| sequence_id
				 string | sequence_name
				 string | sequence_first_terms
				 list | sequence_next_term
				 string | is_easy
				 int64 | 
|---|---|---|---|---|
| 
	A000001 | 
	Number of groups of order n. | 
	[
  "0",
  "1",
  "1",
  "1",
  "2",
  "1",
  "2",
  "1",
  "5",
  "2",
  "2",
  "1",
  "5",
  "1",
  "2",
  "1",
  "14",
  "1",
  "5"
] | 
	1 | 0 | 
| 
	A000002 | 
	Kolakoski sequence: a(n) is length of n-th run; a(1) = 1; sequence consists just of 1's and 2's. | 
	[
  "1",
  "2",
  "2",
  "1",
  "1",
  "2",
  "1",
  "2",
  "2",
  "1",
  "2",
  "2",
  "1",
  "1",
  "2",
  "1",
  "1",
  "2",
  "2"
] | 
	1 | 1 | 
| 
	A000003 | 
	Number of classes of primitive positive definite binary quadratic forms of discriminant D = -4n; or equivalently the class number of the quadratic order of discriminant D = -4n. | 
	[
  "1",
  "1",
  "1",
  "1",
  "2",
  "2",
  "1",
  "2",
  "2",
  "2",
  "3",
  "2",
  "2",
  "4",
  "2",
  "2",
  "4",
  "2",
  "3"
] | 
	4 | 1 | 
| 
	A000004 | 
	The zero sequence. | 
	[
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0"
] | 
	0 | 1 | 
| 
	A000005 | 
	d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n. | 
	[
  "1",
  "2",
  "2",
  "3",
  "2",
  "4",
  "2",
  "4",
  "3",
  "4",
  "2",
  "6",
  "2",
  "4",
  "4",
  "5",
  "2",
  "6",
  "2"
] | 
	6 | 1 | 
| 
	A000006 | 
	Integer part of square root of n-th prime. | 
	[
  "1",
  "1",
  "2",
  "2",
  "3",
  "3",
  "4",
  "4",
  "4",
  "5",
  "5",
  "6",
  "6",
  "6",
  "6",
  "7",
  "7",
  "7",
  "8"
] | 
	8 | 1 | 
| 
	A000007 | 
	The characteristic function of {0}: a(n) = 0^n. | 
	[
  "1",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0"
] | 
	0 | 1 | 
| 
	A000008 | 
	Number of ways of making change for n cents using coins of 1, 2, 5, 10 cents. | 
	[
  "1",
  "1",
  "2",
  "2",
  "3",
  "4",
  "5",
  "6",
  "7",
  "8",
  "11",
  "12",
  "15",
  "16",
  "19",
  "22",
  "25",
  "28",
  "31"
] | 
	34 | 1 | 
| 
	A000009 | 
	Expansion of Product_{m >= 1} (1 + x^m); number of partitions of n into distinct parts; number of partitions of n into odd parts. | 
	[
  "1",
  "1",
  "1",
  "2",
  "2",
  "3",
  "4",
  "5",
  "6",
  "8",
  "10",
  "12",
  "15",
  "18",
  "22",
  "27",
  "32",
  "38",
  "46"
] | 
	54 | 1 | 
| 
	A000010 | 
	Euler totient function phi(n): count numbers <= n and prime to n. | 
	[
  "1",
  "1",
  "2",
  "2",
  "4",
  "2",
  "6",
  "4",
  "6",
  "4",
  "10",
  "4",
  "12",
  "6",
  "8",
  "8",
  "16",
  "6",
  "18"
] | 
	8 | 1 | 
| 
	A000011 | 
	Number of n-bead necklaces (turning over is allowed) where complements are equivalent. | 
	[
  "1",
  "1",
  "2",
  "2",
  "4",
  "4",
  "8",
  "9",
  "18",
  "23",
  "44",
  "63",
  "122",
  "190",
  "362",
  "612",
  "1162",
  "2056",
  "3914"
] | 
	7155 | 1 | 
| 
	A000012 | 
	The simplest sequence of positive numbers: the all 1's sequence. | 
	[
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1"
] | 
	1 | 1 | 
| 
	A000013 | 
	Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed. | 
	[
  "1",
  "1",
  "2",
  "2",
  "4",
  "4",
  "8",
  "10",
  "20",
  "30",
  "56",
  "94",
  "180",
  "316",
  "596",
  "1096",
  "2068",
  "3856",
  "7316"
] | 
	13798 | 1 | 
| 
	A000014 | 
	Number of series-reduced trees with n nodes. | 
	[
  "0",
  "1",
  "1",
  "0",
  "1",
  "1",
  "2",
  "2",
  "4",
  "5",
  "10",
  "14",
  "26",
  "42",
  "78",
  "132",
  "249",
  "445",
  "842"
] | 
	1561 | 1 | 
| 
	A000015 | 
	Smallest prime power >= n. | 
	[
  "1",
  "2",
  "3",
  "4",
  "5",
  "7",
  "7",
  "8",
  "9",
  "11",
  "11",
  "13",
  "13",
  "16",
  "16",
  "16",
  "17",
  "19",
  "19"
] | 
	23 | 1 | 
| 
	A000016 | 
	a(n) is the number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the last stage. | 
	[
  "1",
  "1",
  "1",
  "2",
  "2",
  "4",
  "6",
  "10",
  "16",
  "30",
  "52",
  "94",
  "172",
  "316",
  "586",
  "1096",
  "2048",
  "3856",
  "7286"
] | 
	13798 | 1 | 
| 
	A000017 | 
	Erroneous version of A032522. | 
	[
  "1",
  "0",
  "0",
  "2",
  "2",
  "4",
  "8",
  "4",
  "16",
  "12",
  "48",
  "80",
  "136",
  "420",
  "1240",
  "2872",
  "7652",
  "18104"
] | 
	50184 | 0 | 
| 
	A000018 | 
	Number of positive integers <= 2^n of form x^2 + 16*y^2. | 
	[
  "1",
  "1",
  "2",
  "2",
  "4",
  "8",
  "13",
  "25",
  "44",
  "83",
  "152",
  "286",
  "538",
  "1020",
  "1942",
  "3725",
  "7145",
  "13781",
  "26627"
] | 
	51572 | 0 | 
| 
	A000019 | 
	Number of primitive permutation groups of degree n. | 
	[
  "1",
  "1",
  "2",
  "2",
  "5",
  "4",
  "7",
  "7",
  "11",
  "9",
  "8",
  "6",
  "9",
  "4",
  "6",
  "22",
  "10",
  "4",
  "8"
] | 
	4 | 0 | 
| 
	A000020 | 
	Number of primitive polynomials of degree n over GF(2) (version 2). | 
	[
  "2",
  "1",
  "2",
  "2",
  "6",
  "6",
  "18",
  "16",
  "48",
  "60",
  "176",
  "144",
  "630",
  "756",
  "1800",
  "2048",
  "7710",
  "7776",
  "27594"
] | 
	24000 | 0 | 
| 
	A000021 | 
	Number of positive integers <= 2^n of form x^2 + 12 y^2. | 
	[
  "1",
  "1",
  "2",
  "2",
  "6",
  "9",
  "17",
  "30",
  "54",
  "98",
  "183",
  "341",
  "645",
  "1220",
  "2327",
  "4451",
  "8555",
  "16489",
  "31859"
] | 
	61717 | 0 | 
| 
	A000022 | 
	Number of centered hydrocarbons with n atoms. | 
	[
  "0",
  "1",
  "0",
  "1",
  "1",
  "2",
  "2",
  "6",
  "9",
  "20",
  "37",
  "86",
  "181",
  "422",
  "943",
  "2223",
  "5225",
  "12613",
  "30513"
] | 
	74883 | 1 | 
| 
	A000023 | 
	Expansion of e.g.f. exp(-2*x)/(1-x). | 
	[
  "1",
  "-1",
  "2",
  "-2",
  "8",
  "8",
  "112",
  "656",
  "5504",
  "49024",
  "491264",
  "5401856",
  "64826368",
  "842734592",
  "11798300672",
  "176974477312",
  "2831591702528",
  "48137058811904",
  "866467058876416"
] | 
	16462874118127616 | 1 | 
| 
	A000024 | 
	Number of positive integers <= 2^n of form x^2 + 10 y^2. | 
	[
  "1",
  "1",
  "2",
  "2",
  "7",
  "10",
  "20",
  "36",
  "65",
  "118",
  "221",
  "409",
  "776",
  "1463",
  "2788",
  "5328",
  "10222",
  "19714",
  "38054"
] | 
	73685 | 0 | 
| 
	A000025 | 
	Coefficients of the 3rd-order mock theta function f(q). | 
	[
  "1",
  "1",
  "-2",
  "3",
  "-3",
  "3",
  "-5",
  "7",
  "-6",
  "6",
  "-10",
  "12",
  "-11",
  "13",
  "-17",
  "20",
  "-21",
  "21",
  "-27"
] | 
	34 | 1 | 
| 
	A000026 | 
	Mosaic numbers or multiplicative projection of n: if n = Product (p_j^k_j) then a(n) = Product (p_j * k_j). | 
	[
  "1",
  "2",
  "3",
  "4",
  "5",
  "6",
  "7",
  "6",
  "6",
  "10",
  "11",
  "12",
  "13",
  "14",
  "15",
  "8",
  "17",
  "12",
  "19"
] | 
	20 | 1 | 
| 
	A000027 | 
	The positive integers. Also called the natural numbers, the whole numbers or the counting numbers, but these terms are ambiguous. | 
	[
  "1",
  "2",
  "3",
  "4",
  "5",
  "6",
  "7",
  "8",
  "9",
  "10",
  "11",
  "12",
  "13",
  "14",
  "15",
  "16",
  "17",
  "18",
  "19"
] | 
	20 | 1 | 
| 
	A000028 | 
	Let k = p_1^e_1 p_2^e_2 p_3^e_3 ... be the prime factorization of n. Sequence gives k such that the sum of the numbers of 1's in the binary expansions of e_1, e_2, e_3, ... is odd. | 
	[
  "2",
  "3",
  "4",
  "5",
  "7",
  "9",
  "11",
  "13",
  "16",
  "17",
  "19",
  "23",
  "24",
  "25",
  "29",
  "30",
  "31",
  "37",
  "40"
] | 
	41 | 1 | 
| 
	A000029 | 
	Number of necklaces with n beads of 2 colors, allowing turning over (these are also called bracelets). | 
	[
  "1",
  "2",
  "3",
  "4",
  "6",
  "8",
  "13",
  "18",
  "30",
  "46",
  "78",
  "126",
  "224",
  "380",
  "687",
  "1224",
  "2250",
  "4112",
  "7685"
] | 
	14310 | 1 | 
| 
	A000030 | 
	Initial digit of n. | 
	[
  "0",
  "1",
  "2",
  "3",
  "4",
  "5",
  "6",
  "7",
  "8",
  "9",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1",
  "1"
] | 
	1 | 1 | 
| 
	A000031 | 
	Number of n-bead necklaces with 2 colors when turning over is not allowed; also number of output sequences from a simple n-stage cycling shift register; also number of binary irreducible polynomials whose degree divides n. | 
	[
  "1",
  "2",
  "3",
  "4",
  "6",
  "8",
  "14",
  "20",
  "36",
  "60",
  "108",
  "188",
  "352",
  "632",
  "1182",
  "2192",
  "4116",
  "7712",
  "14602"
] | 
	27596 | 1 | 
| 
	A000032 | 
	Lucas numbers beginning at 2: L(n) = L(n-1) + L(n-2), L(0) = 2, L(1) = 1. | 
	[
  "2",
  "1",
  "3",
  "4",
  "7",
  "11",
  "18",
  "29",
  "47",
  "76",
  "123",
  "199",
  "322",
  "521",
  "843",
  "1364",
  "2207",
  "3571",
  "5778"
] | 
	9349 | 1 | 
| 
	A000033 | 
	Coefficients of ménage hit polynomials. | 
	[
  "0",
  "2",
  "3",
  "4",
  "40",
  "210",
  "1477",
  "11672",
  "104256",
  "1036050",
  "11338855",
  "135494844",
  "1755206648",
  "24498813794",
  "366526605705",
  "5851140525680",
  "99271367764480",
  "1783734385752162",
  "33837677493828171"
] | 
	675799125332580020 | 1 | 
| 
	A000034 | 
	Period 2: repeat [1, 2]; a(n) = 1 + (n mod 2). | 
	[
  "1",
  "2",
  "1",
  "2",
  "1",
  "2",
  "1",
  "2",
  "1",
  "2",
  "1",
  "2",
  "1",
  "2",
  "1",
  "2",
  "1",
  "2",
  "1"
] | 
	2 | 1 | 
| 
	A000035 | 
	Period 2: repeat [0, 1]; a(n) = n mod 2; parity of n. | 
	[
  "0",
  "1",
  "0",
  "1",
  "0",
  "1",
  "0",
  "1",
  "0",
  "1",
  "0",
  "1",
  "0",
  "1",
  "0",
  "1",
  "0",
  "1",
  "0"
] | 
	1 | 1 | 
| 
	A000036 | 
	Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); A000099 gives values of n where |P(n)| sets a new record; sequence gives closest integer to P(A000099(n)). | 
	[
  "2",
  "3",
  "5",
  "6",
  "6",
  "-6",
  "7",
  "8",
  "10",
  "13",
  "13",
  "13",
  "14",
  "-17",
  "17",
  "17",
  "18",
  "-19",
  "20"
] | 
	-22 | 0 | 
| 
	A000037 | 
	Numbers that are not squares (or, the nonsquares). | 
	[
  "2",
  "3",
  "5",
  "6",
  "7",
  "8",
  "10",
  "11",
  "12",
  "13",
  "14",
  "15",
  "17",
  "18",
  "19",
  "20",
  "21",
  "22",
  "23"
] | 
	24 | 1 | 
| 
	A000038 | 
	Twice A000007. | 
	[
  "2",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0",
  "0"
] | 
	0 | 1 | 
| 
	A000039 | 
	Coefficient of q^(2n) in the series expansion of Ramanujan's mock theta function f(q). | 
	[
  "1",
  "-2",
  "-3",
  "-5",
  "-6",
  "-10",
  "-11",
  "-17",
  "-21",
  "-27",
  "-33",
  "-46",
  "-53",
  "-68",
  "-82",
  "-104",
  "-123",
  "-154",
  "-179"
] | 
	-221 | 0 | 
| 
	A000040 | 
	The prime numbers. | 
	[
  "2",
  "3",
  "5",
  "7",
  "11",
  "13",
  "17",
  "19",
  "23",
  "29",
  "31",
  "37",
  "41",
  "43",
  "47",
  "53",
  "59",
  "61",
  "67"
] | 
	71 | 1 | 
| 
	A000041 | 
	a(n) is the number of partitions of n (the partition numbers). | 
	[
  "1",
  "1",
  "2",
  "3",
  "5",
  "7",
  "11",
  "15",
  "22",
  "30",
  "42",
  "56",
  "77",
  "101",
  "135",
  "176",
  "231",
  "297",
  "385"
] | 
	490 | 1 | 
| 
	A000042 | 
	Unary representation of natural numbers. | 
	[
  "1",
  "11",
  "111",
  "1111",
  "11111",
  "111111",
  "1111111",
  "11111111",
  "111111111",
  "1111111111",
  "11111111111",
  "111111111111",
  "1111111111111",
  "11111111111111",
  "111111111111111",
  "1111111111111111",
  "11111111111111111",
  "111111111111111111",
  "1111111111111111111"
] | 
	11111111111111111111 | 1 | 
| 
	A000043 | 
	Mersenne exponents: primes p such that 2^p - 1 is prime. Then 2^p - 1 is called a Mersenne prime. | 
	[
  "2",
  "3",
  "5",
  "7",
  "13",
  "17",
  "19",
  "31",
  "61",
  "89",
  "107",
  "127",
  "521",
  "607",
  "1279",
  "2203",
  "2281",
  "3217",
  "4253"
] | 
	4423 | 0 | 
| 
	A000044 | 
	Dying rabbits: a(0) = 1; for 1 <= n <= 12, a(n) = Fibonacci(n); for n >= 13, a(n) = a(n-1) + a(n-2) - a(n-13). | 
	[
  "1",
  "1",
  "1",
  "2",
  "3",
  "5",
  "8",
  "13",
  "21",
  "34",
  "55",
  "89",
  "144",
  "232",
  "375",
  "606",
  "979",
  "1582",
  "2556"
] | 
	4130 | 1 | 
| 
	A000045 | 
	Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1. | 
	[
  "0",
  "1",
  "1",
  "2",
  "3",
  "5",
  "8",
  "13",
  "21",
  "34",
  "55",
  "89",
  "144",
  "233",
  "377",
  "610",
  "987",
  "1597",
  "2584"
] | 
	4181 | 1 | 
| 
	A000046 | 
	Number of primitive n-bead necklaces (turning over is allowed) where complements are equivalent. | 
	[
  "1",
  "1",
  "1",
  "1",
  "2",
  "3",
  "5",
  "8",
  "14",
  "21",
  "39",
  "62",
  "112",
  "189",
  "352",
  "607",
  "1144",
  "2055",
  "3885"
] | 
	7154 | 1 | 
| 
	A000047 | 
	Number of integers <= 2^n of form x^2 - 2y^2. | 
	[
  "1",
  "2",
  "3",
  "5",
  "8",
  "15",
  "26",
  "48",
  "87",
  "161",
  "299",
  "563",
  "1066",
  "2030",
  "3885",
  "7464",
  "14384",
  "27779",
  "53782"
] | 
	104359 | 0 | 
| 
	A000048 | 
	Number of n-bead necklaces with beads of 2 colors and primitive period n, when turning over is not allowed but the two colors can be interchanged. | 
	[
  "1",
  "1",
  "1",
  "1",
  "2",
  "3",
  "5",
  "9",
  "16",
  "28",
  "51",
  "93",
  "170",
  "315",
  "585",
  "1091",
  "2048",
  "3855",
  "7280"
] | 
	13797 | 1 | 
| 
	A000049 | 
	Number of positive integers <= 2^n of the form 3*x^2 + 4*y^2. | 
	[
  "0",
  "0",
  "2",
  "3",
  "5",
  "9",
  "16",
  "29",
  "53",
  "98",
  "181",
  "341",
  "640",
  "1218",
  "2321",
  "4449",
  "8546",
  "16482",
  "31845"
] | 
	61707 | 0 | 
| 
	A000050 | 
	Number of positive integers <= 2^n of form x^2 + y^2. | 
	[
  "1",
  "2",
  "3",
  "5",
  "9",
  "16",
  "29",
  "54",
  "97",
  "180",
  "337",
  "633",
  "1197",
  "2280",
  "4357",
  "8363",
  "16096",
  "31064",
  "60108"
] | 
	116555 | 0 | 
| 
	A000051 | 
	a(n) = 2^n + 1. | 
	[
  "2",
  "3",
  "5",
  "9",
  "17",
  "33",
  "65",
  "129",
  "257",
  "513",
  "1025",
  "2049",
  "4097",
  "8193",
  "16385",
  "32769",
  "65537",
  "131073",
  "262145"
] | 
	524289 | 1 | 
| 
	A000052 | 
	1-digit numbers arranged in alphabetical order, then the 2-digit numbers arranged in alphabetical order, then the 3-digit numbers, etc. | 
	[
  "8",
  "5",
  "4",
  "9",
  "1",
  "7",
  "6",
  "3",
  "2",
  "0",
  "18",
  "80",
  "88",
  "85",
  "84",
  "89",
  "81",
  "87",
  "86"
] | 
	83 | 0 | 
| 
	A000053 | 
	Local stops on New York City 1 Train (Broadway-7 Avenue Local) subway. | 
	[
  "14",
  "18",
  "23",
  "28",
  "34",
  "42",
  "50",
  "59",
  "66",
  "72",
  "79",
  "86",
  "96",
  "103",
  "110",
  "116",
  "125",
  "137",
  "145"
] | 
	157 | 0 | 
| 
	A000054 | 
	Local stops on New York City A line subway. | 
	[
  "4",
  "14",
  "23",
  "34",
  "42",
  "50",
  "59",
  "72",
  "81",
  "86",
  "96",
  "103",
  "110",
  "116",
  "125",
  "135",
  "145",
  "155",
  "163"
] | 
	168 | 0 | 
| 
	A000055 | 
	Number of trees with n unlabeled nodes. | 
	[
  "1",
  "1",
  "1",
  "1",
  "2",
  "3",
  "6",
  "11",
  "23",
  "47",
  "106",
  "235",
  "551",
  "1301",
  "3159",
  "7741",
  "19320",
  "48629",
  "123867"
] | 
	317955 | 1 | 
| 
	A000056 | 
	Order of the group SL(2,Z_n). | 
	[
  "1",
  "6",
  "24",
  "48",
  "120",
  "144",
  "336",
  "384",
  "648",
  "720",
  "1320",
  "1152",
  "2184",
  "2016",
  "2880",
  "3072",
  "4896",
  "3888",
  "6840"
] | 
	5760 | 1 | 
| 
	A000057 | 
	Primes dividing all Fibonacci sequences. | 
	[
  "2",
  "3",
  "7",
  "23",
  "43",
  "67",
  "83",
  "103",
  "127",
  "163",
  "167",
  "223",
  "227",
  "283",
  "367",
  "383",
  "443",
  "463",
  "467"
] | 
	487 | 0 | 
| 
	A000058 | 
	Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(0) = 2. | 
	[
  "2",
  "3",
  "7",
  "43",
  "1807",
  "3263443",
  "10650056950807",
  "113423713055421844361000443"
] | 
	12864938683278671740537145998360961546653259485195807 | 0 | 
| 
	A000059 | 
	Numbers k such that (2k)^4 + 1 is prime. | 
	[
  "1",
  "2",
  "3",
  "8",
  "10",
  "12",
  "14",
  "17",
  "23",
  "24",
  "27",
  "28",
  "37",
  "40",
  "41",
  "44",
  "45",
  "53",
  "59"
] | 
	66 | 1 | 
| 
	A000060 | 
	Number of signed trees with n nodes. | 
	[
  "1",
  "2",
  "3",
  "10",
  "27",
  "98",
  "350",
  "1402",
  "5743",
  "24742",
  "108968",
  "492638",
  "2266502",
  "10600510",
  "50235931",
  "240882152",
  "1166732814",
  "5702046382",
  "28088787314"
] | 
	139355139206 | 0 | 
| 
	A000061 | 
	Generalized tangent numbers d(n,1). | 
	[
  "1",
  "1",
  "2",
  "4",
  "4",
  "6",
  "8",
  "8",
  "12",
  "14",
  "14",
  "16",
  "20",
  "20",
  "24",
  "32",
  "24",
  "30",
  "38"
] | 
	32 | 0 | 
| 
	A000062 | 
	A Beatty sequence: a(n) = floor(n/(e-2)). | 
	[
  "1",
  "2",
  "4",
  "5",
  "6",
  "8",
  "9",
  "11",
  "12",
  "13",
  "15",
  "16",
  "18",
  "19",
  "20",
  "22",
  "23",
  "25",
  "26"
] | 
	27 | 0 | 
| 
	A000063 | 
	Symmetrical dissections of an n-gon. | 
	[
  "1",
  "1",
  "2",
  "4",
  "5",
  "14",
  "14",
  "39",
  "42",
  "132",
  "132",
  "424",
  "429",
  "1428",
  "1430",
  "4848",
  "4862",
  "16796",
  "16796"
] | 
	58739 | 0 | 
| 
	A000064 | 
	Partial sums of (unordered) ways of making change for n cents using coins of 1, 2, 5, 10 cents. | 
	[
  "1",
  "2",
  "4",
  "6",
  "9",
  "13",
  "18",
  "24",
  "31",
  "39",
  "50",
  "62",
  "77",
  "93",
  "112",
  "134",
  "159",
  "187",
  "218"
] | 
	252 | 1 | 
| 
	A000065 | 
	-1 + number of partitions of n. | 
	[
  "0",
  "0",
  "1",
  "2",
  "4",
  "6",
  "10",
  "14",
  "21",
  "29",
  "41",
  "55",
  "76",
  "100",
  "134",
  "175",
  "230",
  "296",
  "384"
] | 
	489 | 1 | 
| 
	A000066 | 
	Smallest number of vertices in trivalent graph with girth (shortest cycle) = n. | 
	[
  "4",
  "6",
  "10",
  "14",
  "24",
  "30",
  "58",
  "70",
  "112"
] | 
	126 | 0 | 
| 
	A000067 | 
	Number of positive integers <= 2^n of form x^2 + 2 y^2. | 
	[
  "1",
  "2",
  "4",
  "6",
  "10",
  "18",
  "33",
  "60",
  "111",
  "205",
  "385",
  "725",
  "1374",
  "2610",
  "4993",
  "9578",
  "18426",
  "35568",
  "68806"
] | 
	133411 | 0 | 
| 
	A000068 | 
	Numbers k such that k^4 + 1 is prime. | 
	[
  "1",
  "2",
  "4",
  "6",
  "16",
  "20",
  "24",
  "28",
  "34",
  "46",
  "48",
  "54",
  "56",
  "74",
  "80",
  "82",
  "88",
  "90",
  "106"
] | 
	118 | 1 | 
| 
	A000069 | 
	Odious numbers: numbers with an odd number of 1's in their binary expansion. | 
	[
  "1",
  "2",
  "4",
  "7",
  "8",
  "11",
  "13",
  "14",
  "16",
  "19",
  "21",
  "22",
  "25",
  "26",
  "28",
  "31",
  "32",
  "35",
  "37"
] | 
	38 | 1 | 
| 
	A000070 | 
	a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041). | 
	[
  "1",
  "2",
  "4",
  "7",
  "12",
  "19",
  "30",
  "45",
  "67",
  "97",
  "139",
  "195",
  "272",
  "373",
  "508",
  "684",
  "915",
  "1212",
  "1597"
] | 
	2087 | 1 | 
| 
	A000071 | 
	a(n) = Fibonacci(n) - 1. | 
	[
  "0",
  "0",
  "1",
  "2",
  "4",
  "7",
  "12",
  "20",
  "33",
  "54",
  "88",
  "143",
  "232",
  "376",
  "609",
  "986",
  "1596",
  "2583",
  "4180"
] | 
	6764 | 1 | 
| 
	A000072 | 
	Number of positive integers <= 2^n of form x^2 + 4 y^2. | 
	[
  "1",
  "1",
  "2",
  "4",
  "7",
  "12",
  "22",
  "41",
  "72",
  "137",
  "254",
  "476",
  "901",
  "1716",
  "3274",
  "6286",
  "12090",
  "23331",
  "45140"
] | 
	87511 | 0 | 
| 
	A000073 | 
	Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) for n >= 3 with a(0) = a(1) = 0 and a(2) = 1. | 
	[
  "0",
  "0",
  "1",
  "1",
  "2",
  "4",
  "7",
  "13",
  "24",
  "44",
  "81",
  "149",
  "274",
  "504",
  "927",
  "1705",
  "3136",
  "5768",
  "10609"
] | 
	19513 | 1 | 
| 
	A000074 | 
	Number of odd integers <= 2^n of form x^2 + y^2. | 
	[
  "1",
  "1",
  "2",
  "4",
  "7",
  "13",
  "25",
  "43",
  "83",
  "157",
  "296",
  "564",
  "1083",
  "2077",
  "4006",
  "7733",
  "14968",
  "29044",
  "56447"
] | 
	109864 | 0 | 
| 
	A000075 | 
	Number of positive integers <= 2^n of form 2 x^2 + 3 y^2. | 
	[
  "0",
  "1",
  "2",
  "4",
  "7",
  "14",
  "23",
  "42",
  "76",
  "139",
  "258",
  "482",
  "907",
  "1717",
  "3269",
  "6257",
  "12020",
  "23171",
  "44762"
] | 
	86683 | 0 | 
| 
	A000076 | 
	Number of integers <= 2^n of form 4 x^2 + 4 x y + 5 y^2. | 
	[
  "0",
  "0",
  "1",
  "2",
  "4",
  "7",
  "14",
  "24",
  "43",
  "82",
  "149",
  "284",
  "534",
  "1015",
  "1937",
  "3713",
  "7136",
  "13759",
  "26597"
] | 
	51537 | 0 | 
| 
	A000077 | 
	Number of positive integers <= 2^n of form x^2 + 6 y^2. | 
	[
  "1",
  "1",
  "2",
  "4",
  "8",
  "13",
  "24",
  "42",
  "76",
  "140",
  "257",
  "483",
  "907",
  "1717",
  "3272",
  "6261",
  "12027",
  "23172",
  "44769"
] | 
	86708 | 0 | 
| 
	A000078 | 
	Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) for n >= 4 with a(0) = a(1) = a(2) = 0 and a(3) = 1. | 
	[
  "0",
  "0",
  "0",
  "1",
  "1",
  "2",
  "4",
  "8",
  "15",
  "29",
  "56",
  "108",
  "208",
  "401",
  "773",
  "1490",
  "2872",
  "5536",
  "10671"
] | 
	20569 | 1 | 
| 
	A000079 | 
	Powers of 2: a(n) = 2^n. | 
	[
  "1",
  "2",
  "4",
  "8",
  "16",
  "32",
  "64",
  "128",
  "256",
  "512",
  "1024",
  "2048",
  "4096",
  "8192",
  "16384",
  "32768",
  "65536",
  "131072",
  "262144"
] | 
	524288 | 1 | 
| 
	A000080 | 
	Number of nonisomorphic minimal triangle graphs. | 
	[
  "1",
  "1",
  "2",
  "4",
  "9",
  "19",
  "48",
  "117",
  "307",
  "821",
  "2277",
  "6437",
  "18634",
  "54775",
  "163703",
  "495529",
  "1518706",
  "4703848",
  "14714754"
] | 
	46444979 | 0 | 
| 
	A000081 | 
	Number of unlabeled rooted trees with n nodes (or connected functions with a fixed point). | 
	[
  "0",
  "1",
  "1",
  "2",
  "4",
  "9",
  "20",
  "48",
  "115",
  "286",
  "719",
  "1842",
  "4766",
  "12486",
  "32973",
  "87811",
  "235381",
  "634847",
  "1721159"
] | 
	4688676 | 1 | 
| 
	A000082 | 
	a(n) = n^2*Product_{p|n} (1 + 1/p). | 
	[
  "1",
  "6",
  "12",
  "24",
  "30",
  "72",
  "56",
  "96",
  "108",
  "180",
  "132",
  "288",
  "182",
  "336",
  "360",
  "384",
  "306",
  "648",
  "380"
] | 
	720 | 1 | 
| 
	A000083 | 
	Number of mixed Husimi trees with n nodes; or polygonal cacti with bridges. | 
	[
  "1",
  "1",
  "1",
  "2",
  "4",
  "9",
  "23",
  "63",
  "188",
  "596",
  "1979",
  "6804",
  "24118",
  "87379",
  "322652",
  "1209808",
  "4596158",
  "17657037",
  "68497898"
] | 
	268006183 | 0 | 
| 
	A000084 | 
	Number of series-parallel networks with n unlabeled edges. Also called yoke-chains by Cayley and MacMahon. | 
	[
  "1",
  "2",
  "4",
  "10",
  "24",
  "66",
  "180",
  "522",
  "1532",
  "4624",
  "14136",
  "43930",
  "137908",
  "437502",
  "1399068",
  "4507352",
  "14611576",
  "47633486",
  "156047204"
] | 
	513477502 | 1 | 
| 
	A000085 | 
	Number of self-inverse permutations on n letters, also known as involutions; number of standard Young tableaux with n cells. | 
	[
  "1",
  "1",
  "2",
  "4",
  "10",
  "26",
  "76",
  "232",
  "764",
  "2620",
  "9496",
  "35696",
  "140152",
  "568504",
  "2390480",
  "10349536",
  "46206736",
  "211799312",
  "997313824"
] | 
	4809701440 | 1 | 
| 
	A000086 | 
	Number of solutions to x^2 - x + 1 == 0 (mod n). | 
	[
  "1",
  "0",
  "1",
  "0",
  "0",
  "0",
  "2",
  "0",
  "0",
  "0",
  "0",
  "0",
  "2",
  "0",
  "0",
  "0",
  "0",
  "0",
  "2"
] | 
	0 | 1 | 
| 
	A000087 | 
	Number of unrooted nonseparable planar maps with n edges and a distinguished face. | 
	[
  "2",
  "1",
  "2",
  "4",
  "10",
  "37",
  "138",
  "628",
  "2972",
  "14903",
  "76994",
  "409594",
  "2222628",
  "12281570",
  "68864086",
  "391120036",
  "2246122574",
  "13025721601",
  "76194378042"
] | 
	449155863868 | 0 | 
| 
	A000088 | 
	Number of simple graphs on n unlabeled nodes. | 
	[
  "1",
  "1",
  "2",
  "4",
  "11",
  "34",
  "156",
  "1044",
  "12346",
  "274668",
  "12005168",
  "1018997864",
  "165091172592",
  "50502031367952",
  "29054155657235488",
  "31426485969804308768",
  "64001015704527557894928",
  "245935864153532932683719776",
  "1787577725145611700547878190848"
] | 
	24637809253125004524383007491432768 | 0 | 
| 
	A000089 | 
	Number of solutions to x^2 + 1 == 0 (mod n). | 
	[
  "1",
  "1",
  "0",
  "0",
  "2",
  "0",
  "0",
  "0",
  "0",
  "2",
  "0",
  "0",
  "2",
  "0",
  "0",
  "0",
  "2",
  "0",
  "0"
] | 
	0 | 0 | 
| 
	A000090 | 
	Expansion of e.g.f. exp((-x^3)/3)/(1-x). | 
	[
  "1",
  "1",
  "2",
  "4",
  "16",
  "80",
  "520",
  "3640",
  "29120",
  "259840",
  "2598400",
  "28582400",
  "343235200",
  "4462057600",
  "62468806400",
  "936987251200",
  "14991796019200",
  "254860532326400",
  "4587501779660800"
] | 
	87162533813555200 | 1 | 
| 
	A000091 | 
	Multiplicative with a(2^e) = 2 for k >= 1; a(3) = 2, a(3^e) = 0 for k >= 2; a(p^e) = 0 if p > 3 and p == -1 (mod 3); a(p^e) = 2 if p > 3 and p == 1 (mod 3). | 
	[
  "1",
  "2",
  "2",
  "2",
  "0",
  "4",
  "2",
  "2",
  "0",
  "0",
  "0",
  "4",
  "2",
  "4",
  "0",
  "2",
  "0",
  "0",
  "2"
] | 
	0 | 1 | 
| 
	A000092 | 
	Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)Pi*n^(3/2), P(n) = A(n) - V(n); sequence gives values of n where |P(n)| sets a new record. | 
	[
  "1",
  "2",
  "5",
  "6",
  "14",
  "21",
  "29",
  "30",
  "54",
  "90",
  "134",
  "155",
  "174",
  "230",
  "234",
  "251",
  "270",
  "342",
  "374"
] | 
	461 | 0 | 
| 
	A000093 | 
	a(n) = floor(n^(3/2)). | 
	[
  "0",
  "1",
  "2",
  "5",
  "8",
  "11",
  "14",
  "18",
  "22",
  "27",
  "31",
  "36",
  "41",
  "46",
  "52",
  "58",
  "64",
  "70",
  "76"
] | 
	82 | 1 | 
| 
	A000094 | 
	Number of trees of diameter 4. | 
	[
  "0",
  "0",
  "0",
  "0",
  "1",
  "2",
  "5",
  "8",
  "14",
  "21",
  "32",
  "45",
  "65",
  "88",
  "121",
  "161",
  "215",
  "280",
  "367"
] | 
	471 | 0 | 
| 
	A000095 | 
	Number of fixed points of GAMMA_0 (n) of type i. | 
	[
  "1",
  "2",
  "0",
  "0",
  "2",
  "0",
  "0",
  "0",
  "0",
  "4",
  "0",
  "0",
  "2",
  "0",
  "0",
  "0",
  "2",
  "0",
  "0"
] | 
	0 | 1 | 
| 
	A000096 | 
	a(n) = n*(n+3)/2. | 
	[
  "0",
  "2",
  "5",
  "9",
  "14",
  "20",
  "27",
  "35",
  "44",
  "54",
  "65",
  "77",
  "90",
  "104",
  "119",
  "135",
  "152",
  "170",
  "189"
] | 
	209 | 1 | 
| 
	A000097 | 
	Number of partitions of n if there are two kinds of 1's and two kinds of 2's. | 
	[
  "1",
  "2",
  "5",
  "9",
  "17",
  "28",
  "47",
  "73",
  "114",
  "170",
  "253",
  "365",
  "525",
  "738",
  "1033",
  "1422",
  "1948",
  "2634",
  "3545"
] | 
	4721 | 1 | 
| 
	A000098 | 
	Number of partitions of n if there are two kinds of 1, two kinds of 2 and two kinds of 3. | 
	[
  "1",
  "2",
  "5",
  "10",
  "19",
  "33",
  "57",
  "92",
  "147",
  "227",
  "345",
  "512",
  "752",
  "1083",
  "1545",
  "2174",
  "3031",
  "4179",
  "5719"
] | 
	7752 | 1 | 
| 
	A000099 | 
	Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); sequence gives values of n where |P(n)| sets a new record. | 
	[
  "1",
  "2",
  "5",
  "10",
  "20",
  "24",
  "26",
  "41",
  "53",
  "130",
  "149",
  "205",
  "234",
  "287",
  "340",
  "410",
  "425",
  "480",
  "586"
] | 
	840 | 0 | 
| 
	A000100 | 
	a(n) is the number of compositions of n in which the maximal part is 3. | 
	[
  "0",
  "0",
  "0",
  "1",
  "2",
  "5",
  "11",
  "23",
  "47",
  "94",
  "185",
  "360",
  "694",
  "1328",
  "2526",
  "4781",
  "9012",
  "16929",
  "31709"
] | 
	59247 | 1 | 
OEIS Next Term Prediction Dataset
This dataset provides a benchmark for evaluating models on their ability to predict the next term in integer sequences sourced from the Online Encyclopedia of Integer Sequences (OEIS).
Introduction
This dataset introduces a new benchmark focused on integer sequence prediction, leveraging the vast database of integer sequences from the Online Encyclopedia of Integer Sequences (OEIS). This dataset aims to facilitate the assessment of a model's ability to infer patterns and predict the subsequent term in a given integer sequence.
The dataset includes sequences categorised for two distinct benchmark difficulties: an "easy" benchmark and a "regular" benchmark. For each sequence, the task is to predict the 20th term, or the final term if the sequence is shorter than 20 elements, given its initial terms. This dataset is designed to be readily used by external evaluation scripts to assess model performance.
Dataset Preparation & Schema
The data has been preprocessed from the original OEIS dataset. Duplicate sequence_first_terms have been removed to ensure unicity. Sequences with fewer than 8 elements have also been removed.
The dataset's schema is designed to provide clear inputs and targets for next-term prediction tasks. Here's a breakdown of each column:
- sequence_id(- string): This is the unique identifier for each sequence, directly corresponding to its "A-number" from the OEIS database (e.g., "A000045"). It's useful for cross-referencing with the original OEIS entries.
- sequence_name(- string): The brief description of the integer sequence as provided by OEIS (e.g., "Fibonacci numbers"). This gives context to the sequence. If included in your model's prompt, it can significantly aid in predicting the next term.
- sequence_first_terms(- list[int]): This is the input for your models. It's a list of integers representing the initial terms of the sequence. These sequences have been pre-processed: they're truncated to a maximum of 19 terms, and only sequences with at least 7 terms in this list are included. This means models will always receive a sufficiently long prefix to make a prediction.
- sequence_next_term(- int): This is the target for your models. It's the single integer value that represents the true next term in the sequence, following directly from- sequence_first_terms.
- is_easy(- bool): A boolean flag indicating the estimated difficulty of the sequence.- Truemeans the original OEIS entry for this sequence was tagged with the keyword "easy," while- Falseindicates a "regular" difficulty. This allows you to evaluate model performance on different challenge levels.
How to Use
You can easily load this dataset using the Hugging Face datasets library:
from datasets import load_dataset
dataset = load_dataset("RenaudGaudron/oeis-sequences-benchmark")
print(dataset)
License
- MIT License.
OEIS End-User License
This dataset uses data from the Online Encyclopedia of Integer Sequences (OEIS). Please refer to the OEIS End-User License for terms of use related to the source data: http://oeis.org/LICENSE
Acknowledgements
This project leverages the incredible work of various communities. We extend our sincere gratitude to:
- Hugging Face: For their platform and invaluable datasets library, which hosts and facilitates the use of this benchmark.
- The Online Encyclopedia of Integer Sequences (OEIS): For providing the rich database of integer sequences that forms the basis of this benchmark dataset.
- Christopher Akiki: For uploading the structured OEIS dataset to Hugging Face.
- The Python Community: For the rich ecosystem of libraries that enabled the dataset's creation.
- Downloads last month
- 77
