Dataset Viewer
Auto-converted to Parquet
question_id
int64
0
16.1k
db_id
stringclasses
259 values
dber_id
stringlengths
15
29
question
stringlengths
16
325
SQL
stringlengths
18
1.25k
tokens
listlengths
4
62
entities
listlengths
0
21
entity_to_token
listlengths
20
20
dber_tags
listlengths
4
62
1,389
books
bird:train.json:5990
Which year has the most customer orders?
SELECT strftime('%Y', order_date) FROM cust_order GROUP BY strftime('%Y', order_date) ORDER BY COUNT(strftime('%Y', order_date)) DESC LIMIT 1
[ "Which", "year", "has", "the", "most", "customer", "orders", "?" ]
[ { "id": 0, "type": "table", "value": "cust_order" }, { "id": 2, "type": "column", "value": "order_date" }, { "id": 1, "type": "value", "value": "%Y" } ]
[ { "entity_id": 0, "token_idxs": [ 5 ] }, { "entity_id": 1, "token_idxs": [ 1 ] }, { "entity_id": 2, "token_idxs": [ 6 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-VALUE", "O", "O", "O", "B-TABLE", "B-COLUMN", "O" ]
7,179
e_government
spider:train_spider.json:6323
What is the last name of the contact individual from the Labour party organization who was contacted most recently?
SELECT t3.individual_last_name FROM organizations AS t1 JOIN organization_contact_individuals AS t2 ON t1.organization_id = t2.organization_id JOIN individuals AS t3 ON t2.individual_id = t3.individual_id WHERE t1.organization_name = "Labour Party" ORDER BY t2.date_contact_to DESC LIMIT 1
[ "What", "is", "the", "last", "name", "of", "the", "contact", "individual", "from", "the", "Labour", "party", "organization", "who", "was", "contacted", "most", "recently", "?" ]
[ { "id": 6, "type": "table", "value": "organization_contact_individuals" }, { "id": 0, "type": "column", "value": "individual_last_name" }, { "id": 2, "type": "column", "value": "organization_name" }, { "id": 4, "type": "column", "value": "date_contact_to" }, { "id": 8, "type": "column", "value": "organization_id" }, { "id": 5, "type": "table", "value": "organizations" }, { "id": 7, "type": "column", "value": "individual_id" }, { "id": 3, "type": "column", "value": "Labour Party" }, { "id": 1, "type": "table", "value": "individuals" } ]
[ { "entity_id": 0, "token_idxs": [ 3, 4 ] }, { "entity_id": 1, "token_idxs": [ 8 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 11, 12 ] }, { "entity_id": 4, "token_idxs": [ 7 ] }, { "entity_id": 5, "token_idxs": [ 13 ] }, { "entity_id": 6, "token_idxs": [ 16 ] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "B-COLUMN", "B-TABLE", "O", "O", "B-COLUMN", "I-COLUMN", "B-TABLE", "O", "O", "B-TABLE", "O", "O", "O" ]
11,573
icfp_1
spider:train_spider.json:2920
Retrieve all the last names of authors in alphabetical order.
SELECT lname FROM authors ORDER BY lname
[ "Retrieve", "all", "the", "last", "names", "of", "authors", "in", "alphabetical", "order", "." ]
[ { "id": 0, "type": "table", "value": "authors" }, { "id": 1, "type": "column", "value": "lname" } ]
[ { "entity_id": 0, "token_idxs": [ 6 ] }, { "entity_id": 1, "token_idxs": [ 4 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "O", "B-TABLE", "O", "O", "O", "O" ]
4,892
soccer_2016
bird:train.json:1900
What percentage of players have Legbreak skill?
SELECT CAST(SUM(CASE WHEN T2.Bowling_skill = ' Legbreak' THEN 1 ELSE 0 END) AS REAL) * 100 / TOTAL(T1.Player_Id) FROM Player AS T1 INNER JOIN Bowling_Style AS T2 ON T1.Bowling_skill = T2.Bowling_Id
[ "What", "percentage", "of", "players", "have", "Legbreak", "skill", "?" ]
[ { "id": 1, "type": "table", "value": "bowling_style" }, { "id": 2, "type": "column", "value": "bowling_skill" }, { "id": 3, "type": "column", "value": "bowling_id" }, { "id": 5, "type": "column", "value": "player_id" }, { "id": 8, "type": "value", "value": " Legbreak" }, { "id": 0, "type": "table", "value": "player" }, { "id": 4, "type": "value", "value": "100" }, { "id": 6, "type": "value", "value": "0" }, { "id": 7, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 6 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [ 5 ] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-TABLE", "O", "B-VALUE", "B-COLUMN", "O" ]
7,359
european_football_2
bird:dev.json:1043
What is the short name of the football team Queens Park Rangers?
SELECT team_short_name FROM Team WHERE team_long_name = 'Queens Park Rangers'
[ "What", "is", "the", "short", "name", "of", "the", "football", "team", "Queens", "Park", "Rangers", "?" ]
[ { "id": 3, "type": "value", "value": "Queens Park Rangers" }, { "id": 1, "type": "column", "value": "team_short_name" }, { "id": 2, "type": "column", "value": "team_long_name" }, { "id": 0, "type": "table", "value": "team" } ]
[ { "entity_id": 0, "token_idxs": [ 8 ] }, { "entity_id": 1, "token_idxs": [ 3, 4 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 9, 10, 11 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "O", "B-TABLE", "B-VALUE", "I-VALUE", "I-VALUE", "O" ]
15,221
sales_in_weather
bird:train.json:8162
Which weather station does store no.20 belong to?
SELECT station_nbr FROM relation WHERE store_nbr = 20
[ "Which", "weather", "station", "does", "store", "no.20", "belong", "to", "?" ]
[ { "id": 1, "type": "column", "value": "station_nbr" }, { "id": 2, "type": "column", "value": "store_nbr" }, { "id": 0, "type": "table", "value": "relation" }, { "id": 3, "type": "value", "value": "20" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 6, 7 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "O", "B-VALUE", "I-VALUE", "O" ]
12,665
hockey
bird:train.json:7674
Among the players who were born in July and August, how many of them got in the Hall of Fame?
SELECT COUNT(T1.playerID) FROM Master AS T1 INNER JOIN HOF AS T2 ON T1.hofID = T2.hofID WHERE T1.birthMon IN (7, 8)
[ "Among", "the", "players", "who", "were", "born", "in", "July", "and", "August", ",", "how", "many", "of", "them", "got", "in", "the", "Hall", "of", "Fame", "?" ]
[ { "id": 2, "type": "column", "value": "birthmon" }, { "id": 5, "type": "column", "value": "playerid" }, { "id": 0, "type": "table", "value": "master" }, { "id": 6, "type": "column", "value": "hofid" }, { "id": 1, "type": "table", "value": "hof" }, { "id": 3, "type": "value", "value": "7" }, { "id": 4, "type": "value", "value": "8" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 5 ] }, { "entity_id": 3, "token_idxs": [ 7 ] }, { "entity_id": 4, "token_idxs": [ 9 ] }, { "entity_id": 5, "token_idxs": [ 2 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "B-COLUMN", "O", "B-VALUE", "O", "B-VALUE", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
6,653
donor
bird:train.json:3227
What is the number of the year round school in Los Angeles?
SELECT COUNT(school_year_round) FROM projects WHERE school_city = 'Los Angeles' AND school_year_round = 't'
[ "What", "is", "the", "number", "of", "the", "year", "round", "school", "in", "Los", "Angeles", "?" ]
[ { "id": 1, "type": "column", "value": "school_year_round" }, { "id": 2, "type": "column", "value": "school_city" }, { "id": 3, "type": "value", "value": "Los Angeles" }, { "id": 0, "type": "table", "value": "projects" }, { "id": 4, "type": "value", "value": "t" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 6, 7, 8 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 10, 11 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN", "O", "B-VALUE", "I-VALUE", "O" ]
10,587
hockey
bird:train.json:7797
Which Minnesota North Stars' goalkeeper had the most Goal Againsts in his play time?
SELECT playerID FROM Goalies AS T1 INNER JOIN Teams AS T2 ON T1.tmID = T2.tmID AND T1.year = T2.year WHERE T2.name = 'Minnesota North Stars' GROUP BY T1.playerID ORDER BY SUM(T1.GA) DESC LIMIT 1
[ "Which", "Minnesota", "North", "Stars", "'", "goalkeeper", "had", "the", "most", "Goal", "Againsts", "in", "his", "play", "time", "?" ]
[ { "id": 4, "type": "value", "value": "Minnesota North Stars" }, { "id": 0, "type": "column", "value": "playerid" }, { "id": 1, "type": "table", "value": "goalies" }, { "id": 2, "type": "table", "value": "teams" }, { "id": 3, "type": "column", "value": "name" }, { "id": 6, "type": "column", "value": "tmid" }, { "id": 7, "type": "column", "value": "year" }, { "id": 5, "type": "column", "value": "ga" } ]
[ { "entity_id": 0, "token_idxs": [ 13 ] }, { "entity_id": 1, "token_idxs": [ 9 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 1, 2, 3 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-VALUE", "I-VALUE", "I-VALUE", "O", "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "B-COLUMN", "O", "O" ]
1,697
human_resources
bird:train.json:8965
How much is the salary of the first ever employee that was hired?
SELECT salary FROM employee ORDER BY hiredate ASC LIMIT 1
[ "How", "much", "is", "the", "salary", "of", "the", "first", "ever", "employee", "that", "was", "hired", "?" ]
[ { "id": 0, "type": "table", "value": "employee" }, { "id": 2, "type": "column", "value": "hiredate" }, { "id": 1, "type": "column", "value": "salary" } ]
[ { "entity_id": 0, "token_idxs": [ 9 ] }, { "entity_id": 1, "token_idxs": [ 4 ] }, { "entity_id": 2, "token_idxs": [ 12 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "O" ]
1,040
codebase_comments
bird:train.json:578
In the "https://github.com/wallerdev/htmlsharp.git", give all the linearized sequenced of API calls.
SELECT T3.ApiCalls FROM Repo AS T1 INNER JOIN Solution AS T2 ON T1.Id = T2.RepoId INNER JOIN Method AS T3 ON T2.Id = T3.SolutionId WHERE T1.Url = 'https://github.com/wallerdev/htmlsharp.git'
[ "In", "the", "\"", "https://github.com/wallerdev/htmlsharp.git", "\"", ",", "give", "all", "the", "linearized", "sequenced", "of", "API", "calls", "." ]
[ { "id": 3, "type": "value", "value": "https://github.com/wallerdev/htmlsharp.git" }, { "id": 7, "type": "column", "value": "solutionid" }, { "id": 0, "type": "column", "value": "apicalls" }, { "id": 5, "type": "table", "value": "solution" }, { "id": 1, "type": "table", "value": "method" }, { "id": 8, "type": "column", "value": "repoid" }, { "id": 4, "type": "table", "value": "repo" }, { "id": 2, "type": "column", "value": "url" }, { "id": 6, "type": "column", "value": "id" } ]
[ { "entity_id": 0, "token_idxs": [ 12, 13 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 3 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-VALUE", "O", "O", "O", "O", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O" ]
6,291
candidate_poll
spider:train_spider.json:2409
What are the average height and weight across males (sex is M)?
SELECT avg(height) , avg(weight) FROM people WHERE sex = 'M'
[ "What", "are", "the", "average", "height", "and", "weight", "across", "males", "(", "sex", "is", "M", ")", "?" ]
[ { "id": 0, "type": "table", "value": "people" }, { "id": 3, "type": "column", "value": "height" }, { "id": 4, "type": "column", "value": "weight" }, { "id": 1, "type": "column", "value": "sex" }, { "id": 2, "type": "value", "value": "M" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 10 ] }, { "entity_id": 2, "token_idxs": [ 12 ] }, { "entity_id": 3, "token_idxs": [ 4 ] }, { "entity_id": 4, "token_idxs": [ 6 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "O", "B-COLUMN", "O", "O", "O", "B-COLUMN", "O", "B-VALUE", "O", "O" ]
11,770
university
bird:train.json:8100
Which ranking system is criteria "Total Shanghai" in?
SELECT T1.system_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T2.criteria_name = 'Total Shanghai'
[ "Which", "ranking", "system", "is", "criteria", "\"", "Total", "Shanghai", "\"", "in", "?" ]
[ { "id": 6, "type": "column", "value": "ranking_system_id" }, { "id": 2, "type": "table", "value": "ranking_criteria" }, { "id": 1, "type": "table", "value": "ranking_system" }, { "id": 4, "type": "value", "value": "Total Shanghai" }, { "id": 3, "type": "column", "value": "criteria_name" }, { "id": 0, "type": "column", "value": "system_name" }, { "id": 5, "type": "column", "value": "id" } ]
[ { "entity_id": 0, "token_idxs": [ 4 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [ 9 ] }, { "entity_id": 10, "token_idxs": [ 8 ] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "O", "O" ]
14,165
pilot_1
bird:test.json:1143
Find pilots who own plane Piper Cub but not B-52 Bomber.
SELECT pilot_name FROM pilotskills WHERE plane_name = 'Piper Cub' EXCEPT SELECT pilot_name FROM pilotskills WHERE plane_name = 'B-52 Bomber'
[ "Find", "pilots", "who", "own", "plane", "Piper", "Cub", "but", "not", "B-52", "Bomber", "." ]
[ { "id": 0, "type": "table", "value": "pilotskills" }, { "id": 4, "type": "value", "value": "B-52 Bomber" }, { "id": 1, "type": "column", "value": "pilot_name" }, { "id": 2, "type": "column", "value": "plane_name" }, { "id": 3, "type": "value", "value": "Piper Cub" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 1 ] }, { "entity_id": 2, "token_idxs": [ 4 ] }, { "entity_id": 3, "token_idxs": [ 5, 6 ] }, { "entity_id": 4, "token_idxs": [ 9, 10 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-COLUMN", "O", "O", "B-COLUMN", "B-VALUE", "I-VALUE", "O", "O", "B-VALUE", "I-VALUE", "O" ]
9,512
college_1
spider:train_spider.json:3311
Find the first names of all instructors who have taught some course and the course description.
SELECT T2.emp_fname , T3.crs_description FROM CLASS AS T1 JOIN employee AS T2 ON T1.prof_num = T2.emp_num JOIN course AS T3 ON T1.crs_code = T3.crs_code
[ "Find", "the", "first", "names", "of", "all", "instructors", "who", "have", "taught", "some", "course", "and", "the", "course", "description", "." ]
[ { "id": 1, "type": "column", "value": "crs_description" }, { "id": 0, "type": "column", "value": "emp_fname" }, { "id": 4, "type": "table", "value": "employee" }, { "id": 5, "type": "column", "value": "crs_code" }, { "id": 6, "type": "column", "value": "prof_num" }, { "id": 7, "type": "column", "value": "emp_num" }, { "id": 2, "type": "table", "value": "course" }, { "id": 3, "type": "table", "value": "class" } ]
[ { "entity_id": 0, "token_idxs": [ 2, 3 ] }, { "entity_id": 1, "token_idxs": [ 15 ] }, { "entity_id": 2, "token_idxs": [ 14 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [ 11 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "O", "O", "O", "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "B-COLUMN", "O" ]
1,127
tv_shows
bird:test.json:145
List the affiliations shared by more than three city channels.
SELECT Affiliation FROM city_channel GROUP BY Affiliation HAVING COUNT(*) > 3
[ "List", "the", "affiliations", "shared", "by", "more", "than", "three", "city", "channels", "." ]
[ { "id": 0, "type": "table", "value": "city_channel" }, { "id": 1, "type": "column", "value": "affiliation" }, { "id": 2, "type": "value", "value": "3" } ]
[ { "entity_id": 0, "token_idxs": [ 8, 9 ] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [ 7 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "O", "O", "B-VALUE", "B-TABLE", "I-TABLE", "O" ]
9,939
cre_Theme_park
spider:train_spider.json:5935
Show the average price of hotels for each star rating code.
SELECT star_rating_code , avg(price_range) FROM HOTELS GROUP BY star_rating_code
[ "Show", "the", "average", "price", "of", "hotels", "for", "each", "star", "rating", "code", "." ]
[ { "id": 1, "type": "column", "value": "star_rating_code" }, { "id": 2, "type": "column", "value": "price_range" }, { "id": 0, "type": "table", "value": "hotels" } ]
[ { "entity_id": 0, "token_idxs": [ 5 ] }, { "entity_id": 1, "token_idxs": [ 8, 9, 10 ] }, { "entity_id": 2, "token_idxs": [ 3 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "B-TABLE", "O", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN", "O" ]
12,509
student_club
bird:dev.json:1371
How many members attended the "Women's Soccer" event?
SELECT COUNT(T2.link_to_member) FROM event AS T1 INNER JOIN attendance AS T2 ON T1.event_id = T2.link_to_event WHERE T1.event_name = 'Women''s Soccer'
[ "How", "many", "members", "attended", "the", "\"", "Women", "'s", "Soccer", "\"", "event", "?" ]
[ { "id": 3, "type": "value", "value": "Women's Soccer" }, { "id": 4, "type": "column", "value": "link_to_member" }, { "id": 6, "type": "column", "value": "link_to_event" }, { "id": 1, "type": "table", "value": "attendance" }, { "id": 2, "type": "column", "value": "event_name" }, { "id": 5, "type": "column", "value": "event_id" }, { "id": 0, "type": "table", "value": "event" } ]
[ { "entity_id": 0, "token_idxs": [ 10 ] }, { "entity_id": 1, "token_idxs": [ 3 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 6, 7, 8 ] }, { "entity_id": 4, "token_idxs": [ 2 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "B-TABLE", "O", "O", "B-VALUE", "I-VALUE", "I-VALUE", "O", "B-TABLE", "O" ]
6,691
movielens
bird:train.json:2322
Please give the ids of the oldest films that got the most ratings.
SELECT DISTINCT T1.movieid FROM u2base AS T1 INNER JOIN movies AS T2 ON T1.movieid = T2.movieid WHERE T1.rating = 5 AND T2.year = 1
[ "Please", "give", "the", "ids", "of", "the", "oldest", "films", "that", "got", "the", "most", "ratings", "." ]
[ { "id": 0, "type": "column", "value": "movieid" }, { "id": 1, "type": "table", "value": "u2base" }, { "id": 2, "type": "table", "value": "movies" }, { "id": 3, "type": "column", "value": "rating" }, { "id": 5, "type": "column", "value": "year" }, { "id": 4, "type": "value", "value": "5" }, { "id": 6, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 12 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "O", "O", "O", "O", "B-COLUMN", "O" ]
12,855
synthea
bird:train.json:1380
How many allergies does Mrs. Saundra Monahan have?
SELECT COUNT(DISTINCT T2.code) FROM patients AS T1 INNER JOIN allergies AS T2 ON T1.patient = T2.PATIENT WHERE T1.prefix = 'Mrs.' AND T1.first = 'Saundra' AND T1.last = 'Monahan'
[ "How", "many", "allergies", "does", "Mrs.", "Saundra", "Monahan", "have", "?" ]
[ { "id": 1, "type": "table", "value": "allergies" }, { "id": 0, "type": "table", "value": "patients" }, { "id": 3, "type": "column", "value": "patient" }, { "id": 7, "type": "value", "value": "Saundra" }, { "id": 9, "type": "value", "value": "Monahan" }, { "id": 4, "type": "column", "value": "prefix" }, { "id": 6, "type": "column", "value": "first" }, { "id": 2, "type": "column", "value": "code" }, { "id": 5, "type": "value", "value": "Mrs." }, { "id": 8, "type": "column", "value": "last" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [ 4 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 5 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [ 6 ] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "B-VALUE", "B-VALUE", "B-VALUE", "O", "O" ]
3,853
app_store
bird:train.json:2548
What percentage of no comment reviews are from "Teen" content rating apps?
SELECT CAST(COUNT(CASE WHEN T1.`Content Rating` = 'Teen' THEN 1 ELSE NULL END) AS REAL) * 100 / COUNT(T1.App) FROM playstore AS T1 INNER JOIN user_reviews AS T2 ON T1.App = T2.App WHERE T2.Translated_Review = 'nan'
[ "What", "percentage", "of", "no", "comment", "reviews", "are", "from", "\"", "Teen", "\"", "content", "rating", "apps", "?" ]
[ { "id": 2, "type": "column", "value": "translated_review" }, { "id": 7, "type": "column", "value": "Content Rating" }, { "id": 1, "type": "table", "value": "user_reviews" }, { "id": 0, "type": "table", "value": "playstore" }, { "id": 8, "type": "value", "value": "Teen" }, { "id": 3, "type": "value", "value": "nan" }, { "id": 4, "type": "column", "value": "app" }, { "id": 5, "type": "value", "value": "100" }, { "id": 6, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 9 ] }, { "entity_id": 2, "token_idxs": [ 6 ] }, { "entity_id": 3, "token_idxs": [ 12, 13 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "B-VALUE", "I-VALUE", "O" ]
13,214
club_leader
bird:test.json:645
List the names of members in ascending order of age.
SELECT Name FROM member ORDER BY Age ASC
[ "List", "the", "names", "of", "members", "in", "ascending", "order", "of", "age", "." ]
[ { "id": 0, "type": "table", "value": "member" }, { "id": 1, "type": "column", "value": "name" }, { "id": 2, "type": "column", "value": "age" } ]
[ { "entity_id": 0, "token_idxs": [ 4 ] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [ 9 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "B-TABLE", "O", "O", "O", "O", "B-COLUMN", "O" ]
11,945
donor
bird:train.json:3258
What are the coordinates of the school where project 'Look, Look, We Need a Nook!' Was donated to and what resource type is it?
SELECT T2.school_latitude, T2.school_longitude, T2.resource_type FROM essays AS T1 INNER JOIN projects AS T2 ON T1.projectid = T2.projectid WHERE T1.title LIKE 'Look, Look, We Need a Nook!'
[ "What", "are", "the", "coordinates", "of", "the", "school", "where", "project", "'", "Look", ",", "Look", ",", "We", "Need", "a", "Nook", "!", "'", "Was", "donated", "to", "and", "what", "resource", "type", "is", "it", "?" ]
[ { "id": 6, "type": "value", "value": "Look, Look, We Need a Nook!" }, { "id": 1, "type": "column", "value": "school_longitude" }, { "id": 0, "type": "column", "value": "school_latitude" }, { "id": 2, "type": "column", "value": "resource_type" }, { "id": 7, "type": "column", "value": "projectid" }, { "id": 4, "type": "table", "value": "projects" }, { "id": 3, "type": "table", "value": "essays" }, { "id": 5, "type": "column", "value": "title" } ]
[ { "entity_id": 0, "token_idxs": [ 6 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 25, 26 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 8 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 10, 11, 12, 13, 14, 15, 16, 17, 18 ] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "B-COLUMN", "O", "B-TABLE", "O", "B-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "O", "O", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "O" ]
5,183
movie_platform
bird:train.json:144
For all list titles with at least 200 movies in the list, what is their average number of followers?
SELECT AVG(list_followers) FROM lists WHERE list_movie_number > 200
[ "For", "all", "list", "titles", "with", "at", "least", "200", "movies", "in", "the", "list", ",", "what", "is", "their", "average", "number", "of", "followers", "?" ]
[ { "id": 1, "type": "column", "value": "list_movie_number" }, { "id": 3, "type": "column", "value": "list_followers" }, { "id": 0, "type": "table", "value": "lists" }, { "id": 2, "type": "value", "value": "200" } ]
[ { "entity_id": 0, "token_idxs": [ 10 ] }, { "entity_id": 1, "token_idxs": [ 3, 4 ] }, { "entity_id": 2, "token_idxs": [ 6, 7 ] }, { "entity_id": 3, "token_idxs": [ 12, 13, 14 ] }, { "entity_id": 4, "token_idxs": [ 16, 17, 18 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "B-VALUE", "I-VALUE", "O", "O", "B-TABLE", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN", "O", "O", "O", "O", "O", "O" ]
406
world
bird:train.json:7836
How many percent of countries in North America use English?
SELECT CAST(SUM(IIF(T2.Language = 'English', 1, 0)) AS REAL) * 100 / COUNT(T1.Code) FROM Country AS T1 INNER JOIN CountryLanguage AS T2 ON T1.Code = T2.CountryCode
[ "How", "many", "percent", "of", "countries", "in", "North", "America", "use", "English", "?" ]
[ { "id": 1, "type": "table", "value": "countrylanguage" }, { "id": 3, "type": "column", "value": "countrycode" }, { "id": 7, "type": "column", "value": "language" }, { "id": 0, "type": "table", "value": "country" }, { "id": 8, "type": "value", "value": "English" }, { "id": 2, "type": "column", "value": "code" }, { "id": 4, "type": "value", "value": "100" }, { "id": 5, "type": "value", "value": "1" }, { "id": 6, "type": "value", "value": "0" } ]
[ { "entity_id": 0, "token_idxs": [ 4 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [ 9 ] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "O", "B-VALUE", "O" ]
6,484
insurance_policies
spider:train_spider.json:3874
Who are the customers that had more than 1 policy? List the customer details and id.
SELECT T1.customer_details , T1.customer_id FROM Customers AS T1 JOIN Customer_Policies AS T2 ON T1.Customer_id = T2.Customer_id GROUP BY T1.customer_id HAVING count(*) > 1
[ "Who", "are", "the", "customers", "that", "had", "more", "than", "1", "policy", "?", "List", "the", "customer", "details", "and", "i", "d." ]
[ { "id": 3, "type": "table", "value": "customer_policies" }, { "id": 1, "type": "column", "value": "customer_details" }, { "id": 0, "type": "column", "value": "customer_id" }, { "id": 2, "type": "table", "value": "customers" }, { "id": 4, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 8 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 6 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "O", "B-VALUE", "O", "B-TABLE", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
3,878
world
bird:train.json:7859
What is the official language of China?
SELECT T2.Language FROM Country AS T1 INNER JOIN CountryLanguage AS T2 ON T1.Code = T2.CountryCode WHERE T1.Name = 'China' AND T2.IsOfficial = 'T'
[ "What", "is", "the", "official", "language", "of", "China", "?" ]
[ { "id": 2, "type": "table", "value": "countrylanguage" }, { "id": 4, "type": "column", "value": "countrycode" }, { "id": 7, "type": "column", "value": "isofficial" }, { "id": 0, "type": "column", "value": "language" }, { "id": 1, "type": "table", "value": "country" }, { "id": 6, "type": "value", "value": "China" }, { "id": 3, "type": "column", "value": "code" }, { "id": 5, "type": "column", "value": "name" }, { "id": 8, "type": "value", "value": "T" } ]
[ { "entity_id": 0, "token_idxs": [ 4 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 6 ] }, { "entity_id": 7, "token_idxs": [ 3 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "B-COLUMN", "O", "B-VALUE", "O" ]
15,740
wine_1
spider:train_spider.json:6570
What are the distinct wineries which produce wines costing between 50 and 100?
SELECT DISTINCT Winery FROM WINE WHERE Price BETWEEN 50 AND 100
[ "What", "are", "the", "distinct", "wineries", "which", "produce", "wines", "costing", "between", "50", "and", "100", "?" ]
[ { "id": 1, "type": "column", "value": "winery" }, { "id": 2, "type": "column", "value": "price" }, { "id": 0, "type": "table", "value": "wine" }, { "id": 4, "type": "value", "value": "100" }, { "id": 3, "type": "value", "value": "50" } ]
[ { "entity_id": 0, "token_idxs": [ 7 ] }, { "entity_id": 1, "token_idxs": [ 4 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 10 ] }, { "entity_id": 4, "token_idxs": [ 12 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "B-VALUE", "O", "B-VALUE", "O" ]
3,116
hockey
bird:train.json:7708
Which year was the goalie who had the most postseaon shots Against in 2008 born?
SELECT T1.birthYear FROM Master AS T1 INNER JOIN Goalies AS T2 ON T1.playerID = T2.playerID WHERE T2.year = 2008 ORDER BY T2.PostSA DESC LIMIT 1
[ "Which", "year", "was", "the", "goalie", "who", "had", "the", "most", "postseaon", "shots", "Against", "in", "2008", "born", "?" ]
[ { "id": 0, "type": "column", "value": "birthyear" }, { "id": 6, "type": "column", "value": "playerid" }, { "id": 2, "type": "table", "value": "goalies" }, { "id": 1, "type": "table", "value": "master" }, { "id": 5, "type": "column", "value": "postsa" }, { "id": 3, "type": "column", "value": "year" }, { "id": 4, "type": "value", "value": "2008" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 4 ] }, { "entity_id": 3, "token_idxs": [ 1 ] }, { "entity_id": 4, "token_idxs": [ 13 ] }, { "entity_id": 5, "token_idxs": [ 9 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "O", "O", "B-COLUMN", "O", "O", "O", "B-VALUE", "O", "O" ]
13,004
book_publishing_company
bird:train.json:215
What's the royalty for the bestseller book?
SELECT royalty FROM titles ORDER BY ytd_sales DESC LIMIT 1
[ "What", "'s", "the", "royalty", "for", "the", "bestseller", "book", "?" ]
[ { "id": 2, "type": "column", "value": "ytd_sales" }, { "id": 1, "type": "column", "value": "royalty" }, { "id": 0, "type": "table", "value": "titles" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 3 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "O" ]
13,143
donor
bird:train.json:3167
Who is the largest donor by amount? Give the donation id and the total amount of the donation.
SELECT donationid, donation_total FROM donations ORDER BY donation_total DESC LIMIT 1
[ "Who", "is", "the", "largest", "donor", "by", "amount", "?", "Give", "the", "donation", "i", "d", "and", "the", "total", "amount", "of", "the", "donation", "." ]
[ { "id": 2, "type": "column", "value": "donation_total" }, { "id": 1, "type": "column", "value": "donationid" }, { "id": 0, "type": "table", "value": "donations" } ]
[ { "entity_id": 0, "token_idxs": [ 10 ] }, { "entity_id": 1, "token_idxs": [ 11, 12 ] }, { "entity_id": 2, "token_idxs": [ 19 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-TABLE", "B-COLUMN", "I-COLUMN", "O", "O", "O", "O", "O", "O", "B-COLUMN", "O" ]
7,140
perpetrator
spider:train_spider.json:2318
List the names of perpetrators in descending order of the year.
SELECT T1.Name FROM people AS T1 JOIN perpetrator AS T2 ON T1.People_ID = T2.People_ID ORDER BY T2.Year DESC
[ "List", "the", "names", "of", "perpetrators", "in", "descending", "order", "of", "the", "year", "." ]
[ { "id": 2, "type": "table", "value": "perpetrator" }, { "id": 4, "type": "column", "value": "people_id" }, { "id": 1, "type": "table", "value": "people" }, { "id": 0, "type": "column", "value": "name" }, { "id": 3, "type": "column", "value": "year" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 4 ] }, { "entity_id": 3, "token_idxs": [ 10 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "B-TABLE", "O", "O", "O", "O", "O", "B-COLUMN", "O" ]
10,015
epinions_1
spider:train_spider.json:1712
Find the name of the source user with the highest average trust score.
SELECT T1.name FROM useracct AS T1 JOIN trust AS T2 ON T1.u_id = T2.source_u_id GROUP BY T2.source_u_id ORDER BY avg(trust) DESC LIMIT 1
[ "Find", "the", "name", "of", "the", "source", "user", "with", "the", "highest", "average", "trust", "score", "." ]
[ { "id": 0, "type": "column", "value": "source_u_id" }, { "id": 2, "type": "table", "value": "useracct" }, { "id": 3, "type": "table", "value": "trust" }, { "id": 5, "type": "column", "value": "trust" }, { "id": 1, "type": "column", "value": "name" }, { "id": 4, "type": "column", "value": "u_id" } ]
[ { "entity_id": 0, "token_idxs": [ 5 ] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [ 6 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [ 11 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "B-COLUMN", "B-TABLE", "O", "O", "O", "O", "B-COLUMN", "O", "O" ]
15,680
bike_1
spider:train_spider.json:189
For each station, return its longitude and the average duration of trips that started from the station.
SELECT T1.name , T1.long , avg(T2.duration) FROM station AS T1 JOIN trip AS T2 ON T1.id = T2.start_station_id GROUP BY T2.start_station_id
[ "For", "each", "station", ",", "return", "its", "longitude", "and", "the", "average", "duration", "of", "trips", "that", "started", "from", "the", "station", "." ]
[ { "id": 0, "type": "column", "value": "start_station_id" }, { "id": 5, "type": "column", "value": "duration" }, { "id": 3, "type": "table", "value": "station" }, { "id": 1, "type": "column", "value": "name" }, { "id": 2, "type": "column", "value": "long" }, { "id": 4, "type": "table", "value": "trip" }, { "id": 6, "type": "column", "value": "id" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 13, 14 ] }, { "entity_id": 4, "token_idxs": [ 10 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 6 ] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "B-COLUMN", "O", "O", "O", "B-TABLE", "O", "O", "B-TABLE", "I-TABLE", "O", "O", "O", "O" ]
6,389
synthea
bird:train.json:1426
Which procedures and medications were received by the patient with the third-degree burn?
SELECT DISTINCT T1.DESCRIPTION, T3.DESCRIPTION FROM procedures AS T1 INNER JOIN conditions AS T2 ON T1.patient = T2.PATIENT INNER JOIN medications AS T3 ON T2.patient = T3.PATIENT WHERE T2.DESCRIPTION = 'Third degree burn'
[ "Which", "procedures", "and", "medications", "were", "received", "by", "the", "patient", "with", "the", "third", "-", "degree", "burn", "?" ]
[ { "id": 2, "type": "value", "value": "Third degree burn" }, { "id": 0, "type": "column", "value": "description" }, { "id": 1, "type": "table", "value": "medications" }, { "id": 3, "type": "table", "value": "procedures" }, { "id": 4, "type": "table", "value": "conditions" }, { "id": 5, "type": "column", "value": "patient" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 3 ] }, { "entity_id": 2, "token_idxs": [ 11, 12, 13, 14 ] }, { "entity_id": 3, "token_idxs": [ 1 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [ 8 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-TABLE", "O", "B-TABLE", "O", "O", "O", "O", "B-COLUMN", "O", "O", "B-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "O" ]
16,070
olympics
bird:train.json:5051
How many Belgian men have competed in an Olympic Games?
SELECT COUNT(T2.person_id) FROM noc_region AS T1 INNER JOIN person_region AS T2 ON T1.id = T2.region_id INNER JOIN person AS T3 ON T2.person_id = T3.id WHERE T1.region_name = 'Belgium' AND T3.gender = 'M'
[ "How", "many", "Belgian", "men", "have", "competed", "in", "an", "Olympic", "Games", "?" ]
[ { "id": 3, "type": "table", "value": "person_region" }, { "id": 5, "type": "column", "value": "region_name" }, { "id": 2, "type": "table", "value": "noc_region" }, { "id": 1, "type": "column", "value": "person_id" }, { "id": 9, "type": "column", "value": "region_id" }, { "id": 6, "type": "value", "value": "Belgium" }, { "id": 0, "type": "table", "value": "person" }, { "id": 7, "type": "column", "value": "gender" }, { "id": 4, "type": "column", "value": "id" }, { "id": 8, "type": "value", "value": "M" } ]
[ { "entity_id": 0, "token_idxs": [ 5 ] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [ 9, 10 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "O", "B-TABLE", "I-TABLE" ]
14,727
customers_card_transactions
spider:train_spider.json:738
Return the average transaction amount, as well as the total amount of all transactions.
SELECT avg(transaction_amount) , sum(transaction_amount) FROM Financial_transactions
[ "Return", "the", "average", "transaction", "amount", ",", "as", "well", "as", "the", "total", "amount", "of", "all", "transactions", "." ]
[ { "id": 0, "type": "table", "value": "financial_transactions" }, { "id": 1, "type": "column", "value": "transaction_amount" } ]
[ { "entity_id": 0, "token_idxs": [ 14 ] }, { "entity_id": 1, "token_idxs": [ 3, 4 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-TABLE", "O" ]
5,409
e_learning
spider:train_spider.json:3836
Find the student ID and login name of the student with the most course enrollments
SELECT T1.student_id , T2.login_name FROM Student_Course_Enrolment AS T1 JOIN Students AS T2 ON T1.student_id = T2.student_id GROUP BY T1.student_id ORDER BY COUNT(*) DESC LIMIT 1
[ "Find", "the", "student", "ID", "and", "login", "name", "of", "the", "student", "with", "the", "most", "course", "enrollments" ]
[ { "id": 2, "type": "table", "value": "student_course_enrolment" }, { "id": 0, "type": "column", "value": "student_id" }, { "id": 1, "type": "column", "value": "login_name" }, { "id": 3, "type": "table", "value": "students" } ]
[ { "entity_id": 0, "token_idxs": [ 2, 3 ] }, { "entity_id": 1, "token_idxs": [ 5, 6 ] }, { "entity_id": 2, "token_idxs": [ 12, 13, 14 ] }, { "entity_id": 3, "token_idxs": [ 9 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "I-COLUMN", "O", "B-COLUMN", "I-COLUMN", "O", "O", "B-TABLE", "O", "O", "B-TABLE", "I-TABLE", "I-TABLE" ]
6,224
tracking_software_problems
spider:train_spider.json:5370
Find the ids of the problems that are reported by the staff whose last name is Bosco.
SELECT T1.problem_id FROM problems AS T1 JOIN staff AS T2 ON T1.reported_by_staff_id = T2.staff_id WHERE T2.staff_last_name = "Bosco"
[ "Find", "the", "ids", "of", "the", "problems", "that", "are", "reported", "by", "the", "staff", "whose", "last", "name", "is", "Bosco", "." ]
[ { "id": 5, "type": "column", "value": "reported_by_staff_id" }, { "id": 3, "type": "column", "value": "staff_last_name" }, { "id": 0, "type": "column", "value": "problem_id" }, { "id": 1, "type": "table", "value": "problems" }, { "id": 6, "type": "column", "value": "staff_id" }, { "id": 2, "type": "table", "value": "staff" }, { "id": 4, "type": "column", "value": "Bosco" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 5 ] }, { "entity_id": 2, "token_idxs": [ 11 ] }, { "entity_id": 3, "token_idxs": [ 13, 14 ] }, { "entity_id": 4, "token_idxs": [ 16 ] }, { "entity_id": 5, "token_idxs": [ 8, 9 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "I-COLUMN", "O", "B-TABLE", "O", "B-COLUMN", "I-COLUMN", "O", "B-COLUMN", "O" ]
12,054
restaurant_bills
bird:test.json:625
Find the customer with the highest membership level and return his or her card credit.
SELECT Card_Credit FROM customer ORDER BY Level_of_Membership DESC LIMIT 1
[ "Find", "the", "customer", "with", "the", "highest", "membership", "level", "and", "return", "his", "or", "her", "card", "credit", "." ]
[ { "id": 2, "type": "column", "value": "level_of_membership" }, { "id": 1, "type": "column", "value": "card_credit" }, { "id": 0, "type": "table", "value": "customer" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [ 8 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 9 ] }, { "entity_id": 7, "token_idxs": [ 11, 12, 13 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "O", "O", "O" ]
13,885
student_club
bird:dev.json:1347
Tell the hometown county for "Adela O'Gallagher".
SELECT T2.county FROM member AS T1 INNER JOIN zip_code AS T2 ON T1.zip = T2.zip_code WHERE T1.first_name = 'Adela' AND T1.last_name = 'O''Gallagher'
[ "Tell", "the", "hometown", "county", "for", "\"", "Adela", "O'Gallagher", "\"", "." ]
[ { "id": 8, "type": "value", "value": "O'Gallagher" }, { "id": 5, "type": "column", "value": "first_name" }, { "id": 7, "type": "column", "value": "last_name" }, { "id": 2, "type": "table", "value": "zip_code" }, { "id": 4, "type": "column", "value": "zip_code" }, { "id": 0, "type": "column", "value": "county" }, { "id": 1, "type": "table", "value": "member" }, { "id": 6, "type": "value", "value": "Adela" }, { "id": 3, "type": "column", "value": "zip" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 6 ] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [ 7 ] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "O", "B-VALUE", "B-VALUE", "O", "O" ]
1,133
insurance_policies
spider:train_spider.json:3886
Which kind of policy type was chosen by the most customers?
SELECT Policy_Type_Code FROM Customer_Policies GROUP BY Policy_Type_Code ORDER BY count(*) DESC LIMIT 1
[ "Which", "kind", "of", "policy", "type", "was", "chosen", "by", "the", "most", "customers", "?" ]
[ { "id": 0, "type": "table", "value": "customer_policies" }, { "id": 1, "type": "column", "value": "policy_type_code" } ]
[ { "entity_id": 0, "token_idxs": [ 10 ] }, { "entity_id": 1, "token_idxs": [ 3, 4 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "O", "O", "O", "B-TABLE", "O" ]
13,042
trains
bird:train.json:719
How many eastbound trains have rectangular-shaped head cars?
SELECT COUNT(T.train_id) FROM (SELECT T1.train_id FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T2.direction = 'east' AND T1.shape = 'rectangle' GROUP BY T1.train_id)as T
[ "How", "many", "eastbound", "trains", "have", "rectangular", "-", "shaped", "head", "cars", "?" ]
[ { "id": 6, "type": "column", "value": "direction" }, { "id": 9, "type": "value", "value": "rectangle" }, { "id": 0, "type": "column", "value": "train_id" }, { "id": 4, "type": "column", "value": "position" }, { "id": 2, "type": "table", "value": "trains" }, { "id": 8, "type": "column", "value": "shape" }, { "id": 1, "type": "table", "value": "cars" }, { "id": 7, "type": "value", "value": "east" }, { "id": 3, "type": "column", "value": "id" }, { "id": 5, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 9 ] }, { "entity_id": 2, "token_idxs": [ 3 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 2 ] }, { "entity_id": 8, "token_idxs": [ 7 ] }, { "entity_id": 9, "token_idxs": [ 5 ] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-VALUE", "B-TABLE", "O", "B-VALUE", "O", "B-COLUMN", "O", "B-TABLE", "O" ]
6,304
address
bird:train.json:5202
Calculate the percentage of households in residential areas of countries over 10000.
SELECT CAST(COUNT(CASE WHEN T2.households > 10000 THEN T1.zip_code ELSE NULL END) AS REAL) * 100 / COUNT(T1.zip_code) FROM country AS T1 INNER JOIN zip_data AS T2 ON T1.zip_code = T2.zip_code
[ "Calculate", "the", "percentage", "of", "households", "in", "residential", "areas", "of", "countries", "over", "10000", "." ]
[ { "id": 4, "type": "column", "value": "households" }, { "id": 1, "type": "table", "value": "zip_data" }, { "id": 2, "type": "column", "value": "zip_code" }, { "id": 0, "type": "table", "value": "country" }, { "id": 5, "type": "value", "value": "10000" }, { "id": 3, "type": "value", "value": "100" } ]
[ { "entity_id": 0, "token_idxs": [ 9 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 4 ] }, { "entity_id": 5, "token_idxs": [ 11 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "B-TABLE", "O", "B-VALUE", "O" ]
8,565
video_game
bird:test.json:1967
Show the title of games that are played by both players from college "Oklahoma" and players from college "Auburn".
SELECT T1.Title FROM game AS T1 JOIN game_player AS T2 ON T1.Game_ID = T2.Game_ID JOIN player AS T3 ON T2.Player_ID = T3.Player_ID WHERE T3.College = "Oklahoma" INTERSECT SELECT T1.Title FROM game AS T1 JOIN game_player AS T2 ON T1.Game_ID = T2.Game_ID JOIN player AS T3 ON T2.Player_ID = T3.Player_ID WHERE T3.College = "Auburn"
[ "Show", "the", "title", "of", "games", "that", "are", "played", "by", "both", "players", "from", "college", "\"", "Oklahoma", "\"", "and", "players", "from", "college", "\"", "Auburn", "\"", "." ]
[ { "id": 6, "type": "table", "value": "game_player" }, { "id": 7, "type": "column", "value": "player_id" }, { "id": 3, "type": "column", "value": "Oklahoma" }, { "id": 2, "type": "column", "value": "college" }, { "id": 8, "type": "column", "value": "game_id" }, { "id": 1, "type": "table", "value": "player" }, { "id": 4, "type": "column", "value": "Auburn" }, { "id": 0, "type": "column", "value": "title" }, { "id": 5, "type": "table", "value": "game" } ]
[ { "entity_id": 0, "token_idxs": [ 1 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-COLUMN", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
3,680
restaurant
bird:train.json:1765
What is the full address of the restaurant named "Sanuki Restaurant"?
SELECT T2.city, T1.street_num, T1.street_name FROM location AS T1 INNER JOIN generalinfo AS T2 ON T1.id_restaurant = T2.id_restaurant WHERE T2.label = 'sanuki restaurant'
[ "What", "is", "the", "full", "address", "of", "the", "restaurant", "named", "\"", "Sanuki", "Restaurant", "\"", "?" ]
[ { "id": 6, "type": "value", "value": "sanuki restaurant" }, { "id": 7, "type": "column", "value": "id_restaurant" }, { "id": 2, "type": "column", "value": "street_name" }, { "id": 4, "type": "table", "value": "generalinfo" }, { "id": 1, "type": "column", "value": "street_num" }, { "id": 3, "type": "table", "value": "location" }, { "id": 5, "type": "column", "value": "label" }, { "id": 0, "type": "column", "value": "city" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 8 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 10, 11 ] }, { "entity_id": 7, "token_idxs": [ 7 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "O", "B-COLUMN", "B-COLUMN", "O", "B-VALUE", "I-VALUE", "O", "O" ]
771
food_inspection_2
bird:train.json:6113
Please list the assumed name of all the facilities inspected by Joshua Rosa.
SELECT DISTINCT T3.dba_name FROM employee AS T1 INNER JOIN inspection AS T2 ON T1.employee_id = T2.employee_id INNER JOIN establishment AS T3 ON T2.license_no = T3.license_no WHERE T1.first_name = 'Joshua' AND T1.last_name = 'Rosa'
[ "Please", "list", "the", "assumed", "name", "of", "all", "the", "facilities", "inspected", "by", "Joshua", "Rosa", "." ]
[ { "id": 1, "type": "table", "value": "establishment" }, { "id": 9, "type": "column", "value": "employee_id" }, { "id": 3, "type": "table", "value": "inspection" }, { "id": 4, "type": "column", "value": "license_no" }, { "id": 5, "type": "column", "value": "first_name" }, { "id": 7, "type": "column", "value": "last_name" }, { "id": 0, "type": "column", "value": "dba_name" }, { "id": 2, "type": "table", "value": "employee" }, { "id": 6, "type": "value", "value": "Joshua" }, { "id": 8, "type": "value", "value": "Rosa" } ]
[ { "entity_id": 0, "token_idxs": [ 4 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 9 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 11 ] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [ 12 ] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "B-TABLE", "O", "B-VALUE", "B-VALUE", "O" ]
14,983
public_review_platform
bird:train.json:4033
Among the users who received high compliments from other users, which users joined Yelp earliest?
SELECT T2.user_id FROM Users AS T1 INNER JOIN Users_Compliments AS T2 ON T1.user_id = T2.user_id WHERE T2.number_of_compliments = 'High' AND T1.user_yelping_since_year = ( SELECT MIN(user_yelping_since_year) FROM Users )
[ "Among", "the", "users", "who", "received", "high", "compliments", "from", "other", "users", ",", "which", "users", "joined", "Yelp", "earliest", "?" ]
[ { "id": 5, "type": "column", "value": "user_yelping_since_year" }, { "id": 3, "type": "column", "value": "number_of_compliments" }, { "id": 2, "type": "table", "value": "users_compliments" }, { "id": 0, "type": "column", "value": "user_id" }, { "id": 1, "type": "table", "value": "users" }, { "id": 4, "type": "value", "value": "High" } ]
[ { "entity_id": 0, "token_idxs": [ 12 ] }, { "entity_id": 1, "token_idxs": [ 9 ] }, { "entity_id": 2, "token_idxs": [ 6 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 5 ] }, { "entity_id": 5, "token_idxs": [ 14 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "B-VALUE", "B-TABLE", "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "O", "B-COLUMN", "O", "O" ]
10,894
address
bird:train.json:5229
How many postal points with unique post office types are there in Ohio?
SELECT COUNT(T2.zip_code) FROM state AS T1 INNER JOIN zip_data AS T2 ON T1.abbreviation = T2.state WHERE T1.name = 'Ohio' AND T2.type = 'Unique Post Office'
[ "How", "many", "postal", "points", "with", "unique", "post", "office", "types", "are", "there", "in", "Ohio", "?" ]
[ { "id": 8, "type": "value", "value": "Unique Post Office" }, { "id": 3, "type": "column", "value": "abbreviation" }, { "id": 1, "type": "table", "value": "zip_data" }, { "id": 2, "type": "column", "value": "zip_code" }, { "id": 0, "type": "table", "value": "state" }, { "id": 4, "type": "column", "value": "state" }, { "id": 5, "type": "column", "value": "name" }, { "id": 6, "type": "value", "value": "Ohio" }, { "id": 7, "type": "column", "value": "type" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 10, 11 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 12 ] }, { "entity_id": 7, "token_idxs": [ 8 ] }, { "entity_id": 8, "token_idxs": [ 5, 6, 7 ] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "B-VALUE", "I-VALUE", "I-VALUE", "B-COLUMN", "O", "B-COLUMN", "I-COLUMN", "B-VALUE", "O" ]
11,946
restaurant
bird:train.json:1695
Identify all the restaurants in Marin County by their id.
SELECT T1.id_restaurant FROM generalinfo AS T1 INNER JOIN geographic AS T2 ON T1.city = T2.city WHERE T2.county = 'marin county'
[ "Identify", "all", "the", "restaurants", "in", "Marin", "County", "by", "their", "i", "d." ]
[ { "id": 0, "type": "column", "value": "id_restaurant" }, { "id": 4, "type": "value", "value": "marin county" }, { "id": 1, "type": "table", "value": "generalinfo" }, { "id": 2, "type": "table", "value": "geographic" }, { "id": 3, "type": "column", "value": "county" }, { "id": 5, "type": "column", "value": "city" } ]
[ { "entity_id": 0, "token_idxs": [ 3, 9, 10 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 6 ] }, { "entity_id": 4, "token_idxs": [ 5 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "B-VALUE", "B-COLUMN", "O", "O", "B-COLUMN", "I-COLUMN" ]
998
tracking_grants_for_research
spider:train_spider.json:4373
What are the details of all organizations that are described as Sponsors and sort the results in ascending order?
SELECT organisation_details FROM Organisations AS T1 JOIN organisation_Types AS T2 ON T1.organisation_type = T2.organisation_type WHERE T2.organisation_type_description = 'Sponsor' ORDER BY organisation_details
[ "What", "are", "the", "details", "of", "all", "organizations", "that", "are", "described", "as", "Sponsors", "and", "sort", "the", "results", "in", "ascending", "order", "?" ]
[ { "id": 3, "type": "column", "value": "organisation_type_description" }, { "id": 0, "type": "column", "value": "organisation_details" }, { "id": 2, "type": "table", "value": "organisation_types" }, { "id": 5, "type": "column", "value": "organisation_type" }, { "id": 1, "type": "table", "value": "organisations" }, { "id": 4, "type": "value", "value": "Sponsor" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 13, 14 ] }, { "entity_id": 2, "token_idxs": [ 6, 7 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "O", "B-TABLE", "I-TABLE", "O", "O", "O", "O", "O", "B-TABLE", "I-TABLE", "O", "O", "O", "O", "O" ]
10,530
gymnast
spider:train_spider.json:1758
What are the distinct hometowns of gymnasts with total points more than 57.5?
SELECT DISTINCT T2.Hometown FROM gymnast AS T1 JOIN people AS T2 ON T1.Gymnast_ID = T2.People_ID WHERE T1.Total_Points > 57.5
[ "What", "are", "the", "distinct", "hometowns", "of", "gymnasts", "with", "total", "points", "more", "than", "57.5", "?" ]
[ { "id": 3, "type": "column", "value": "total_points" }, { "id": 5, "type": "column", "value": "gymnast_id" }, { "id": 6, "type": "column", "value": "people_id" }, { "id": 0, "type": "column", "value": "hometown" }, { "id": 1, "type": "table", "value": "gymnast" }, { "id": 2, "type": "table", "value": "people" }, { "id": 4, "type": "value", "value": "57.5" } ]
[ { "entity_id": 0, "token_idxs": [ 4 ] }, { "entity_id": 1, "token_idxs": [ 6 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 8, 9 ] }, { "entity_id": 4, "token_idxs": [ 12 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "O", "B-TABLE", "O", "B-COLUMN", "I-COLUMN", "O", "O", "B-VALUE", "O" ]
488
mondial_geo
bird:train.json:8473
Which country has the least organization membership?
SELECT country FROM organization WHERE country IN ( SELECT Code FROM country ) GROUP BY country ORDER BY COUNT(NAME) LIMIT 1
[ "Which", "country", "has", "the", "least", "organization", "membership", "?" ]
[ { "id": 0, "type": "table", "value": "organization" }, { "id": 1, "type": "column", "value": "country" }, { "id": 2, "type": "table", "value": "country" }, { "id": 3, "type": "column", "value": "name" }, { "id": 4, "type": "column", "value": "code" } ]
[ { "entity_id": 0, "token_idxs": [ 5 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 1 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-TABLE", "O", "O", "O", "B-TABLE", "O", "O" ]
8,669
retail_complains
bird:train.json:354
Write down the call id of clients whose first name start with alphabet "B".
SELECT T2.call_id FROM client AS T1 INNER JOIN callcenterlogs AS T2 ON T1.client_id = T2.`rand client` WHERE T1.first LIKE 'B%'
[ "Write", "down", "the", "call", "i", "d", "of", "clients", "whose", "first", "name", "start", "with", "alphabet", "\"", "B", "\"", "." ]
[ { "id": 2, "type": "table", "value": "callcenterlogs" }, { "id": 6, "type": "column", "value": "rand client" }, { "id": 5, "type": "column", "value": "client_id" }, { "id": 0, "type": "column", "value": "call_id" }, { "id": 1, "type": "table", "value": "client" }, { "id": 3, "type": "column", "value": "first" }, { "id": 4, "type": "value", "value": "B%" } ]
[ { "entity_id": 0, "token_idxs": [ 3, 4, 5 ] }, { "entity_id": 1, "token_idxs": [ 7 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 9 ] }, { "entity_id": 4, "token_idxs": [ 15 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN", "O", "B-TABLE", "O", "B-COLUMN", "O", "O", "O", "O", "O", "B-VALUE", "O", "O" ]
11,968
address_1
bird:test.json:814
What is the distance between Boston and Newark?
SELECT distance FROM Direct_distance AS T1 JOIN City AS T2 ON T1.city1_code = T2.city_code JOIN City AS T3 ON T1.city2_code = T3.city_code WHERE T2.city_name = "Boston" AND T3.city_name = "Newark"
[ "What", "is", "the", "distance", "between", "Boston", "and", "Newark", "?" ]
[ { "id": 2, "type": "table", "value": "direct_distance" }, { "id": 3, "type": "column", "value": "city2_code" }, { "id": 8, "type": "column", "value": "city1_code" }, { "id": 4, "type": "column", "value": "city_code" }, { "id": 5, "type": "column", "value": "city_name" }, { "id": 0, "type": "column", "value": "distance" }, { "id": 6, "type": "column", "value": "Boston" }, { "id": 7, "type": "column", "value": "Newark" }, { "id": 1, "type": "table", "value": "city" } ]
[ { "entity_id": 0, "token_idxs": [ 6 ] }, { "entity_id": 1, "token_idxs": [ 3 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "O", "O" ]
5,050
movie_3
bird:train.json:9249
Among the movies, what percentage are horror?
SELECT CAST(SUM(IIF(T2.name = 'horror', 1, 0)) AS REAL) * 100 / COUNT(T2.category_id) FROM film_category AS T1 INNER JOIN category AS T2 ON T1.category_id = T2.category_id
[ "Among", "the", "movies", ",", "what", "percentage", "are", "horror", "?" ]
[ { "id": 0, "type": "table", "value": "film_category" }, { "id": 2, "type": "column", "value": "category_id" }, { "id": 1, "type": "table", "value": "category" }, { "id": 7, "type": "value", "value": "horror" }, { "id": 6, "type": "column", "value": "name" }, { "id": 3, "type": "value", "value": "100" }, { "id": 4, "type": "value", "value": "1" }, { "id": 5, "type": "value", "value": "0" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 7 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "O", "B-VALUE", "O" ]
12,670
mondial_geo
bird:train.json:8367
What is the difference in population between the two nations where the tallest peak is located?
SELECT * FROM mountain AS T1 INNER JOIN geo_mountain AS T2 ON T1.Name = T2.Mountain INNER JOIN province AS T3 ON T3.Country = T2.Country INNER JOIN country AS T4 ON T4.Code = T3.Country WHERE T1.Name = ( SELECT Name FROM mountain ORDER BY Height DESC LIMIT 1 )
[ "What", "is", "the", "difference", "in", "population", "between", "the", "two", "nations", "where", "the", "tallest", "peak", "is", "located", "?" ]
[ { "id": 6, "type": "table", "value": "geo_mountain" }, { "id": 2, "type": "table", "value": "province" }, { "id": 5, "type": "table", "value": "mountain" }, { "id": 7, "type": "column", "value": "mountain" }, { "id": 0, "type": "table", "value": "country" }, { "id": 4, "type": "column", "value": "country" }, { "id": 8, "type": "column", "value": "height" }, { "id": 1, "type": "column", "value": "name" }, { "id": 3, "type": "column", "value": "code" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
7,618
customers_and_orders
bird:test.json:300
Give the order status code that is most frequent across customer orders.
SELECT order_status_code FROM Customer_orders GROUP BY order_status_code ORDER BY count(*) DESC LIMIT 1
[ "Give", "the", "order", "status", "code", "that", "is", "most", "frequent", "across", "customer", "orders", "." ]
[ { "id": 1, "type": "column", "value": "order_status_code" }, { "id": 0, "type": "table", "value": "customer_orders" } ]
[ { "entity_id": 0, "token_idxs": [ 10, 11 ] }, { "entity_id": 1, "token_idxs": [ 2, 3, 4 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN", "O", "O", "O", "O", "O", "B-TABLE", "I-TABLE", "O" ]
14,952
flight_4
spider:train_spider.json:6808
What is the total number of airlines?
SELECT count(*) FROM airlines
[ "What", "is", "the", "total", "number", "of", "airlines", "?" ]
[ { "id": 0, "type": "table", "value": "airlines" } ]
[ { "entity_id": 0, "token_idxs": [ 5 ] }, { "entity_id": 1, "token_idxs": [ 2, 3 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "B-TABLE", "O", "O" ]
7,041
movies_4
bird:train.json:519
List all the keywords with "christmas" in them.
SELECT keyword_name FROM keyword WHERE keyword_name LIKE '%christmas%'
[ "List", "all", "the", "keywords", "with", "\"", "christmas", "\"", "in", "them", "." ]
[ { "id": 1, "type": "column", "value": "keyword_name" }, { "id": 2, "type": "value", "value": "%christmas%" }, { "id": 0, "type": "table", "value": "keyword" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 6 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-TABLE", "O", "O", "B-VALUE", "O", "O", "O", "O" ]
13,674
customers_and_addresses
spider:train_spider.json:6091
Find the state and country of all cities with post code starting with 4.
SELECT state_province_county , country FROM addresses WHERE zip_postcode LIKE "4%"
[ "Find", "the", "state", "and", "country", "of", "all", "cities", "with", "post", "code", "starting", "with", "4", "." ]
[ { "id": 1, "type": "column", "value": "state_province_county" }, { "id": 3, "type": "column", "value": "zip_postcode" }, { "id": 0, "type": "table", "value": "addresses" }, { "id": 2, "type": "column", "value": "country" }, { "id": 4, "type": "column", "value": "4%" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [ 4 ] }, { "entity_id": 3, "token_idxs": [ 9, 10 ] }, { "entity_id": 4, "token_idxs": [ 13 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "B-COLUMN", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "B-COLUMN", "O" ]
4,061
retail_world
bird:train.json:6595
Provide the category name of the Chef Anton's Gumbo Mix product that New Orleans Cajun Delights company has.
SELECT T3.CategoryName FROM Suppliers AS T1 INNER JOIN Products AS T2 ON T1.SupplierID = T2.SupplierID INNER JOIN Categories AS T3 ON T2.CategoryID = T3.CategoryID WHERE T1.CompanyName = 'New Orleans Cajun Delights' AND T2.ProductName LIKE 'Chef Anton%s Gumbo Mix'
[ "Provide", "the", "category", "name", "of", "the", "Chef", "Anton", "'s", "Gumbo", "Mix", "product", "that", "New", "Orleans", "Cajun", "Delights", "company", "has", "." ]
[ { "id": 6, "type": "value", "value": "New Orleans Cajun Delights" }, { "id": 8, "type": "value", "value": "Chef Anton%s Gumbo Mix" }, { "id": 0, "type": "column", "value": "categoryname" }, { "id": 5, "type": "column", "value": "companyname" }, { "id": 7, "type": "column", "value": "productname" }, { "id": 1, "type": "table", "value": "categories" }, { "id": 4, "type": "column", "value": "categoryid" }, { "id": 9, "type": "column", "value": "supplierid" }, { "id": 2, "type": "table", "value": "suppliers" }, { "id": 3, "type": "table", "value": "products" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 11 ] }, { "entity_id": 4, "token_idxs": [ 2 ] }, { "entity_id": 5, "token_idxs": [ 17 ] }, { "entity_id": 6, "token_idxs": [ 13, 14, 15, 16 ] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [ 6, 7, 8, 9, 10 ] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "B-COLUMN", "O", "O", "B-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "B-TABLE", "O", "B-VALUE", "I-VALUE", "I-VALUE", "I-VALUE", "B-COLUMN", "O", "O" ]
12,900
european_football_2
bird:dev.json:1093
What is the average overall rating of the players born before the year 1986?
SELECT SUM(t2.overall_rating) / COUNT(t1.id) FROM Player AS t1 INNER JOIN Player_Attributes AS t2 ON t1.player_api_id = t2.player_api_id WHERE SUBSTR(t1.birthday, 1, 4) < '1986'
[ "What", "is", "the", "average", "overall", "rating", "of", "the", "players", "born", "before", "the", "year", "1986", "?" ]
[ { "id": 1, "type": "table", "value": "player_attributes" }, { "id": 7, "type": "column", "value": "overall_rating" }, { "id": 3, "type": "column", "value": "player_api_id" }, { "id": 4, "type": "column", "value": "birthday" }, { "id": 0, "type": "table", "value": "player" }, { "id": 2, "type": "value", "value": "1986" }, { "id": 8, "type": "column", "value": "id" }, { "id": 5, "type": "value", "value": "1" }, { "id": 6, "type": "value", "value": "4" } ]
[ { "entity_id": 0, "token_idxs": [ 8 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 13 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 4, 5 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "B-TABLE", "O", "O", "O", "O", "B-VALUE", "O" ]
13,697
program_share
spider:train_spider.json:3759
Count the number of distinct channel owners.
SELECT count(DISTINCT OWNER) FROM channel
[ "Count", "the", "number", "of", "distinct", "channel", "owners", "." ]
[ { "id": 0, "type": "table", "value": "channel" }, { "id": 1, "type": "column", "value": "owner" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "O", "O" ]
3,139
olympics
bird:train.json:4965
How many persons participated in the Sapporo Olympics?
SELECT COUNT(T1.person_id) FROM games_competitor AS T1 INNER JOIN games_city AS T2 ON T1.games_id = T2.games_id INNER JOIN city AS T3 ON T2.city_id = T3.id WHERE T3.city_name = 'Sapporo'
[ "How", "many", "persons", "participated", "in", "the", "Sapporo", "Olympics", "?" ]
[ { "id": 4, "type": "table", "value": "games_competitor" }, { "id": 5, "type": "table", "value": "games_city" }, { "id": 1, "type": "column", "value": "city_name" }, { "id": 3, "type": "column", "value": "person_id" }, { "id": 8, "type": "column", "value": "games_id" }, { "id": 2, "type": "value", "value": "Sapporo" }, { "id": 6, "type": "column", "value": "city_id" }, { "id": 0, "type": "table", "value": "city" }, { "id": 7, "type": "column", "value": "id" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 6 ] }, { "entity_id": 3, "token_idxs": [ 2 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "O", "B-VALUE", "O", "O" ]
1,269
small_bank_1
spider:train_spider.json:1779
Count the number of accounts.
SELECT count(*) FROM accounts
[ "Count", "the", "number", "of", "accounts", "." ]
[ { "id": 0, "type": "table", "value": "accounts" } ]
[ { "entity_id": 0, "token_idxs": [ 4 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-TABLE", "O" ]
7,744
cre_Theme_park
spider:train_spider.json:5928
Find the details of all the markets that are accessible by walk or bus.
SELECT T1.Market_Details FROM Street_Markets AS T1 JOIN TOURIST_ATTRACTIONS AS T2 ON T1.Market_ID = T2.Tourist_Attraction_ID WHERE T2.How_to_Get_There = "walk" OR T2.How_to_Get_There = "bus"
[ "Find", "the", "details", "of", "all", "the", "markets", "that", "are", "accessible", "by", "walk", "or", "bus", "." ]
[ { "id": 4, "type": "column", "value": "tourist_attraction_id" }, { "id": 2, "type": "table", "value": "tourist_attractions" }, { "id": 5, "type": "column", "value": "how_to_get_there" }, { "id": 0, "type": "column", "value": "market_details" }, { "id": 1, "type": "table", "value": "street_markets" }, { "id": 3, "type": "column", "value": "market_id" }, { "id": 6, "type": "column", "value": "walk" }, { "id": 7, "type": "column", "value": "bus" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 6 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 11 ] }, { "entity_id": 7, "token_idxs": [ 13 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "O", "O", "B-TABLE", "O", "O", "O", "O", "B-COLUMN", "O", "B-COLUMN", "O" ]
6,912
wine_1
spider:train_spider.json:6589
List the grape, winery and year of the wines whose price is bigger than 100 ordered by year.
SELECT Grape , Winery , YEAR FROM WINE WHERE Price > 100 ORDER BY YEAR
[ "List", "the", "grape", ",", "winery", "and", "year", "of", "the", "wines", "whose", "price", "is", "bigger", "than", "100", "ordered", "by", "year", "." ]
[ { "id": 2, "type": "column", "value": "winery" }, { "id": 1, "type": "column", "value": "grape" }, { "id": 4, "type": "column", "value": "price" }, { "id": 0, "type": "table", "value": "wine" }, { "id": 3, "type": "column", "value": "year" }, { "id": 5, "type": "value", "value": "100" } ]
[ { "entity_id": 0, "token_idxs": [ 9 ] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [ 4 ] }, { "entity_id": 3, "token_idxs": [ 6 ] }, { "entity_id": 4, "token_idxs": [ 11 ] }, { "entity_id": 5, "token_idxs": [ 15 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "B-COLUMN", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "B-COLUMN", "O", "O", "O", "B-VALUE", "O", "O", "O", "O" ]
4,371
thrombosis_prediction
bird:dev.json:1168
The oldest SJS patient's medical laboratory work was completed on what date, and what age was the patient when they initially arrived at the hospital?
SELECT T1.Date, STRFTIME('%Y', T2.`First Date`) - STRFTIME('%Y', T2.Birthday),T2.Birthday FROM Laboratory AS T1 INNER JOIN Patient AS T2 ON T1.ID = T2.ID WHERE T2.Diagnosis = 'SJS' AND T2.Birthday IS NOT NULL ORDER BY T2.Birthday ASC LIMIT 1
[ "The", "oldest", "SJS", "patient", "'s", "medical", "laboratory", "work", "was", "completed", "on", "what", "date", ",", "and", "what", "age", "was", "the", "patient", "when", "they", "initially", "arrived", "at", "the", "hospital", "?" ]
[ { "id": 2, "type": "table", "value": "laboratory" }, { "id": 8, "type": "column", "value": "First Date" }, { "id": 5, "type": "column", "value": "diagnosis" }, { "id": 1, "type": "column", "value": "birthday" }, { "id": 3, "type": "table", "value": "patient" }, { "id": 0, "type": "column", "value": "date" }, { "id": 6, "type": "value", "value": "SJS" }, { "id": 4, "type": "column", "value": "id" }, { "id": 7, "type": "value", "value": "%Y" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 9 ] }, { "entity_id": 2, "token_idxs": [ 6 ] }, { "entity_id": 3, "token_idxs": [ 12 ] }, { "entity_id": 4, "token_idxs": [ 13 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "B-COLUMN", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
1,824
professional_basketball
bird:train.json:2918
Which player from Wake Forest college did the most offensive rebounds than defensive rebounds in the all-star? Please mention the full name of the player including the middle name if have any.
SELECT T1.firstName, T1.middleName, T1.lastName FROM players AS T1 INNER JOIN player_allstar AS T2 ON T1.playerID = T2.playerID WHERE T1.college = 'Wake Forest' AND T2.o_rebounds > T2.d_rebounds
[ "Which", "player", "from", "Wake", "Forest", "college", "did", "the", "most", "offensive", "rebounds", "than", "defensive", "rebounds", "in", "the", "all", "-", "star", "?", "Please", "mention", "the", "full", "name", "of", "the", "player", "including", "the", "middle", "name", "if", "have", "any", "." ]
[ { "id": 4, "type": "table", "value": "player_allstar" }, { "id": 7, "type": "value", "value": "Wake Forest" }, { "id": 1, "type": "column", "value": "middlename" }, { "id": 8, "type": "column", "value": "o_rebounds" }, { "id": 9, "type": "column", "value": "d_rebounds" }, { "id": 0, "type": "column", "value": "firstname" }, { "id": 2, "type": "column", "value": "lastname" }, { "id": 5, "type": "column", "value": "playerid" }, { "id": 3, "type": "table", "value": "players" }, { "id": 6, "type": "column", "value": "college" } ]
[ { "entity_id": 0, "token_idxs": [ 31 ] }, { "entity_id": 1, "token_idxs": [ 30 ] }, { "entity_id": 2, "token_idxs": [ 24 ] }, { "entity_id": 3, "token_idxs": [ 27 ] }, { "entity_id": 4, "token_idxs": [ 16, 17, 18 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [ 5 ] }, { "entity_id": 7, "token_idxs": [ 3, 4 ] }, { "entity_id": 8, "token_idxs": [ 9, 10 ] }, { "entity_id": 9, "token_idxs": [ 12, 13 ] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-VALUE", "I-VALUE", "B-COLUMN", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "B-COLUMN", "I-COLUMN", "O", "O", "B-TABLE", "I-TABLE", "I-TABLE", "O", "O", "O", "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "B-COLUMN", "O", "O", "O", "O" ]
106
public_review_platform
bird:train.json:3940
List at least 5 active business ID that are good for groups and dancing.
SELECT T2.business_id FROM Attributes AS T1 INNER JOIN Business_Attributes AS T2 ON T1.attribute_id = T2.attribute_id INNER JOIN Business AS T3 ON T2.business_id = T3.business_id WHERE T2.attribute_value LIKE 'TRUE' AND T1.attribute_name LIKE 'Good for Dancing' AND T1.attribute_name LIKE 'Good for Groups' LIMIT 5
[ "List", "at", "least", "5", "active", "business", "ID", "that", "are", "good", "for", "groups", "and", "dancing", "." ]
[ { "id": 3, "type": "table", "value": "business_attributes" }, { "id": 7, "type": "value", "value": "Good for Dancing" }, { "id": 4, "type": "column", "value": "attribute_value" }, { "id": 8, "type": "value", "value": "Good for Groups" }, { "id": 6, "type": "column", "value": "attribute_name" }, { "id": 9, "type": "column", "value": "attribute_id" }, { "id": 0, "type": "column", "value": "business_id" }, { "id": 2, "type": "table", "value": "attributes" }, { "id": 1, "type": "table", "value": "business" }, { "id": 5, "type": "value", "value": "TRUE" } ]
[ { "entity_id": 0, "token_idxs": [ 6 ] }, { "entity_id": 1, "token_idxs": [ 5 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 13 ] }, { "entity_id": 8, "token_idxs": [ 9, 10, 11 ] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "B-TABLE", "B-COLUMN", "O", "O", "B-VALUE", "I-VALUE", "I-VALUE", "O", "B-VALUE", "O" ]
6,537
shipping
bird:train.json:5646
How many customers who live in California that are retailers?
SELECT COUNT(*) FROM customer WHERE cust_type = 'retailer' AND state = 'CA'
[ "How", "many", "customers", "who", "live", "in", "California", "that", "are", "retailers", "?" ]
[ { "id": 1, "type": "column", "value": "cust_type" }, { "id": 0, "type": "table", "value": "customer" }, { "id": 2, "type": "value", "value": "retailer" }, { "id": 3, "type": "column", "value": "state" }, { "id": 4, "type": "value", "value": "CA" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 5, 6 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "O", "O" ]
8,808
european_football_1
bird:train.json:2772
How many draw games happened on 2018/8/7 for National League?
SELECT COUNT(T1.FTR) FROM matchs AS T1 INNER JOIN divisions AS T2 ON T1.Div = T2.division WHERE T2.name = 'National League' AND T1.Date = '2018-08-07' AND T1.FTR = 'D'
[ "How", "many", "draw", "games", "happened", "on", "2018/8/7", "for", "National", "League", "?" ]
[ { "id": 6, "type": "value", "value": "National League" }, { "id": 8, "type": "value", "value": "2018-08-07" }, { "id": 1, "type": "table", "value": "divisions" }, { "id": 4, "type": "column", "value": "division" }, { "id": 0, "type": "table", "value": "matchs" }, { "id": 5, "type": "column", "value": "name" }, { "id": 7, "type": "column", "value": "date" }, { "id": 2, "type": "column", "value": "ftr" }, { "id": 3, "type": "column", "value": "div" }, { "id": 9, "type": "value", "value": "D" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 6 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "B-TABLE", "O", "O", "O", "O" ]
15,222
conference
bird:test.json:1057
List all conference name, year, and location.
SELECT conference_name , YEAR , LOCATION FROM conference
[ "List", "all", "conference", "name", ",", "year", ",", "and", "location", "." ]
[ { "id": 1, "type": "column", "value": "conference_name" }, { "id": 0, "type": "table", "value": "conference" }, { "id": 3, "type": "column", "value": "location" }, { "id": 2, "type": "column", "value": "year" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 3 ] }, { "entity_id": 2, "token_idxs": [ 5 ] }, { "entity_id": 3, "token_idxs": [ 8 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "B-COLUMN", "O", "B-COLUMN", "O", "O", "B-COLUMN", "O" ]
2,584
restaurant
bird:train.json:1703
Please list any five cities that have an unidentified county and region.
SELECT city FROM geographic WHERE county = 'unknown' AND region = 'unknown' LIMIT 5
[ "Please", "list", "any", "five", "cities", "that", "have", "an", "unidentified", "county", "and", "region", "." ]
[ { "id": 0, "type": "table", "value": "geographic" }, { "id": 3, "type": "value", "value": "unknown" }, { "id": 2, "type": "column", "value": "county" }, { "id": 4, "type": "column", "value": "region" }, { "id": 1, "type": "column", "value": "city" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 4 ] }, { "entity_id": 2, "token_idxs": [ 9 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 11 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "B-COLUMN", "O", "B-COLUMN", "O" ]
3,505
activity_1
spider:train_spider.json:6746
Find the faculty rank that has the least members.
SELECT rank FROM Faculty GROUP BY rank ORDER BY count(*) ASC LIMIT 1
[ "Find", "the", "faculty", "rank", "that", "has", "the", "least", "members", "." ]
[ { "id": 0, "type": "table", "value": "faculty" }, { "id": 1, "type": "column", "value": "rank" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 3 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "B-COLUMN", "O", "O", "O", "O", "O", "O" ]
10,987
machine_repair
spider:train_spider.json:2248
What are the teams with the most technicians?
SELECT Team FROM technician GROUP BY Team ORDER BY COUNT(*) DESC LIMIT 1
[ "What", "are", "the", "teams", "with", "the", "most", "technicians", "?" ]
[ { "id": 0, "type": "table", "value": "technician" }, { "id": 1, "type": "column", "value": "team" } ]
[ { "entity_id": 0, "token_idxs": [ 7 ] }, { "entity_id": 1, "token_idxs": [ 3 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "O", "O", "B-TABLE", "O" ]
3,788
image_and_language
bird:train.json:7547
How many object samples in image no.908 are in the class of tip?
SELECT SUM(CASE WHEN T2.OBJ_CLASS = 'tip' THEN 1 ELSE 0 END) FROM IMG_OBJ AS T1 INNER JOIN OBJ_CLASSES AS T2 ON T1.OBJ_CLASS_ID = T2.OBJ_CLASS_ID WHERE T1.IMG_ID = 908
[ "How", "many", "object", "samples", "in", "image", "no.908", "are", "in", "the", "class", "of", "tip", "?" ]
[ { "id": 4, "type": "column", "value": "obj_class_id" }, { "id": 1, "type": "table", "value": "obj_classes" }, { "id": 7, "type": "column", "value": "obj_class" }, { "id": 0, "type": "table", "value": "img_obj" }, { "id": 2, "type": "column", "value": "img_id" }, { "id": 3, "type": "value", "value": "908" }, { "id": 8, "type": "value", "value": "tip" }, { "id": 5, "type": "value", "value": "0" }, { "id": 6, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 5 ] }, { "entity_id": 3, "token_idxs": [ 6 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 10 ] }, { "entity_id": 8, "token_idxs": [ 12 ] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "B-VALUE", "O", "O", "O", "B-COLUMN", "O", "B-VALUE", "O" ]
14,118
insurance_fnol
spider:train_spider.json:909
What is the name of the customer who has the most policies listed?
SELECT t1.customer_name FROM customers AS t1 JOIN customers_policies AS t2 ON t1.customer_id = t2.customer_id GROUP BY t1.customer_name ORDER BY count(*) DESC LIMIT 1
[ "What", "is", "the", "name", "of", "the", "customer", "who", "has", "the", "most", "policies", "listed", "?" ]
[ { "id": 2, "type": "table", "value": "customers_policies" }, { "id": 0, "type": "column", "value": "customer_name" }, { "id": 3, "type": "column", "value": "customer_id" }, { "id": 1, "type": "table", "value": "customers" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [ 6 ] }, { "entity_id": 2, "token_idxs": [ 11 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "O", "O", "B-TABLE", "O", "O" ]
9,569
music_1
spider:train_spider.json:3571
What are the names of all songs that have a lower rating than some song of blues genre?
SELECT song_name FROM song WHERE rating < (SELECT max(rating) FROM song WHERE genre_is = "blues")
[ "What", "are", "the", "names", "of", "all", "songs", "that", "have", "a", "lower", "rating", "than", "some", "song", "of", "blues", "genre", "?" ]
[ { "id": 1, "type": "column", "value": "song_name" }, { "id": 3, "type": "column", "value": "genre_is" }, { "id": 2, "type": "column", "value": "rating" }, { "id": 4, "type": "column", "value": "blues" }, { "id": 0, "type": "table", "value": "song" } ]
[ { "entity_id": 0, "token_idxs": [ 14 ] }, { "entity_id": 1, "token_idxs": [ 13 ] }, { "entity_id": 2, "token_idxs": [ 11 ] }, { "entity_id": 3, "token_idxs": [ 17 ] }, { "entity_id": 4, "token_idxs": [ 16 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-COLUMN", "O", "B-COLUMN", "B-TABLE", "O", "B-COLUMN", "B-COLUMN", "O" ]
2,414
superstore
bird:train.json:2453
Who is the customer with an order shipped on March 5, 2013, in the eastern region?
SELECT DISTINCT T2.`Customer Name` FROM east_superstore AS T1 INNER JOIN people AS T2 ON T1.`Customer ID` = T2.`Customer ID` WHERE T1.`Ship Date` = '2013-03-05'
[ "Who", "is", "the", "customer", "with", "an", "order", "shipped", "on", "March", "5", ",", "2013", ",", "in", "the", "eastern", "region", "?" ]
[ { "id": 1, "type": "table", "value": "east_superstore" }, { "id": 0, "type": "column", "value": "Customer Name" }, { "id": 5, "type": "column", "value": "Customer ID" }, { "id": 4, "type": "value", "value": "2013-03-05" }, { "id": 3, "type": "column", "value": "Ship Date" }, { "id": 2, "type": "table", "value": "people" } ]
[ { "entity_id": 0, "token_idxs": [ 3 ] }, { "entity_id": 1, "token_idxs": [ 16, 17 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 7 ] }, { "entity_id": 4, "token_idxs": [ 12 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "B-VALUE", "O", "O", "O", "B-TABLE", "I-TABLE", "O" ]
13,660
dorm_1
spider:train_spider.json:5686
Find the average age of all students living in the each city.
SELECT avg(age) , city_code FROM student GROUP BY city_code
[ "Find", "the", "average", "age", "of", "all", "students", "living", "in", "the", "each", "city", "." ]
[ { "id": 1, "type": "column", "value": "city_code" }, { "id": 0, "type": "table", "value": "student" }, { "id": 2, "type": "column", "value": "age" } ]
[ { "entity_id": 0, "token_idxs": [ 6 ] }, { "entity_id": 1, "token_idxs": [ 11 ] }, { "entity_id": 2, "token_idxs": [ 3 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "O", "O", "B-COLUMN", "O" ]
2,504
flight_4
spider:train_spider.json:6837
Find the name and city of the airport which is the source for the most number of flight routes.
SELECT T1.name , T1.city , T2.src_apid FROM airports AS T1 JOIN routes AS T2 ON T1.apid = T2.src_apid GROUP BY T2.src_apid ORDER BY count(*) DESC LIMIT 1
[ "Find", "the", "name", "and", "city", "of", "the", "airport", "which", "is", "the", "source", "for", "the", "most", "number", "of", "flight", "routes", "." ]
[ { "id": 0, "type": "column", "value": "src_apid" }, { "id": 3, "type": "table", "value": "airports" }, { "id": 4, "type": "table", "value": "routes" }, { "id": 1, "type": "column", "value": "name" }, { "id": 2, "type": "column", "value": "city" }, { "id": 5, "type": "column", "value": "apid" } ]
[ { "entity_id": 0, "token_idxs": [ 11 ] }, { "entity_id": 1, "token_idxs": [ 2 ] }, { "entity_id": 2, "token_idxs": [ 4 ] }, { "entity_id": 3, "token_idxs": [ 7 ] }, { "entity_id": 4, "token_idxs": [ 18 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "O", "B-COLUMN", "O", "O", "B-TABLE", "O", "O", "O", "B-COLUMN", "O", "O", "O", "O", "O", "O", "B-TABLE", "O" ]
8,702
donor
bird:train.json:3209
Is donor “22cbc920c9b5fa08dfb331422f5926b5” a teacher?
SELECT DISTINCT is_teacher_acct FROM donations WHERE donor_acctid = '22cbc920c9b5fa08dfb331422f5926b5'
[ "Is", "donor", "“", "22cbc920c9b5fa08dfb331422f5926b5", "”", "a", "teacher", "?" ]
[ { "id": 3, "type": "value", "value": "22cbc920c9b5fa08dfb331422f5926b5" }, { "id": 1, "type": "column", "value": "is_teacher_acct" }, { "id": 2, "type": "column", "value": "donor_acctid" }, { "id": 0, "type": "table", "value": "donations" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 6 ] }, { "entity_id": 2, "token_idxs": [ 1 ] }, { "entity_id": 3, "token_idxs": [ 3 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-COLUMN", "O", "B-VALUE", "O", "O", "B-COLUMN", "O" ]
8,797
works_cycles
bird:train.json:7194
How many people with the name Alex are single and occupying organization level of 1?
SELECT COUNT(T1.BusinessEntityID) FROM Employee AS T1 INNER JOIN Person AS T2 ON T1.BusinessEntityID = T2.BusinessEntityID WHERE T2.FirstName = 'Alex' AND T1.MaritalStatus = 'S' AND T1.OrganizationLevel = 1
[ "How", "many", "people", "with", "the", "name", "Alex", "are", "single", "and", "occupying", "organization", "level", "of", "1", "?" ]
[ { "id": 7, "type": "column", "value": "organizationlevel" }, { "id": 2, "type": "column", "value": "businessentityid" }, { "id": 5, "type": "column", "value": "maritalstatus" }, { "id": 3, "type": "column", "value": "firstname" }, { "id": 0, "type": "table", "value": "employee" }, { "id": 1, "type": "table", "value": "person" }, { "id": 4, "type": "value", "value": "Alex" }, { "id": 6, "type": "value", "value": "S" }, { "id": 8, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [ 1 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 5, 6 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-TABLE", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
7,244
codebase_community
bird:dev.json:703
Among the tags with tag ID below 15, how many of them have 20 count of posts and below?
SELECT COUNT(id) FROM tags WHERE Count <= 20 AND Id < 15
[ "Among", "the", "tags", "with", "tag", "ID", "below", "15", ",", "how", "many", "of", "them", "have", "20", "count", "of", "posts", "and", "below", "?" ]
[ { "id": 2, "type": "column", "value": "count" }, { "id": 0, "type": "table", "value": "tags" }, { "id": 1, "type": "column", "value": "id" }, { "id": 3, "type": "value", "value": "20" }, { "id": 4, "type": "value", "value": "15" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 5 ] }, { "entity_id": 2, "token_idxs": [ 15 ] }, { "entity_id": 3, "token_idxs": [ 14 ] }, { "entity_id": 4, "token_idxs": [ 7 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "O", "B-VALUE", "O", "O", "O", "O", "O", "O", "B-VALUE", "B-COLUMN", "O", "O", "O", "O", "O" ]
14,824
movie_3
bird:train.json:9155
How many films did actor Daryl Wahlberg appear in?
SELECT COUNT(T1.film_id) FROM film_actor AS T1 INNER JOIN actor AS T2 ON T1.actor_id = T2.actor_id WHERE T2.first_name = 'DARYL' AND T2.last_name = 'WAHLBERG'
[ "How", "many", "films", "did", "actor", "Daryl", "Wahlberg", "appear", "in", "?" ]
[ { "id": 0, "type": "table", "value": "film_actor" }, { "id": 4, "type": "column", "value": "first_name" }, { "id": 6, "type": "column", "value": "last_name" }, { "id": 3, "type": "column", "value": "actor_id" }, { "id": 7, "type": "value", "value": "WAHLBERG" }, { "id": 2, "type": "column", "value": "film_id" }, { "id": 1, "type": "table", "value": "actor" }, { "id": 5, "type": "value", "value": "DARYL" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 4 ] }, { "entity_id": 2, "token_idxs": [ 2, 3 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [ 5 ] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 6 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "I-COLUMN", "B-TABLE", "B-VALUE", "B-VALUE", "O", "O", "O" ]
6,118
csu_1
spider:train_spider.json:2331
What campuses opened before 1800?
SELECT campus FROM campuses WHERE YEAR < 1800
[ "What", "campuses", "opened", "before", "1800", "?" ]
[ { "id": 0, "type": "table", "value": "campuses" }, { "id": 1, "type": "column", "value": "campus" }, { "id": 2, "type": "column", "value": "year" }, { "id": 3, "type": "value", "value": "1800" } ]
[ { "entity_id": 0, "token_idxs": [ 1 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 4 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-TABLE", "O", "O", "B-VALUE", "O" ]
11,757
allergy_1
spider:train_spider.json:450
What is allergy type of a cat allergy?
SELECT allergytype FROM Allergy_type WHERE allergy = "Cat"
[ "What", "is", "allergy", "type", "of", "a", "cat", "allergy", "?" ]
[ { "id": 0, "type": "table", "value": "allergy_type" }, { "id": 1, "type": "column", "value": "allergytype" }, { "id": 2, "type": "column", "value": "allergy" }, { "id": 3, "type": "column", "value": "Cat" } ]
[ { "entity_id": 0, "token_idxs": [ 2 ] }, { "entity_id": 1, "token_idxs": [ 3 ] }, { "entity_id": 2, "token_idxs": [ 7 ] }, { "entity_id": 3, "token_idxs": [ 6 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "B-COLUMN", "O", "O", "B-COLUMN", "B-COLUMN", "O" ]
434
toxicology
bird:dev.json:212
Which element is the least numerous in non-carcinogenic molecules?
SELECT T.element FROM (SELECT T1.element, COUNT(DISTINCT T1.molecule_id) FROM atom AS T1 INNER JOIN molecule AS T2 ON T1.molecule_id = T2.molecule_id WHERE T2.label = '-' GROUP BY T1.element ORDER BY COUNT(DISTINCT T1.molecule_id) ASC LIMIT 1) t
[ "Which", "element", "is", "the", "least", "numerous", "in", "non", "-", "carcinogenic", "molecules", "?" ]
[ { "id": 5, "type": "column", "value": "molecule_id" }, { "id": 2, "type": "table", "value": "molecule" }, { "id": 0, "type": "column", "value": "element" }, { "id": 3, "type": "column", "value": "label" }, { "id": 1, "type": "table", "value": "atom" }, { "id": 4, "type": "value", "value": "-" } ]
[ { "entity_id": 0, "token_idxs": [ 1 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 10 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 8 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "B-COLUMN", "O", "O", "O", "O", "O", "O", "B-VALUE", "O", "B-TABLE", "O" ]
8,379
cs_semester
bird:train.json:947
For the students with an intelligence of 5, list the full name and courses taken by them who have less than a 3 GPA.
SELECT T1.f_name, T1.l_name, T3.name FROM student AS T1 INNER JOIN registration AS T2 ON T1.student_id = T2.student_id INNER JOIN course AS T3 ON T2.course_id = T3.course_id WHERE T1.intelligence = 5 AND T1.gpa < 3
[ "For", "the", "students", "with", "an", "intelligence", "of", "5", ",", "list", "the", "full", "name", "and", "courses", "taken", "by", "them", "who", "have", "less", "than", "a", "3", "GPA", "." ]
[ { "id": 5, "type": "table", "value": "registration" }, { "id": 7, "type": "column", "value": "intelligence" }, { "id": 11, "type": "column", "value": "student_id" }, { "id": 6, "type": "column", "value": "course_id" }, { "id": 4, "type": "table", "value": "student" }, { "id": 0, "type": "column", "value": "f_name" }, { "id": 1, "type": "column", "value": "l_name" }, { "id": 3, "type": "table", "value": "course" }, { "id": 2, "type": "column", "value": "name" }, { "id": 9, "type": "column", "value": "gpa" }, { "id": 8, "type": "value", "value": "5" }, { "id": 10, "type": "value", "value": "3" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 12 ] }, { "entity_id": 3, "token_idxs": [ 14 ] }, { "entity_id": 4, "token_idxs": [ 2 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 5 ] }, { "entity_id": 8, "token_idxs": [ 7 ] }, { "entity_id": 9, "token_idxs": [ 24 ] }, { "entity_id": 10, "token_idxs": [ 23 ] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "O", "B-VALUE", "O", "O", "O", "O", "B-COLUMN", "O", "B-TABLE", "O", "O", "O", "O", "O", "O", "O", "O", "B-VALUE", "B-COLUMN", "O" ]
7,433
software_company
bird:train.json:8539
Among the male customers with an level of education of 4 and below, list their income K.
SELECT INCOME_K FROM Demog WHERE GEOID IN ( SELECT GEOID FROM Customers WHERE EDUCATIONNUM < 4 AND SEX = 'Male' )
[ "Among", "the", "male", "customers", "with", "an", "level", "of", "education", "of", "4", "and", "below", ",", "list", "their", "income", "K." ]
[ { "id": 4, "type": "column", "value": "educationnum" }, { "id": 3, "type": "table", "value": "customers" }, { "id": 1, "type": "column", "value": "income_k" }, { "id": 0, "type": "table", "value": "demog" }, { "id": 2, "type": "column", "value": "geoid" }, { "id": 7, "type": "value", "value": "Male" }, { "id": 6, "type": "column", "value": "sex" }, { "id": 5, "type": "value", "value": "4" } ]
[ { "entity_id": 0, "token_idxs": [ 8 ] }, { "entity_id": 1, "token_idxs": [ 3, 4 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "O", "B-TABLE", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
958
regional_sales
bird:train.json:2733
Name the product that was registered in the sales order 'SO - 0005951'.
SELECT T FROM ( SELECT DISTINCT CASE WHEN T2.OrderNumber = 'SO - 0005951' THEN T1.`Product Name` ELSE NULL END AS T FROM Products T1 INNER JOIN `Sales Orders` T2 ON T2._ProductID = T1.ProductID ) WHERE T IS NOT NULL
[ "Name", "the", "product", "that", "was", "registered", "in", "the", "sales", "order", "'", "SO", "-", "0005951", "'", "." ]
[ { "id": 2, "type": "table", "value": "Sales Orders" }, { "id": 5, "type": "column", "value": "Product Name" }, { "id": 7, "type": "value", "value": "SO - 0005951" }, { "id": 6, "type": "column", "value": "ordernumber" }, { "id": 3, "type": "column", "value": "_productid" }, { "id": 4, "type": "column", "value": "productid" }, { "id": 1, "type": "table", "value": "products" }, { "id": 0, "type": "column", "value": "t" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 3, 4 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-TABLE", "I-TABLE", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
1,891
cre_Doc_Tracking_DB
spider:train_spider.json:4220
Show the location name for document "Robin CV".
SELECT T3.location_name FROM All_documents AS T1 JOIN Document_locations AS T2 ON T1.document_id = T2.document_id JOIN Ref_locations AS T3 ON T2.location_code = T3.location_code WHERE T1.document_name = "Robin CV"
[ "Show", "the", "location", "name", "for", "document", "\"", "Robin", "CV", "\"", "." ]
[ { "id": 5, "type": "table", "value": "document_locations" }, { "id": 0, "type": "column", "value": "location_name" }, { "id": 1, "type": "table", "value": "ref_locations" }, { "id": 2, "type": "column", "value": "document_name" }, { "id": 4, "type": "table", "value": "all_documents" }, { "id": 6, "type": "column", "value": "location_code" }, { "id": 7, "type": "column", "value": "document_id" }, { "id": 3, "type": "column", "value": "Robin CV" } ]
[ { "entity_id": 0, "token_idxs": [ 2, 3 ] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 7, 8 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [ 5 ] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-COLUMN", "I-COLUMN", "O", "B-COLUMN", "O", "B-COLUMN", "I-COLUMN", "O", "O" ]
9,654
vehicle_driver
bird:test.json:169
What is the average top speed of vehicles?
SELECT avg(top_speed) FROM vehicle
[ "What", "is", "the", "average", "top", "speed", "of", "vehicles", "?" ]
[ { "id": 1, "type": "column", "value": "top_speed" }, { "id": 0, "type": "table", "value": "vehicle" } ]
[ { "entity_id": 0, "token_idxs": [ 7 ] }, { "entity_id": 1, "token_idxs": [ 4, 5 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "O", "B-TABLE", "O" ]
6,865
insurance_policies
spider:train_spider.json:3860
Among all the claims, which claims have a claimed amount larger than the average? List the date the claim was made and the date it was settled.
SELECT Date_Claim_Made , Date_Claim_Settled FROM Claims WHERE Amount_Claimed > ( SELECT avg(Amount_Claimed) FROM Claims )
[ "Among", "all", "the", "claims", ",", "which", "claims", "have", "a", "claimed", "amount", "larger", "than", "the", "average", "?", "List", "the", "date", "the", "claim", "was", "made", "and", "the", "date", "it", "was", "settled", "." ]
[ { "id": 2, "type": "column", "value": "date_claim_settled" }, { "id": 1, "type": "column", "value": "date_claim_made" }, { "id": 3, "type": "column", "value": "amount_claimed" }, { "id": 0, "type": "table", "value": "claims" } ]
[ { "entity_id": 0, "token_idxs": [ 6 ] }, { "entity_id": 1, "token_idxs": [ 18, 19, 20, 21, 22 ] }, { "entity_id": 2, "token_idxs": [ 25, 26, 27, 28 ] }, { "entity_id": 3, "token_idxs": [ 9, 10 ] }, { "entity_id": 4, "token_idxs": [] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "O", "O", "B-TABLE", "O", "O", "B-COLUMN", "I-COLUMN", "O", "O", "O", "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN", "I-COLUMN", "I-COLUMN", "O", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN", "I-COLUMN", "O" ]
14,166
film_rank
spider:train_spider.json:4134
What is the average number of cities of markets with low film market estimate bigger than 10000?
SELECT avg(T2.Number_cities) FROM film_market_estimation AS T1 JOIN market AS T2 ON T1.Market_ID = T2.Market_ID WHERE T1.Low_Estimate > 10000
[ "What", "is", "the", "average", "number", "of", "cities", "of", "markets", "with", "low", "film", "market", "estimate", "bigger", "than", "10000", "?" ]
[ { "id": 0, "type": "table", "value": "film_market_estimation" }, { "id": 4, "type": "column", "value": "number_cities" }, { "id": 2, "type": "column", "value": "low_estimate" }, { "id": 5, "type": "column", "value": "market_id" }, { "id": 1, "type": "table", "value": "market" }, { "id": 3, "type": "value", "value": "10000" } ]
[ { "entity_id": 0, "token_idxs": [ 11 ] }, { "entity_id": 1, "token_idxs": [ 12 ] }, { "entity_id": 2, "token_idxs": [ 13 ] }, { "entity_id": 3, "token_idxs": [ 16 ] }, { "entity_id": 4, "token_idxs": [ 4, 5, 6 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-COLUMN", "I-COLUMN", "I-COLUMN", "O", "O", "O", "O", "B-TABLE", "B-TABLE", "B-COLUMN", "O", "O", "B-VALUE", "O" ]
14,331
legislator
bird:train.json:4760
How many male legislators are Roman Catholic?
SELECT COUNT(*) FROM current WHERE religion_bio = 'Roman Catholic' AND gender_bio = 'M'
[ "How", "many", "male", "legislators", "are", "Roman", "Catholic", "?" ]
[ { "id": 2, "type": "value", "value": "Roman Catholic" }, { "id": 1, "type": "column", "value": "religion_bio" }, { "id": 3, "type": "column", "value": "gender_bio" }, { "id": 0, "type": "table", "value": "current" }, { "id": 4, "type": "value", "value": "M" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [] }, { "entity_id": 2, "token_idxs": [ 5, 6 ] }, { "entity_id": 3, "token_idxs": [] }, { "entity_id": 4, "token_idxs": [ 2 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "B-VALUE", "O", "O", "B-VALUE", "I-VALUE", "O" ]
1,982
sales
bird:train.json:5364
Count the total quantity for sales from id 1 to 10.
SELECT SUM(Quantity) FROM Sales WHERE SalesID BETWEEN 1 AND 10
[ "Count", "the", "total", "quantity", "for", "sales", "from", "i", "d", "1", "to", "10", "." ]
[ { "id": 4, "type": "column", "value": "quantity" }, { "id": 1, "type": "column", "value": "salesid" }, { "id": 0, "type": "table", "value": "sales" }, { "id": 3, "type": "value", "value": "10" }, { "id": 2, "type": "value", "value": "1" } ]
[ { "entity_id": 0, "token_idxs": [ 5 ] }, { "entity_id": 1, "token_idxs": [ 7, 8 ] }, { "entity_id": 2, "token_idxs": [ 9 ] }, { "entity_id": 3, "token_idxs": [ 11 ] }, { "entity_id": 4, "token_idxs": [ 3 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "B-COLUMN", "O", "B-TABLE", "O", "B-COLUMN", "I-COLUMN", "B-VALUE", "O", "B-VALUE", "O" ]
7,251
superhero
bird:dev.json:790
Calculate the difference between Emil Blonsky's weight and Charles Chandler's weight.
SELECT ( SELECT weight_kg FROM superhero WHERE full_name LIKE 'Emil Blonsky' ) - ( SELECT weight_kg FROM superhero WHERE full_name LIKE 'Charles Chandler' ) AS CALCULATE
[ "Calculate", "the", "difference", "between", "Emil", "Blonsky", "'s", "weight", "and", "Charles", "Chandler", "'s", "weight", "." ]
[ { "id": 4, "type": "value", "value": "Charles Chandler" }, { "id": 3, "type": "value", "value": "Emil Blonsky" }, { "id": 0, "type": "table", "value": "superhero" }, { "id": 1, "type": "column", "value": "weight_kg" }, { "id": 2, "type": "column", "value": "full_name" } ]
[ { "entity_id": 0, "token_idxs": [] }, { "entity_id": 1, "token_idxs": [ 12 ] }, { "entity_id": 2, "token_idxs": [] }, { "entity_id": 3, "token_idxs": [ 4, 5 ] }, { "entity_id": 4, "token_idxs": [ 9, 10 ] }, { "entity_id": 5, "token_idxs": [] }, { "entity_id": 6, "token_idxs": [] }, { "entity_id": 7, "token_idxs": [] }, { "entity_id": 8, "token_idxs": [] }, { "entity_id": 9, "token_idxs": [] }, { "entity_id": 10, "token_idxs": [] }, { "entity_id": 11, "token_idxs": [] }, { "entity_id": 12, "token_idxs": [] }, { "entity_id": 13, "token_idxs": [] }, { "entity_id": 14, "token_idxs": [] }, { "entity_id": 15, "token_idxs": [] }, { "entity_id": 16, "token_idxs": [] }, { "entity_id": 17, "token_idxs": [] }, { "entity_id": 18, "token_idxs": [] }, { "entity_id": 19, "token_idxs": [] } ]
[ "O", "O", "O", "O", "B-VALUE", "I-VALUE", "O", "O", "O", "B-VALUE", "I-VALUE", "O", "B-COLUMN", "O" ]
End of preview. Expand in Data Studio

DB-ER — Dataset for Database Entity Recognition

Dataset Summary

DB-ER is a token-level dataset for Database Entity Recognition (DB-ER) in natural-language queries (NLQs) paired with SQL. The task is to tag each token as one of Table, Column, Value, or O (non-entity).
Each example includes: the NLQ, database identifier, a canonical dataset id, the paired SQL query, a tokenized question, a compact entity→token reverse index, an explicit entities table (typed schema/value items), and CoNLL-style DB‑ER tags.


Fields

  • question_id (int) — Example id
  • db_id (str) — Database identifier
  • dber_id (str) — Canonical id linking back to the source file/split (BIRD, SPIDER)
  • question (str) — NLQ text
  • SQL (str) — Paired SQL query
  • tokens (List[str]) — Tokenized NLQ
  • entities (List[Object]) — Typed DB items referenced in the SQL; each item has:
    • id (int) — Local entity id (unique within the example)
    • type ("table"|"column"|"value")
    • value (str) — Surface form from the DB schema or literal value
  • entity_to_token (List[Object]) — Reverse index:
    • entity_id (int) — Refers to an entities[*].id
    • token_idxs (List[int]) — Token indices composing that entity in tokens
  • dber_tags (List[str])CoNLL-style IOB2 tags over tokens

Splits

Entity token prevalence is consistent across splits: ~29% entity vs. ~71% O.

Split # Examples
human_train 500
human_test 500
synthetic_train 15,026

synthetic_train is produced via our auto-annotation pipeline, which aligns SQL-referenced entities to NLQ spans using string-similarity candidates (Jaccard 3-gram / Levenshtein) and a non-overlapping ILP selection objective. See Annotation below.


Example

{
  "question_id": 13692,
  "db_id": "retail_complains",
  "dber_id": "bird:train.json:282",
  "question": "Among the clients born between 1980 and 2000, list the name of male clients who complained through referral.",
  "SQL": "SELECT T1.first, T1.middle, T1.last FROM client AS T1 INNER JOIN events AS T2 ON T1.client_id = T2.Client_ID WHERE T1.year BETWEEN 1980 AND 2000 AND T1.sex = 'Male' AND T2.`Submitted via` = 'Referral'",
  "tokens": ["Among","the","clients","born","between","1980","and","2000",",","list","the","name","of","male","clients","who","complained","through","referral","."],
  "entities": [
    {"id": 0, "type": "column", "value": "first"},
    {"id": 1, "type": "column", "value": "middle"},
    {"id": 2, "type": "column", "value": "last"},
    {"id": 3, "type": "table", "value": "client"},
    {"id": 4, "type": "table", "value": "events"},
    {"id": 5, "type": "column", "value": "client_id"},
    {"id": 6, "type": "column", "value": "year"},
    {"id": 7, "type": "value", "value": "1980"},
    {"id": 8, "type": "value", "value": "2000"},
    {"id": 9, "type": "column", "value": "sex"},
    {"id": 10, "type": "value", "value": "Male"},
    {"id": 11, "type": "column", "value": "Submitted via"},
    {"id": 12, "type": "value", "value": "Referral"}
  ]
  "entity_to_token": [
    ...,
    {"entity_id":3,"token_idxs":[2]},
    {"entity_id":5,"token_idxs":[14]},
    {"entity_id":7,"token_idxs":[5]},
    {"entity_id":8,"token_idxs":[7]},
    {"entity_id":10,"token_idxs":[13]},
    {"entity_id":12,"token_idxs":[18]},
    ...
  ],
  "dber_tags": ["O","O","B-TABLE","O","O","B-VALUE","O","B-VALUE","O","O","O","O","O","B-VALUE","B-COLUMN","O","O","O","B-VALUE","O"]
}

Annotation

  • Human: collaborative web UI with schema and SQL visible during labeling.
  • Synthetic: for each NLQ–SQL pair, generate candidate spans with Jaccard/Levenshtein, then solve a non-overlapping ILP to select spans maximizing similarity. Hyperparameters are validated on human data.

Data provenance


Release notes

  • v1.1 (2025-08-26): HF Data Viewer compatibility update
  • v1.0: Initial public release
Downloads last month
39