug users and has been associated with neurological disease.1 Between 1986 and 1992, 100 cases of HTLV-I associated myelopathy and 44 cases of adult T cell leukaemia/lymphoma were diagnosed in the United Kingdom.3 Adult T cell leukaemia/lymphoma was first described in 1977 and patients with it have a mean life expectancy of only six months, so most of the 44 cases were probably incident cases. … Myeloid-derived suppressor cells (MDSCs) play critical roles in primary and metastatic cancer progression. MDSC regulation is widely variable even among patients harbouring the same type of malignancy, and the mechanisms governing such heterogeneity are largely unknown. Here, integrating human tumour genomics and syngeneic mammary tumour models, we demonstrate that mTOR signalling in cancer cells dictates a mammary tumour's ability to stimulate MDSC accumulation through regulating G-CSF. Inhibiting this pathway or its activators (for example, FGFR) impairs tumour progression, which is partially rescued by restoring MDSCs or G-CSF. Tumour-initiating cells (TICs) exhibit elevated G-CSF. MDSCs reciprocally increase TIC frequency through activating Notch in tumour cells, forming a feedforward loop. Analyses of primary breast cancers and patient-derived xenografts corroborate these mechanisms in patients. These findings establish a non-canonical oncogenic role of mTOR signalling in recruiting pro-tumorigenic MDSCs and show how defined cancer subsets may evolve to promote and depend on a distinct immune microenvironment. Relapsed childhood acute lymphoblastic leukemia (ALL) carries a poor prognosis, despite intensive retreatment, owing to intrinsic drug resistance. The biological pathways that mediate resistance are unknown. Here, we report the transcriptome profiles of matched diagnosis and relapse bone marrow specimens from ten individuals with pediatric B-lymphoblastic leukemia using RNA sequencing. Transcriptome sequencing identified 20 newly acquired, novel nonsynonymous mutations not present at initial diagnosis, with 2 individuals harboring relapse-specific mutations in the same gene, NT5C2, encoding a 5'-nucleotidase. Full-exon sequencing of NT5C2 was completed in 61 further relapse specimens, identifying additional mutations in 5 cases. Enzymatic analysis of mutant proteins showed that base substitutions conferred increased enzymatic activity and resistance to treatment with nucleoside analog therapies. Clinically, all individuals who harbored NT5C2 mutations relapsed early, within 36 months of initial diagnosis (P = 0.03). These results suggest that mutations in NT5C2 are associated with the outgrowth of drug-resistant clones in ALL. Cardiovascular disease is a leading cause of death worldwide. The limited capability of heart tissue to regenerate has prompted methodological developments for creating de novo cardiomyocytes, both in vitro and in vivo. Beyond uses in cell replacement therapy, patient-specific cardiomyocytes may find applications in drug testing, drug discovery, and disease modeling. Recently, approaches for generating cardiomyocytes have expanded to encompass three major sources of starting cells: human pluripotent stem cells (hPSCs), adult heart-derived cardiac progenitor cells (CPCs), and reprogrammed fibroblasts. We discuss state-of-the-art methods for generating de novo cardiomyocytes from hPSCs and reprogrammed fibroblasts, highlighting potential applications and future challenges. Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid and protein phosphatase, PTEN, has a novel role in the nucleus by functioning as an indispensible regulator with SRF to maintain the differentiated SM phenotype. PTEN interacts with the N-terminal domain of SRF and PTEN-SRF interaction promotes SRF binding to essential promoter elements in SM-specific genes. Factors inducing phenotypic switching promote loss of nuclear PTEN through nucleo-cytoplasmic translocation resulting in reduced myogenically active SRF, but enhanced SRF activity on target genes involved in proliferation. Overall decreased expression of PTEN was observed in intimal SMCs of human atherosclerotic lesions underlying the potential clinical importance of these findings. OBJECTIVES To determine the extent to which type of hospital admission (emergency compared with elective) and surgical procedure varied by socioeconomic circumstances, age, sex, and year of admission for colorectal, breast, and lung cancer. DESIGN Repeated cross sectional study with data from individual patients, 1 April 1999 to 31 March 2006. SETTING Hospital episode statistics (HES) dataset. PARTICIPANTS 564 821 patients aged 50 and over admitted with a diagnosis of colorectal, breast, or lung cancer. MAIN OUTCOME MEASURES Proportion of patients admitted as emergencies, and the proportion receiving the recommended surgical treatment. RESULTS Patients from deprived areas, older people, and women were more likely to be admitted as emergencies. For example, the adjusted odds ratio for patients with breast cancer in the least compared with most deprived fifth of deprivation was 0.63 (95% confidence interval 0.60 to 0.66) and the adjusted odds ratio for patients with lung cancer aged 80-89 compared with those aged 50-59 was 3.13 (2.93 to 3.34). There were some improvements in disparities between age groups but not for patients living in deprived areas over time. Patients from deprived areas were less likely to receive preferred procedures for rectal, breast, and lung cancer. These findings did not improve with time. For example, 67.4% (3529/5237) of patients in the most deprived fifth of deprivation had anterior resection for rectal cancer compared with 75.5% (4497/5959) of patients in the least deprived fifth (1.34, 1.22 to 1.47). Over half (54.0%, 11 256/20 849) of patients in the most deprived fifth of deprivation had breast conserving surgery compared with 63.7% (18 445/28 960) of patients in the least deprived fifth (1.21, 1.16 to 1.26). Men were less likely than women to undergo anterior resection and lung cancer resection and older people were less likely to receive breast conserving surgery and lung cancer resection. For example, the adjusted odds ratio for lung cancer patients aged 80-89 compared with those aged 50-59 was 0.52 (0.46 to 0.59). Conclusions Despite the implementation of the NHS Cancer Plan, social factors still strongly influence access to and the provision of care.
0
{ "query_id": "4", "original_query_id": "4", "context_doc_ids": [ "21387297", "2014909", "16390264", "34071621", "641786", "24512064" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.292689", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "21387297", "2014909", "34071621", "641786", "16390264", "24512064" ], "comprehensive_gold_set_for_query": [ "22942787" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
4
aug_988
Overexpressing Cnp1 N-tail variants exacerbates the temperature-sensitive growth defect of scm3-139. Experience gained from the Global Malaria Eradication Program (1955-72) identified a set of shared technical and operational factors that enabled some countries to successfully eliminate malaria. Spatial data for these factors were assembled for all malaria-endemic countries and combined to provide an objective, relative ranking of countries by technical, operational, and combined elimination feasibility. The analysis was done separately for Plasmodium falciparum and Plasmodium vivax, and the limitations of the approach were discussed. The relative rankings suggested that malaria elimination would be most feasible in countries in the Americas and Asia, and least feasible in countries in central and west Africa. The results differed when feasibility was measured by technical or operational factors, highlighting the different types of challenge faced by each country. The results are not intended to be prescriptive, predictive, or to provide absolute assessments of feasibility, but they do show that spatial information is available to facilitate evidence-based assessments of the relative feasibility of malaria elimination by country that can be rapidly updated. To characterize the properties of adult neural stem cells (NSCs), we generated and analyzed Sox2-GFP transgenic mice. Sox2-GFP cells in the subgranular zone (SGZ) express markers specific for progenitors, but they represent two morphologically distinct populations that differ in proliferation levels. Lentivirus- and retrovirus-mediated fate-tracing studies showed that Sox2+ cells in the SGZ have potential to give rise to neurons and astrocytes, revealing their multipotency at the population as well as at a single-cell level. A subpopulation of Sox2+ cells gives rise to cells that retain Sox2, highlighting Sox2+ cells as a primary source for adult NSCs. In response to mitotic signals, increased proliferation of Sox2+ cells is coupled with the generation of Sox2+ NSCs as well as neuronal precursors. An asymmetric contribution of Sox2+ NSCs may play an important role in maintaining the constant size of the NSC pool and producing newly born neurons during adult neurogenesis. Reproductive cessation is perhaps the earliest aging phenotype that humans experience. Similarly, reproduction of Caenorhabditis elegans ceases in mid-adulthood. Although somatic aging has been studied in both worms and humans, mechanisms regulating reproductive aging are not yet understood. Here, we show that TGF-β Sma/Mab and Insulin/IGF-1 signaling regulate C. elegans reproductive aging by modulating multiple aspects of the reproductive process, including embryo integrity, oocyte fertilizability, chromosome segregation fidelity, DNA damage resistance, and oocyte and germline morphology. TGF-β activity regulates reproductive span and germline/oocyte quality noncell-autonomously and is temporally and transcriptionally separable from its regulation of growth. Chromosome segregation, cell cycle, and DNA damage response genes are upregulated in TGF-β mutant oocytes, decline in aged mammalian oocytes, and are critical for oocyte quality maintenance. Our data suggest that C. elegans and humans share many aspects of reproductive aging, including the correlation between reproductive aging and declining oocyte quality and mechanisms determining oocyte quality. DNA polymerases mu (pol mu), lambda (pol lambda), and terminal deoxynucleotidyltransferase (TdT) are enzymes of the pol X family that share homology in sequence and functional domain organization. We showed previously that pol mu participates in light chain but surprisingly not heavy chain gene rearrangement. We show here that immunoglobulin heavy chain junctions from pol lambda-deficient animals have shorter length with normal N-additions, thus indicating that pol lambda is recruited during heavy chain rearrangement at a step that precedes the action of TdT. In contrast to previous in vitro studies, analysis of animals with combined inactivation of these enzymes revealed no overlapping or compensatory activities for V(D)J recombination between pol mu, pol lambda, and TdT. This complex usage of polymerases with distinct catalytic specificities may correspond to the specific function that the third hypervariable region assumes for each immunoglobulin chain, with pol lambda maintaining a large heavy chain junctional heterogeneity and pol mu ensuring a restricted light chain junctional variability. We compared conscious and nonconscious processing of briefly flashed words using a visual masking procedure while recording intracranial electroencephalogram (iEEG) in ten patients. Nonconscious processing of masked words was observed in multiple cortical areas, mostly within an early time window (<300 ms), accompanied by induced gamma-band activity, but without coherent long-distance neural activity, suggesting a quickly dissipating feedforward wave. In contrast, conscious processing of unmasked words was characterized by the convergence of four distinct neurophysiological markers: sustained voltage changes, particularly in prefrontal cortex, large increases in spectral power in the gamma band, increases in long-distance phase synchrony in the beta range, and increases in long-range Granger causality. We argue that all of those measures provide distinct windows into the same distributed state of conscious processing. These results have a direct impact on current theoretical discussions concerning the neural correlates of conscious access. T cell activation is predicated on the interaction between the T cell receptor and peptide-major histocompatibility (pMHC) ligands. The factors that determine the stimulatory potency of a pMHC molecule remain unclear. We describe results showing that a peptide exhibiting many hallmarks of a weak agonist stimulates T cells to proliferate more than the wild-type agonist ligand. An in silico approach suggested that the inability to form the central supramolecular activation cluster (cSMAC) could underlie the increased proliferation. This conclusion was supported by experiments that showed that enhancing cSMAC formation reduced stimulatory capacity of the weak peptide. Our studies highlight the fact that a complex interplay of factors determines the quality of a T cell antigen.
Overexpressing Cnp1 N-tail variants exacerbates the temperature-sensitive growth defect of scm3-139. Experience gained from the Global Malaria Eradication Program (1955-72) identified a set of shared technical and operational factors that enabled some countries to successfully eliminate malaria. Spatial data for these factors were assembled for all malaria-endemic countries and combined to provide an objective, relative ranking of countries by technical, operational, and combined elimination feasibility. The analysis was done separately for Plasmodium falciparum and Plasmodium vivax, and the limitations of the approach were discussed. The relative rankings suggested that malaria elimination would be most feasible in countries in the Americas and Asia, and least feasible in countries in central and west Africa. The results differed when feasibility was measured by technical or operational factors, highlighting the different types of challenge faced by each country. The results are not intended to be prescriptive, predictive, or to provide absolute assessments of feasibility, but they do show that spatial information is available to facilitate evidence-based assessments of the relative feasibility of malaria elimination by country that can be rapidly updated. To characterize the properties of adult neural stem cells (NSCs), we generated and analyzed Sox2-GFP transgenic mice. Sox2-GFP cells in the subgranular zone (SGZ) express markers specific for progenitors, but they represent two morphologically distinct populations that differ in proliferation levels. Lentivirus- and retrovirus-mediated fate-tracing studies showed that Sox2+ cells in the SGZ have potential to give rise to neurons and astrocytes, revealing their multipotency at the population as well as at a single-cell level. A subpopulation of Sox2+ cells gives rise to cells that retain Sox2, highlighting Sox2+ cells as a primary source for adult NSCs. In response to mitotic signals, increased proliferation of Sox2+ cells is coupled with the generation of Sox2+ NSCs as well as neuronal precursors. An asymmetric contribution of Sox2+ NSCs may play an important role in maintaining the constant size of the NSC pool and producing newly born neurons during adult neurogenesis. Reproductive cessation is perhaps the earliest aging phenotype that humans experience. Similarly, reproduction of Caenorhabditis elegans ceases in mid-adulthood. Although somatic aging has been studied in both worms and humans, mechanisms regulating reproductive aging are not yet understood. Here, we show that TGF-β Sma/Mab and Insulin/IGF-1 signaling regulate C. elegans reproductive aging by modulating multiple aspects of the reproductive process, including embryo integrity, oocyte fertilizability, chromosome segregation fidelity, DNA damage resistance, and oocyte and germline morphology. TGF-β activity regulates reproductive span and germline/oocyte quality noncell-autonomously and is temporally and transcriptionally separable from its regulation of growth. Chromosome segregation, cell cycle, and DNA damage response genes are upregulated in TGF-β mutant oocytes, decline in aged mammalian oocytes, and are critical for oocyte quality maintenance. Our data suggest that C. elegans and humans share many aspects of reproductive aging, including the correlation between reproductive aging and declining oocyte quality and mechanisms determining oocyte quality. DNA polymerases mu (pol mu), lambda (pol lambda), and terminal deoxynucleotidyltransferase (TdT) are enzymes of the pol X family that share homology in sequence and functional domain organization. We showed previously that pol mu participates in light chain but surprisingly not heavy chain gene rearrangement. We show here that immunoglobulin heavy chain junctions from pol lambda-deficient animals have shorter length with normal N-additions, thus indicating that pol lambda is recruited during heavy chain rearrangement at a step that precedes the action of TdT. In contrast to previous in vitro studies, analysis of animals with combined inactivation of these enzymes revealed no overlapping or compensatory activities for V(D)J recombination between pol mu, pol lambda, and TdT. This complex usage of polymerases with distinct catalytic specificities may correspond to the specific function that the third hypervariable region assumes for each immunoglobulin chain, with pol lambda maintaining a large heavy chain junctional heterogeneity and pol mu ensuring a restricted light chain junctional variability. We compared conscious and nonconscious processing of briefly flashed words using a visual masking procedure while recording intracranial electroencephalogram (iEEG) in ten patients. Nonconscious processing of masked words was observed in multiple cortical areas, mostly within an early time window (<300 ms), accompanied by induced gamma-band activity, but without coherent long-distance neural activity, suggesting a quickly dissipating feedforward wave. In contrast, conscious processing of unmasked words was characterized by the convergence of four distinct neurophysiological markers: sustained voltage changes, particularly in prefrontal cortex, large increases in spectral power in the gamma band, increases in long-distance phase synchrony in the beta range, and increases in long-range Granger causality. We argue that all of those measures provide distinct windows into the same distributed state of conscious processing. These results have a direct impact on current theoretical discussions concerning the neural correlates of conscious access. T cell activation is predicated on the interaction between the T cell receptor and peptide-major histocompatibility (pMHC) ligands. The factors that determine the stimulatory potency of a pMHC molecule remain unclear. We describe results showing that a peptide exhibiting many hallmarks of a weak agonist stimulates T cells to proliferate more than the wild-type agonist ligand. An in silico approach suggested that the inability to form the central supramolecular activation cluster (cSMAC) could underlie the increased proliferation. This conclusion was supported by experiments that showed that enhancing cSMAC formation reduced stimulatory capacity of the weak peptide. Our studies highlight the fact that a complex interplay of factors determines the quality of a T cell antigen.
0
{ "query_id": "896", "original_query_id": "896", "context_doc_ids": [ "1173667", "1710116", "32275758", "16999023", "18949516", "306006" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.292764", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "16999023", "1173667", "306006", "32275758", "18949516", "1710116" ], "comprehensive_gold_set_for_query": [ "14338915" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
896
aug_989
A T helper 2 cell (Th2) environment impedes disease development in patients with systemic lupus erythematosus (SLE). In systemic lupus erythematosus (SLE), self-reactive antibodies can target the kidney (lupus nephritis), leading to functional failure and possible mortality. We report that activation of basophils by autoreactive IgE causes their homing to lymph nodes, promoting T helper type 2 (T(H)2) cell differentiation and enhancing the production of self-reactive antibodies that cause lupus-like nephritis in mice lacking the Src family protein tyrosine kinase Lyn (Lyn(-/-) mice). Individuals with SLE also have elevated serum IgE, self-reactive IgEs and activated basophils that express CD62 ligand (CD62L) and the major histocompatibility complex (MHC) class II molecule human leukocyte antigen-DR (HLA-DR), parameters that are associated with increased disease activity and active lupus nephritis. Basophils were also present in the lymph nodes and spleen of subjects with SLE. Thus, in Lyn(-/-) mice, basophils and IgE autoantibodies amplify autoantibody production that leads to lupus nephritis, and in individuals with SLE IgE autoantibodies and activated basophils are factors associated with disease activity and nephritis.
A T helper 2 cell (Th2) environment impedes disease development in patients with systemic lupus erythematosus (SLE). In systemic lupus erythematosus (SLE), self-reactive antibodies can target the kidney (lupus nephritis), leading to functional failure and possible mortality. We report that activation of basophils by autoreactive IgE causes their homing to lymph nodes, promoting T helper type 2 (T(H)2) cell differentiation and enhancing the production of self-reactive antibodies that cause lupus-like nephritis in mice lacking the Src family protein tyrosine kinase Lyn (Lyn(-/-) mice). Individuals with SLE also have elevated serum IgE, self-reactive IgEs and activated basophils that express CD62 ligand (CD62L) and the major histocompatibility complex (MHC) class II molecule human leukocyte antigen-DR (HLA-DR), parameters that are associated with increased disease activity and active lupus nephritis. Basophils were also present in the lymph nodes and spleen of subjects with SLE. Thus, in Lyn(-/-) mice, basophils and IgE autoantibodies amplify autoantibody production that leads to lupus nephritis, and in individuals with SLE IgE autoantibodies and activated basophils are factors associated with disease activity and nephritis.
1
{ "query_id": "28", "original_query_id": "28", "context_doc_ids": [ "12670680" ], "gold_doc_ids_in_context": [ "12670680" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.292839", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "12670680" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "12670680" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
28
aug_990
Urbanization is an important risk factor related to the transmission of dengue fever. Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein. The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor-related orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR-ROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa. BACKGROUND Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. METHODS AND FINDINGS Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive and negative clusters were greater availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children. CONCLUSIONS Our data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection prompting local spraying could contain recent virus introductions and reduce the longitudinal risk of virus spread within rural areas. Our results should prompt future cluster studies to explore how host immune and behavioral aspects may impact DENV transmission and prevention strategies. Cluster methodology could serve as a useful research tool for investigation of other temporally and spatially clustered infectious diseases.
Urbanization is an important risk factor related to the transmission of dengue fever. Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes ∼98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein. The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor-related orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR-ROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa. BACKGROUND Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. METHODS AND FINDINGS Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8%) dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between positive and negative clusters were greater availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children. CONCLUSIONS Our data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection prompting local spraying could contain recent virus introductions and reduce the longitudinal risk of virus spread within rural areas. Our results should prompt future cluster studies to explore how host immune and behavioral aspects may impact DENV transmission and prevention strategies. Cluster methodology could serve as a useful research tool for investigation of other temporally and spatially clustered infectious diseases.
0.5
{ "query_id": "1353", "original_query_id": "1353", "context_doc_ids": [ "18816720", "4421578", "17671145" ], "gold_doc_ids_in_context": [ "18816720" ], "total_gold_docs_for_query": 1, "context_f1": 0.5, "context_size": 3, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.292855", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "18816720" ], "negative_samples_considered": [ "4421578", "17671145" ], "comprehensive_gold_set_for_query": [ "18816720" ], "target_max_context_size_config": 6, "actual_context_size": 3, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1353
aug_991
DRD1 proteins enable Pol V transcription in vivo. Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an "alternative inflammasome" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans. Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD. Breast cancer may originate in utero. We reviewed the available evidence on the association between birthweight and the risk of breast cancer. To date, 26 research papers addressing this issue have been published. The majority of studies identified a positive link between birthweight and premenopausal, but not postmenopausal, breast cancer. The relative risk estimate for breast cancer comparing women with high birthweight to women with low birthweight combining all studies including both pre- and postmenopausal breast cancer was 1.23 (95% confidence interval 1.13-1.34). The mechanisms underlying this association likely include elevated levels of growth factors that may increase the number of susceptible stem cells in the mammary gland or initiate tumors through DNA mutations. Loss of imprinting (LOI) of growth hormone genes relevant for intrauterine growth, such as insulin-like growth factor 2 (IGF2), leads to abnormally high levels of these hormones evidenced by high birthweight. LOI of IGF2 has also been found in mammary tumor tissue. The role of environmental factors that stimulate such epigenetic regulation of gene expression remains to be elucidated. Over the past two decades there have been significant achievements in the control of a handful of important human tropical infections [1]. These achievements include the substantive reductions in the prevalence and incidence of the so-called neglected diseases such as lymphatic filariasis, onchocerciasis, guinea worm, leprosy, and trachoma (Box 1) [2]. Each of these neglected diseases is a poverty-promoting and often stigmatizing condition occurring primarily in rural areas of low-income countries (Box 2) [3]. They are ancient afflictions, described in the Bible and other ancient texts, which have burdened humanity for millennia [3]. But now, as a result of aggressive regional vertical interventions, there is a possibility that some neglected tropical infections could be eventually controlled to the point of elimination in some areas of endemicity [2–8]. In the case of guinea worm infection, disease eradication might also soon be possible [9]. Box 2. Common Features of the Neglected Tropical Diseases Ancient afflictions that have burdened humanity for centuries Poverty-promoting conditions Associated with stigma Rural areas of low-income countries and fragile states No commercial markets for products that target these diseases Interventions, when applied, have a history of success The antibacterial peptide microcin J25 (MccJ25) inhibits transcription by bacterial RNA polymerase (RNAP). Biochemical results indicate that inhibition of transcription occurs at the level of NTP uptake or NTP binding by RNAP. Genetic results indicate that inhibition of transcription requires an extensive determinant, comprising more than 50 amino acid residues, within the RNAP secondary channel (also known as the "NTP-uptake channel" or "pore"). Biophysical results indicate that inhibition of transcription involves binding of MccJ25 within the RNAP secondary channel. Molecular modeling indicates that binding of MccJ25 within the RNAP secondary channel obstructs the RNAP secondary channel. We conclude that MccJ25 inhibits transcription by binding within and obstructing the RNAP secondary channel--acting essentially as a "cork in a bottle. " Obstruction of the RNAP secondary channel represents an attractive target for drug discovery. Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.
DRD1 proteins enable Pol V transcription in vivo. Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system. Indeed, in human monocytes, lipopolysaccharide triggered an "alternative inflammasome" that relied on NLRP3-ASC-caspase-1 signaling, yet was devoid of any classical inflammasome characteristics including pyroptosome formation, pyroptosis induction, and K(+) efflux dependency. Genetic dissection of the underlying signaling pathway in a monocyte transdifferentiation system revealed that alternative inflammasome activation was propagated by TLR4-TRIF-RIPK1-FADD-CASP8 signaling upstream of NLRP3. Importantly, involvement of this signaling cascade was limited to alternative inflammasome activation and did not extend to classical NLRP3 activation. Because alternative inflammasome activation embraces both sensitivity and promiscuity of TLR4, we propose a pivotal role for this signaling cascade in TLR4-driven, IL-1β-mediated immune responses and immunopathology in humans. Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven chronic inflammation in the colon. Combined RelA, c-Rel, and RelB deficiency in IECs caused Paneth cell apoptosis but not colitis, suggesting that NEMO prevents colon inflammation by NF-κB-independent functions. Inhibition of receptor-interacting protein kinase 1 (RIPK1) kinase activity or combined deficiency of Fas-associated via death domain protein (FADD) and RIPK3 prevented epithelial cell death, Paneth cell loss, and colitis development in mice with epithelial NEMO deficiency. Therefore, NEMO prevents intestinal inflammation by inhibiting RIPK1 kinase activity-mediated IEC death, suggesting that RIPK1 inhibitors could be effective in the treatment of colitis in patients with NEMO mutations and possibly in IBD. Breast cancer may originate in utero. We reviewed the available evidence on the association between birthweight and the risk of breast cancer. To date, 26 research papers addressing this issue have been published. The majority of studies identified a positive link between birthweight and premenopausal, but not postmenopausal, breast cancer. The relative risk estimate for breast cancer comparing women with high birthweight to women with low birthweight combining all studies including both pre- and postmenopausal breast cancer was 1.23 (95% confidence interval 1.13-1.34). The mechanisms underlying this association likely include elevated levels of growth factors that may increase the number of susceptible stem cells in the mammary gland or initiate tumors through DNA mutations. Loss of imprinting (LOI) of growth hormone genes relevant for intrauterine growth, such as insulin-like growth factor 2 (IGF2), leads to abnormally high levels of these hormones evidenced by high birthweight. LOI of IGF2 has also been found in mammary tumor tissue. The role of environmental factors that stimulate such epigenetic regulation of gene expression remains to be elucidated. Over the past two decades there have been significant achievements in the control of a handful of important human tropical infections [1]. These achievements include the substantive reductions in the prevalence and incidence of the so-called neglected diseases such as lymphatic filariasis, onchocerciasis, guinea worm, leprosy, and trachoma (Box 1) [2]. Each of these neglected diseases is a poverty-promoting and often stigmatizing condition occurring primarily in rural areas of low-income countries (Box 2) [3]. They are ancient afflictions, described in the Bible and other ancient texts, which have burdened humanity for millennia [3]. But now, as a result of aggressive regional vertical interventions, there is a possibility that some neglected tropical infections could be eventually controlled to the point of elimination in some areas of endemicity [2–8]. In the case of guinea worm infection, disease eradication might also soon be possible [9]. Box 2. Common Features of the Neglected Tropical Diseases Ancient afflictions that have burdened humanity for centuries Poverty-promoting conditions Associated with stigma Rural areas of low-income countries and fragile states No commercial markets for products that target these diseases Interventions, when applied, have a history of success The antibacterial peptide microcin J25 (MccJ25) inhibits transcription by bacterial RNA polymerase (RNAP). Biochemical results indicate that inhibition of transcription occurs at the level of NTP uptake or NTP binding by RNAP. Genetic results indicate that inhibition of transcription requires an extensive determinant, comprising more than 50 amino acid residues, within the RNAP secondary channel (also known as the "NTP-uptake channel" or "pore"). Biophysical results indicate that inhibition of transcription involves binding of MccJ25 within the RNAP secondary channel. Molecular modeling indicates that binding of MccJ25 within the RNAP secondary channel obstructs the RNAP secondary channel. We conclude that MccJ25 inhibits transcription by binding within and obstructing the RNAP secondary channel--acting essentially as a "cork in a bottle. " Obstruction of the RNAP secondary channel represents an attractive target for drug discovery. Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.
0
{ "query_id": "305", "original_query_id": "305", "context_doc_ids": [ "34469966", "18956141", "8002887", "27123743", "1215116", "4740447" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.292915", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "1215116", "18956141", "27123743", "34469966", "8002887", "4740447" ], "comprehensive_gold_set_for_query": [ "14797520" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
305
aug_992
Tumor development occurs in conjunction with upregulation of pro-inflammatory cytokines. Paraneoplastic thrombocytosis is associated with many solid tumors and often correlates with reduced survival. Recent studies suggest that a pathogenic feed back loop may be operative between platelets and tumor cells, with reciprocal interactions between tumor growth/metastasis and thrombocytosis/platelet activation. Specific molecular pathways have been identified in which tumors can stimulate platelet production and activation; activated platelets can, in turn, promote tumor growth and metastasis. Taken together, these findings provide exciting new potential targets for therapeutic intervention.
Tumor development occurs in conjunction with upregulation of pro-inflammatory cytokines. Paraneoplastic thrombocytosis is associated with many solid tumors and often correlates with reduced survival. Recent studies suggest that a pathogenic feed back loop may be operative between platelets and tumor cells, with reciprocal interactions between tumor growth/metastasis and thrombocytosis/platelet activation. Specific molecular pathways have been identified in which tumors can stimulate platelet production and activation; activated platelets can, in turn, promote tumor growth and metastasis. Taken together, these findings provide exciting new potential targets for therapeutic intervention.
1
{ "query_id": "1331", "original_query_id": "1331", "context_doc_ids": [ "14075252" ], "gold_doc_ids_in_context": [ "14075252" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.293010", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "14075252" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "14075252" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
1331
aug_993
Cell autonomous sex determination in somatic cells occurs in Galliformes. CONTEXT In patients with brain metastases, it is unclear whether adding up-front whole-brain radiation therapy (WBRT) to stereotactic radiosurgery (SRS) has beneficial effects on mortality or neurologic function compared with SRS alone. OBJECTIVE To determine if WBRT combined with SRS results in improvements in survival, brain tumor control, functional preservation rate, and frequency of neurologic death. DESIGN, SETTING, AND PATIENTS Randomized controlled trial of 132 patients with 1 to 4 brain metastases, each less than 3 cm in diameter, enrolled at 11 hospitals in Japan between October 1999 and December 2003. INTERVENTIONS Patients were randomly assigned to receive WBRT plus SRS (65 patients) or SRS alone (67 patients). MAIN OUTCOME MEASURES The primary end point was overall survival; secondary end points were brain tumor recurrence, salvage brain treatment, functional preservation, toxic effects of radiation, and cause of death. RESULTS The median survival time and the 1-year actuarial survival rate were 7.5 months and 38.5% (95% confidence interval, 26.7%-50.3%) in the WBRT + SRS group and 8.0 months and 28.4% (95% confidence interval, 17.6%-39.2%) for SRS alone (P = .42). The 12-month brain tumor recurrence rate was 46.8% in the WBRT + SRS group and 76.4% for SRS alone group (P<.001). Salvage brain treatment was less frequently required in the WBRT + SRS group (n = 10) than with SRS alone (n = 29) (P<.001). Death was attributed to neurologic causes in 22.8% of patients in the WBRT + SRS group and in 19.3% of those treated with SRS alone (P = .64). There were no significant differences in systemic and neurologic functional preservation and toxic effects of radiation. CONCLUSIONS Compared with SRS alone, the use of WBRT plus SRS did not improve survival for patients with 1 to 4 brain metastases, but intracranial relapse occurred considerably more frequently in those who did not receive WBRT. Consequently, salvage treatment is frequently required when up-front WBRT is not used. TRIAL REGISTRATION umin.ac.jp/ctr Identifier: C000000412. OBJECTIVES To investigate the association between antidepressant treatment and risk of several potential adverse outcomes in older people with depression and to examine risks by class of antidepressant, duration of use, and dose. DESIGN Cohort study of people aged 65 and over diagnosed as having depression. SETTING 570 general practices in the United Kingdom supplying data to the QResearch primary care database. PARTICIPANTS 60,746 patients diagnosed as having a new episode of depression between the ages of 65 and 100 years from 1 January 1996 to 31 December 2007 and followed up until 31 December 2008. MAIN OUTCOME MEASURES Hazard ratios associated with antidepressant use for all cause mortality, attempted suicide/self harm, myocardial infarction, stroke/transient ischaemic attack, falls, fractures, upper gastrointestinal bleeding, epilepsy/seizures, road traffic accidents, adverse drug reactions, and hyponatraemia, adjusted for a range of potential confounding variables. Hazard ratios were calculated for antidepressant class (tricyclic and related antidepressants, selective serotonin reuptake inhibitors, other antidepressants), dose, and duration of use and for commonly prescribed individual drugs. RESULTS 54,038 (89.0%) patients received at least one prescription for an antidepressant during follow-up. A total of 1,398,359 antidepressant prescriptions were issued: 764,659 (54.7%) for selective serotonin reuptake inhibitors, 442,192 (31.6%) for tricyclic antidepressants, 2203 (0.2%) for monoamine oxidase inhibitors, and 189,305 (13.5%) for the group of other antidepressants. The associations with the adverse outcomes differed significantly between the antidepressant classes for seven outcomes. Selective serotonin reuptake inhibitors were associated with the highest adjusted hazard ratios for falls (1.66, 95% confidence interval 1.58 to 1.73) and hyponatraemia (1.52, 1.33 to 1.75) compared with when antidepressants were not being used. The group of other antidepressants was associated with the highest adjusted hazard ratios for all cause mortality (1.66, 1.56 to 1.77), attempted suicide/self harm (5.16, 3.90 to 6.83), stroke/transient ischaemic attack (1.37, 1.22 to 1.55), fracture (1.64, 1.46 to 1.84), and epilepsy/seizures (2.24, 1.60 to 3.15), compared with when antidepressants were not being used. Tricyclic antidepressants did not have the highest hazard ratio for any of the outcomes. Significantly different associations also existed between the individual drugs for the same seven outcomes; trazodone (tricyclic antidepressant), mirtazapine, and venlafaxine (both in the group of other antidepressants) were associated with the highest rates for some of these outcomes. Absolute risks over 1 year for all cause mortality were 7.04% for patients while not taking antidepressants, 8.12% for those taking tricyclic antidepressants, 10.61% for selective serotonin reuptake inhibitors, and 11.43% for other antidepressants. CONCLUSIONS Selective serotonin reuptake inhibitors and drugs in the group of other antidepressants were associated with an increased risk of several adverse outcomes compared with tricyclic antidepressants. Among individual drugs, trazodone, mirtazapine, and venlafaxine were associated with the highest risks for some outcomes. As this is an observational study, it is susceptible to confounding by indication, channelling bias, and residual confounding, so differences in characteristics between patients prescribed different antidepressant drugs that could account for some of the associations between the drugs and the adverse outcomes may remain. Further research is needed to confirm these findings, but the risks and benefits of different antidepressants should be carefully evaluated when these drugs are prescribed to older people. Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case–control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10−5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10−4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10−9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification. Somatic cell nuclear transfer (SCNT) technology has recently been used to generate animals with a common genetic composition. In this study, we report the derivation of a pluripotent embryonic stem (ES) cell line (SCNT-hES-1) from a cloned human blastocyst. The SCNT-hES-1 cells displayed typical ES cell morphology and cell surface markers and were capable of differentiating into embryoid bodies in vitro and of forming teratomas in vivo containing cell derivatives from all three embryonic germ layers in severe combined immunodeficient mice. After continuous proliferation for more than 70 passages, SCNT-hES-1 cells maintained normal karyotypes and were genetically identical to the somatic nuclear donor cells. Although we cannot completely exclude the possibility that the cells had a parthenogenetic origin, imprinting analyses support a SCNT origin of the derived human ES cells. Plasmodium falciparum malaria, an infectious disease caused by a parasitic protozoan, claims the lives of nearly a million children each year in Africa alone and is a top public health concern. Evidence is accumulating that resistance to artemisinin derivatives, the frontline therapy for the asexual blood stage of the infection, is developing in southeast Asia. Renewed initiatives to eliminate malaria will benefit from an expanded repertoire of antimalarials, including new drugs that kill circulating P. falciparum gametocytes, thereby preventing transmission. Our current understanding of the biology of asexual blood-stage parasites and gametocytes and the ability to culture them in vitro lends optimism that high-throughput screenings of large chemical libraries will produce a new generation of antimalarial drugs. There is also a need for new therapies to reduce the high mortality of severe malaria. An understanding of the pathophysiology of severe disease may identify rational targets for drugs that improve survival. OBJECTIVE To determine whether individual fruits are differentially associated with risk of type 2 diabetes. DESIGN Prospective longitudinal cohort study. SETTING Health professionals in the United States. PARTICIPANTS 66,105 women from the Nurses' Health Study (1984-2008), 85,104 women from the Nurses' Health Study II (1991-2009), and 36,173 men from the Health Professionals Follow-up Study (1986-2008) who were free of major chronic diseases at baseline in these studies. MAIN OUTCOME MEASURE Incident cases of type 2 diabetes, identified through self report and confirmed by supplementary questionnaires. RESULTS During 3,464,641 person years of follow-up, 12,198 participants developed type 2 diabetes. After adjustment for personal, lifestyle, and dietary risk factors of diabetes, the pooled hazard ratio of type 2 diabetes for every three servings/week of total whole fruit consumption was 0.98 (95% confidence interval 0.97 [corrected] to 0.99). With mutual adjustment of individual fruits, the pooled hazard ratios of type 2 diabetes for every three servings/week were 0.74 (0.66 to 0.83) for blueberries, 0.88 (0.83 to 0.93) for grapes and raisins, 0.89 (0.79 to 1.01) for prunes, 0.93 (0.90 to 0.96) for apples and pears, 0.95 (0.91 to 0.98) for bananas, 0.95 (0.91 to 0.99) for grapefruit, 0.97 (0.92 to 1.02) for peaches, plums, and apricots, 0.99 (0.95 to 1.03) for oranges, 1.03 (0.96 to 1.10) for strawberries, and 1.10 (1.02 to 1.18) for cantaloupe. The pooled hazard ratio for the same increment in fruit juice consumption was 1.08 (1.05 to 1.11). The associations with risk of type 2 diabetes differed significantly among individual fruits (P<0.001 in all cohorts). CONCLUSION Our findings suggest the presence of heterogeneity in the associations between individual fruit consumption and risk of type 2 diabetes. Greater consumption of specific whole fruits, particularly blueberries, grapes, and apples, is significantly associated with a lower risk of type 2 diabetes, whereas greater consumption of fruit juice is associated with a higher risk.
Cell autonomous sex determination in somatic cells occurs in Galliformes. CONTEXT In patients with brain metastases, it is unclear whether adding up-front whole-brain radiation therapy (WBRT) to stereotactic radiosurgery (SRS) has beneficial effects on mortality or neurologic function compared with SRS alone. OBJECTIVE To determine if WBRT combined with SRS results in improvements in survival, brain tumor control, functional preservation rate, and frequency of neurologic death. DESIGN, SETTING, AND PATIENTS Randomized controlled trial of 132 patients with 1 to 4 brain metastases, each less than 3 cm in diameter, enrolled at 11 hospitals in Japan between October 1999 and December 2003. INTERVENTIONS Patients were randomly assigned to receive WBRT plus SRS (65 patients) or SRS alone (67 patients). MAIN OUTCOME MEASURES The primary end point was overall survival; secondary end points were brain tumor recurrence, salvage brain treatment, functional preservation, toxic effects of radiation, and cause of death. RESULTS The median survival time and the 1-year actuarial survival rate were 7.5 months and 38.5% (95% confidence interval, 26.7%-50.3%) in the WBRT + SRS group and 8.0 months and 28.4% (95% confidence interval, 17.6%-39.2%) for SRS alone (P = .42). The 12-month brain tumor recurrence rate was 46.8% in the WBRT + SRS group and 76.4% for SRS alone group (P<.001). Salvage brain treatment was less frequently required in the WBRT + SRS group (n = 10) than with SRS alone (n = 29) (P<.001). Death was attributed to neurologic causes in 22.8% of patients in the WBRT + SRS group and in 19.3% of those treated with SRS alone (P = .64). There were no significant differences in systemic and neurologic functional preservation and toxic effects of radiation. CONCLUSIONS Compared with SRS alone, the use of WBRT plus SRS did not improve survival for patients with 1 to 4 brain metastases, but intracranial relapse occurred considerably more frequently in those who did not receive WBRT. Consequently, salvage treatment is frequently required when up-front WBRT is not used. TRIAL REGISTRATION umin.ac.jp/ctr Identifier: C000000412. OBJECTIVES To investigate the association between antidepressant treatment and risk of several potential adverse outcomes in older people with depression and to examine risks by class of antidepressant, duration of use, and dose. DESIGN Cohort study of people aged 65 and over diagnosed as having depression. SETTING 570 general practices in the United Kingdom supplying data to the QResearch primary care database. PARTICIPANTS 60,746 patients diagnosed as having a new episode of depression between the ages of 65 and 100 years from 1 January 1996 to 31 December 2007 and followed up until 31 December 2008. MAIN OUTCOME MEASURES Hazard ratios associated with antidepressant use for all cause mortality, attempted suicide/self harm, myocardial infarction, stroke/transient ischaemic attack, falls, fractures, upper gastrointestinal bleeding, epilepsy/seizures, road traffic accidents, adverse drug reactions, and hyponatraemia, adjusted for a range of potential confounding variables. Hazard ratios were calculated for antidepressant class (tricyclic and related antidepressants, selective serotonin reuptake inhibitors, other antidepressants), dose, and duration of use and for commonly prescribed individual drugs. RESULTS 54,038 (89.0%) patients received at least one prescription for an antidepressant during follow-up. A total of 1,398,359 antidepressant prescriptions were issued: 764,659 (54.7%) for selective serotonin reuptake inhibitors, 442,192 (31.6%) for tricyclic antidepressants, 2203 (0.2%) for monoamine oxidase inhibitors, and 189,305 (13.5%) for the group of other antidepressants. The associations with the adverse outcomes differed significantly between the antidepressant classes for seven outcomes. Selective serotonin reuptake inhibitors were associated with the highest adjusted hazard ratios for falls (1.66, 95% confidence interval 1.58 to 1.73) and hyponatraemia (1.52, 1.33 to 1.75) compared with when antidepressants were not being used. The group of other antidepressants was associated with the highest adjusted hazard ratios for all cause mortality (1.66, 1.56 to 1.77), attempted suicide/self harm (5.16, 3.90 to 6.83), stroke/transient ischaemic attack (1.37, 1.22 to 1.55), fracture (1.64, 1.46 to 1.84), and epilepsy/seizures (2.24, 1.60 to 3.15), compared with when antidepressants were not being used. Tricyclic antidepressants did not have the highest hazard ratio for any of the outcomes. Significantly different associations also existed between the individual drugs for the same seven outcomes; trazodone (tricyclic antidepressant), mirtazapine, and venlafaxine (both in the group of other antidepressants) were associated with the highest rates for some of these outcomes. Absolute risks over 1 year for all cause mortality were 7.04% for patients while not taking antidepressants, 8.12% for those taking tricyclic antidepressants, 10.61% for selective serotonin reuptake inhibitors, and 11.43% for other antidepressants. CONCLUSIONS Selective serotonin reuptake inhibitors and drugs in the group of other antidepressants were associated with an increased risk of several adverse outcomes compared with tricyclic antidepressants. Among individual drugs, trazodone, mirtazapine, and venlafaxine were associated with the highest risks for some outcomes. As this is an observational study, it is susceptible to confounding by indication, channelling bias, and residual confounding, so differences in characteristics between patients prescribed different antidepressant drugs that could account for some of the associations between the drugs and the adverse outcomes may remain. Further research is needed to confirm these findings, but the risks and benefits of different antidepressants should be carefully evaluated when these drugs are prescribed to older people. Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case–control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10−5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10−4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10−9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification. Somatic cell nuclear transfer (SCNT) technology has recently been used to generate animals with a common genetic composition. In this study, we report the derivation of a pluripotent embryonic stem (ES) cell line (SCNT-hES-1) from a cloned human blastocyst. The SCNT-hES-1 cells displayed typical ES cell morphology and cell surface markers and were capable of differentiating into embryoid bodies in vitro and of forming teratomas in vivo containing cell derivatives from all three embryonic germ layers in severe combined immunodeficient mice. After continuous proliferation for more than 70 passages, SCNT-hES-1 cells maintained normal karyotypes and were genetically identical to the somatic nuclear donor cells. Although we cannot completely exclude the possibility that the cells had a parthenogenetic origin, imprinting analyses support a SCNT origin of the derived human ES cells. Plasmodium falciparum malaria, an infectious disease caused by a parasitic protozoan, claims the lives of nearly a million children each year in Africa alone and is a top public health concern. Evidence is accumulating that resistance to artemisinin derivatives, the frontline therapy for the asexual blood stage of the infection, is developing in southeast Asia. Renewed initiatives to eliminate malaria will benefit from an expanded repertoire of antimalarials, including new drugs that kill circulating P. falciparum gametocytes, thereby preventing transmission. Our current understanding of the biology of asexual blood-stage parasites and gametocytes and the ability to culture them in vitro lends optimism that high-throughput screenings of large chemical libraries will produce a new generation of antimalarial drugs. There is also a need for new therapies to reduce the high mortality of severe malaria. An understanding of the pathophysiology of severe disease may identify rational targets for drugs that improve survival. OBJECTIVE To determine whether individual fruits are differentially associated with risk of type 2 diabetes. DESIGN Prospective longitudinal cohort study. SETTING Health professionals in the United States. PARTICIPANTS 66,105 women from the Nurses' Health Study (1984-2008), 85,104 women from the Nurses' Health Study II (1991-2009), and 36,173 men from the Health Professionals Follow-up Study (1986-2008) who were free of major chronic diseases at baseline in these studies. MAIN OUTCOME MEASURE Incident cases of type 2 diabetes, identified through self report and confirmed by supplementary questionnaires. RESULTS During 3,464,641 person years of follow-up, 12,198 participants developed type 2 diabetes. After adjustment for personal, lifestyle, and dietary risk factors of diabetes, the pooled hazard ratio of type 2 diabetes for every three servings/week of total whole fruit consumption was 0.98 (95% confidence interval 0.97 [corrected] to 0.99). With mutual adjustment of individual fruits, the pooled hazard ratios of type 2 diabetes for every three servings/week were 0.74 (0.66 to 0.83) for blueberries, 0.88 (0.83 to 0.93) for grapes and raisins, 0.89 (0.79 to 1.01) for prunes, 0.93 (0.90 to 0.96) for apples and pears, 0.95 (0.91 to 0.98) for bananas, 0.95 (0.91 to 0.99) for grapefruit, 0.97 (0.92 to 1.02) for peaches, plums, and apricots, 0.99 (0.95 to 1.03) for oranges, 1.03 (0.96 to 1.10) for strawberries, and 1.10 (1.02 to 1.18) for cantaloupe. The pooled hazard ratio for the same increment in fruit juice consumption was 1.08 (1.05 to 1.11). The associations with risk of type 2 diabetes differed significantly among individual fruits (P<0.001 in all cohorts). CONCLUSION Our findings suggest the presence of heterogeneity in the associations between individual fruit consumption and risk of type 2 diabetes. Greater consumption of specific whole fruits, particularly blueberries, grapes, and apples, is significantly associated with a lower risk of type 2 diabetes, whereas greater consumption of fruit juice is associated with a higher risk.
0
{ "query_id": "235", "original_query_id": "235", "context_doc_ids": [ "3944632", "10546779", "4414547", "5691302", "1974176", "6503185" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.293031", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "3944632", "6503185", "1974176", "5691302", "10546779", "4414547" ], "comprehensive_gold_set_for_query": [ "4388470" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
235
aug_994
Early patent ductus ateriosus (PDA) screening decreases in-hospital mortality. Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8−/−) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin– and αvβ5 integrin–dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications. The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target. IMPORTANCE There is currently no consensus for the screening and treatment of patent ductus arteriosus (PDA) in extremely preterm infants. Less pharmacological closure and more supportive management have been observed without evidence to support these changes. OBJECTIVE To evaluate the association between early screening echocardiography for PDA and in-hospital mortality. DESIGN, SETTING, AND PARTICIPANTS Comparison of screened and not screened preterm infants enrolled in the EPIPAGE 2 national prospective population-based cohort study that included all preterm infants born at less than 29 weeks of gestation and hospitalized in 68 neonatal intensive care units in France from April through December 2011. Two main analyses were performed to adjust for potential selection bias, one using propensity score matching and one using neonatal unit preference for early screening echocardiography as an instrumental variable. EXPOSURES Early screening echocardiography before day 3 of life. MAIN OUTCOMES AND MEASURES The primary outcome was death between day 3 and discharge. The secondary outcomes were major neonatal morbidities (pulmonary hemorrhage, severe bronchopulmonary dysplasia, severe cerebral lesions, and necrotizing enterocolitis). RESULTS Among the 1513 preterm infants with data available to determine exposure, 847 were screened for PDA and 666 were not; 605 infants from each group could be paired. Exposed infants were treated for PDA more frequently during their hospitalization than nonexposed infants (55.1% vs 43.1%; odds ratio [OR], 1.62 [95% CI, 1.31 to 2.00]; absolute risk reduction [ARR] in events per 100 infants, -12.0 [95% CI, -17.3 to -6.7). Exposed infants had a lower hospital death rate (14.2% vs 18.5% ; OR, 0.73 [95% CI, 0.54 to 0.98]; ARR, 4.3 [95% CI, 0.3 to 8.3]) and a lower rate of pulmonary hemorrhage (5.6% vs 8.9%; OR, 0.60 [95% CI, 0.38 to 0.95]; ARR, 3.3 [95% CI, 0.4 to 6.3]). No differences in rates of necrotizing enterocolitis, severe bronchopulmonary dysplasia, or severe cerebral lesions were observed. In the overall cohort, instrumental variable analysis yielded an adjusted OR for in-hospital mortality of 0.62 [95% CI, 0.37 to 1.04]. CONCLUSIONS AND RELEVANCE In this national population-based cohort of extremely preterm infants, screening echocardiography before day 3 of life was associated with lower in-hospital mortality and likelihood of pulmonary hemorrhage but not with differences in necrotizing enterocolitis, severe bronchopulmonary dysplasia, or severe cerebral lesions. However, results of the instrumental variable analysis leave some ambiguity in the interpretation, and longer-term evaluation is needed to provide clarity. Activation of the mammalian Notch receptor after ligand binding relies on a succession of events including metalloprotease-cleavage, endocytosis, monoubiquitination, and eventually processing by the gamma-secretase, giving rise to a soluble, transcriptionally active molecule. The Notch1 receptor was proposed to be monoubiquitinated before its gamma-secretase cleavage; the targeted lysine has been localized to its submembrane domain. Investigating how this step might be regulated by a deubiquitinase (DUB) activity will provide new insight for understanding Notch receptor activation and downstream signaling. An immunofluorescence-based screening of an shRNA library allowed us to identify eIF3f, previously known as one of the subunits of the translation initiation factor eIF3, as a DUB targeting the activated Notch receptor. We show that eIF3f has an intrinsic DUB activity. Knocking down eIF3f leads to an accumulation of monoubiquitinated forms of activated Notch, an effect counteracted by murine WT eIF3f but not by a catalytically inactive mutant. We also show that eIF3f is recruited to activated Notch on endocytic vesicles by the putative E3 ubiquitin ligase Deltex1, which serves as a bridging factor. Finally, catalytically inactive forms of eIF3f as well as shRNAs targeting eIF3f repress Notch activation in a coculture assay, showing that eIF3f is a new positive regulator of the Notch pathway. Our results support two new and provocative conclusions: (1) The activated form of Notch needs to be deubiquitinated before being processed by the gamma-secretase activity and entering the nucleus, where it fulfills its transcriptional function. (2) The enzyme accounting for this deubiquitinase activity is eIF3f, known so far as a translation initiation factor. These data improve our knowledge of Notch signaling but also open new avenues of research on the Zomes family and the translation initiation factors. In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1-3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1-3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1-3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1-3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1-3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles. OBJECTIVE To evaluate the effects of dietary and lifestyle interventions in pregnancy on maternal and fetal weight and to quantify the effects of these interventions on obstetric outcomes. DESIGN Systematic review and meta-analysis. DATA SOURCES Major databases from inception to January 2012 without language restrictions. STUDY SELECTION Randomised controlled trials that evaluated any dietary or lifestyle interventions with potential to influence maternal weight during pregnancy and outcomes of pregnancy. DATA SYNTHESIS Results summarised as relative risks for dichotomous data and mean differences for continuous data. RESULTS We identified 44 relevant randomised controlled trials (7278 women) evaluating three categories of interventions: diet, physical activity, and a mixed approach. Overall, there was 1.42 kg reduction (95% confidence interval 0.95 to 1.89 kg) in gestational weight gain with any intervention compared with control. With all interventions combined, there were no significant differences in birth weight (mean difference -50 g, -100 to 0 g) and the incidence of large for gestational age (relative risk 0.85, 0.66 to 1.09) or small for gestational age (1.00, 0.78 to 1.28) babies between the groups, though by itself physical activity was associated with reduced birth weight (mean difference -60 g, -120 to -10 g). Interventions were associated with a reduced the risk of pre-eclampsia (0.74, 0.60 to 0.92) and shoulder dystocia (0.39, 0.22 to 0.70), with no significant effect on other critically important outcomes. Dietary intervention resulted in the largest reduction in maternal gestational weight gain (3.84 kg, 2.45 to 5.22 kg), with improved pregnancy outcomes compared with other interventions. The overall evidence rating was low to very low for important outcomes such as pre-eclampsia, gestational diabetes, gestational hypertension, and preterm delivery. CONCLUSIONS Dietary and lifestyle interventions in pregnancy can reduce maternal gestational weight gain and improve outcomes for both mother and baby. Among the interventions, those based on diet are the most effective and are associated with reductions in maternal gestational weight gain and improved obstetric outcomes.
Early patent ductus ateriosus (PDA) screening decreases in-hospital mortality. Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8−/−) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin– and αvβ5 integrin–dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications. The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target. IMPORTANCE There is currently no consensus for the screening and treatment of patent ductus arteriosus (PDA) in extremely preterm infants. Less pharmacological closure and more supportive management have been observed without evidence to support these changes. OBJECTIVE To evaluate the association between early screening echocardiography for PDA and in-hospital mortality. DESIGN, SETTING, AND PARTICIPANTS Comparison of screened and not screened preterm infants enrolled in the EPIPAGE 2 national prospective population-based cohort study that included all preterm infants born at less than 29 weeks of gestation and hospitalized in 68 neonatal intensive care units in France from April through December 2011. Two main analyses were performed to adjust for potential selection bias, one using propensity score matching and one using neonatal unit preference for early screening echocardiography as an instrumental variable. EXPOSURES Early screening echocardiography before day 3 of life. MAIN OUTCOMES AND MEASURES The primary outcome was death between day 3 and discharge. The secondary outcomes were major neonatal morbidities (pulmonary hemorrhage, severe bronchopulmonary dysplasia, severe cerebral lesions, and necrotizing enterocolitis). RESULTS Among the 1513 preterm infants with data available to determine exposure, 847 were screened for PDA and 666 were not; 605 infants from each group could be paired. Exposed infants were treated for PDA more frequently during their hospitalization than nonexposed infants (55.1% vs 43.1%; odds ratio [OR], 1.62 [95% CI, 1.31 to 2.00]; absolute risk reduction [ARR] in events per 100 infants, -12.0 [95% CI, -17.3 to -6.7). Exposed infants had a lower hospital death rate (14.2% vs 18.5% ; OR, 0.73 [95% CI, 0.54 to 0.98]; ARR, 4.3 [95% CI, 0.3 to 8.3]) and a lower rate of pulmonary hemorrhage (5.6% vs 8.9%; OR, 0.60 [95% CI, 0.38 to 0.95]; ARR, 3.3 [95% CI, 0.4 to 6.3]). No differences in rates of necrotizing enterocolitis, severe bronchopulmonary dysplasia, or severe cerebral lesions were observed. In the overall cohort, instrumental variable analysis yielded an adjusted OR for in-hospital mortality of 0.62 [95% CI, 0.37 to 1.04]. CONCLUSIONS AND RELEVANCE In this national population-based cohort of extremely preterm infants, screening echocardiography before day 3 of life was associated with lower in-hospital mortality and likelihood of pulmonary hemorrhage but not with differences in necrotizing enterocolitis, severe bronchopulmonary dysplasia, or severe cerebral lesions. However, results of the instrumental variable analysis leave some ambiguity in the interpretation, and longer-term evaluation is needed to provide clarity. Activation of the mammalian Notch receptor after ligand binding relies on a succession of events including metalloprotease-cleavage, endocytosis, monoubiquitination, and eventually processing by the gamma-secretase, giving rise to a soluble, transcriptionally active molecule. The Notch1 receptor was proposed to be monoubiquitinated before its gamma-secretase cleavage; the targeted lysine has been localized to its submembrane domain. Investigating how this step might be regulated by a deubiquitinase (DUB) activity will provide new insight for understanding Notch receptor activation and downstream signaling. An immunofluorescence-based screening of an shRNA library allowed us to identify eIF3f, previously known as one of the subunits of the translation initiation factor eIF3, as a DUB targeting the activated Notch receptor. We show that eIF3f has an intrinsic DUB activity. Knocking down eIF3f leads to an accumulation of monoubiquitinated forms of activated Notch, an effect counteracted by murine WT eIF3f but not by a catalytically inactive mutant. We also show that eIF3f is recruited to activated Notch on endocytic vesicles by the putative E3 ubiquitin ligase Deltex1, which serves as a bridging factor. Finally, catalytically inactive forms of eIF3f as well as shRNAs targeting eIF3f repress Notch activation in a coculture assay, showing that eIF3f is a new positive regulator of the Notch pathway. Our results support two new and provocative conclusions: (1) The activated form of Notch needs to be deubiquitinated before being processed by the gamma-secretase activity and entering the nucleus, where it fulfills its transcriptional function. (2) The enzyme accounting for this deubiquitinase activity is eIF3f, known so far as a translation initiation factor. These data improve our knowledge of Notch signaling but also open new avenues of research on the Zomes family and the translation initiation factors. In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1-3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1-3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1-3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1-3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1-3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles. OBJECTIVE To evaluate the effects of dietary and lifestyle interventions in pregnancy on maternal and fetal weight and to quantify the effects of these interventions on obstetric outcomes. DESIGN Systematic review and meta-analysis. DATA SOURCES Major databases from inception to January 2012 without language restrictions. STUDY SELECTION Randomised controlled trials that evaluated any dietary or lifestyle interventions with potential to influence maternal weight during pregnancy and outcomes of pregnancy. DATA SYNTHESIS Results summarised as relative risks for dichotomous data and mean differences for continuous data. RESULTS We identified 44 relevant randomised controlled trials (7278 women) evaluating three categories of interventions: diet, physical activity, and a mixed approach. Overall, there was 1.42 kg reduction (95% confidence interval 0.95 to 1.89 kg) in gestational weight gain with any intervention compared with control. With all interventions combined, there were no significant differences in birth weight (mean difference -50 g, -100 to 0 g) and the incidence of large for gestational age (relative risk 0.85, 0.66 to 1.09) or small for gestational age (1.00, 0.78 to 1.28) babies between the groups, though by itself physical activity was associated with reduced birth weight (mean difference -60 g, -120 to -10 g). Interventions were associated with a reduced the risk of pre-eclampsia (0.74, 0.60 to 0.92) and shoulder dystocia (0.39, 0.22 to 0.70), with no significant effect on other critically important outcomes. Dietary intervention resulted in the largest reduction in maternal gestational weight gain (3.84 kg, 2.45 to 5.22 kg), with improved pregnancy outcomes compared with other interventions. The overall evidence rating was low to very low for important outcomes such as pre-eclampsia, gestational diabetes, gestational hypertension, and preterm delivery. CONCLUSIONS Dietary and lifestyle interventions in pregnancy can reduce maternal gestational weight gain and improve outcomes for both mother and baby. Among the interventions, those based on diet are the most effective and are associated with reductions in maternal gestational weight gain and improved obstetric outcomes.
0.285714
{ "query_id": "367", "original_query_id": "367", "context_doc_ids": [ "1686997", "9505448", "27099731", "5389095", "11360768", "4394817" ], "gold_doc_ids_in_context": [ "27099731" ], "total_gold_docs_for_query": 1, "context_f1": 0.2857142857142857, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.293137", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "27099731" ], "negative_samples_considered": [ "5389095", "9505448", "1686997", "4394817", "11360768" ], "comprehensive_gold_set_for_query": [ "27099731" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
367
aug_995
During the primary early antibody response activated B cells migrate toward the inner-and outer follicular areas where oxysterol accumulation is generated by stromal cells. Humoral immune responses depend on B cells encountering antigen, interacting with helper T cells, proliferating and differentiating into low-affinity plasma cells or, after organizing into a germinal center (GC), high-affinity plasma cells and memory B cells. Remarkably, each of these events occurs in association with distinct stromal cells in separate subcompartments of the lymphoid tissue. B cells must migrate from niche to niche in a rapid and highly regulated manner to successfully mount a response. The chemokine, CXCL13, plays a central role in guiding B cells to follicles whereas T-zone chemokines guide activated B cells to the T zone. Sphingosine-1-phosphate (S1P) promotes cell egress from the tissue, as well as marginal-zone B-cell positioning in the spleen. Recent studies have identified a role for the orphan receptor, EBV-induced molecule 2 (EBI2; GPR183), in guiding activated B cells to inter and outer follicular niche(s) and down-regulation of this receptor is essential for organizing cells into GCs. In this review, we discuss current understanding of the roles played by chemokines, S1P and EBI2 in the migration events that underlie humoral immune responses.
During the primary early antibody response activated B cells migrate toward the inner-and outer follicular areas where oxysterol accumulation is generated by stromal cells. Humoral immune responses depend on B cells encountering antigen, interacting with helper T cells, proliferating and differentiating into low-affinity plasma cells or, after organizing into a germinal center (GC), high-affinity plasma cells and memory B cells. Remarkably, each of these events occurs in association with distinct stromal cells in separate subcompartments of the lymphoid tissue. B cells must migrate from niche to niche in a rapid and highly regulated manner to successfully mount a response. The chemokine, CXCL13, plays a central role in guiding B cells to follicles whereas T-zone chemokines guide activated B cells to the T zone. Sphingosine-1-phosphate (S1P) promotes cell egress from the tissue, as well as marginal-zone B-cell positioning in the spleen. Recent studies have identified a role for the orphan receptor, EBV-induced molecule 2 (EBI2; GPR183), in guiding activated B cells to inter and outer follicular niche(s) and down-regulation of this receptor is essential for organizing cells into GCs. In this review, we discuss current understanding of the roles played by chemokines, S1P and EBI2 in the migration events that underlie humoral immune responses.
1
{ "query_id": "361", "original_query_id": "361", "context_doc_ids": [ "38587347" ], "gold_doc_ids_in_context": [ "38587347" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.293229", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "38587347" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "38587347" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
361
aug_996
Less than 10% of patients exposed to radiation have activated markers of mesenchymal stem cells. Previous studies investigating the role of smooth muscle cells (SMCs) and macrophages in the pathogenesis of atherosclerosis have provided controversial results owing to the use of unreliable methods for clearly identifying each of these cell types. Here, using Myh11-CreERT2 ROSA floxed STOP eYFP Apoe−/− mice to perform SMC lineage tracing, we find that traditional methods for detecting SMCs based on immunostaining for SMC markers fail to detect >80% of SMC-derived cells within advanced atherosclerotic lesions. These unidentified SMC-derived cells exhibit phenotypes of other cell lineages, including macrophages and mesenchymal stem cells (MSCs). SMC-specific conditional knockout of Krüppel-like factor 4 (Klf4) resulted in reduced numbers of SMC-derived MSC- and macrophage-like cells, a marked reduction in lesion size, and increases in multiple indices of plaque stability, including an increase in fibrous cap thickness as compared to wild-type controls. On the basis of in vivo KLF4 chromatin immunoprecipitation–sequencing (ChIP-seq) analyses and studies of cholesterol-treated cultured SMCs, we identified >800 KLF4 target genes, including many that regulate pro-inflammatory responses of SMCs. Our findings indicate that the contribution of SMCs to atherosclerotic plaques has been greatly underestimated, and that KLF4-dependent transitions in SMC phenotype are critical in lesion pathogenesis.
Less than 10% of patients exposed to radiation have activated markers of mesenchymal stem cells. Previous studies investigating the role of smooth muscle cells (SMCs) and macrophages in the pathogenesis of atherosclerosis have provided controversial results owing to the use of unreliable methods for clearly identifying each of these cell types. Here, using Myh11-CreERT2 ROSA floxed STOP eYFP Apoe−/− mice to perform SMC lineage tracing, we find that traditional methods for detecting SMCs based on immunostaining for SMC markers fail to detect >80% of SMC-derived cells within advanced atherosclerotic lesions. These unidentified SMC-derived cells exhibit phenotypes of other cell lineages, including macrophages and mesenchymal stem cells (MSCs). SMC-specific conditional knockout of Krüppel-like factor 4 (Klf4) resulted in reduced numbers of SMC-derived MSC- and macrophage-like cells, a marked reduction in lesion size, and increases in multiple indices of plaque stability, including an increase in fibrous cap thickness as compared to wild-type controls. On the basis of in vivo KLF4 chromatin immunoprecipitation–sequencing (ChIP-seq) analyses and studies of cholesterol-treated cultured SMCs, we identified >800 KLF4 target genes, including many that regulate pro-inflammatory responses of SMCs. Our findings indicate that the contribution of SMCs to atherosclerotic plaques has been greatly underestimated, and that KLF4-dependent transitions in SMC phenotype are critical in lesion pathogenesis.
1
{ "query_id": "689", "original_query_id": "689", "context_doc_ids": [ "22080671" ], "gold_doc_ids_in_context": [ "22080671" ], "total_gold_docs_for_query": 1, "context_f1": 1, "context_size": 1, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.293247", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "22080671" ], "negative_samples_considered": [], "comprehensive_gold_set_for_query": [ "22080671" ], "target_max_context_size_config": 6, "actual_context_size": 1, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
689
aug_997
DUSP4 downregulation deactivates the Ras-ERK pathway BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2. Calorie restriction (CR) extends lifespan in a wide spectrum of organisms and is the only regimen known to lengthen the lifespan of mammals. We established a model of CR in budding yeast Saccharomyces cerevisiae. In this system, lifespan can be extended by limiting glucose or by reducing the activity of the glucose-sensing cyclic-AMP-dependent kinase (PKA). Lifespan extension in a mutant with reduced PKA activity requires Sir2 and NAD (nicotinamide adenine dinucleotide). In this study we explore how CR activates Sir2 to extend lifespan. Here we show that the shunting of carbon metabolism toward the mitochondrial tricarboxylic acid cycle and the concomitant increase in respiration play a central part in this process. We discuss how this metabolic strategy may apply to CR in animals. CONTEXT Adequate vitamin D status for optimum bone health has received increased recognition in recent years; however, the ideal intake is not known. Serum 25-hydroxyvitamin D is the generally accepted indicator of vitamin D status, but no universal reference level has been reached. OBJECTIVE To investigate the relative importance of high calcium intake and serum 25-hydroxyvitamin D for calcium homeostasis, as determined by serum intact parathyroid hormone (PTH). DESIGN, SETTING, AND PARTICIPANTS Cross-sectional study of 2310 healthy Icelandic adults who were divided equally into 3 age groups (30-45 years, 50-65 years, or 70-85 years) and recruited from February 2001 to January 2003. They were administered a semi-quantitative food frequency questionnaire, which assessed vitamin D and calcium intake. Participants were further divided into groups according to calcium intake (<800 mg/d, 800-1200 mg/d, and >1200 mg/d) and serum 25-hydroxyvitamin D level (<10 ng/mL, 10-18 ng/mL, and >18 ng/mL). MAIN OUTCOME MEASURE Serum intact PTH as determined by calcium intake and vitamin D. RESULTS A total of 944 healthy participants completed all parts of the study. After adjusting for relevant factors, serum PTH was lowest in the group with a serum 25-hydroxyvitamin D level of more than 18 ng/mL but highest in the group with a serum 25-hydroxyvitamin D level of less than 10 ng/mL. At the low serum 25-hydroxyvitamin D level (<10 ng/mL), calcium intake of less than 800 mg/d vs more than 1200 mg/d was significantly associated with higher serum PTH (P = .04); and at a calcium intake of more than 1200 mg/d, there was a significant difference between the lowest and highest vitamin D groups (P = .04). CONCLUSIONS As long as vitamin D status is ensured, calcium intake levels of more than 800 mg/d may be unnecessary for maintaining calcium metabolism. Vitamin D supplements are necessary for adequate vitamin D status in northern climates. Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ∼30% of patients with breast cancer. However, many patients have residual cancer after chemotherapy, which correlates with a higher risk of metastatic recurrence and poorer outcome than those who achieve a pCR. We hypothesized that molecular profiling of tumors after NAC would identify genes associated with drug resistance. Digital transcript counting was used to profile surgically resected breast cancers after NAC. Low concentrations of dual specificity protein phosphatase 4 (DUSP4), an ERK phosphatase, correlated with high post-NAC tumor cell proliferation and with basal-like breast cancer (BLBC) status. BLBC had higher DUSP4 promoter methylation and gene expression patterns of Ras-ERK pathway activation relative to other breast cancer subtypes. DUSP4 overexpression increased chemotherapy-induced apoptosis, whereas DUSP4 depletion dampened the response to chemotherapy. Reduced DUSP4 expression in primary tumors after NAC was associated with treatment-refractory high Ki-67 scores and shorter recurrence-free survival. Finally, inhibition of mitogen-activated protein kinase kinase (MEK) synergized with docetaxel treatment in BLBC xenografts. Thus, DUSP4 downregulation activates the Ras-ERK pathway in BLBC, resulting in an attenuated response to anti-cancer chemotherapy.
DUSP4 downregulation deactivates the Ras-ERK pathway BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2. Calorie restriction (CR) extends lifespan in a wide spectrum of organisms and is the only regimen known to lengthen the lifespan of mammals. We established a model of CR in budding yeast Saccharomyces cerevisiae. In this system, lifespan can be extended by limiting glucose or by reducing the activity of the glucose-sensing cyclic-AMP-dependent kinase (PKA). Lifespan extension in a mutant with reduced PKA activity requires Sir2 and NAD (nicotinamide adenine dinucleotide). In this study we explore how CR activates Sir2 to extend lifespan. Here we show that the shunting of carbon metabolism toward the mitochondrial tricarboxylic acid cycle and the concomitant increase in respiration play a central part in this process. We discuss how this metabolic strategy may apply to CR in animals. CONTEXT Adequate vitamin D status for optimum bone health has received increased recognition in recent years; however, the ideal intake is not known. Serum 25-hydroxyvitamin D is the generally accepted indicator of vitamin D status, but no universal reference level has been reached. OBJECTIVE To investigate the relative importance of high calcium intake and serum 25-hydroxyvitamin D for calcium homeostasis, as determined by serum intact parathyroid hormone (PTH). DESIGN, SETTING, AND PARTICIPANTS Cross-sectional study of 2310 healthy Icelandic adults who were divided equally into 3 age groups (30-45 years, 50-65 years, or 70-85 years) and recruited from February 2001 to January 2003. They were administered a semi-quantitative food frequency questionnaire, which assessed vitamin D and calcium intake. Participants were further divided into groups according to calcium intake (<800 mg/d, 800-1200 mg/d, and >1200 mg/d) and serum 25-hydroxyvitamin D level (<10 ng/mL, 10-18 ng/mL, and >18 ng/mL). MAIN OUTCOME MEASURE Serum intact PTH as determined by calcium intake and vitamin D. RESULTS A total of 944 healthy participants completed all parts of the study. After adjusting for relevant factors, serum PTH was lowest in the group with a serum 25-hydroxyvitamin D level of more than 18 ng/mL but highest in the group with a serum 25-hydroxyvitamin D level of less than 10 ng/mL. At the low serum 25-hydroxyvitamin D level (<10 ng/mL), calcium intake of less than 800 mg/d vs more than 1200 mg/d was significantly associated with higher serum PTH (P = .04); and at a calcium intake of more than 1200 mg/d, there was a significant difference between the lowest and highest vitamin D groups (P = .04). CONCLUSIONS As long as vitamin D status is ensured, calcium intake levels of more than 800 mg/d may be unnecessary for maintaining calcium metabolism. Vitamin D supplements are necessary for adequate vitamin D status in northern climates. Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ∼30% of patients with breast cancer. However, many patients have residual cancer after chemotherapy, which correlates with a higher risk of metastatic recurrence and poorer outcome than those who achieve a pCR. We hypothesized that molecular profiling of tumors after NAC would identify genes associated with drug resistance. Digital transcript counting was used to profile surgically resected breast cancers after NAC. Low concentrations of dual specificity protein phosphatase 4 (DUSP4), an ERK phosphatase, correlated with high post-NAC tumor cell proliferation and with basal-like breast cancer (BLBC) status. BLBC had higher DUSP4 promoter methylation and gene expression patterns of Ras-ERK pathway activation relative to other breast cancer subtypes. DUSP4 overexpression increased chemotherapy-induced apoptosis, whereas DUSP4 depletion dampened the response to chemotherapy. Reduced DUSP4 expression in primary tumors after NAC was associated with treatment-refractory high Ki-67 scores and shorter recurrence-free survival. Finally, inhibition of mitogen-activated protein kinase kinase (MEK) synergized with docetaxel treatment in BLBC xenografts. Thus, DUSP4 downregulation activates the Ras-ERK pathway in BLBC, resulting in an attenuated response to anti-cancer chemotherapy.
0.4
{ "query_id": "308", "original_query_id": "308", "context_doc_ids": [ "7821634", "4414481", "5633876", "16256507" ], "gold_doc_ids_in_context": [ "7821634" ], "total_gold_docs_for_query": 1, "context_f1": 0.4, "context_size": 4, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.293268", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [ "7821634" ], "negative_samples_considered": [ "16256507", "4414481", "5633876" ], "comprehensive_gold_set_for_query": [ "7821634" ], "target_max_context_size_config": 6, "actual_context_size": 4, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
308
aug_998
Foxp3 represses the expression of transcriptional regulators implicated in memory T cell development. Blood monocytes are well-characterized precursors for macrophages and dendritic cells. Subsets of human monocytes with differential representation in various disease states are well known. In contrast, mouse monocyte subsets have been characterized minimally. In this study we identify three subpopulations of mouse monocytes that can be distinguished by differential expression of Ly-6C, CD43, CD11c, MBR, and CD62L. The subsets share the characteristics of extensive phagocytosis, similar expression of M-CSF receptor (CD115), and development into macrophages upon M-CSF stimulation. By eliminating blood monocytes with dichloromethylene-bisphosphonate-loaded liposomes and monitoring their repopulation, we showed a developmental relationship between the subsets. Monocytes were maximally depleted 18 h after liposome application and subsequently reappeared in the circulation. These cells were exclusively of the Ly-6C(high) subset, resembling bone marrow monocytes. Serial flow cytometric analyses of newly released Ly-6C(high) monocytes showed that Ly-6C expression on these cells was down-regulated while in circulation. Under inflammatory conditions elicited either by acute infection with Listeria monocytogenes or chronic infection with Leishmania major, there was a significant increase in immature Ly-6C(high) monocytes, resembling the inflammatory left shift of granulocytes. In addition, acute peritoneal inflammation recruited preferentially Ly-6C(med-high) monocytes. Taken together, these data identify distinct subpopulations of mouse blood monocytes that differ in maturation stage and capacity to become recruited to inflammatory sites. Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation. Cells from organisms with renewable tissues can permanently withdraw from the cell cycle in response to diverse stress, including dysfunctional telomeres, DNA damage, strong mitogenic signals, and disrupted chromatin. This response, termed cellular senescence, is controlled by the p53 and RB tumor suppressor proteins and constitutes a potent anticancer mechanism. Nonetheless, senescent cells acquire phenotypic changes that may contribute to aging and certain age-related diseases, including late-life cancer. Thus, the senescence response may be antagonistically pleiotropic, promoting early-life survival by curtailing the development of cancer but eventually limiting longevity as dysfunctional senescent cells accumulate. Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of Parkinson's disease. LRRK2 is a multifunctional protein affecting many cellular processes and has been described to bind microtubules. Defective microtubule-based axonal transport is hypothesized to contribute to Parkinson's disease, but whether LRRK2 mutations affect this process to mediate pathogenesis is not known. Here we find that LRRK2 containing pathogenic Roc-COR domain mutations (R1441C, Y1699C) preferentially associates with deacetylated microtubules, and inhibits axonal transport in primary neurons and in Drosophila, causing locomotor deficits in vivo. In vitro, increasing microtubule acetylation using deacetylase inhibitors or the tubulin acetylase αTAT1 prevents association of mutant LRRK2 with microtubules, and the deacetylase inhibitor trichostatin A (TSA) restores axonal transport. In vivo knockdown of the deacetylases HDAC6 and Sirt2, or administration of TSA rescues both axonal transport and locomotor behavior. Thus, this study reveals a pathogenic mechanism and a potential intervention for Parkinson's disease. Alzheimer's disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4-3.5 Å resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer's disease. Filament cores are made of two identical protofilaments comprising residues 306-378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases. Correction for: Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al. (2007) A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis. PLoS Med 4(9): e278. doi:10.1371/journal.pmed.0040278 In Table 1, the allele ratio in column eight (Allele Ratiosb: Cases, Controls) refers to allele A: allele B and not allele1:allele2 as described in footnote b, with Allele A being the Susceptibility Allele as denoted in column seven. The footnote should read: bNumber of alleles were compared in cases versus controls: allele A: allele B cases, allele A: allele B controls. Allele A refers to the susceptibility alleles as given in column seven.
Foxp3 represses the expression of transcriptional regulators implicated in memory T cell development. Blood monocytes are well-characterized precursors for macrophages and dendritic cells. Subsets of human monocytes with differential representation in various disease states are well known. In contrast, mouse monocyte subsets have been characterized minimally. In this study we identify three subpopulations of mouse monocytes that can be distinguished by differential expression of Ly-6C, CD43, CD11c, MBR, and CD62L. The subsets share the characteristics of extensive phagocytosis, similar expression of M-CSF receptor (CD115), and development into macrophages upon M-CSF stimulation. By eliminating blood monocytes with dichloromethylene-bisphosphonate-loaded liposomes and monitoring their repopulation, we showed a developmental relationship between the subsets. Monocytes were maximally depleted 18 h after liposome application and subsequently reappeared in the circulation. These cells were exclusively of the Ly-6C(high) subset, resembling bone marrow monocytes. Serial flow cytometric analyses of newly released Ly-6C(high) monocytes showed that Ly-6C expression on these cells was down-regulated while in circulation. Under inflammatory conditions elicited either by acute infection with Listeria monocytogenes or chronic infection with Leishmania major, there was a significant increase in immature Ly-6C(high) monocytes, resembling the inflammatory left shift of granulocytes. In addition, acute peritoneal inflammation recruited preferentially Ly-6C(med-high) monocytes. Taken together, these data identify distinct subpopulations of mouse blood monocytes that differ in maturation stage and capacity to become recruited to inflammatory sites. Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation. Cells from organisms with renewable tissues can permanently withdraw from the cell cycle in response to diverse stress, including dysfunctional telomeres, DNA damage, strong mitogenic signals, and disrupted chromatin. This response, termed cellular senescence, is controlled by the p53 and RB tumor suppressor proteins and constitutes a potent anticancer mechanism. Nonetheless, senescent cells acquire phenotypic changes that may contribute to aging and certain age-related diseases, including late-life cancer. Thus, the senescence response may be antagonistically pleiotropic, promoting early-life survival by curtailing the development of cancer but eventually limiting longevity as dysfunctional senescent cells accumulate. Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of Parkinson's disease. LRRK2 is a multifunctional protein affecting many cellular processes and has been described to bind microtubules. Defective microtubule-based axonal transport is hypothesized to contribute to Parkinson's disease, but whether LRRK2 mutations affect this process to mediate pathogenesis is not known. Here we find that LRRK2 containing pathogenic Roc-COR domain mutations (R1441C, Y1699C) preferentially associates with deacetylated microtubules, and inhibits axonal transport in primary neurons and in Drosophila, causing locomotor deficits in vivo. In vitro, increasing microtubule acetylation using deacetylase inhibitors or the tubulin acetylase αTAT1 prevents association of mutant LRRK2 with microtubules, and the deacetylase inhibitor trichostatin A (TSA) restores axonal transport. In vivo knockdown of the deacetylases HDAC6 and Sirt2, or administration of TSA rescues both axonal transport and locomotor behavior. Thus, this study reveals a pathogenic mechanism and a potential intervention for Parkinson's disease. Alzheimer's disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4-3.5 Å resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer's disease. Filament cores are made of two identical protofilaments comprising residues 306-378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases. Correction for: Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al. (2007) A Candidate Gene Approach Identifies the TRAF1/C5 Region as a Risk Factor for Rheumatoid Arthritis. PLoS Med 4(9): e278. doi:10.1371/journal.pmed.0040278 In Table 1, the allele ratio in column eight (Allele Ratiosb: Cases, Controls) refers to allele A: allele B and not allele1:allele2 as described in footnote b, with Allele A being the Susceptibility Allele as denoted in column seven. The footnote should read: bNumber of alleles were compared in cases versus controls: allele A: allele B cases, allele A: allele B controls. Allele A refers to the susceptibility alleles as given in column seven.
0
{ "query_id": "435", "original_query_id": "435", "context_doc_ids": [ "1967017", "4547102", "4446814", "9638032", "36444198", "9559146" ], "gold_doc_ids_in_context": [], "total_gold_docs_for_query": 1, "context_f1": 0, "context_size": 6, "generation_version": "1.0.0", "generation_timestamp": "2025-07-24T12:04:39.293324", "dataset": "scifact", "generation_date": "2025-07-22T13:26:34", "generator_version": "1.0.0", "positive_samples_considered": [], "negative_samples_considered": [ "4547102", "36444198", "9559146", "9638032", "4446814", "1967017" ], "comprehensive_gold_set_for_query": [ "9500590" ], "target_max_context_size_config": 6, "actual_context_size": 6, "sampling_strategy_version": "context_builder_v2.3_msmarco_balanced_f1", "augmented": true, "original_id": "", "type": "pathfinderrag_test" }
435
aug_999