metadata
language:
- ar
license: apache-2.0
task_categories:
- multiple-choice
- text-classification
pretty_name: Sentiment Analysis MCQ Evaluation Dataset
tags:
- sentiment-analysis
- mcq
- financial
- arabic
- evaluation
- benchmark
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
dataset_info:
features:
- name: original_split
dtype: string
- name: choices
sequence: string
- name: text
dtype: string
- name: answer
dtype: string
- name: original_sentiment
dtype: string
- name: query
dtype: string
- name: id
dtype: string
- name: gold
dtype: int64
- name: category
dtype: string
splits:
- name: test
num_bytes: 495875
num_examples: 80
download_size: 218370
dataset_size: 495875
Sentiment Analysis MCQ Evaluation Dataset
Validation and test splits for financial sentiment analysis in MCQ format.
Dataset Structure
- Format: Multiple choice questions
- Language: Arabic
- Domain: Financial reports
- Task: Sentiment classification
- Validation: 20 examples
- Test: 20 examples
Fields
id: Unique identifierquery: Full MCQ promptanswer: Correct answer lettertext: Question textchoices: Answer options [a, b, c]gold: Correct answer indexcategory: Report categoryoriginal_sentiment: Ground truth sentiment
Answer Mapping
- a) positive - gold: 0
- b) negative - gold: 1
- c) neutral - gold: 2
Usage
from datasets import load_dataset
dataset = load_dataset("SahmBenchmark/Sentiment_Analysis_MCQ_eval")
test_data = dataset['test']
for example in test_data:
print(f"Question: {example['text']}")
print(f"Choices: {example['choices']}")
print(f"Correct: {example['answer']} (index: {example['gold']})")