File size: 2,365 Bytes
94634ef 9a27a39 94634ef 942f714 94634ef d26747f 94634ef ed2fea1 5f51fa6 94634ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
license: mit
task_categories:
- robotics
---
# Dataset of DeformPAM
## Contents
- [Description](#description)
- [Structure](#structure)
- [Usage](#usage)
## Description
This is the dataset used in the paper [DeformPAM: Data-Efficient Learning for Long-horizon Deformable
Object Manipulation via Preference-based Action Alignment](https://deform-pam.robotflow.ai).
- [Paper](https://arxiv.org/pdf/2410.11584.pdf)
- [Project Homepage](https://deform-pam.robotflow.ai)
- [GitHub Repository](https://github.com/xiaoxiaoxh/DeformPAM)
- [Pretrained Models](https://huggingface.co/WendiChen/DeformPAM_PrimitiveDiffusion)
## Structure
We offer two versions of the dataset: one is the [full dataset](https://huggingface.co/datasets/WendiChen/DeformPAM_Dataset/tree/main/dataset_full) used to train the models in our paper,
and the other is a [mini dataset](https://huggingface.co/datasets/WendiChen/DeformPAM_Dataset/tree/main/dataset_mini) for easier examination.
Both versions include the supervised and finetuning subsets of granular pile shaping, rope shaping, and T-shirt unfolding.
Each subset is structured as follows:
```
βββ annotations
β βββ 0aa71092-06c1-4d3f-8f70-e0bf86eeaeab
β β βββ metadata.yaml annotations and other detailed information
β βββ ...
βββ observations
βββ 0aa71092-06c1-4d3f-8f70-e0bf86eeaeab
β βββ mask
β β βββ begin.png mask img used for segmenting the point cloud
β βββ metadata.yaml detailed information
β βββ pcd
β β βββ processed_begin.npz segmented point cloud of the object; processed_begin["points"]: np.ndarray (N, 3) float16
β β βββ raw_begin.npz raw point cloud of the object; raw_begin["points"]: np.ndarray (N, 3) float16
β βββ rgb
β βββ begin.jpg RGB image of the object
βββ ...
```
## Usage
There are two ways to utilize the dataset for training:
- Install the tool according to the [data management toolkit's installation guide](https://github.com/xiaoxiaoxh/DeformPAM/blob/main/tools/data_management/README.md),
and then store the metadata to MongoDB.
- Or, you can modify the [dataset](https://github.com/xiaoxiaoxh/DeformPAM/blob/main/learning/datasets/runtime_dataset_real.py#L307) to load data from local files. |