Dataset Viewer
Auto-converted to Parquet
frame
int16
0
325
row_id
stringlengths
8
16
type
stringclasses
3 values
landmark_index
int16
0
467
x
float64
-0.64
1.63
y
float64
-0.09
2.76
z
float64
-4.88
3.63
path
stringlengths
41
45
participant_id
int64
sequence_id
int64
206k
4.29B
sign
stringclasses
60 values
10
10-face-0
face
0
0.406957
0.425405
-0.028246
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-1
face
1
0.382408
0.386089
-0.06356
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-2
face
2
0.389347
0.393191
-0.029729
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-3
face
3
0.360769
0.355897
-0.051107
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-4
face
4
0.378013
0.377136
-0.069244
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-5
face
5
0.373428
0.363966
-0.066484
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-6
face
6
0.363005
0.330107
-0.040652
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-7
face
7
0.286687
0.340069
0.019833
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-8
face
8
0.354304
0.308201
-0.038462
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-9
face
9
0.34886
0.296308
-0.044126
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-10
face
10
0.32995
0.246714
-0.040186
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-11
face
11
0.408431
0.429319
-0.02587
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-12
face
12
0.410215
0.432815
-0.020807
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-13
face
13
0.411812
0.434916
-0.012815
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-14
face
14
0.411789
0.435102
-0.011715
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-15
face
15
0.413112
0.439345
-0.010935
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-16
face
16
0.414806
0.444363
-0.011836
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-17
face
17
0.416966
0.449362
-0.007851
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-18
face
18
0.420438
0.452078
0.007362
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-19
face
19
0.385379
0.390037
-0.056444
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-20
face
20
0.375419
0.391463
-0.037834
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-21
face
21
0.232137
0.312136
0.075141
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-22
face
22
0.320292
0.34023
0.004146
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-23
face
23
0.30981
0.343585
0.006644
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-24
face
24
0.299187
0.346202
0.011297
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-25
face
25
0.284091
0.344798
0.022972
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-26
face
26
0.328348
0.33636
0.003056
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-27
face
27
0.29174
0.322993
-0.002635
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-28
face
28
0.304921
0.320546
-0.004961
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-29
face
29
0.281084
0.327097
0.003228
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-30
face
30
0.275806
0.331672
0.009753
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-31
face
31
0.277742
0.353038
0.030961
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-32
face
32
0.38531
0.471639
0.029425
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-33
face
33
0.282076
0.339211
0.023759
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-34
face
34
0.246912
0.352591
0.090175
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-35
face
35
0.263443
0.34929
0.043611
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-36
face
36
0.330661
0.385697
0.001508
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-37
face
37
0.393642
0.425653
-0.024617
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-38
face
38
0.399182
0.434618
-0.017262
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-39
face
39
0.38381
0.430413
-0.014832
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-40
face
40
0.377745
0.434862
-0.004288
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-41
face
41
0.390561
0.436241
-0.01101
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-42
face
42
0.383891
0.437897
-0.00165
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-43
face
43
0.365621
0.444908
0.020713
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-44
face
44
0.372783
0.387872
-0.06143
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-45
face
45
0.366864
0.379809
-0.066466
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-46
face
46
0.256321
0.328285
0.012395
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-47
face
47
0.341596
0.356033
-0.008625
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-48
face
48
0.348882
0.388773
-0.027124
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-49
face
49
0.346588
0.383377
-0.02395
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-50
face
50
0.300374
0.390852
0.021055
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-51
face
51
0.363276
0.367254
-0.060839
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-52
face
52
0.275655
0.3149
-0.016029
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-53
face
53
0.262324
0.320763
-0.003362
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-54
face
54
0.232864
0.295479
0.044776
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-55
face
55
0.329385
0.311261
-0.031609
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-56
face
56
0.317496
0.320762
-0.002116
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-57
face
57
0.354084
0.438381
0.023233
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-58
face
58
0.305124
0.430993
0.141614
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-59
face
59
0.360111
0.391999
-0.022764
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-60
face
60
0.369807
0.393002
-0.025271
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-61
face
61
0.371302
0.441563
0.019443
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-62
face
62
0.373865
0.44104
0.014669
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-63
face
63
0.254153
0.315635
0.002199
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-64
face
64
0.351337
0.392265
-0.019593
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-65
face
65
0.297375
0.311145
-0.025783
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-66
face
66
0.291266
0.304006
-0.029751
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-67
face
67
0.265079
0.26697
-0.0141
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-68
face
68
0.24279
0.305366
0.020251
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-69
face
69
0.278721
0.285245
-0.023142
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-70
face
70
0.249146
0.324639
0.023212
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-71
face
71
0.239634
0.31896
0.047344
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-72
face
72
0.396251
0.430826
-0.02246
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-73
face
73
0.387137
0.433667
-0.013543
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-74
face
74
0.380693
0.436506
-0.004112
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-75
face
75
0.363602
0.392987
-0.020754
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-76
face
76
0.372598
0.441327
0.016691
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-77
face
77
0.377427
0.442892
0.00925
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-78
face
78
0.37527
0.440789
0.014014
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-79
face
79
0.362562
0.388775
-0.04111
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-80
face
80
0.386534
0.43876
0.001413
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-81
face
81
0.393283
0.437735
-0.004568
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-82
face
82
0.401706
0.436565
-0.009811
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-83
face
83
0.405736
0.454227
0.009059
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-84
face
84
0.403772
0.451273
-0.00591
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-85
face
85
0.402107
0.446133
-0.00928
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-86
face
86
0.401383
0.441069
-0.00815
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-87
face
87
0.401554
0.436837
-0.008812
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-88
face
88
0.386294
0.43904
0.002075
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-89
face
89
0.384645
0.441401
0.001741
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-90
face
90
0.383104
0.444434
0.001239
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-91
face
91
0.382265
0.447649
0.00439
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-92
face
92
0.356063
0.419849
-0.000774
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-93
face
93
0.272302
0.388279
0.151638
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-94
face
94
0.387241
0.391529
-0.039301
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-95
face
95
0.381244
0.439704
0.008839
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-96
face
96
0.379273
0.441253
0.008607
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-97
face
97
0.375112
0.395916
-0.024546
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-98
face
98
0.358758
0.396552
-0.010274
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
10
10-face-99
face
99
0.372524
0.394499
-0.025464
train_landmark_files/32319/4279998665.parquet
null
4,279,998,665
arm
End of preview. Expand in Data Studio

CLARIS - Critical Emergency Sign Language Dataset

This dataset is a curated subset of the "Google - Isolated Sign Language Recognition" dataset, specifically filtered for the CLARIS (Clear and Live Automated Response for Inclusive Safety) project.

Dataset Description

The primary goal of the CLARIS project is to develop a mobile application that provides a lifeline for the Deaf community during emergencies. This dataset was created to train a proof-of-concept AI model capable of recognizing a vocabulary of critical emergency-related signs.

The data consists of pre-extracted landmark coordinates from video clips of isolated signs. It originates from the Google - Isolated Sign Language Recognition Kaggle Competition.

Dataset Structure

The dataset is provided in both CSV and Parquet (coming soon) formats. Each row represents the coordinates of a single landmark in a single frame of a video sequence.

Column Dtype Description
frame int16 The frame number within the sequence.
row_id object A unique identifier for the landmark within the frame.
type object The type of landmark (face, left_hand, right_hand, pose).
landmark_index int16 The index of the landmark within its type.
x float64 The normalized x-coordinate of the landmark.
y float64 The normalized y-coordinate of the landmark.
z float64 The normalized z-coordinate of the landmark (depth).
path object The path to the original source parquet file for the sequence.
participant_id int64 A unique identifier for the participant (signer).
sequence_id int64 A unique identifier for the sign sequence.
sign object The ground truth label for the sign being performed.

Curation Process

To create a focused dataset for our specific use case, we performed a two-step curation process:

  1. Vocabulary Filtering: We selected 62 signs deemed most relevant for describing medical, fire, or intruder emergencies.
  2. Participant Filtering: To create a manageable dataset for rapid prototyping, we constrained the data to sequences from two distinct participants who had a balanced distribution of the target signs.

This process resulted in a final dataset containing 1,719 unique sign sequences, comprising over 37 million landmark rows.

Usage

We recommend using the Parquet file for faster loading times.

import pandas as pd

# Load the full curated dataset
df = pd.read_parquet('claris_curated_dataset.parquet')

# Or load the smaller, subsampled version
df_sample = pd.read_parquet('claris_subsample_dataset.parquet')

print(df.head())

Link to Project Notebook

The complete methodology, including data preprocessing, model training, and analysis, can be found in our Kaggle notebook: https://www.kaggle.com/code/eveelyn/datathon2025-med

Downloads last month
11