Datasets:
metadata
license: mit
task_categories:
- question-answering
- sentence-similarity
- text-generation
language:
- vi
tags:
- sentence-similarity
- sentence-transformers
- transformers
- PyTorch
size_categories:
- 100K<n<1M
Vietnamese Legal Documents Dataset
1. Dataset Summary
Raw data: tmnam20/BKAI-Legal-Retrieval
The Vietnamese Legal Documents Dataset is a benchmark/dataset consists of a corpus of legal texts, and train/test splits containing queries and their relevant documents.
The dataset is designed to support research and development of Information Retrieval (IR) systems, Retrieval-Augmented Generation (RAG) pipelines, and AI for LegalTech applications in Vietnamese.
2. Supported Tasks and Leaderboards
- Information Retrieval (IR): Find relevant legal documents given a natural language query.
- Question Answering (QA) over Documents: Used in combination with LLMs to generate answers grounded in retrieved legal documents.
- Legal NLP Research: Evaluate models in the legal Vietnamese domain.
3. Dataset Structure
corpus.parquet:
| column | type | description |
|---|---|---|
cid |
int | Unique document ID. |
text |
string | Full text of a legal document (Vietnamese) |
train.parquet/test.parquet:
| column | type | description |
|---|---|---|
question |
string | Natural-language legal query in Vietnamese. |
context_list |
list | List of text passages mapped from cid via the corpus (same order). |
qid |
int | Unique query ID. |
cid |
list | List of relevant document IDs (subset of corpus.cid). |
4. Example Usuage:
from datasets import load_dataset
ds = load_dataset("YuITC/Vietnamese-Legal-Doc-Retrieval-Data")
print(ds["train"][0])
# {
# "qid": 72600,
# "question": "Liên đoàn Luật sư Việt Nam là tổ chức ...",
# "context_list": ["Điều 2. Địa vị pháp lý của Liên đoàn Luật sư Việt Nam\n1. Liên đoàn Luật sư ..."]
# "cid": [142820]
# }
5. Limitations
- The dataset does not cover the entire Vietnamese legal system.
- Legal texts may contain domain-specific terminology that is difficult for non-experts to interpret.