Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
2k
10.9k
unique_id
stringlengths
14
14
width
int32
2k
10.9k
height
int32
2k
9.54k
image_mode_on_disk
stringclasses
1 value
original_file_format
stringclasses
1 value
img_00001_345c
5,441
3,061
RGB
JPEG
img_00002_5c78
4,245
2,830
RGB
JPEG
img_00003_0018
4,803
3,197
RGB
JPEG
img_00004_bda2
3,969
5,954
RGB
JPEG
img_00005_252b
7,952
5,304
RGB
JPEG
img_00006_f7db
3,376
6,000
RGB
JPEG
img_00007_bf79
5,529
3,686
RGB
JPEG
img_00008_fd20
3,078
5,472
RGB
JPEG
img_00009_cdd0
6,000
4,000
RGB
JPEG
img_00010_4472
2,624
3,936
RGB
JPEG
img_00011_ce50
6,938
5,921
RGB
JPEG
img_00012_21c4
2,775
3,865
RGB
JPEG
img_00013_1878
10,938
6,153
RGB
JPEG
img_00014_131c
3,072
4,096
RGB
JPEG
img_00015_4052
5,168
3,088
RGB
JPEG
img_00016_2883
4,729
2,661
RGB
JPEG
img_00017_c68f
4,000
6,000
RGB
JPEG
img_00018_51df
4,416
2,944
RGB
JPEG
img_00019_413b
4,741
3,140
RGB
JPEG
img_00020_3f4e
6,359
9,538
RGB
JPEG
img_00021_c719
3,888
2,592
RGB
JPEG
img_00022_ac69
5,385
8,077
RGB
JPEG
img_00023_08f1
3,888
5,184
RGB
JPEG
img_00024_31a5
4,000
2,250
RGB
JPEG
img_00025_c664
5,147
3,134
RGB
JPEG
img_00026_1950
5,949
3,966
RGB
JPEG
img_00027_d00e
4,000
6,000
RGB
JPEG
img_00028_4b12
3,890
5,786
RGB
JPEG
img_00029_8105
6,000
4,000
RGB
JPEG
img_00030_95f5
6,720
3,780
RGB
JPEG
img_00031_bae5
3,160
3,941
RGB
JPEG
img_00032_9b17
5,520
3,905
RGB
JPEG
img_00033_59b6
3,143
2,194
RGB
JPEG
img_00034_f8f4
3,813
5,719
RGB
JPEG
img_00035_b16a
4,978
3,319
RGB
JPEG
img_00036_b0f8
4,140
7,360
RGB
JPEG
img_00037_3592
9,504
6,336
RGB
JPEG
img_00038_8fae
6,240
4,160
RGB
JPEG
img_00039_3cb5
5,953
3,969
RGB
JPEG
img_00040_90c4
7,278
4,857
RGB
JPEG
img_00041_50c9
6,160
4,107
RGB
JPEG
img_00042_fca8
5,016
3,344
RGB
JPEG
img_00043_4815
5,016
3,344
RGB
JPEG
img_00044_f221
3,363
4,484
RGB
JPEG
img_00045_47f9
5,184
3,456
RGB
JPEG
img_00046_09f8
4,011
6,028
RGB
JPEG
img_00047_ec12
3,456
4,608
RGB
JPEG
img_00048_15cb
6,000
4,000
RGB
JPEG
img_00049_f069
6,000
3,376
RGB
JPEG
img_00050_891c
3,944
2,958
RGB
JPEG
img_00051_9cb1
4,000
6,000
RGB
JPEG
img_00052_5924
6,325
4,117
RGB
JPEG
img_00053_4094
7,482
4,991
RGB
JPEG
img_00054_673c
5,860
3,906
RGB
JPEG
img_00055_512c
5,710
3,807
RGB
JPEG
img_00056_e70e
6,240
4,160
RGB
JPEG
img_00057_b4f0
7,922
5,284
RGB
JPEG
img_00058_2ad3
4,382
6,573
RGB
JPEG
img_00059_b11e
2,869
3,586
RGB
JPEG
img_00060_ae85
4,864
3,243
RGB
JPEG
img_00061_c3ba
6,923
4,617
RGB
JPEG
img_00062_8e9b
4,738
3,159
RGB
JPEG
img_00063_6482
5,471
3,646
RGB
JPEG
img_00064_3947
4,160
6,240
RGB
JPEG
img_00065_8d77
5,390
3,594
RGB
JPEG
img_00066_4a39
6,555
4,372
RGB
JPEG
img_00067_87eb
5,474
3,598
RGB
JPEG
img_00068_72a2
4,083
6,124
RGB
JPEG
img_00069_aa63
5,184
3,071
RGB
JPEG
img_00070_eafb
6,711
4,474
RGB
JPEG
img_00071_79fb
3,247
5,040
RGB
JPEG
img_00072_1d53
2,003
3,560
RGB
JPEG
img_00073_d641
7,952
5,304
RGB
JPEG
img_00074_785a
8,000
6,000
RGB
JPEG
img_00075_b8df
5,568
3,712
RGB
JPEG
img_00076_36c2
5,170
3,866
RGB
JPEG
img_00077_71fb
3,857
5,785
RGB
JPEG
img_00078_842e
5,098
3,399
RGB
JPEG
img_00079_f337
3,976
6,533
RGB
JPEG
img_00080_a2af
3,712
5,568
RGB
JPEG
img_00081_a9e6
7,360
4,655
RGB
JPEG
img_00082_dd41
7,115
4,746
RGB
JPEG
img_00083_6cfa
4,669
7,000
RGB
JPEG
img_00084_9a88
3,648
5,472
RGB
JPEG
img_00085_645f
7,950
5,300
RGB
JPEG
img_00086_bd87
3,821
5,731
RGB
JPEG
img_00087_f18a
5,991
8,000
RGB
JPEG
img_00088_9fc7
2,848
4,288
RGB
JPEG
img_00089_b896
5,755
3,844
RGB
JPEG
img_00090_f466
5,123
7,680
RGB
JPEG
img_00091_6b43
4,000
6,000
RGB
JPEG
img_00092_ee2b
4,729
2,661
RGB
JPEG
img_00093_ddf4
5,846
3,890
RGB
JPEG
img_00094_6471
6,768
3,150
RGB
JPEG
img_00095_5641
5,464
3,640
RGB
JPEG
img_00096_d454
6,000
4,000
RGB
JPEG
img_00097_fbfb
5,760
3,840
RGB
JPEG
img_00098_a414
3,024
4,032
RGB
JPEG
img_00099_5b45
4,000
6,000
RGB
JPEG
img_00100_cf9b
5,564
3,477
RGB
JPEG
End of preview. Expand in Data Studio

Bridges

High resolution image subset from the Aesthetic-Train-V2 dataset, contains a collection of bridges from various parts of the world including many iconic landmark bridges.

Dataset Details

  • Curator: Roscosmos
  • Version: 1.0.0
  • Total Images: 760
  • Average Image Size (on disk): ~5.7 MB compressed
  • Primary Content: Bridges
  • Standardization: All images are standardized to RGB mode and saved at 95% quality for consistency.

Dataset Creation & Provenance

1. Original Master Dataset

This dataset is a subset derived from: zhang0jhon/Aesthetic-Train-V2

2. Iterative Curation Methodology

CLIP retrieval / manual curation.

Dataset Structure & Content

This dataset offers the following configurations/subsets:

  • Default (Full train data) configuration: Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration is train. Each example (row) in the dataset contains the following fields:

  • image: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.

  • unique_id: A unique identifier assigned to each image.

  • width: The width of the image in pixels (from the full-resolution image).

  • height: The height of the image in pixels (from the full-resolution image).

Usage

To download and load this dataset from the Hugging Face Hub:


from datasets import load_dataset, Dataset, DatasetDict

# Login using e.g. `huggingface-cli login` to access this dataset

# To load the full, high-resolution dataset (recommended for training):
# This will load the 'default' configuration's 'train' split.
ds_main = load_dataset("ROSCOSMOS/Bridges", "default")

print("Main Dataset (default config) loaded successfully!")
print(ds_main)
print(f"Type of loaded object: {type(ds_main)}")

if isinstance(ds_main, Dataset):
    print(f"Number of samples: {len(ds_main)}")
    print(f"Features: {ds_main.features}")
elif isinstance(ds_main, DatasetDict):
    print(f"Available splits: {list(ds_main.keys())}")
    for split_name, dataset_obj in ds_main.items():
        print(f"  Split '{split_name}': {len(dataset_obj)} samples")
        print(f"  Features of '{split_name}': {dataset_obj.features}")

Citation

@inproceedings{zhang2025diffusion4k,
    title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
    author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
    year={2025},
    booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}
@misc{zhang2025ultrahighresolutionimagesynthesis,
    title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
    author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
    year={2025},
    note={arXiv:2506.01331},
}

Disclaimer and Bias Considerations

Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.

Contact

N/A

Downloads last month
74