Datasets:
image
imagewidth (px) 2k
10.9k
| unique_id
stringlengths 14
14
| width
int32 2k
10.9k
| height
int32 2k
9.54k
| image_mode_on_disk
stringclasses 1
value | original_file_format
stringclasses 1
value |
---|---|---|---|---|---|
img_00001_345c
| 5,441 | 3,061 |
RGB
|
JPEG
|
|
img_00002_5c78
| 4,245 | 2,830 |
RGB
|
JPEG
|
|
img_00003_0018
| 4,803 | 3,197 |
RGB
|
JPEG
|
|
img_00004_bda2
| 3,969 | 5,954 |
RGB
|
JPEG
|
|
img_00005_252b
| 7,952 | 5,304 |
RGB
|
JPEG
|
|
img_00006_f7db
| 3,376 | 6,000 |
RGB
|
JPEG
|
|
img_00007_bf79
| 5,529 | 3,686 |
RGB
|
JPEG
|
|
img_00008_fd20
| 3,078 | 5,472 |
RGB
|
JPEG
|
|
img_00009_cdd0
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00010_4472
| 2,624 | 3,936 |
RGB
|
JPEG
|
|
img_00011_ce50
| 6,938 | 5,921 |
RGB
|
JPEG
|
|
img_00012_21c4
| 2,775 | 3,865 |
RGB
|
JPEG
|
|
img_00013_1878
| 10,938 | 6,153 |
RGB
|
JPEG
|
|
img_00014_131c
| 3,072 | 4,096 |
RGB
|
JPEG
|
|
img_00015_4052
| 5,168 | 3,088 |
RGB
|
JPEG
|
|
img_00016_2883
| 4,729 | 2,661 |
RGB
|
JPEG
|
|
img_00017_c68f
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00018_51df
| 4,416 | 2,944 |
RGB
|
JPEG
|
|
img_00019_413b
| 4,741 | 3,140 |
RGB
|
JPEG
|
|
img_00020_3f4e
| 6,359 | 9,538 |
RGB
|
JPEG
|
|
img_00021_c719
| 3,888 | 2,592 |
RGB
|
JPEG
|
|
img_00022_ac69
| 5,385 | 8,077 |
RGB
|
JPEG
|
|
img_00023_08f1
| 3,888 | 5,184 |
RGB
|
JPEG
|
|
img_00024_31a5
| 4,000 | 2,250 |
RGB
|
JPEG
|
|
img_00025_c664
| 5,147 | 3,134 |
RGB
|
JPEG
|
|
img_00026_1950
| 5,949 | 3,966 |
RGB
|
JPEG
|
|
img_00027_d00e
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00028_4b12
| 3,890 | 5,786 |
RGB
|
JPEG
|
|
img_00029_8105
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00030_95f5
| 6,720 | 3,780 |
RGB
|
JPEG
|
|
img_00031_bae5
| 3,160 | 3,941 |
RGB
|
JPEG
|
|
img_00032_9b17
| 5,520 | 3,905 |
RGB
|
JPEG
|
|
img_00033_59b6
| 3,143 | 2,194 |
RGB
|
JPEG
|
|
img_00034_f8f4
| 3,813 | 5,719 |
RGB
|
JPEG
|
|
img_00035_b16a
| 4,978 | 3,319 |
RGB
|
JPEG
|
|
img_00036_b0f8
| 4,140 | 7,360 |
RGB
|
JPEG
|
|
img_00037_3592
| 9,504 | 6,336 |
RGB
|
JPEG
|
|
img_00038_8fae
| 6,240 | 4,160 |
RGB
|
JPEG
|
|
img_00039_3cb5
| 5,953 | 3,969 |
RGB
|
JPEG
|
|
img_00040_90c4
| 7,278 | 4,857 |
RGB
|
JPEG
|
|
img_00041_50c9
| 6,160 | 4,107 |
RGB
|
JPEG
|
|
img_00042_fca8
| 5,016 | 3,344 |
RGB
|
JPEG
|
|
img_00043_4815
| 5,016 | 3,344 |
RGB
|
JPEG
|
|
img_00044_f221
| 3,363 | 4,484 |
RGB
|
JPEG
|
|
img_00045_47f9
| 5,184 | 3,456 |
RGB
|
JPEG
|
|
img_00046_09f8
| 4,011 | 6,028 |
RGB
|
JPEG
|
|
img_00047_ec12
| 3,456 | 4,608 |
RGB
|
JPEG
|
|
img_00048_15cb
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00049_f069
| 6,000 | 3,376 |
RGB
|
JPEG
|
|
img_00050_891c
| 3,944 | 2,958 |
RGB
|
JPEG
|
|
img_00051_9cb1
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00052_5924
| 6,325 | 4,117 |
RGB
|
JPEG
|
|
img_00053_4094
| 7,482 | 4,991 |
RGB
|
JPEG
|
|
img_00054_673c
| 5,860 | 3,906 |
RGB
|
JPEG
|
|
img_00055_512c
| 5,710 | 3,807 |
RGB
|
JPEG
|
|
img_00056_e70e
| 6,240 | 4,160 |
RGB
|
JPEG
|
|
img_00057_b4f0
| 7,922 | 5,284 |
RGB
|
JPEG
|
|
img_00058_2ad3
| 4,382 | 6,573 |
RGB
|
JPEG
|
|
img_00059_b11e
| 2,869 | 3,586 |
RGB
|
JPEG
|
|
img_00060_ae85
| 4,864 | 3,243 |
RGB
|
JPEG
|
|
img_00061_c3ba
| 6,923 | 4,617 |
RGB
|
JPEG
|
|
img_00062_8e9b
| 4,738 | 3,159 |
RGB
|
JPEG
|
|
img_00063_6482
| 5,471 | 3,646 |
RGB
|
JPEG
|
|
img_00064_3947
| 4,160 | 6,240 |
RGB
|
JPEG
|
|
img_00065_8d77
| 5,390 | 3,594 |
RGB
|
JPEG
|
|
img_00066_4a39
| 6,555 | 4,372 |
RGB
|
JPEG
|
|
img_00067_87eb
| 5,474 | 3,598 |
RGB
|
JPEG
|
|
img_00068_72a2
| 4,083 | 6,124 |
RGB
|
JPEG
|
|
img_00069_aa63
| 5,184 | 3,071 |
RGB
|
JPEG
|
|
img_00070_eafb
| 6,711 | 4,474 |
RGB
|
JPEG
|
|
img_00071_79fb
| 3,247 | 5,040 |
RGB
|
JPEG
|
|
img_00072_1d53
| 2,003 | 3,560 |
RGB
|
JPEG
|
|
img_00073_d641
| 7,952 | 5,304 |
RGB
|
JPEG
|
|
img_00074_785a
| 8,000 | 6,000 |
RGB
|
JPEG
|
|
img_00075_b8df
| 5,568 | 3,712 |
RGB
|
JPEG
|
|
img_00076_36c2
| 5,170 | 3,866 |
RGB
|
JPEG
|
|
img_00077_71fb
| 3,857 | 5,785 |
RGB
|
JPEG
|
|
img_00078_842e
| 5,098 | 3,399 |
RGB
|
JPEG
|
|
img_00079_f337
| 3,976 | 6,533 |
RGB
|
JPEG
|
|
img_00080_a2af
| 3,712 | 5,568 |
RGB
|
JPEG
|
|
img_00081_a9e6
| 7,360 | 4,655 |
RGB
|
JPEG
|
|
img_00082_dd41
| 7,115 | 4,746 |
RGB
|
JPEG
|
|
img_00083_6cfa
| 4,669 | 7,000 |
RGB
|
JPEG
|
|
img_00084_9a88
| 3,648 | 5,472 |
RGB
|
JPEG
|
|
img_00085_645f
| 7,950 | 5,300 |
RGB
|
JPEG
|
|
img_00086_bd87
| 3,821 | 5,731 |
RGB
|
JPEG
|
|
img_00087_f18a
| 5,991 | 8,000 |
RGB
|
JPEG
|
|
img_00088_9fc7
| 2,848 | 4,288 |
RGB
|
JPEG
|
|
img_00089_b896
| 5,755 | 3,844 |
RGB
|
JPEG
|
|
img_00090_f466
| 5,123 | 7,680 |
RGB
|
JPEG
|
|
img_00091_6b43
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00092_ee2b
| 4,729 | 2,661 |
RGB
|
JPEG
|
|
img_00093_ddf4
| 5,846 | 3,890 |
RGB
|
JPEG
|
|
img_00094_6471
| 6,768 | 3,150 |
RGB
|
JPEG
|
|
img_00095_5641
| 5,464 | 3,640 |
RGB
|
JPEG
|
|
img_00096_d454
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00097_fbfb
| 5,760 | 3,840 |
RGB
|
JPEG
|
|
img_00098_a414
| 3,024 | 4,032 |
RGB
|
JPEG
|
|
img_00099_5b45
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00100_cf9b
| 5,564 | 3,477 |
RGB
|
JPEG
|
Bridges
High resolution image subset from the Aesthetic-Train-V2 dataset, contains a collection of bridges from various parts of the world including many iconic landmark bridges.
Dataset Details
- Curator: Roscosmos
- Version: 1.0.0
- Total Images: 760
- Average Image Size (on disk): ~5.7 MB compressed
- Primary Content: Bridges
- Standardization: All images are standardized to RGB mode and saved at 95% quality for consistency.
Dataset Creation & Provenance
1. Original Master Dataset
This dataset is a subset derived from:
zhang0jhon/Aesthetic-Train-V2
- Link: https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
- Providence: Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
- Original License: MIT
2. Iterative Curation Methodology
CLIP retrieval / manual curation.
Dataset Structure & Content
This dataset offers the following configurations/subsets:
Default (Full
train
data) configuration: Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration istrain
. Each example (row) in the dataset contains the following fields:image
: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.unique_id
: A unique identifier assigned to each image.width
: The width of the image in pixels (from the full-resolution image).height
: The height of the image in pixels (from the full-resolution image).
Usage
To download and load this dataset from the Hugging Face Hub:
from datasets import load_dataset, Dataset, DatasetDict
# Login using e.g. `huggingface-cli login` to access this dataset
# To load the full, high-resolution dataset (recommended for training):
# This will load the 'default' configuration's 'train' split.
ds_main = load_dataset("ROSCOSMOS/Bridges", "default")
print("Main Dataset (default config) loaded successfully!")
print(ds_main)
print(f"Type of loaded object: {type(ds_main)}")
if isinstance(ds_main, Dataset):
print(f"Number of samples: {len(ds_main)}")
print(f"Features: {ds_main.features}")
elif isinstance(ds_main, DatasetDict):
print(f"Available splits: {list(ds_main.keys())}")
for split_name, dataset_obj in ds_main.items():
print(f" Split '{split_name}': {len(dataset_obj)} samples")
print(f" Features of '{split_name}': {dataset_obj.features}")
Citation
@inproceedings{zhang2025diffusion4k,
title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}
@misc{zhang2025ultrahighresolutionimagesynthesis,
title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
note={arXiv:2506.01331},
}
Disclaimer and Bias Considerations
Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
Contact
N/A
- Downloads last month
- 74