File size: 10,059 Bytes
e111511 32929a0 e111511 46319c5 e111511 32929a0 e111511 32929a0 e111511 32929a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The SemEval2015 Task12 Reviews Corpus"""
import datasets
_CITATION = """\
@inproceedings{pontiki2015semeval,
title={Semeval-2015 task 12: Aspect based sentiment analysis},
author={Pontiki, Maria and Galanis, Dimitrios and Papageorgiou, Harris and Manandhar, Suresh and Androutsopoulos, Ion},
booktitle={Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015)},
pages={486--495},
year={2015}
}
"""
_LICENSE = """\
Please click on the homepage URL for license details.
"""
_DESCRIPTION = """\
A collection of SemEval2015 specifically designed to aid research in Aspect Based Sentiment Analysis.
"""
_CONFIG = [
# restaruants Domain
"restaurants",
# Consumer Electronics Domain
"laptops"
]
_VERSION = "0.1.0"
_HOMEPAGE_URL = "https://alt.qcri.org/semeval2015/task12/index.php?id=data-and-tools/"
_DOWNLOAD_URL = "https://raw.githubusercontent.com/YaxinCui/ABSADataset/main/SemEval2015Task12Corrected/{split}/{domain}_{split}.xml"
class SemEval2015Config(datasets.BuilderConfig):
"""BuilderConfig for SemEval2015Config."""
def __init__(self, _CONFIG, **kwargs):
super(SemEval2015Config, self).__init__(version=datasets.Version(_VERSION, ""), **kwargs),
self.configs = _CONFIG
class SemEval2015(datasets.GeneratorBasedBuilder):
"""The lingual Amazon Reviews Corpus"""
BUILDER_CONFIGS = [
SemEval2015Config(
name="All",
_CONFIG=_CONFIG,
description="A collection of SemEval2015 specifically designed to aid research in lingual Aspect Based Sentiment Analysis.",
)
] + [
SemEval2015Config(
name=config,
_CONFIG=[config],
description=f"{config} of SemEval2015 specifically designed to aid research in lingual Aspect Based Sentiment Analysis",
)
for config in _CONFIG
]
BUILDER_CONFIG_CLASS = SemEval2015Config
DEFAULT_CONFIG_NAME = "All"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{'text': datasets.Value(dtype='string'),
'opinions': [
{'category': datasets.Value(dtype='string'),
'from': datasets.Value(dtype='string'),
'polarity': datasets.Value(dtype='string'),
'target': datasets.Value(dtype='string'),
'to': datasets.Value(dtype='string')}
],
'tokens': [datasets.Value(dtype='string')],
'ATESP_BIEOS_tags': [datasets.Value(dtype='string')],
'ATESP_BIO_tags': [datasets.Value(dtype='string')],
'ATE_BIEOS_tags': [datasets.Value(dtype='string')],
'ATE_BIO_tags': [datasets.Value(dtype='string')],
'domain': datasets.Value(dtype='string'),
'reviewId': datasets.Value(dtype='string'),
'sentenceId': datasets.Value(dtype='string')
}
),
supervised_keys=None,
license=_LICENSE,
homepage=_HOMEPAGE_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_urls = [_DOWNLOAD_URL.format(split="train", domain=config) for config in self.config.configs]
dev_urls = [_DOWNLOAD_URL.format(split="trial", domain=config) for config in self.config.configs]
test_urls = [_DOWNLOAD_URL.format(split="test", domain=config) for config in self.config.configs]
train_paths = dl_manager.download_and_extract(train_urls)
dev_paths = dl_manager.download_and_extract(dev_urls)
test_paths = dl_manager.download_and_extract(test_urls)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"file_paths": train_paths, "domain_list": self.config.configs}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"file_paths": dev_paths, "domain_list": self.config.configs}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"file_paths": test_paths, "domain_list": self.config.configs}),
]
def _generate_examples(self, file_paths, domain_list):
row_count = 0
assert len(file_paths)==len(domain_list)
for i in range(len(file_paths)):
file_path, domain = file_paths[i], domain_list[i]
semEvalDataset = SemEvalXMLDataset(file_path, domain)
for example in semEvalDataset.SentenceWithOpinions:
yield row_count, example
row_count += 1
# 输入:xlm文件的文件路径
# 输出:一个DataSet,每个样例包含[reviewid, sentenceId, text, UniOpinions]
# 每个样例包含的Opinion,是一个列表,包含的是单个Opinion的详情
from xml.dom.minidom import parse
class SemEvalXMLDataset():
def __init__(self, file_name, domain):
# 获得SentenceWithOpinions,一个List包含(reviewId, sentenceId, text, Opinions)
self.SentenceWithOpinions = []
self.xml_path = file_name
self.sentenceXmlList = parse(self.xml_path).getElementsByTagName('sentence')
for sentenceXml in self.sentenceXmlList:
reviewId = sentenceXml.getAttribute("id").split(':')[0]
sentenceId = sentenceXml.getAttribute("id")
if len(sentenceXml.getElementsByTagName("text")[0].childNodes) < 1:
# skip no reviews part
continue
text = sentenceXml.getElementsByTagName("text")[0].childNodes[0].nodeValue
OpinionXmlList = sentenceXml.getElementsByTagName("Opinion")
Opinions = []
for opinionXml in OpinionXmlList:
# some text maybe have no opinion
target = opinionXml.getAttribute("target")
category = opinionXml.getAttribute("category")
polarity = opinionXml.getAttribute("polarity")
from_ = opinionXml.getAttribute("from")
to = opinionXml.getAttribute("to")
opinionDict = {
"target": target,
"category": category,
"polarity": polarity,
"from": from_,
"to": to
}
Opinions.append(opinionDict)
Opinions.sort(key=lambda x: x["from"])
# 从小到大排序
example = {
"text": text,
"opinions": Opinions,
"domain": domain,
"reviewId": reviewId,
"sentenceId": sentenceId
}
example = addTokenAndLabel(example)
self.SentenceWithOpinions.append(example)
import nltk
def clearOpinion(example):
opinions = example['opinions']
skipNullOpinions = []
# 去掉NULL的opinion
for opinion in opinions:
targetKey = 'target'
target = opinion[targetKey]
from_ = opinion['from']
to = opinion['to']
# skill NULL
if target.lower() == 'null' or target == '' or from_ == to:
continue
skipNullOpinions.append(opinion)
# delete repeate Opinions
skipNullOpinions.sort(key=lambda x: int(x['from'])) # 从小到大排序
UniOpinions = []
for opinion in skipNullOpinions:
if len(UniOpinions) < 1:
UniOpinions.append(opinion)
else:
if opinion['from'] != UniOpinions[-1]['from'] and opinion['to'] != UniOpinions[-1]['to']:
UniOpinions.append(opinion)
return UniOpinions
def addTokenAndLabel(example):
tokens = []
labels = []
text = example['text']
UniOpinions = clearOpinion(example)
text_begin = 0
for aspect in UniOpinions:
polarity = aspect['polarity'][:3].upper()
pre_O_tokens = nltk.word_tokenize(text[text_begin: int(aspect['from'])])
tokens.extend(pre_O_tokens)
labels.extend(['O']*len(pre_O_tokens))
BIES_tokens = nltk.word_tokenize(text[int(aspect['from']): int(aspect['to'])])
tokens.extend(BIES_tokens)
assert len(BIES_tokens) > 0, print('error in BIES_tokens length')
if len(BIES_tokens)==1:
labels.append('S-'+polarity)
elif len(BIES_tokens)==2:
labels.append('B-'+polarity)
labels.append('E-'+polarity)
else:
labels.append('B-'+polarity)
labels.extend(['I-'+polarity]*(len(BIES_tokens)-2))
labels.append('E-'+polarity)
text_begin = int(aspect['to'])
pre_O_tokens = nltk.word_tokenize(text[text_begin: ])
labels.extend(['O']*len(pre_O_tokens))
tokens.extend(pre_O_tokens)
example['tokens'] = tokens
example['ATESP_BIEOS_tags'] = labels
ATESP_BIO_labels = []
for label in labels:
ATESP_BIO_labels.append(label.replace('E-', 'I-').replace('S-', 'B-'))
example['ATESP_BIO_tags'] = ATESP_BIO_labels
ATE_BIEOS_labels = []
for label in labels:
ATE_BIEOS_labels.append(label[0])
example['ATE_BIEOS_tags'] = ATE_BIEOS_labels
ATE_BIO_labels = []
for label in ATESP_BIO_labels:
ATE_BIO_labels.append(label[0])
example['ATE_BIO_tags'] = ATE_BIO_labels
return example |