Dataset Viewer
Auto-converted to Parquet
sequence_id
string
sequence_name
string
sequence_first_terms
list
sequence_next_term
string
is_easy
int64
A000001
Number of groups of order n.
[ "0", "1", "1", "1", "2", "1", "2", "1", "5", "2", "2", "1", "5", "1", "2", "1", "14", "1", "5" ]
1
0
A000002
Kolakoski sequence: a(n) is length of n-th run; a(1) = 1; sequence consists just of 1's and 2's.
[ "1", "2", "2", "1", "1", "2", "1", "2", "2", "1", "2", "2", "1", "1", "2", "1", "1", "2", "2" ]
1
1
A000003
Number of classes of primitive positive definite binary quadratic forms of discriminant D = -4n; or equivalently the class number of the quadratic order of discriminant D = -4n.
[ "1", "1", "1", "1", "2", "2", "1", "2", "2", "2", "3", "2", "2", "4", "2", "2", "4", "2", "3" ]
4
1
A000004
The zero sequence.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
0
1
A000005
d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n.
[ "1", "2", "2", "3", "2", "4", "2", "4", "3", "4", "2", "6", "2", "4", "4", "5", "2", "6", "2" ]
6
1
A000006
Integer part of square root of n-th prime.
[ "1", "1", "2", "2", "3", "3", "4", "4", "4", "5", "5", "6", "6", "6", "6", "7", "7", "7", "8" ]
8
1
A000007
The characteristic function of {0}: a(n) = 0^n.
[ "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
0
1
A000008
Number of ways of making change for n cents using coins of 1, 2, 5, 10 cents.
[ "1", "1", "2", "2", "3", "4", "5", "6", "7", "8", "11", "12", "15", "16", "19", "22", "25", "28", "31" ]
34
1
A000009
Expansion of Product_{m >= 1} (1 + x^m); number of partitions of n into distinct parts; number of partitions of n into odd parts.
[ "1", "1", "1", "2", "2", "3", "4", "5", "6", "8", "10", "12", "15", "18", "22", "27", "32", "38", "46" ]
54
1
A000010
Euler totient function phi(n): count numbers <= n and prime to n.
[ "1", "1", "2", "2", "4", "2", "6", "4", "6", "4", "10", "4", "12", "6", "8", "8", "16", "6", "18" ]
8
1
A000011
Number of n-bead necklaces (turning over is allowed) where complements are equivalent.
[ "1", "1", "2", "2", "4", "4", "8", "9", "18", "23", "44", "63", "122", "190", "362", "612", "1162", "2056", "3914" ]
7155
1
A000012
The simplest sequence of positive numbers: the all 1's sequence.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
1
1
A000013
Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed.
[ "1", "1", "2", "2", "4", "4", "8", "10", "20", "30", "56", "94", "180", "316", "596", "1096", "2068", "3856", "7316" ]
13798
1
A000014
Number of series-reduced trees with n nodes.
[ "0", "1", "1", "0", "1", "1", "2", "2", "4", "5", "10", "14", "26", "42", "78", "132", "249", "445", "842" ]
1561
1
A000015
Smallest prime power >= n.
[ "1", "2", "3", "4", "5", "7", "7", "8", "9", "11", "11", "13", "13", "16", "16", "16", "17", "19", "19" ]
23
1
A000016
a(n) is the number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the last stage.
[ "1", "1", "1", "2", "2", "4", "6", "10", "16", "30", "52", "94", "172", "316", "586", "1096", "2048", "3856", "7286" ]
13798
1
A000017
Erroneous version of A032522.
[ "1", "0", "0", "2", "2", "4", "8", "4", "16", "12", "48", "80", "136", "420", "1240", "2872", "7652", "18104" ]
50184
0
A000018
Number of positive integers <= 2^n of form x^2 + 16*y^2.
[ "1", "1", "2", "2", "4", "8", "13", "25", "44", "83", "152", "286", "538", "1020", "1942", "3725", "7145", "13781", "26627" ]
51572
0
A000019
Number of primitive permutation groups of degree n.
[ "1", "1", "2", "2", "5", "4", "7", "7", "11", "9", "8", "6", "9", "4", "6", "22", "10", "4", "8" ]
4
0
A000020
Number of primitive polynomials of degree n over GF(2) (version 2).
[ "2", "1", "2", "2", "6", "6", "18", "16", "48", "60", "176", "144", "630", "756", "1800", "2048", "7710", "7776", "27594" ]
24000
0
A000021
Number of positive integers <= 2^n of form x^2 + 12 y^2.
[ "1", "1", "2", "2", "6", "9", "17", "30", "54", "98", "183", "341", "645", "1220", "2327", "4451", "8555", "16489", "31859" ]
61717
0
A000022
Number of centered hydrocarbons with n atoms.
[ "0", "1", "0", "1", "1", "2", "2", "6", "9", "20", "37", "86", "181", "422", "943", "2223", "5225", "12613", "30513" ]
74883
1
A000023
Expansion of e.g.f. exp(-2*x)/(1-x).
[ "1", "-1", "2", "-2", "8", "8", "112", "656", "5504", "49024", "491264", "5401856", "64826368", "842734592", "11798300672", "176974477312", "2831591702528", "48137058811904", "866467058876416" ]
16462874118127616
1
A000024
Number of positive integers <= 2^n of form x^2 + 10 y^2.
[ "1", "1", "2", "2", "7", "10", "20", "36", "65", "118", "221", "409", "776", "1463", "2788", "5328", "10222", "19714", "38054" ]
73685
0
A000025
Coefficients of the 3rd-order mock theta function f(q).
[ "1", "1", "-2", "3", "-3", "3", "-5", "7", "-6", "6", "-10", "12", "-11", "13", "-17", "20", "-21", "21", "-27" ]
34
1
A000026
Mosaic numbers or multiplicative projection of n: if n = Product (p_j^k_j) then a(n) = Product (p_j * k_j).
[ "1", "2", "3", "4", "5", "6", "7", "6", "6", "10", "11", "12", "13", "14", "15", "8", "17", "12", "19" ]
20
1
A000027
The positive integers. Also called the natural numbers, the whole numbers or the counting numbers, but these terms are ambiguous.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19" ]
20
1
A000028
Let k = p_1^e_1 p_2^e_2 p_3^e_3 ... be the prime factorization of n. Sequence gives k such that the sum of the numbers of 1's in the binary expansions of e_1, e_2, e_3, ... is odd.
[ "2", "3", "4", "5", "7", "9", "11", "13", "16", "17", "19", "23", "24", "25", "29", "30", "31", "37", "40" ]
41
1
A000029
Number of necklaces with n beads of 2 colors, allowing turning over (these are also called bracelets).
[ "1", "2", "3", "4", "6", "8", "13", "18", "30", "46", "78", "126", "224", "380", "687", "1224", "2250", "4112", "7685" ]
14310
1
A000030
Initial digit of n.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
1
1
A000031
Number of n-bead necklaces with 2 colors when turning over is not allowed; also number of output sequences from a simple n-stage cycling shift register; also number of binary irreducible polynomials whose degree divides n.
[ "1", "2", "3", "4", "6", "8", "14", "20", "36", "60", "108", "188", "352", "632", "1182", "2192", "4116", "7712", "14602" ]
27596
1
A000032
Lucas numbers beginning at 2: L(n) = L(n-1) + L(n-2), L(0) = 2, L(1) = 1.
[ "2", "1", "3", "4", "7", "11", "18", "29", "47", "76", "123", "199", "322", "521", "843", "1364", "2207", "3571", "5778" ]
9349
1
A000033
Coefficients of ménage hit polynomials.
[ "0", "2", "3", "4", "40", "210", "1477", "11672", "104256", "1036050", "11338855", "135494844", "1755206648", "24498813794", "366526605705", "5851140525680", "99271367764480", "1783734385752162", "33837677493828171" ]
675799125332580020
1
A000034
Period 2: repeat [1, 2]; a(n) = 1 + (n mod 2).
[ "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "1", "2", "1" ]
2
1
A000035
Period 2: repeat [0, 1]; a(n) = n mod 2; parity of n.
[ "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0" ]
1
1
A000036
Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); A000099 gives values of n where |P(n)| sets a new record; sequence gives closest integer to P(A000099(n)).
[ "2", "3", "5", "6", "6", "-6", "7", "8", "10", "13", "13", "13", "14", "-17", "17", "17", "18", "-19", "20" ]
-22
0
A000037
Numbers that are not squares (or, the nonsquares).
[ "2", "3", "5", "6", "7", "8", "10", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23" ]
24
1
A000038
Twice A000007.
[ "2", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
0
1
A000039
Coefficient of q^(2n) in the series expansion of Ramanujan's mock theta function f(q).
[ "1", "-2", "-3", "-5", "-6", "-10", "-11", "-17", "-21", "-27", "-33", "-46", "-53", "-68", "-82", "-104", "-123", "-154", "-179" ]
-221
0
A000040
The prime numbers.
[ "2", "3", "5", "7", "11", "13", "17", "19", "23", "29", "31", "37", "41", "43", "47", "53", "59", "61", "67" ]
71
1
A000041
a(n) is the number of partitions of n (the partition numbers).
[ "1", "1", "2", "3", "5", "7", "11", "15", "22", "30", "42", "56", "77", "101", "135", "176", "231", "297", "385" ]
490
1
A000042
Unary representation of natural numbers.
[ "1", "11", "111", "1111", "11111", "111111", "1111111", "11111111", "111111111", "1111111111", "11111111111", "111111111111", "1111111111111", "11111111111111", "111111111111111", "1111111111111111", "11111111111111111", "111111111111111111", "1111111111111111111" ]
11111111111111111111
1
A000043
Mersenne exponents: primes p such that 2^p - 1 is prime. Then 2^p - 1 is called a Mersenne prime.
[ "2", "3", "5", "7", "13", "17", "19", "31", "61", "89", "107", "127", "521", "607", "1279", "2203", "2281", "3217", "4253" ]
4423
0
A000044
Dying rabbits: a(0) = 1; for 1 <= n <= 12, a(n) = Fibonacci(n); for n >= 13, a(n) = a(n-1) + a(n-2) - a(n-13).
[ "1", "1", "1", "2", "3", "5", "8", "13", "21", "34", "55", "89", "144", "232", "375", "606", "979", "1582", "2556" ]
4130
1
A000045
Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
[ "0", "1", "1", "2", "3", "5", "8", "13", "21", "34", "55", "89", "144", "233", "377", "610", "987", "1597", "2584" ]
4181
1
A000046
Number of primitive n-bead necklaces (turning over is allowed) where complements are equivalent.
[ "1", "1", "1", "1", "2", "3", "5", "8", "14", "21", "39", "62", "112", "189", "352", "607", "1144", "2055", "3885" ]
7154
1
A000047
Number of integers <= 2^n of form x^2 - 2y^2.
[ "1", "2", "3", "5", "8", "15", "26", "48", "87", "161", "299", "563", "1066", "2030", "3885", "7464", "14384", "27779", "53782" ]
104359
0
A000048
Number of n-bead necklaces with beads of 2 colors and primitive period n, when turning over is not allowed but the two colors can be interchanged.
[ "1", "1", "1", "1", "2", "3", "5", "9", "16", "28", "51", "93", "170", "315", "585", "1091", "2048", "3855", "7280" ]
13797
1
A000049
Number of positive integers <= 2^n of the form 3*x^2 + 4*y^2.
[ "0", "0", "2", "3", "5", "9", "16", "29", "53", "98", "181", "341", "640", "1218", "2321", "4449", "8546", "16482", "31845" ]
61707
0
A000050
Number of positive integers <= 2^n of form x^2 + y^2.
[ "1", "2", "3", "5", "9", "16", "29", "54", "97", "180", "337", "633", "1197", "2280", "4357", "8363", "16096", "31064", "60108" ]
116555
0
A000051
a(n) = 2^n + 1.
[ "2", "3", "5", "9", "17", "33", "65", "129", "257", "513", "1025", "2049", "4097", "8193", "16385", "32769", "65537", "131073", "262145" ]
524289
1
A000052
1-digit numbers arranged in alphabetical order, then the 2-digit numbers arranged in alphabetical order, then the 3-digit numbers, etc.
[ "8", "5", "4", "9", "1", "7", "6", "3", "2", "0", "18", "80", "88", "85", "84", "89", "81", "87", "86" ]
83
0
A000053
Local stops on New York City 1 Train (Broadway-7 Avenue Local) subway.
[ "14", "18", "23", "28", "34", "42", "50", "59", "66", "72", "79", "86", "96", "103", "110", "116", "125", "137", "145" ]
157
0
A000054
Local stops on New York City A line subway.
[ "4", "14", "23", "34", "42", "50", "59", "72", "81", "86", "96", "103", "110", "116", "125", "135", "145", "155", "163" ]
168
0
A000055
Number of trees with n unlabeled nodes.
[ "1", "1", "1", "1", "2", "3", "6", "11", "23", "47", "106", "235", "551", "1301", "3159", "7741", "19320", "48629", "123867" ]
317955
1
A000056
Order of the group SL(2,Z_n).
[ "1", "6", "24", "48", "120", "144", "336", "384", "648", "720", "1320", "1152", "2184", "2016", "2880", "3072", "4896", "3888", "6840" ]
5760
1
A000057
Primes dividing all Fibonacci sequences.
[ "2", "3", "7", "23", "43", "67", "83", "103", "127", "163", "167", "223", "227", "283", "367", "383", "443", "463", "467" ]
487
0
A000058
Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(0) = 2.
[ "2", "3", "7", "43", "1807", "3263443", "10650056950807", "113423713055421844361000443" ]
12864938683278671740537145998360961546653259485195807
0
A000059
Numbers k such that (2k)^4 + 1 is prime.
[ "1", "2", "3", "8", "10", "12", "14", "17", "23", "24", "27", "28", "37", "40", "41", "44", "45", "53", "59" ]
66
1
A000060
Number of signed trees with n nodes.
[ "1", "2", "3", "10", "27", "98", "350", "1402", "5743", "24742", "108968", "492638", "2266502", "10600510", "50235931", "240882152", "1166732814", "5702046382", "28088787314" ]
139355139206
0
A000061
Generalized tangent numbers d(n,1).
[ "1", "1", "2", "4", "4", "6", "8", "8", "12", "14", "14", "16", "20", "20", "24", "32", "24", "30", "38" ]
32
0
A000062
A Beatty sequence: a(n) = floor(n/(e-2)).
[ "1", "2", "4", "5", "6", "8", "9", "11", "12", "13", "15", "16", "18", "19", "20", "22", "23", "25", "26" ]
27
0
A000063
Symmetrical dissections of an n-gon.
[ "1", "1", "2", "4", "5", "14", "14", "39", "42", "132", "132", "424", "429", "1428", "1430", "4848", "4862", "16796", "16796" ]
58739
0
A000064
Partial sums of (unordered) ways of making change for n cents using coins of 1, 2, 5, 10 cents.
[ "1", "2", "4", "6", "9", "13", "18", "24", "31", "39", "50", "62", "77", "93", "112", "134", "159", "187", "218" ]
252
1
A000065
-1 + number of partitions of n.
[ "0", "0", "1", "2", "4", "6", "10", "14", "21", "29", "41", "55", "76", "100", "134", "175", "230", "296", "384" ]
489
1
A000066
Smallest number of vertices in trivalent graph with girth (shortest cycle) = n.
[ "4", "6", "10", "14", "24", "30", "58", "70", "112" ]
126
0
A000067
Number of positive integers <= 2^n of form x^2 + 2 y^2.
[ "1", "2", "4", "6", "10", "18", "33", "60", "111", "205", "385", "725", "1374", "2610", "4993", "9578", "18426", "35568", "68806" ]
133411
0
A000068
Numbers k such that k^4 + 1 is prime.
[ "1", "2", "4", "6", "16", "20", "24", "28", "34", "46", "48", "54", "56", "74", "80", "82", "88", "90", "106" ]
118
1
A000069
Odious numbers: numbers with an odd number of 1's in their binary expansion.
[ "1", "2", "4", "7", "8", "11", "13", "14", "16", "19", "21", "22", "25", "26", "28", "31", "32", "35", "37" ]
38
1
A000070
a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041).
[ "1", "2", "4", "7", "12", "19", "30", "45", "67", "97", "139", "195", "272", "373", "508", "684", "915", "1212", "1597" ]
2087
1
A000071
a(n) = Fibonacci(n) - 1.
[ "0", "0", "1", "2", "4", "7", "12", "20", "33", "54", "88", "143", "232", "376", "609", "986", "1596", "2583", "4180" ]
6764
1
A000072
Number of positive integers <= 2^n of form x^2 + 4 y^2.
[ "1", "1", "2", "4", "7", "12", "22", "41", "72", "137", "254", "476", "901", "1716", "3274", "6286", "12090", "23331", "45140" ]
87511
0
A000073
Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) for n >= 3 with a(0) = a(1) = 0 and a(2) = 1.
[ "0", "0", "1", "1", "2", "4", "7", "13", "24", "44", "81", "149", "274", "504", "927", "1705", "3136", "5768", "10609" ]
19513
1
A000074
Number of odd integers <= 2^n of form x^2 + y^2.
[ "1", "1", "2", "4", "7", "13", "25", "43", "83", "157", "296", "564", "1083", "2077", "4006", "7733", "14968", "29044", "56447" ]
109864
0
A000075
Number of positive integers <= 2^n of form 2 x^2 + 3 y^2.
[ "0", "1", "2", "4", "7", "14", "23", "42", "76", "139", "258", "482", "907", "1717", "3269", "6257", "12020", "23171", "44762" ]
86683
0
A000076
Number of integers <= 2^n of form 4 x^2 + 4 x y + 5 y^2.
[ "0", "0", "1", "2", "4", "7", "14", "24", "43", "82", "149", "284", "534", "1015", "1937", "3713", "7136", "13759", "26597" ]
51537
0
A000077
Number of positive integers <= 2^n of form x^2 + 6 y^2.
[ "1", "1", "2", "4", "8", "13", "24", "42", "76", "140", "257", "483", "907", "1717", "3272", "6261", "12027", "23172", "44769" ]
86708
0
A000078
Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) for n >= 4 with a(0) = a(1) = a(2) = 0 and a(3) = 1.
[ "0", "0", "0", "1", "1", "2", "4", "8", "15", "29", "56", "108", "208", "401", "773", "1490", "2872", "5536", "10671" ]
20569
1
A000079
Powers of 2: a(n) = 2^n.
[ "1", "2", "4", "8", "16", "32", "64", "128", "256", "512", "1024", "2048", "4096", "8192", "16384", "32768", "65536", "131072", "262144" ]
524288
1
A000080
Number of nonisomorphic minimal triangle graphs.
[ "1", "1", "2", "4", "9", "19", "48", "117", "307", "821", "2277", "6437", "18634", "54775", "163703", "495529", "1518706", "4703848", "14714754" ]
46444979
0
A000081
Number of unlabeled rooted trees with n nodes (or connected functions with a fixed point).
[ "0", "1", "1", "2", "4", "9", "20", "48", "115", "286", "719", "1842", "4766", "12486", "32973", "87811", "235381", "634847", "1721159" ]
4688676
1
A000082
a(n) = n^2*Product_{p|n} (1 + 1/p).
[ "1", "6", "12", "24", "30", "72", "56", "96", "108", "180", "132", "288", "182", "336", "360", "384", "306", "648", "380" ]
720
1
A000083
Number of mixed Husimi trees with n nodes; or polygonal cacti with bridges.
[ "1", "1", "1", "2", "4", "9", "23", "63", "188", "596", "1979", "6804", "24118", "87379", "322652", "1209808", "4596158", "17657037", "68497898" ]
268006183
0
A000084
Number of series-parallel networks with n unlabeled edges. Also called yoke-chains by Cayley and MacMahon.
[ "1", "2", "4", "10", "24", "66", "180", "522", "1532", "4624", "14136", "43930", "137908", "437502", "1399068", "4507352", "14611576", "47633486", "156047204" ]
513477502
1
A000085
Number of self-inverse permutations on n letters, also known as involutions; number of standard Young tableaux with n cells.
[ "1", "1", "2", "4", "10", "26", "76", "232", "764", "2620", "9496", "35696", "140152", "568504", "2390480", "10349536", "46206736", "211799312", "997313824" ]
4809701440
1
A000086
Number of solutions to x^2 - x + 1 == 0 (mod n).
[ "1", "0", "1", "0", "0", "0", "2", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "2" ]
0
1
A000087
Number of unrooted nonseparable planar maps with n edges and a distinguished face.
[ "2", "1", "2", "4", "10", "37", "138", "628", "2972", "14903", "76994", "409594", "2222628", "12281570", "68864086", "391120036", "2246122574", "13025721601", "76194378042" ]
449155863868
0
A000088
Number of simple graphs on n unlabeled nodes.
[ "1", "1", "2", "4", "11", "34", "156", "1044", "12346", "274668", "12005168", "1018997864", "165091172592", "50502031367952", "29054155657235488", "31426485969804308768", "64001015704527557894928", "245935864153532932683719776", "1787577725145611700547878190848" ]
24637809253125004524383007491432768
0
A000089
Number of solutions to x^2 + 1 == 0 (mod n).
[ "1", "1", "0", "0", "2", "0", "0", "0", "0", "2", "0", "0", "2", "0", "0", "0", "2", "0", "0" ]
0
0
A000090
Expansion of e.g.f. exp((-x^3)/3)/(1-x).
[ "1", "1", "2", "4", "16", "80", "520", "3640", "29120", "259840", "2598400", "28582400", "343235200", "4462057600", "62468806400", "936987251200", "14991796019200", "254860532326400", "4587501779660800" ]
87162533813555200
1
A000091
Multiplicative with a(2^e) = 2 for k >= 1; a(3) = 2, a(3^e) = 0 for k >= 2; a(p^e) = 0 if p > 3 and p == -1 (mod 3); a(p^e) = 2 if p > 3 and p == 1 (mod 3).
[ "1", "2", "2", "2", "0", "4", "2", "2", "0", "0", "0", "4", "2", "4", "0", "2", "0", "0", "2" ]
0
1
A000092
Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)Pi*n^(3/2), P(n) = A(n) - V(n); sequence gives values of n where |P(n)| sets a new record.
[ "1", "2", "5", "6", "14", "21", "29", "30", "54", "90", "134", "155", "174", "230", "234", "251", "270", "342", "374" ]
461
0
A000093
a(n) = floor(n^(3/2)).
[ "0", "1", "2", "5", "8", "11", "14", "18", "22", "27", "31", "36", "41", "46", "52", "58", "64", "70", "76" ]
82
1
A000094
Number of trees of diameter 4.
[ "0", "0", "0", "0", "1", "2", "5", "8", "14", "21", "32", "45", "65", "88", "121", "161", "215", "280", "367" ]
471
0
A000095
Number of fixed points of GAMMA_0 (n) of type i.
[ "1", "2", "0", "0", "2", "0", "0", "0", "0", "4", "0", "0", "2", "0", "0", "0", "2", "0", "0" ]
0
1
A000096
a(n) = n*(n+3)/2.
[ "0", "2", "5", "9", "14", "20", "27", "35", "44", "54", "65", "77", "90", "104", "119", "135", "152", "170", "189" ]
209
1
A000097
Number of partitions of n if there are two kinds of 1's and two kinds of 2's.
[ "1", "2", "5", "9", "17", "28", "47", "73", "114", "170", "253", "365", "525", "738", "1033", "1422", "1948", "2634", "3545" ]
4721
1
A000098
Number of partitions of n if there are two kinds of 1, two kinds of 2 and two kinds of 3.
[ "1", "2", "5", "10", "19", "33", "57", "92", "147", "227", "345", "512", "752", "1083", "1545", "2174", "3031", "4179", "5719" ]
7752
1
A000099
Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); sequence gives values of n where |P(n)| sets a new record.
[ "1", "2", "5", "10", "20", "24", "26", "41", "53", "130", "149", "205", "234", "287", "340", "410", "425", "480", "586" ]
840
0
A000100
a(n) is the number of compositions of n in which the maximal part is 3.
[ "0", "0", "0", "1", "2", "5", "11", "23", "47", "94", "185", "360", "694", "1328", "2526", "4781", "9012", "16929", "31709" ]
59247
1
End of preview. Expand in Data Studio

OEIS Next Term Prediction Dataset

This dataset provides a benchmark for evaluating models on their ability to predict the next term in integer sequences sourced from the Online Encyclopedia of Integer Sequences (OEIS).

Introduction

This dataset introduces a new benchmark focused on integer sequence prediction, leveraging the vast database of integer sequences from the Online Encyclopedia of Integer Sequences (OEIS). This dataset aims to facilitate the assessment of a model's ability to infer patterns and predict the subsequent term in a given integer sequence.

The dataset includes sequences categorised for two distinct benchmark difficulties: an "easy" benchmark and a "regular" benchmark. For each sequence, the task is to predict the 20th term, or the final term if the sequence is shorter than 20 elements, given its initial terms. This dataset is designed to be readily used by external evaluation scripts to assess model performance.

Dataset Preparation & Schema

The data has been preprocessed from the original OEIS dataset. Duplicate sequence_first_terms have been removed to ensure unicity. Sequences with fewer than 8 elements have also been removed.

The dataset's schema is designed to provide clear inputs and targets for next-term prediction tasks. Here's a breakdown of each column:

  • sequence_id (string): This is the unique identifier for each sequence, directly corresponding to its "A-number" from the OEIS database (e.g., "A000045"). It's useful for cross-referencing with the original OEIS entries.
  • sequence_name (string): The brief description of the integer sequence as provided by OEIS (e.g., "Fibonacci numbers"). This gives context to the sequence. If included in your model's prompt, it can significantly aid in predicting the next term.
  • sequence_first_terms (list[int]): This is the input for your models. It's a list of integers representing the initial terms of the sequence. These sequences have been pre-processed: they're truncated to a maximum of 19 terms, and only sequences with at least 7 terms in this list are included. This means models will always receive a sufficiently long prefix to make a prediction.
  • sequence_next_term (int): This is the target for your models. It's the single integer value that represents the true next term in the sequence, following directly from sequence_first_terms.
  • is_easy (bool): A boolean flag indicating the estimated difficulty of the sequence. True means the original OEIS entry for this sequence was tagged with the keyword "easy," while False indicates a "regular" difficulty. This allows you to evaluate model performance on different challenge levels.

How to Use

You can easily load this dataset using the Hugging Face datasets library:

from datasets import load_dataset

dataset = load_dataset("RenaudGaudron/oeis-sequences-benchmark")
print(dataset)

License

  • MIT License.

OEIS End-User License

This dataset uses data from the Online Encyclopedia of Integer Sequences (OEIS). Please refer to the OEIS End-User License for terms of use related to the source data: http://oeis.org/LICENSE

Acknowledgements

This project leverages the incredible work of various communities. We extend our sincere gratitude to:

  • Hugging Face: For their platform and invaluable datasets library, which hosts and facilitates the use of this benchmark.
  • The Online Encyclopedia of Integer Sequences (OEIS): For providing the rich database of integer sequences that forms the basis of this benchmark dataset.
  • Christopher Akiki: For uploading the structured OEIS dataset to Hugging Face.
  • The Python Community: For the rich ecosystem of libraries that enabled the dataset's creation.
Downloads last month
77