Access Request โ€“ Provide Required Information

Before accessing this model, please complete the form below.

Please provide the required information to access this model

Log in or Sign Up to review the conditions and access this dataset content.

๐Ÿ“‚ SaudiDialect-Triplet-21 : Saudi Triplet Dataset (SABER Training Data)

๐Ÿงฉ Dataset Summary

The Saudi Triplet Dataset is a high-quality corpus of 2,964 sentence triplets (Anchor, Positive, Negative) specifically curated to capture the nuances of Saudi Arabic dialects (Najdi, Hijazi, Gulf, etc.).

This dataset was created to fine-tune semantic embedding models such as SABER for tasks like Semantic Search, Retrieval-Augmented Generation (RAG), and Clustering.

It covers 21 distinct domains reflecting real-life Saudi contexts, ranging from Government Services and Finance to Tribal Anthropology and Bedouin Culture.

Team

Special thanks to the exceptional team behind this dataset.

Team

โœˆ๏ธ

Travel
Mohammed Alhassan

๐Ÿ”

Food
Abdulelah Alankari

๐Ÿ›๏ธ

Fashion
Reem Alsuliman

๐ŸŽ“

Education
Joud Aloqla

๐Ÿ’ผ

Work
Nouf Alessa

๐Ÿ“ฑ

Tech
Jude Alsubaie

๐Ÿ‹๏ธ

Sports
Albara Aseri

๐Ÿš—

Transport
Wajn Alqahtani

๐ŸŽฌ

Entertainment
Muzon Assiri

๐Ÿ 

Daily Life
Jana Alsuhaibani

๐Ÿ’ฐ

Finance
Abdullah Alsalem

๐ŸŒค๏ธ

Weather
Huda Aldawsari

๐ŸŽ‰

Events
Shaden Alosaimi

๐Ÿฉบ

Medical
Munirah Alsubaie

๐Ÿ“ข

Social
Mohammed Alziyad

๐Ÿ‡ธ๐Ÿ‡ฆ

Culture
Shatha Alotaibi

๐ŸŒฟ

Nature
Norah Altwijri

๐Ÿ“œ

History
Renad Alrifai

๐Ÿ—บ๏ธ

Geography
Murtada Altarouti

๐Ÿ›๏ธ

Gov
Lama Almutairi

๐Ÿ‘ฅ

Anthro
Adnan Hawsawi

๐Ÿ“Š Dataset Statistics

Statistic Value
Total Triplets 2,964
Total Domains 21
Language Saudi Dialect
Duplicate Anchors 59 (Multi-positive/negative pairings)

๐Ÿ“ Sentence Lengths (Word Count)

The dataset consists primarily of short-to-medium length queries and sentences, typical of search and conversational inputs.

Metric Anchor Positive Negative
Mean 6.42 6.50 5.34
Std Dev 1.85 1.96 1.77
Min 2 2 2
Max 13 15 12

๐Ÿ™๏ธ Domain Distribution

The dataset is balanced across high-resource topics (Food, Finance) and specific cultural topics (Anthropology, Heritage).

Domain Count
Food 200
Finance & Banking 200
Government Services 200
Medical 200
Sports & Fitness 200
Weather & Seasons 200
Nature & Environment 200
Education 150
Travel 150
History 150
Transportation 109
Entertainment 106
Saudi Anthropology 104
Work & Office 104
Culture & Heritage 102
Shopping & Fashion 100
Technology 100
Communication & Social Media 100
Social Gatherings & Events 100
Daily Life & Household 98
Geography 91

๐Ÿ“‚ Data Structure

Each row in the dataset represents a training triplet designed for Contrastive Learning (e.g., MNRL).

Column Name Type Description
Anchor String The reference sentence/query in Saudi dialect.
Positive String A sentence semantically similar to the Anchor (paraphrase or answer).
Negative String A sentence semantically dissimilar to the Anchor (different topic or meaning).
Domain String The topic category of the triplet.

๐Ÿ“ Data Samples

Below are real examples from the dataset showing the dialectal variations and domain diversity.

Domain Anchor (Query) Positive (Match) Negative (Mismatch)
Shopping & Fashion ุฃุจูŠ ูุฑุดู‡ ุชููƒ ุงู„ุนู‚ุฏ ูˆู…ุง ุชู‚ุทุน ุงู„ุดุนุฑ ุงุจูŠ ู…ุดุท ู…ุง ูŠุฎุฑุจ ุงู„ุดุนุฑ ูˆูŠู†ุชูู‡ ู…ุชู‰ ุจูŠูˆุตู„ู†ูŠ ุทู‚ู… ุงู„ุฃู„ู…ุงุณ ุงู„ู„ูŠ ุทู„ุจุชู‡ุŸ
Finance & Banking ุฃุจุบุง ุฃูุชุญ ู…ุญูุธุฉ ุฃุณู‡ู… ูˆุฃุจุฏุฃ ุงุณุชุซู…ุงุฑ ุจุณูŠุท ุฃููƒุฑ ุฃุจุฏุฃ ุชุฏุงูˆู„ ุฎููŠู ููŠ ุงู„ุฃุณู‡ู… ุนู† ุทุฑูŠู‚ ุงู„ู…ุญูุธุฉ ู†ุงูˆูŠ ุฃุฒูˆุฑ ุงู„ุนุงุฆู„ุฉ ููŠ ุงู„ู‚ุฑูŠุฉ ุงู„ุฃุณุจูˆุน ุงู„ุฌุงูŠ
Culture & Heritage ุฃู…ุณ ุณู…ุนุช ู‚ุตุงุฆุฏ ุนู† ุงู„ุดุฌุงุนุฉ ูˆุงู„ูุฑูˆุณูŠุฉ ุงู„ู‚ุตุงูŠุฏ ุงู„ุจุฏูˆูŠุฉ ู…ุนุงู†ูŠู‡ุง ู‚ูˆูŠุฉ ุดุบู„ุช ุงู„ุบุณุงู„ุฉ ุจุงู„ุบู„ุท
Food ุงู„ุณูˆูู„ูŠู‡ ุนู†ุฏู‡ู… ูุฎู… ุงู„ุณูˆูู„ูŠู‡ ูŠุฐูˆุจ ุจุงู„ูู… ู…ุง ูˆุตู„ุช ุงู„ุดุญู†ุฉ
History ุงู„ูˆุงู„ุฏ ูƒุงู† ุฏุงูŠู… ูŠุฐูƒุฑ ู…ู…ู„ูƒุฉ ู„ุญูŠุงู† ุดูุช ุจุฑู†ุงู…ุฌ ูŠุชูƒู„ู… ุนู† ุณูˆู‚ ุนูƒุงุธ ุทู„ุจูŠ ุชุฃุฎุฑ ุจุงู„ู…ุทุนู…
Travel ูˆูŠู† ุฃุญุตู„ ุนู„ู‰ ุฌูˆู„ุงุช ุณูŠุงุญูŠุฉ ุฑุฎูŠุตุฉุŸ ุฃุจุบู‰ ุฃู„ู‚ู‰ ุนุฑูˆุถ ุณูŠุงุญูŠุฉ ุงู‚ุชุตุงุฏูŠุฉ ุงู„ุฌูˆ ุญุงุฑ ูˆู…ุง ุฃู‚ุฏุฑ ุฃุทู„ุน

โš ๏ธ Quality & Integrity

  • Missing Data: There are no missing values in the Anchor, Positive, or Negative columns.
  • Duplicates: There are 59 duplicate anchors. This is intentional in some cases to provide multiple positive pairings for the same query or to enforce separation from different hard negatives.
  • Dialect Intensity: The text ranges from "White Dialect" (understandable by most Arabs) to deep Saudi vernacular (specific to Najd/Hijaz/South).

๐Ÿ› ๏ธ Usage

This dataset is optimized for training sentence transformers using MultipleNegativesRankingLoss.

from datasets import load_dataset

# Load the dataset (Example path)
dataset = load_dataset("Omartificial-Intelligence-Space/Saudi-Triplet-Dataset")

# Print first example
print(dataset['train'][0])
Downloads last month
11

Models trained or fine-tuned on Omartificial-Intelligence-Space/SaudiDialect-Triplet-21

Collection including Omartificial-Intelligence-Space/SaudiDialect-Triplet-21