Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
id: string
name: string
startTime: int64
endTime: int64
sampleRate: int64
devices: list<item: struct<id: string, position: string, connectionId: string>>
snapshots: list<item: struct<time: int64, deviceData: struct<E4:B3:23:AD:5A:B2: list<item: double>, E4:B3:23:AD:24:0E: list<item: double>, E4:B3:23:AD:22:26: list<item: double>, right_hand_virtual: list<item: double>, right_forearm_virtual: list<item: double>, left_hand_virtual: list<item: double>, left_forearm_virtual: list<item: double>>>>
vs
id: string
name: string
startTime: int64
endTime: int64
sampleRate: int64
devices: list<item: struct<id: string, position: string, connectionId: string>>
snapshots: list<item: struct<time: int64, deviceData: struct<E4:B3:23:AD:5A:B2: list<item: double>, E4:B3:23:AD:22:26: list<item: double>, left_hand_virtual: list<item: double>, left_forearm_virtual: list<item: double>, right_hand_virtual: list<item: double>, right_forearm_virtual: list<item: double>, E4:B3:23:AD:24:0E: list<item: double>>>>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 531, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              id: string
              name: string
              startTime: int64
              endTime: int64
              sampleRate: int64
              devices: list<item: struct<id: string, position: string, connectionId: string>>
              snapshots: list<item: struct<time: int64, deviceData: struct<E4:B3:23:AD:5A:B2: list<item: double>, E4:B3:23:AD:24:0E: list<item: double>, E4:B3:23:AD:22:26: list<item: double>, right_hand_virtual: list<item: double>, right_forearm_virtual: list<item: double>, left_hand_virtual: list<item: double>, left_forearm_virtual: list<item: double>>>>
              vs
              id: string
              name: string
              startTime: int64
              endTime: int64
              sampleRate: int64
              devices: list<item: struct<id: string, position: string, connectionId: string>>
              snapshots: list<item: struct<time: int64, deviceData: struct<E4:B3:23:AD:5A:B2: list<item: double>, E4:B3:23:AD:22:26: list<item: double>, left_hand_virtual: list<item: double>, left_forearm_virtual: list<item: double>, right_hand_virtual: list<item: double>, right_forearm_virtual: list<item: double>, E4:B3:23:AD:24:0E: list<item: double>>>>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Robotic Dataset

The dataset comprises 1,000+ hours of multimodal robot manipulation data collected from real-world environments, demonstrating manipulation tasks such as cleaning, laundry folding, and dishwashing performed by different robots. It contains synchronized sensor data from seven 9-axis IMU units attached to the robot arms, forearms, and chest, along with head-mounted videos and detailed trajectory recordings.

By utilizing this dataset, researchers can explore learning methods and robot manipulation techniques that enhance the ability of real robots to handle different objects and perform complex actions in real-world scenarios. - Get the data

Designed for robotic learning and model training, it provides data suitable for training models in robotic systems, foundation models, and real-world applications of humanoid robotics and robot manipulation.

πŸ’΅ Buy the Dataset: This is a limited preview of the data. To access the full dataset, please contact us at https://unidata.pro to discuss your requirements and pricing options.

Dataset enables researchers and developers to build large-scale robot learning models, making it an essential resource for advancing robotic manipulation and real-world robotics research.

🌐 UniData provides high-quality datasets, content moderation, data collection and annotation for your AI/ML projects

Downloads last month
9