problem
stringlengths
66
76k
answer
stringlengths
29
75.8k
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> #include <curand_kernel.h> #define N 256 #define DT 0.001f #define CUTOFF 1.0f #define EPS 1e-6f // Structure to hold particle data struct Particle { float3 pos; float3 vel; float3 acc; }; // Kernel to initialize particles __global__ void initParticles(Particle *p, curandState *states) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < N) { // Initialize random state curand_init(1234, idx, 0, &states[idx]); // Randomly initialize positions and velocities p[idx].pos.x = curand_uniform(&states[idx]) * 10.0f; p[idx].pos.y = curand_uniform(&states[idx]) * 10.0f; p[idx].pos.z = curand_uniform(&states[idx]) * 10.0f; p[idx].vel.x = curand_uniform(&states[idx]) * 0.1f - 0.05f; p[idx].vel.y = curand_uniform(&states[idx]) * 0.1f - 0.05f; p[idx].vel.z = curand_uniform(&states[idx]) * 0.1f - 0.05f; p[idx].acc.x = 0.0f; p[idx].acc.y = 0.0f; p[idx].acc.z = 0.0f; } } // Kernel to compute forces and update positions __global__ void computeForcesAndPositions(Particle *p, float dt) { extern __shared__ Particle sdata[]; int idx = threadIdx.x + blockIdx.x * blockDim.x; int tid = threadIdx.x; if (idx < N) { // Load data into shared memory sdata[tid] = p[idx]; __syncthreads(); // Initialize acceleration float3 acc = {0.0f, 0.0f, 0.0f}; // Compute forces using shared memory for (int i = 0; i < blockDim.x; ++i) { if (i != tid) { float3 r; r.x = sdata[i].pos.x - sdata[tid].pos.x; r.y = sdata[i].pos.y - sdata[tid].pos.y; r.z = sdata[i].pos.z - sdata[tid].pos.z; float rsq = r.x * r.x + r.y * r.y + r.z * r.z; if (rsq < CUTOFF * CUTOFF && rsq > EPS) { float rinv = rsq > EPS ? 1.0f / sqrtf(rsq) : 0.0f; float force = 24.0f * (2.0f * powf(rinv, 6) - powf(rinv, 12)) * rinv * rinv * rinv; acc.x += force * r.x; acc.y += force * r.y; acc.z += force * r.z; } } } __syncthreads(); // Update positions and velocities p[idx].vel.x += 0.5f * acc.x * dt; p[idx].vel.y += 0.5f * acc.y * dt; p[idx].vel.z += 0.5f * acc.z * dt; p[idx].pos.x += p[idx].vel.x * dt; p[idx].pos.y += p[idx].vel.y * dt; p[idx].pos.z += p[idx].vel.z * dt; p[idx].acc.x = acc.x; p[idx].acc.y = acc.y; p[idx].acc.z = acc.z; } } // Kernel to update velocities __global__ void updateVelocities(Particle *p, float dt) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < N) { p[idx].vel.x += 0.5f * p[idx].acc.x * dt; p[idx].vel.y += 0.5f * p[idx].acc.y * dt; p[idx].vel.z += 0.5f * p[idx].acc.z * dt; } } int main() { Particle *d_particles; curandState *d_states; const int blockSize = 256; const int numBlocks = (N + blockSize - 1) / blockSize; const size_t particleSize = N * sizeof(Particle); const size_t stateSize = N * sizeof(curandState); // Allocate memory on the device cudaError_t err = cudaMalloc((void**)&d_particles, particleSize); if (err != cudaSuccess) { std::cerr << "Failed to allocate memory for particles" << std::endl; return -1; } err = cudaMalloc((void**)&d_states, stateSize); if (err != cudaSuccess) { std::cerr << "Failed to allocate memory for random states" << std::endl; cudaFree(d_particles); return -1; } // Initialize particles initParticles<<<numBlocks, blockSize>>>(d_particles, d_states); err = cudaGetLastError(); if (err != cudaSuccess) { std::cerr << "Failed to initialize particles" << std::endl; cudaFree(d_particles); cudaFree(d_states); return -1; } // Perform molecular dynamics simulation for (int step = 0; step < 100; ++step) { computeForcesAndPositions<<<numBlocks, blockSize, blockSize * sizeof(Particle)>>>(d_particles, DT); err = cudaGetLastError(); if (err != cudaSuccess) { std::cerr << "Failed to compute forces and positions" << std::endl; cudaFree(d_particles); cudaFree(d_states); return -1; } updateVelocities<<<numBlocks, blockSize>>>(d_particles, DT); err = cudaGetLastError(); if (err != cudaSuccess) { std::cerr << "Failed to update velocities" << std::endl; cudaFree(d_particles); cudaFree(d_states); return -1; } } // Free device memory cudaFree(d_particles); cudaFree(d_states); return 0; }
#include <iostream> #include <hip/hip_runtime.h> #include <hiprand/hiprand_kernel.h> #define N 256 #define DT 0.001f #define CUTOFF 1.0f #define EPS 1e-6f // Structure to hold particle data struct Particle { float3 pos; float3 vel; float3 acc; }; // Kernel to initialize particles __global__ void initParticles(Particle *p, hiprandState *states) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < N) { // Initialize random state hiprand_init(1234, idx, 0, &states[idx]); // Randomly initialize positions and velocities p[idx].pos.x = hiprand_uniform(&states[idx]) * 10.0f; p[idx].pos.y = hiprand_uniform(&states[idx]) * 10.0f; p[idx].pos.z = hiprand_uniform(&states[idx]) * 10.0f; p[idx].vel.x = hiprand_uniform(&states[idx]) * 0.1f - 0.05f; p[idx].vel.y = hiprand_uniform(&states[idx]) * 0.1f - 0.05f; p[idx].vel.z = hiprand_uniform(&states[idx]) * 0.1f - 0.05f; p[idx].acc.x = 0.0f; p[idx].acc.y = 0.0f; p[idx].acc.z = 0.0f; } } // Kernel to compute forces and update positions __global__ void computeForcesAndPositions(Particle *p, float dt) { extern __shared__ Particle sdata[]; int idx = threadIdx.x + blockIdx.x * blockDim.x; int tid = threadIdx.x; if (idx < N) { // Load data into shared memory sdata[tid] = p[idx]; __syncthreads(); // Initialize acceleration float3 acc = {0.0f, 0.0f, 0.0f}; // Compute forces using shared memory for (int i = 0; i < blockDim.x; ++i) { if (i != tid) { float3 r; r.x = sdata[i].pos.x - sdata[tid].pos.x; r.y = sdata[i].pos.y - sdata[tid].pos.y; r.z = sdata[i].pos.z - sdata[tid].pos.z; float rsq = r.x * r.x + r.y * r.y + r.z * r.z; if (rsq < CUTOFF * CUTOFF && rsq > EPS) { float rinv = rsq > EPS ? 1.0f / sqrtf(rsq) : 0.0f; float force = 24.0f * (2.0f * powf(rinv, 6) - powf(rinv, 12)) * rinv * rinv * rinv; acc.x += force * r.x; acc.y += force * r.y; acc.z += force * r.z; } } } __syncthreads(); // Update positions and velocities p[idx].vel.x += 0.5f * acc.x * dt; p[idx].vel.y += 0.5f * acc.y * dt; p[idx].vel.z += 0.5f * acc.z * dt; p[idx].pos.x += p[idx].vel.x * dt; p[idx].pos.y += p[idx].vel.y * dt; p[idx].pos.z += p[idx].vel.z * dt; p[idx].acc.x = acc.x; p[idx].acc.y = acc.y; p[idx].acc.z = acc.z; } } // Kernel to update velocities __global__ void updateVelocities(Particle *p, float dt) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < N) { p[idx].vel.x += 0.5f * p[idx].acc.x * dt; p[idx].vel.y += 0.5f * p[idx].acc.y * dt; p[idx].vel.z += 0.5f * p[idx].acc.z * dt; } } int main() { Particle *d_particles; hiprandState *d_states; const int blockSize = 256; const int numBlocks = (N + blockSize - 1) / blockSize; const size_t particleSize = N * sizeof(Particle); const size_t stateSize = N * sizeof(hiprandState); // Allocate memory on the device hipError_t err = hipMalloc((void**)&d_particles, particleSize); if (err != hipSuccess) { std::cerr << "Failed to allocate memory for particles" << std::endl; return -1; } err = hipMalloc((void**)&d_states, stateSize); if (err != hipSuccess) { std::cerr << "Failed to allocate memory for random states" << std::endl; hipFree(d_particles); return -1; } // Initialize particles initParticles<<<numBlocks, blockSize>>>(d_particles, d_states); err = hipGetLastError(); if (err != hipSuccess) { std::cerr << "Failed to initialize particles" << std::endl; hipFree(d_particles); hipFree(d_states); return -1; } // Perform molecular dynamics simulation for (int step = 0; step < 100; ++step) { computeForcesAndPositions<<<numBlocks, blockSize, blockSize * sizeof(Particle)>>>(d_particles, DT); err = hipGetLastError(); if (err != hipSuccess) { std::cerr << "Failed to compute forces and positions" << std::endl; hipFree(d_particles); hipFree(d_states); return -1; } updateVelocities<<<numBlocks, blockSize>>>(d_particles, DT); err = hipGetLastError(); if (err != hipSuccess) { std::cerr << "Failed to update velocities" << std::endl; hipFree(d_particles); hipFree(d_states); return -1; } } // Free device memory hipFree(d_particles); hipFree(d_states); return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> #include <cuda_fp16.h> #include <vector> // Define the number of non-zero elements and matrix dimensions #define NNZ 128 #define ROWS 128 #define COLS 128 // Kernel for sparse matrix-vector multiplication __global__ void spmv_csr_kernel(const int* rowPtr, const int* colInd, const float* values, const float* x, float* y) { int row = blockIdx.x * blockDim.x + threadIdx.x; if (row < ROWS) { float sum = 0.0f; for (int jj = rowPtr[row]; jj < rowPtr[row + 1]; ++jj) { sum += values[jj] * x[colInd[jj]]; } y[row] = sum; } } // Function to initialize CSR format matrices void init_csr(int* rowPtr, int* colInd, float* values) { int nnz = 0; for (int i = 0; i < ROWS; ++i) { rowPtr[i] = nnz; for (int j = 0; j < COLS; ++j) { if (rand() % 10 < 2) { // Sparse pattern: ~20% non-zero colInd[nnz] = j; values[nnz] = static_cast<float>(rand()) / RAND_MAX; nnz++; } } } rowPtr[ROWS] = nnz; } int main() { // Host data int h_rowPtr[ROWS + 1]; int h_colInd[NNZ]; float h_values[NNZ]; float h_x[COLS]; float h_y[ROWS]; // Initialize host data srand(42); init_csr(h_rowPtr, h_colInd, h_values); for (int i = 0; i < COLS; ++i) h_x[i] = static_cast<float>(rand()) / RAND_MAX; // Device data int* d_rowPtr; int* d_colInd; float* d_values; float* d_x; float* d_y; // Allocate device memory cudaMalloc((void**)&d_rowPtr, (ROWS + 1) * sizeof(int)); cudaMalloc((void**)&d_colInd, NNZ * sizeof(int)); cudaMalloc((void**)&d_values, NNZ * sizeof(float)); cudaMalloc((void**)&d_x, COLS * sizeof(float)); cudaMalloc((void**)&d_y, ROWS * sizeof(float)); // Copy data to device cudaMemcpy(d_rowPtr, h_rowPtr, (ROWS + 1) * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_colInd, h_colInd, NNZ * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_values, h_values, NNZ * sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(d_x, h_x, COLS * sizeof(float), cudaMemcpyHostToDevice); // CUDA Graphs setup cudaGraph_t graph; cudaGraphExec_t graphExec; cudaStream_t stream; cudaStreamCreate(&stream); cudaGraphCreate(&graph, 0); // Record graph cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal); spmv_csr_kernel<<<(ROWS + 255) / 256, 256, 0, stream>>>(d_rowPtr, d_colInd, d_values, d_x, d_y); cudaStreamEndCapture(stream, &graph); // Instantiate and launch graph cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0); cudaGraphLaunch(graphExec, stream); cudaStreamSynchronize(stream); // Copy result back to host cudaMemcpy(h_y, d_y, ROWS * sizeof(float), cudaMemcpyDeviceToHost); // Output result std::cout << "First 10 elements of result vector y: "; for (int i = 0; i < 10; ++i) { std::cout << h_y[i] << " "; } std::cout << std::endl; // Free resources cudaFree(d_rowPtr); cudaFree(d_colInd); cudaFree(d_values); cudaFree(d_x); cudaFree(d_y); cudaGraphDestroy(graph); cudaGraphExecDestroy(graphExec); cudaStreamDestroy(stream); return 0; }
#include <iostream> #include <hip/hip_runtime.h> #include <hip/hip_fp16.h> #include <vector> // Define the number of non-zero elements and matrix dimensions #define NNZ 128 #define ROWS 128 #define COLS 128 // Kernel for sparse matrix-vector multiplication __global__ void spmv_csr_kernel(const int* rowPtr, const int* colInd, const float* values, const float* x, float* y) { int row = blockIdx.x * blockDim.x + threadIdx.x; if (row < ROWS) { float sum = 0.0f; for (int jj = rowPtr[row]; jj < rowPtr[row + 1]; ++jj) { sum += values[jj] * x[colInd[jj]]; } y[row] = sum; } } // Function to initialize CSR format matrices void init_csr(int* rowPtr, int* colInd, float* values) { int nnz = 0; for (int i = 0; i < ROWS; ++i) { rowPtr[i] = nnz; for (int j = 0; j < COLS; ++j) { if (rand() % 10 < 2) { // Sparse pattern: ~20% non-zero colInd[nnz] = j; values[nnz] = static_cast<float>(rand()) / RAND_MAX; nnz++; } } } rowPtr[ROWS] = nnz; } int main() { // Host data int h_rowPtr[ROWS + 1]; int h_colInd[NNZ]; float h_values[NNZ]; float h_x[COLS]; float h_y[ROWS]; // Initialize host data srand(42); init_csr(h_rowPtr, h_colInd, h_values); for (int i = 0; i < COLS; ++i) h_x[i] = static_cast<float>(rand()) / RAND_MAX; // Device data int* d_rowPtr; int* d_colInd; float* d_values; float* d_x; float* d_y; // Allocate device memory hipMalloc((void**)&d_rowPtr, (ROWS + 1) * sizeof(int)); hipMalloc((void**)&d_colInd, NNZ * sizeof(int)); hipMalloc((void**)&d_values, NNZ * sizeof(float)); hipMalloc((void**)&d_x, COLS * sizeof(float)); hipMalloc((void**)&d_y, ROWS * sizeof(float)); // Copy data to device hipMemcpy(d_rowPtr, h_rowPtr, (ROWS + 1) * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(d_colInd, h_colInd, NNZ * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(d_values, h_values, NNZ * sizeof(float), hipMemcpyHostToDevice); hipMemcpy(d_x, h_x, COLS * sizeof(float), hipMemcpyHostToDevice); // CUDA Graphs setup hipGraph_t graph; hipGraphExec_t graphExec; hipStream_t stream; hipStreamCreate(&stream); hipGraphCreate(&graph, 0); // Record graph hipStreamBeginCapture(stream, hipStreamCaptureModeGlobal); spmv_csr_kernel<<<(ROWS + 255) / 256, 256, 0, stream>>>(d_rowPtr, d_colInd, d_values, d_x, d_y); hipStreamEndCapture(stream, &graph); // Instantiate and launch graph hipGraphInstantiate(&graphExec, graph, NULL, NULL, 0); hipGraphLaunch(graphExec, stream); hipStreamSynchronize(stream); // Copy result back to host hipMemcpy(h_y, d_y, ROWS * sizeof(float), hipMemcpyDeviceToHost); // Output result std::cout << "First 10 elements of result vector y: "; for (int i = 0; i < 10; ++i) { std::cout << h_y[i] << " "; } std::cout << std::endl; // Free resources hipFree(d_rowPtr); hipFree(d_colInd); hipFree(d_values); hipFree(d_x); hipFree(d_y); hipGraphDestroy(graph); hipGraphExecDestroy(graphExec); hipStreamDestroy(stream); return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> #include <thrust/host_vector.h> #include <thrust/device_vector.h> #include <thrust/sort.h> #include <thrust/scan.h> #include <thrust/copy.h> #include <thrust/fill.h> #include <thrust/transform.h> #include <thrust/adjacent_difference.h> #include <thrust/extrema.h> #include <thrust/device_ptr.h> #include <thrust/execution_policy.h> #include <curand_kernel.h> #define NUM_NODES 16384 #define MAX_COLOR 1024 __global__ void initColors(int *colors, int *conflicts, int numNodes) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < numNodes) { colors[idx] = 0; // Initialize all nodes with color 0 (unassigned) conflicts[idx] = 0; // No conflicts initially } } __global__ void assignColors(int *adjList, int *adjListPtrs, int *colors, int *conflicts, int numNodes) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < numNodes) { int color = colors[idx]; for (int i = adjListPtrs[idx]; i < adjListPtrs[idx + 1]; ++i) { int neighbor = adjList[i]; if (colors[neighbor] == color) { conflicts[idx] = 1; // Mark conflict if neighbor has the same color } } } } __global__ void resolveConflicts(int *adjList, int *adjListPtrs, int *colors, int *conflicts, int *conflictFlags, int numNodes) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < numNodes && conflicts[idx]) { int newColor = 1; bool found = false; while (!found) { found = true; for (int i = adjListPtrs[idx]; i < adjListPtrs[idx + 1]; ++i) { int neighbor = adjList[i]; if (colors[neighbor] == newColor) { found = false; newColor++; break; } } } colors[idx] = newColor; conflictFlags[idx] = 0; // Reset conflict flag } } __global__ void checkForConflicts(int *conflicts, int *globalConflict, int numNodes) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < numNodes && conflicts[idx]) { atomicOr(globalConflict, 1); } } int main() { // Initialize random number generator curandGenerator_t gen; curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_DEFAULT); curandSetPseudoRandomGeneratorSeed(gen, 1234ULL); // Allocate and initialize adjacency list and pointers thrust::host_vector<int> h_adjListPtrs(NUM_NODES + 1); thrust::host_vector<int> h_adjList; h_adjListPtrs[0] = 0; for (int i = 0; i < NUM_NODES; ++i) { int degree = rand() % 10; // Random degree between 0 and 9 h_adjListPtrs[i + 1] = h_adjListPtrs[i] + degree; for (int j = 0; j < degree; ++j) { int neighbor = rand() % NUM_NODES; while (neighbor == i) neighbor = rand() % NUM_NODES; // Ensure no self-loops h_adjList.push_back(neighbor); } } thrust::device_vector<int> d_adjListPtrs = h_adjListPtrs; thrust::device_vector<int> d_adjList = h_adjList; // Allocate memory for colors and conflicts thrust::device_vector<int> d_colors(NUM_NODES); thrust::device_vector<int> d_conflicts(NUM_NODES); thrust::device_vector<int> d_conflictFlags(NUM_NODES); // Initialize colors and conflicts int blockSize = 256; int numBlocks = (NUM_NODES + blockSize - 1) / blockSize; initColors<<<numBlocks, blockSize>>>(thrust::raw_pointer_cast(d_colors.data()), thrust::raw_pointer_cast(d_conflicts.data()), NUM_NODES); cudaDeviceSynchronize(); // Main graph coloring loop int *d_globalConflict; cudaMalloc(&d_globalConflict, sizeof(int)); int h_globalConflict = 1; while (h_globalConflict) { cudaMemset(d_globalConflict, 0, sizeof(int)); // Assign colors assignColors<<<numBlocks, blockSize>>>(thrust::raw_pointer_cast(d_adjList.data()), thrust::raw_pointer_cast(d_adjListPtrs.data()), thrust::raw_pointer_cast(d_colors.data()), thrust::raw_pointer_cast(d_conflicts.data()), NUM_NODES); cudaDeviceSynchronize(); // Resolve conflicts resolveConflicts<<<numBlocks, blockSize>>>(thrust::raw_pointer_cast(d_adjList.data()), thrust::raw_pointer_cast(d_adjListPtrs.data()), thrust::raw_pointer_cast(d_colors.data()), thrust::raw_pointer_cast(d_conflicts.data()), thrust::raw_pointer_cast(d_conflictFlags.data()), NUM_NODES); cudaDeviceSynchronize(); // Check for conflicts checkForConflicts<<<numBlocks, blockSize>>>(thrust::raw_pointer_cast(d_conflicts.data()), d_globalConflict, NUM_NODES); cudaDeviceSynchronize(); // Copy global conflict flag to host cudaMemcpy(&h_globalConflict, d_globalConflict, sizeof(int), cudaMemcpyDeviceToHost); } // Free memory cudaFree(d_globalConflict); curandDestroyGenerator(gen); // Print results (for verification purposes) thrust::host_vector<int> h_colors = d_colors; std::cout << "Node colors:" << std::endl; for (int i = 0; i < 10; ++i) { // Print first 10 nodes for brevity std::cout << "Node " << i << ": Color " << h_colors[i] << std::endl; } return 0; }
#include <iostream> #include <hip/hip_runtime.h> #include <thrust/host_vector.h> #include <thrust/device_vector.h> #include <thrust/sort.h> #include <thrust/scan.h> #include <thrust/copy.h> #include <thrust/fill.h> #include <thrust/transform.h> #include <thrust/adjacent_difference.h> #include <thrust/extrema.h> #include <thrust/device_ptr.h> #include <thrust/execution_policy.h> #include <hiprand/hiprand_kernel.h> #define NUM_NODES 16384 #define MAX_COLOR 1024 __global__ void initColors(int *colors, int *conflicts, int numNodes) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < numNodes) { colors[idx] = 0; // Initialize all nodes with color 0 (unassigned) conflicts[idx] = 0; // No conflicts initially } } __global__ void assignColors(int *adjList, int *adjListPtrs, int *colors, int *conflicts, int numNodes) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < numNodes) { int color = colors[idx]; for (int i = adjListPtrs[idx]; i < adjListPtrs[idx + 1]; ++i) { int neighbor = adjList[i]; if (colors[neighbor] == color) { conflicts[idx] = 1; // Mark conflict if neighbor has the same color } } } } __global__ void resolveConflicts(int *adjList, int *adjListPtrs, int *colors, int *conflicts, int *conflictFlags, int numNodes) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < numNodes && conflicts[idx]) { int newColor = 1; bool found = false; while (!found) { found = true; for (int i = adjListPtrs[idx]; i < adjListPtrs[idx + 1]; ++i) { int neighbor = adjList[i]; if (colors[neighbor] == newColor) { found = false; newColor++; break; } } } colors[idx] = newColor; conflictFlags[idx] = 0; // Reset conflict flag } } __global__ void checkForConflicts(int *conflicts, int *globalConflict, int numNodes) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < numNodes && conflicts[idx]) { atomicOr(globalConflict, 1); } } int main() { // Initialize random number generator hiprandGenerator_t gen; hiprandCreateGenerator(&gen, HIPRAND_RNG_PSEUDO_DEFAULT); hiprandSetPseudoRandomGeneratorSeed(gen, 1234ULL); // Allocate and initialize adjacency list and pointers thrust::host_vector<int> h_adjListPtrs(NUM_NODES + 1); thrust::host_vector<int> h_adjList; h_adjListPtrs[0] = 0; for (int i = 0; i < NUM_NODES; ++i) { int degree = rand() % 10; // Random degree between 0 and 9 h_adjListPtrs[i + 1] = h_adjListPtrs[i] + degree; for (int j = 0; j < degree; ++j) { int neighbor = rand() % NUM_NODES; while (neighbor == i) neighbor = rand() % NUM_NODES; // Ensure no self-loops h_adjList.push_back(neighbor); } } thrust::device_vector<int> d_adjListPtrs = h_adjListPtrs; thrust::device_vector<int> d_adjList = h_adjList; // Allocate memory for colors and conflicts thrust::device_vector<int> d_colors(NUM_NODES); thrust::device_vector<int> d_conflicts(NUM_NODES); thrust::device_vector<int> d_conflictFlags(NUM_NODES); // Initialize colors and conflicts int blockSize = 256; int numBlocks = (NUM_NODES + blockSize - 1) / blockSize; initColors<<<numBlocks, blockSize>>>(thrust::raw_pointer_cast(d_colors.data()), thrust::raw_pointer_cast(d_conflicts.data()), NUM_NODES); hipDeviceSynchronize(); // Main graph coloring loop int *d_globalConflict; hipMalloc(&d_globalConflict, sizeof(int)); int h_globalConflict = 1; while (h_globalConflict) { hipMemset(d_globalConflict, 0, sizeof(int)); // Assign colors assignColors<<<numBlocks, blockSize>>>(thrust::raw_pointer_cast(d_adjList.data()), thrust::raw_pointer_cast(d_adjListPtrs.data()), thrust::raw_pointer_cast(d_colors.data()), thrust::raw_pointer_cast(d_conflicts.data()), NUM_NODES); hipDeviceSynchronize(); // Resolve conflicts resolveConflicts<<<numBlocks, blockSize>>>(thrust::raw_pointer_cast(d_adjList.data()), thrust::raw_pointer_cast(d_adjListPtrs.data()), thrust::raw_pointer_cast(d_colors.data()), thrust::raw_pointer_cast(d_conflicts.data()), thrust::raw_pointer_cast(d_conflictFlags.data()), NUM_NODES); hipDeviceSynchronize(); // Check for conflicts checkForConflicts<<<numBlocks, blockSize>>>(thrust::raw_pointer_cast(d_conflicts.data()), d_globalConflict, NUM_NODES); hipDeviceSynchronize(); // Copy global conflict flag to host hipMemcpy(&h_globalConflict, d_globalConflict, sizeof(int), hipMemcpyDeviceToHost); } // Free memory hipFree(d_globalConflict); hiprandDestroyGenerator(gen); // Print results (for verification purposes) thrust::host_vector<int> h_colors = d_colors; std::cout << "Node colors:" << std::endl; for (int i = 0; i < 10; ++i) { // Print first 10 nodes for brevity std::cout << "Node " << i << ": Color " << h_colors[i] << std::endl; } return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <curand_kernel.h> #include <cuda_runtime.h> // Define constants #define PATHS_PER_BLOCK 128 #define PATHS 2048 #define SIMULATION_STEPS 100 #define MAX_DEPTH 1 // Kernel to initialize random number generators __global__ void initRandomStates(curandState *states, unsigned long seed) { int id = blockIdx.x * blockDim.x + threadIdx.x; if (id < PATHS) { curand_init(seed, id, 0, &states[id]); } } // Device function to simulate a single path __device__ float simulatePath(curandState *state) { float S = 100.0f; // Initial stock price float mu = 0.05f; // Drift float sigma = 0.2f; // Volatility float dt = 1.0f / SIMULATION_STEPS; // Time step for (int i = 0; i < SIMULATION_STEPS; ++i) { float epsilon = curand_normal(state); S *= exp((mu - 0.5f * sigma * sigma) * dt + sigma * sqrt(dt) * epsilon); } return fmaxf(0.0f, S - 100.0f); // Payoff for a call option with strike 100 } // Kernel to perform Monte Carlo simulation using dynamic parallelism __global__ void monteCarloSimulation(curandState *states, float *results) { int id = blockIdx.x * blockDim.x + threadIdx.x; if (id < PATHS) { float sum = 0.0f; for (int i = 0; i < MAX_DEPTH; ++i) { sum += simulatePath(&states[id]); } results[id] = sum / MAX_DEPTH; } } // Main function to demonstrate the kernel's usage int main() { // Allocate memory for random states and results curandState *d_states; float *d_results; cudaMalloc(&d_states, PATHS * sizeof(curandState)); cudaMalloc(&d_results, PATHS * sizeof(float)); // Initialize random states initRandomStates<<<(PATHS + PATHS_PER_BLOCK - 1) / PATHS_PER_BLOCK, PATHS_PER_BLOCK>>>(d_states, 1234); cudaDeviceSynchronize(); // Perform Monte Carlo simulation monteCarloSimulation<<<(PATHS + PATHS_PER_BLOCK - 1) / PATHS_PER_BLOCK, PATHS_PER_BLOCK>>>(d_states, d_results); cudaDeviceSynchronize(); // Copy results back to host float *h_results = new float[PATHS]; cudaMemcpy(h_results, d_results, PATHS * sizeof(float), cudaMemcpyDeviceToHost); // Calculate and print the average option price float sum = 0.0f; for (int i = 0; i < PATHS; ++i) { sum += h_results[i]; } float averagePrice = sum / PATHS; std::cout << "Average Option Price: " << averagePrice << std::endl; // Free allocated memory delete[] h_results; cudaFree(d_states); cudaFree(d_results); return 0; }
#include <iostream> #include <hiprand/hiprand_kernel.h> #include <hip/hip_runtime.h> // Define constants #define PATHS_PER_BLOCK 128 #define PATHS 2048 #define SIMULATION_STEPS 100 #define MAX_DEPTH 1 // Kernel to initialize random number generators __global__ void initRandomStates(hiprandState *states, unsigned long seed) { int id = blockIdx.x * blockDim.x + threadIdx.x; if (id < PATHS) { hiprand_init(seed, id, 0, &states[id]); } } // Device function to simulate a single path __device__ float simulatePath(hiprandState *state) { float S = 100.0f; // Initial stock price float mu = 0.05f; // Drift float sigma = 0.2f; // Volatility float dt = 1.0f / SIMULATION_STEPS; // Time step for (int i = 0; i < SIMULATION_STEPS; ++i) { float epsilon = hiprand_normal(state); S *= exp((mu - 0.5f * sigma * sigma) * dt + sigma * sqrt(dt) * epsilon); } return fmaxf(0.0f, S - 100.0f); // Payoff for a call option with strike 100 } // Kernel to perform Monte Carlo simulation using dynamic parallelism __global__ void monteCarloSimulation(hiprandState *states, float *results) { int id = blockIdx.x * blockDim.x + threadIdx.x; if (id < PATHS) { float sum = 0.0f; for (int i = 0; i < MAX_DEPTH; ++i) { sum += simulatePath(&states[id]); } results[id] = sum / MAX_DEPTH; } } // Main function to demonstrate the kernel's usage int main() { // Allocate memory for random states and results hiprandState *d_states; float *d_results; hipMalloc(&d_states, PATHS * sizeof(hiprandState)); hipMalloc(&d_results, PATHS * sizeof(float)); // Initialize random states initRandomStates<<<(PATHS + PATHS_PER_BLOCK - 1) / PATHS_PER_BLOCK, PATHS_PER_BLOCK>>>(d_states, 1234); hipDeviceSynchronize(); // Perform Monte Carlo simulation monteCarloSimulation<<<(PATHS + PATHS_PER_BLOCK - 1) / PATHS_PER_BLOCK, PATHS_PER_BLOCK>>>(d_states, d_results); hipDeviceSynchronize(); // Copy results back to host float *h_results = new float[PATHS]; hipMemcpy(h_results, d_results, PATHS * sizeof(float), hipMemcpyDeviceToHost); // Calculate and print the average option price float sum = 0.0f; for (int i = 0; i < PATHS; ++i) { sum += h_results[i]; } float averagePrice = sum / PATHS; std::cout << "Average Option Price: " << averagePrice << std::endl; // Free allocated memory delete[] h_results; hipFree(d_states); hipFree(d_results); return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> #include <cooperative_groups.h> namespace cg = cooperative_groups; #define BLOCK_SIZE 32 #define GRID_SIZE 64 __global__ void heat2DExplicitKernel(float* d_u, float* d_u_new, float dx, float dy, float dt, float alpha, int N) { int i = blockIdx.x * blockDim.x + threadIdx.x; int j = blockIdx.y * blockDim.y + threadIdx.y; if (i > 0 && i < N-1 && j > 0 && j < N-1) { int idx = i * N + j; float laplacian = (d_u[idx - N] + d_u[idx + N] + d_u[idx - 1] + d_u[idx + 1] - 4 * d_u[idx]) / (dx * dx + dy * dy); d_u_new[idx] = d_u[idx] + alpha * dt * laplacian; } } __global__ void swapPointers(float** d_u, float** d_u_new) { float* temp = *d_u; *d_u = *d_u_new; *d_u_new = temp; } int main() { const int N = 2048; const float dx = 1.0f / (N - 1); const float dy = dx; const float dt = 0.0001f; const float alpha = 0.01f; const int num_steps = 100; float* h_u = new float[N * N]; float* h_u_new = new float[N * N]; // Initialize the grid with a simple condition (e.g., a single hot spot) for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) { h_u[i * N + j] = 0.0f; } } h_u[(N/2) * N + N/2] = 100.0f; float* d_u; float* d_u_new; cudaMalloc(&d_u, N * N * sizeof(float)); cudaMalloc(&d_u_new, N * N * sizeof(float)); cudaMemcpy(d_u, h_u, N * N * sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(d_u_new, h_u_new, N * N * sizeof(float), cudaMemcpyHostToDevice); dim3 blockSize(BLOCK_SIZE, BLOCK_SIZE); dim3 gridSize(GRID_SIZE, GRID_SIZE); float* d_u_ptr = d_u; float* d_u_new_ptr = d_u_new; for (int step = 0; step < num_steps; ++step) { heat2DExplicitKernel<<<gridSize, blockSize>>>(d_u_ptr, d_u_new_ptr, dx, dy, dt, alpha, N); cudaDeviceSynchronize(); swapPointers<<<1, 1>>>(&d_u_ptr, &d_u_new_ptr); cudaDeviceSynchronize(); } cudaMemcpy(h_u, d_u_ptr, N * N * sizeof(float), cudaMemcpyDeviceToHost); // Output the result (for demonstration, print a small portion) for (int i = 0; i < 10; ++i) { for (int j = 0; j < 10; ++j) { std::cout << h_u[i * N + j] << " "; } std::cout << std::endl; } cudaFree(d_u); cudaFree(d_u_new); delete[] h_u; delete[] h_u_new; return 0; }
#include <iostream> #include <hip/hip_runtime.h> #include <hip/hip_cooperative_groups.h> namespace cg = cooperative_groups; #define BLOCK_SIZE 32 #define GRID_SIZE 64 __global__ void heat2DExplicitKernel(float* d_u, float* d_u_new, float dx, float dy, float dt, float alpha, int N) { int i = blockIdx.x * blockDim.x + threadIdx.x; int j = blockIdx.y * blockDim.y + threadIdx.y; if (i > 0 && i < N-1 && j > 0 && j < N-1) { int idx = i * N + j; float laplacian = (d_u[idx - N] + d_u[idx + N] + d_u[idx - 1] + d_u[idx + 1] - 4 * d_u[idx]) / (dx * dx + dy * dy); d_u_new[idx] = d_u[idx] + alpha * dt * laplacian; } } __global__ void swapPointers(float** d_u, float** d_u_new) { float* temp = *d_u; *d_u = *d_u_new; *d_u_new = temp; } int main() { const int N = 2048; const float dx = 1.0f / (N - 1); const float dy = dx; const float dt = 0.0001f; const float alpha = 0.01f; const int num_steps = 100; float* h_u = new float[N * N]; float* h_u_new = new float[N * N]; // Initialize the grid with a simple condition (e.g., a single hot spot) for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) { h_u[i * N + j] = 0.0f; } } h_u[(N/2) * N + N/2] = 100.0f; float* d_u; float* d_u_new; hipMalloc(&d_u, N * N * sizeof(float)); hipMalloc(&d_u_new, N * N * sizeof(float)); hipMemcpy(d_u, h_u, N * N * sizeof(float), hipMemcpyHostToDevice); hipMemcpy(d_u_new, h_u_new, N * N * sizeof(float), hipMemcpyHostToDevice); dim3 blockSize(BLOCK_SIZE, BLOCK_SIZE); dim3 gridSize(GRID_SIZE, GRID_SIZE); float* d_u_ptr = d_u; float* d_u_new_ptr = d_u_new; for (int step = 0; step < num_steps; ++step) { heat2DExplicitKernel<<<gridSize, blockSize>>>(d_u_ptr, d_u_new_ptr, dx, dy, dt, alpha, N); hipDeviceSynchronize(); swapPointers<<<1, 1>>>(&d_u_ptr, &d_u_new_ptr); hipDeviceSynchronize(); } hipMemcpy(h_u, d_u_ptr, N * N * sizeof(float), hipMemcpyDeviceToHost); // Output the result (for demonstration, print a small portion) for (int i = 0; i < 10; ++i) { for (int j = 0; j < 10; ++j) { std::cout << h_u[i * N + j] << " "; } std::cout << std::endl; } hipFree(d_u); hipFree(d_u_new); delete[] h_u; delete[] h_u_new; return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> #include <cooperative_groups.h> #include <cuComplex.h> using namespace cooperative_groups; #define N 2048 #define BLOCK_SIZE 256 __global__ void spectralFluidKernel(cuComplex *d_u_hat, cuComplex *d_v_hat, cuComplex *d_u, cuComplex *d_v, float dt, float nu) { grid_group grid = this_grid(); int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx >= N) return; // Precompute wave numbers int k = idx <= N/2 ? idx : idx - N; float k_squared = k * k; // Apply diffusion term cuComplex diffusion_term = make_cuComplex(-nu * dt * k_squared, 0.0f); // Update Fourier coefficients with diffusion d_u_hat[idx] = cuCaddf(d_u_hat[idx], cuCmulf(diffusion_term, d_u_hat[idx])); d_v_hat[idx] = cuCaddf(d_v_hat[idx], cuCmulf(diffusion_term, d_v_hat[idx])); // Perform inverse FFT to get back to physical space // Placeholder for inverse FFT operation // In practice, use cuFFT or a similar library d_u[idx] = d_u_hat[idx]; // Placeholder d_v[idx] = d_v_hat[idx]; // Placeholder // Synchronize threads within the grid grid.sync(); } int main() { // Allocate memory for input and output arrays cuComplex *d_u_hat, *d_v_hat, *d_u, *d_v; cudaMalloc((void**)&d_u_hat, N * sizeof(cuComplex)); cudaMalloc((void**)&d_v_hat, N * sizeof(cuComplex)); cudaMalloc((void**)&d_u, N * sizeof(cuComplex)); cudaMalloc((void**)&d_v, N * sizeof(cuComplex)); // Initialize input arrays (dummy values) cuComplex *h_u_hat = new cuComplex[N]; cuComplex *h_v_hat = new cuComplex[N]; for (int i = 0; i < N; ++i) { h_u_hat[i] = make_cuComplex(1.0f, 0.0f); h_v_hat[i] = make_cuComplex(1.0f, 0.0f); } cudaMemcpy(d_u_hat, h_u_hat, N * sizeof(cuComplex), cudaMemcpyHostToDevice); cudaMemcpy(d_v_hat, h_v_hat, N * sizeof(cuComplex), cudaMemcpyHostToDevice); // Set simulation parameters float dt = 0.01f; float nu = 0.001f; // Launch kernel int numBlocks = (N + BLOCK_SIZE - 1) / BLOCK_SIZE; spectralFluidKernel<<<numBlocks, BLOCK_SIZE>>>(d_u_hat, d_v_hat, d_u, d_v, dt, nu); // Check for errors in kernel launch cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { std::cerr << "CUDA error: " << cudaGetErrorString(err) << std::endl; return -1; } // Copy results back to host cuComplex *h_u = new cuComplex[N]; cuComplex *h_v = new cuComplex[N]; cudaMemcpy(h_u, d_u, N * sizeof(cuComplex), cudaMemcpyDeviceToHost); cudaMemcpy(h_v, d_v, N * sizeof(cuComplex), cudaMemcpyDeviceToHost); // Output first few results for verification for (int i = 0; i < 10; ++i) { std::cout << "u[" << i << "] = (" << h_u[i].x << ", " << h_u[i].y << ")\n"; std::cout << "v[" << i << "] = (" << h_v[i].x << ", " << h_v[i].y << ")\n"; } // Free memory delete[] h_u_hat; delete[] h_v_hat; delete[] h_u; delete[] h_v; cudaFree(d_u_hat); cudaFree(d_v_hat); cudaFree(d_u); cudaFree(d_v); return 0; }
#include <iostream> #include <hip/hip_runtime.h> #include <hip/hip_cooperative_groups.h> #include <hip/hip_complex.h> using namespace cooperative_groups; #define N 2048 #define BLOCK_SIZE 256 __global__ void spectralFluidKernel(hipComplex *d_u_hat, hipComplex *d_v_hat, hipComplex *d_u, hipComplex *d_v, float dt, float nu) { grid_group grid = this_grid(); int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx >= N) return; // Precompute wave numbers int k = idx <= N/2 ? idx : idx - N; float k_squared = k * k; // Apply diffusion term hipComplex diffusion_term = make_hipComplex(-nu * dt * k_squared, 0.0f); // Update Fourier coefficients with diffusion d_u_hat[idx] = hipCaddf(d_u_hat[idx], hipCmulf(diffusion_term, d_u_hat[idx])); d_v_hat[idx] = hipCaddf(d_v_hat[idx], hipCmulf(diffusion_term, d_v_hat[idx])); // Perform inverse FFT to get back to physical space // Placeholder for inverse FFT operation // In practice, use cuFFT or a similar library d_u[idx] = d_u_hat[idx]; // Placeholder d_v[idx] = d_v_hat[idx]; // Placeholder // Synchronize threads within the grid grid.sync(); } int main() { // Allocate memory for input and output arrays hipComplex *d_u_hat, *d_v_hat, *d_u, *d_v; hipMalloc((void**)&d_u_hat, N * sizeof(hipComplex)); hipMalloc((void**)&d_v_hat, N * sizeof(hipComplex)); hipMalloc((void**)&d_u, N * sizeof(hipComplex)); hipMalloc((void**)&d_v, N * sizeof(hipComplex)); // Initialize input arrays (dummy values) hipComplex *h_u_hat = new hipComplex[N]; hipComplex *h_v_hat = new hipComplex[N]; for (int i = 0; i < N; ++i) { h_u_hat[i] = make_hipComplex(1.0f, 0.0f); h_v_hat[i] = make_hipComplex(1.0f, 0.0f); } hipMemcpy(d_u_hat, h_u_hat, N * sizeof(hipComplex), hipMemcpyHostToDevice); hipMemcpy(d_v_hat, h_v_hat, N * sizeof(hipComplex), hipMemcpyHostToDevice); // Set simulation parameters float dt = 0.01f; float nu = 0.001f; // Launch kernel int numBlocks = (N + BLOCK_SIZE - 1) / BLOCK_SIZE; spectralFluidKernel<<<numBlocks, BLOCK_SIZE>>>(d_u_hat, d_v_hat, d_u, d_v, dt, nu); // Check for errors in kernel launch hipError_t err = hipGetLastError(); if (err != hipSuccess) { std::cerr << "CUDA error: " << hipGetErrorString(err) << std::endl; return -1; } // Copy results back to host hipComplex *h_u = new hipComplex[N]; hipComplex *h_v = new hipComplex[N]; hipMemcpy(h_u, d_u, N * sizeof(hipComplex), hipMemcpyDeviceToHost); hipMemcpy(h_v, d_v, N * sizeof(hipComplex), hipMemcpyDeviceToHost); // Output first few results for verification for (int i = 0; i < 10; ++i) { std::cout << "u[" << i << "] = (" << h_u[i].x << ", " << h_u[i].y << ")\n"; std::cout << "v[" << i << "] = (" << h_v[i].x << ", " << h_v[i].y << ")\n"; } // Free memory delete[] h_u_hat; delete[] h_v_hat; delete[] h_u; delete[] h_v; hipFree(d_u_hat); hipFree(d_v_hat); hipFree(d_u); hipFree(d_v); return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> #include <thrust/device_vector.h> #include <thrust/sort.h> #include <thrust/copy.h> #include <thrust/fill.h> #include <thrust/sequence.h> // Kernel for bipartite matching-based sorting __global__ void bipartite_matching_sort_kernel(int *d_array, int *d_temp, int n) { extern __shared__ int s_data[]; int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < n) { s_data[threadIdx.x] = d_array[idx]; } else { s_data[threadIdx.x] = INT_MAX; // Ensure out-of-bounds elements are ignored } __syncthreads(); // Simple bitonic sort within shared memory for (int k = 2; k <= blockDim.x; k *= 2) { for (int j = k / 2; j > 0; j /= 2) { int ixj = threadIdx.x ^ j; if (ixj > threadIdx.x) { if ((threadIdx.x & k) == 0) { if (s_data[threadIdx.x] > s_data[ixj]) { int tmp = s_data[threadIdx.x]; s_data[threadIdx.x] = s_data[ixj]; s_data[ixj] = tmp; } } else { if (s_data[threadIdx.x] < s_data[ixj]) { int tmp = s_data[threadIdx.x]; s_data[threadIdx.x] = s_data[ixj]; s_data[ixj] = tmp; } } } __syncthreads(); } } if (idx < n) { d_temp[idx] = s_data[threadIdx.x]; } } int main() { const int n = 128; int h_array[n]; thrust::sequence(h_array, h_array + n, 0, -1); // Fill with reverse order int *d_array, *d_temp; cudaError_t err; // Allocate device memory err = cudaMalloc((void **)&d_array, n * sizeof(int)); if (err != cudaSuccess) { std::cerr << "Failed to allocate device memory for d_array: " << cudaGetErrorString(err) << std::endl; return -1; } err = cudaMalloc((void **)&d_temp, n * sizeof(int)); if (err != cudaSuccess) { std::cerr << "Failed to allocate device memory for d_temp: " << cudaGetErrorString(err) << std::endl; cudaFree(d_array); return -1; } // Copy data from host to device err = cudaMemcpy(d_array, h_array, n * sizeof(int), cudaMemcpyHostToDevice); if (err != cudaSuccess) { std::cerr << "Failed to copy data from host to device: " << cudaGetErrorString(err) << std::endl; cudaFree(d_array); cudaFree(d_temp); return -1; } // Define block size and grid size const int blockSize = 128; const int gridSize = (n + blockSize - 1) / blockSize; // Launch kernel bipartite_matching_sort_kernel<<<gridSize, blockSize, blockSize * sizeof(int)>>>(d_array, d_temp, n); err = cudaGetLastError(); if (err != cudaSuccess) { std::cerr << "Kernel launch failed: " << cudaGetErrorString(err) << std::endl; cudaFree(d_array); cudaFree(d_temp); return -1; } // Copy sorted data back to host err = cudaMemcpy(h_array, d_temp, n * sizeof(int), cudaMemcpyDeviceToHost); if (err != cudaSuccess) { std::cerr << "Failed to copy data from device to host: " << cudaGetErrorString(err) << std::endl; cudaFree(d_array); cudaFree(d_temp); return -1; } // Verify the result for (int i = 0; i < n; ++i) { if (h_array[i] != i) { std::cerr << "Sorting failed at index " << i << ": expected " << i << ", got " << h_array[i] << std::endl; cudaFree(d_array); cudaFree(d_temp); return -1; } } std::cout << "Sorting successful!" << std::endl; // Free device memory cudaFree(d_array); cudaFree(d_temp); return 0; }
#include <iostream> #include <hip/hip_runtime.h> #include <thrust/device_vector.h> #include <thrust/sort.h> #include <thrust/copy.h> #include <thrust/fill.h> #include <thrust/sequence.h> // Kernel for bipartite matching-based sorting __global__ void bipartite_matching_sort_kernel(int *d_array, int *d_temp, int n) { extern __shared__ int s_data[]; int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < n) { s_data[threadIdx.x] = d_array[idx]; } else { s_data[threadIdx.x] = INT_MAX; // Ensure out-of-bounds elements are ignored } __syncthreads(); // Simple bitonic sort within shared memory for (int k = 2; k <= blockDim.x; k *= 2) { for (int j = k / 2; j > 0; j /= 2) { int ixj = threadIdx.x ^ j; if (ixj > threadIdx.x) { if ((threadIdx.x & k) == 0) { if (s_data[threadIdx.x] > s_data[ixj]) { int tmp = s_data[threadIdx.x]; s_data[threadIdx.x] = s_data[ixj]; s_data[ixj] = tmp; } } else { if (s_data[threadIdx.x] < s_data[ixj]) { int tmp = s_data[threadIdx.x]; s_data[threadIdx.x] = s_data[ixj]; s_data[ixj] = tmp; } } } __syncthreads(); } } if (idx < n) { d_temp[idx] = s_data[threadIdx.x]; } } int main() { const int n = 128; int h_array[n]; thrust::sequence(h_array, h_array + n, 0, -1); // Fill with reverse order int *d_array, *d_temp; hipError_t err; // Allocate device memory err = hipMalloc((void **)&d_array, n * sizeof(int)); if (err != hipSuccess) { std::cerr << "Failed to allocate device memory for d_array: " << hipGetErrorString(err) << std::endl; return -1; } err = hipMalloc((void **)&d_temp, n * sizeof(int)); if (err != hipSuccess) { std::cerr << "Failed to allocate device memory for d_temp: " << hipGetErrorString(err) << std::endl; hipFree(d_array); return -1; } // Copy data from host to device err = hipMemcpy(d_array, h_array, n * sizeof(int), hipMemcpyHostToDevice); if (err != hipSuccess) { std::cerr << "Failed to copy data from host to device: " << hipGetErrorString(err) << std::endl; hipFree(d_array); hipFree(d_temp); return -1; } // Define block size and grid size const int blockSize = 128; const int gridSize = (n + blockSize - 1) / blockSize; // Launch kernel bipartite_matching_sort_kernel<<<gridSize, blockSize, blockSize * sizeof(int)>>>(d_array, d_temp, n); err = hipGetLastError(); if (err != hipSuccess) { std::cerr << "Kernel launch failed: " << hipGetErrorString(err) << std::endl; hipFree(d_array); hipFree(d_temp); return -1; } // Copy sorted data back to host err = hipMemcpy(h_array, d_temp, n * sizeof(int), hipMemcpyDeviceToHost); if (err != hipSuccess) { std::cerr << "Failed to copy data from device to host: " << hipGetErrorString(err) << std::endl; hipFree(d_array); hipFree(d_temp); return -1; } // Verify the result for (int i = 0; i < n; ++i) { if (h_array[i] != i) { std::cerr << "Sorting failed at index " << i << ": expected " << i << ", got " << h_array[i] << std::endl; hipFree(d_array); hipFree(d_temp); return -1; } } std::cout << "Sorting successful!" << std::endl; // Free device memory hipFree(d_array); hipFree(d_temp); return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> #include <cuda.h> // Define the image width and height #define WIDTH 1024 #define HEIGHT 1024 // Define the block size #define BLOCK_WIDTH 16 #define BLOCK_HEIGHT 16 // Kernel for image segmentation using threshold __global__ void thresholdSegmentationKernel(unsigned char* inputImage, unsigned char* outputImage, int width, int height, unsigned char threshold) { // Shared memory declaration __shared__ unsigned char s_image[BLOCK_HEIGHT + 2][BLOCK_WIDTH + 2]; // Calculate the row and column index in the image int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; // Calculate the shared memory index int s_row = threadIdx.y + 1; int s_col = threadIdx.x + 1; // Load data into shared memory if (row < height && col < width) { s_image[s_row][s_col] = inputImage[row * width + col]; } else { s_image[s_row][s_col] = 0; // Out-of-bounds elements set to 0 } // Synchronize to ensure all data is loaded into shared memory __syncthreads(); // Perform thresholding if (row < height && col < width) { outputImage[row * width + col] = (s_image[s_row][s_col] > threshold) ? 255 : 0; } } // Function to check for CUDA errors void checkCudaError(cudaError_t error, const char* message) { if (error != cudaSuccess) { std::cerr << "CUDA Error: " << message << " (" << cudaGetErrorString(error) << ")" << std::endl; exit(EXIT_FAILURE); } } int main() { // Allocate memory for the input and output images unsigned char* h_inputImage = new unsigned char[WIDTH * HEIGHT]; unsigned char* h_outputImage = new unsigned char[WIDTH * HEIGHT]; // Initialize the input image with random values for (int i = 0; i < WIDTH * HEIGHT; ++i) { h_inputImage[i] = static_cast<unsigned char>(rand() % 256); } // Allocate memory on the device unsigned char* d_inputImage; unsigned char* d_outputImage; checkCudaError(cudaMalloc((void**)&d_inputImage, WIDTH * HEIGHT * sizeof(unsigned char)), "cudaMalloc d_inputImage"); checkCudaError(cudaMalloc((void**)&d_outputImage, WIDTH * HEIGHT * sizeof(unsigned char)), "cudaMalloc d_outputImage"); // Copy data from host to device checkCudaError(cudaMemcpy(d_inputImage, h_inputImage, WIDTH * HEIGHT * sizeof(unsigned char), cudaMemcpyHostToDevice), "cudaMemcpy h_inputImage to d_inputImage"); // Define the threshold unsigned char threshold = 128; // Set the grid and block dimensions dim3 blockSize(BLOCK_WIDTH, BLOCK_HEIGHT); dim3 gridSize((WIDTH + BLOCK_WIDTH - 1) / BLOCK_WIDTH, (HEIGHT + BLOCK_HEIGHT - 1) / BLOCK_HEIGHT); // Launch the kernel thresholdSegmentationKernel<<<gridSize, blockSize>>>(d_inputImage, d_outputImage, WIDTH, HEIGHT, threshold); checkCudaError(cudaGetLastError(), "Kernel launch failed"); // Copy the result back to the host checkCudaError(cudaMemcpy(h_outputImage, d_outputImage, WIDTH * HEIGHT * sizeof(unsigned char), cudaMemcpyDeviceToHost), "cudaMemcpy d_outputImage to h_outputImage"); // Free device memory checkCudaError(cudaFree(d_inputImage), "cudaFree d_inputImage"); checkCudaError(cudaFree(d_outputImage), "cudaFree d_outputImage"); // Free host memory delete[] h_inputImage; delete[] h_outputImage; std::cout << "Image segmentation completed successfully." << std::endl; return 0; }
#include <iostream> #include <hip/hip_runtime.h> // Define the image width and height #define WIDTH 1024 #define HEIGHT 1024 // Define the block size #define BLOCK_WIDTH 16 #define BLOCK_HEIGHT 16 // Kernel for image segmentation using threshold __global__ void thresholdSegmentationKernel(unsigned char* inputImage, unsigned char* outputImage, int width, int height, unsigned char threshold) { // Shared memory declaration __shared__ unsigned char s_image[BLOCK_HEIGHT + 2][BLOCK_WIDTH + 2]; // Calculate the row and column index in the image int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; // Calculate the shared memory index int s_row = threadIdx.y + 1; int s_col = threadIdx.x + 1; // Load data into shared memory if (row < height && col < width) { s_image[s_row][s_col] = inputImage[row * width + col]; } else { s_image[s_row][s_col] = 0; // Out-of-bounds elements set to 0 } // Synchronize to ensure all data is loaded into shared memory __syncthreads(); // Perform thresholding if (row < height && col < width) { outputImage[row * width + col] = (s_image[s_row][s_col] > threshold) ? 255 : 0; } } // Function to check for CUDA errors void checkCudaError(hipError_t error, const char* message) { if (error != hipSuccess) { std::cerr << "CUDA Error: " << message << " (" << hipGetErrorString(error) << ")" << std::endl; exit(EXIT_FAILURE); } } int main() { // Allocate memory for the input and output images unsigned char* h_inputImage = new unsigned char[WIDTH * HEIGHT]; unsigned char* h_outputImage = new unsigned char[WIDTH * HEIGHT]; // Initialize the input image with random values for (int i = 0; i < WIDTH * HEIGHT; ++i) { h_inputImage[i] = static_cast<unsigned char>(rand() % 256); } // Allocate memory on the device unsigned char* d_inputImage; unsigned char* d_outputImage; checkCudaError(hipMalloc((void**)&d_inputImage, WIDTH * HEIGHT * sizeof(unsigned char)), "hipMalloc d_inputImage"); checkCudaError(hipMalloc((void**)&d_outputImage, WIDTH * HEIGHT * sizeof(unsigned char)), "hipMalloc d_outputImage"); // Copy data from host to device checkCudaError(hipMemcpy(d_inputImage, h_inputImage, WIDTH * HEIGHT * sizeof(unsigned char), hipMemcpyHostToDevice), "hipMemcpy h_inputImage to d_inputImage"); // Define the threshold unsigned char threshold = 128; // Set the grid and block dimensions dim3 blockSize(BLOCK_WIDTH, BLOCK_HEIGHT); dim3 gridSize((WIDTH + BLOCK_WIDTH - 1) / BLOCK_WIDTH, (HEIGHT + BLOCK_HEIGHT - 1) / BLOCK_HEIGHT); // Launch the kernel thresholdSegmentationKernel<<<gridSize, blockSize>>>(d_inputImage, d_outputImage, WIDTH, HEIGHT, threshold); checkCudaError(hipGetLastError(), "Kernel launch failed"); // Copy the result back to the host checkCudaError(hipMemcpy(h_outputImage, d_outputImage, WIDTH * HEIGHT * sizeof(unsigned char), hipMemcpyDeviceToHost), "hipMemcpy d_outputImage to h_outputImage"); // Free device memory checkCudaError(hipFree(d_inputImage), "hipFree d_inputImage"); checkCudaError(hipFree(d_outputImage), "hipFree d_outputImage"); // Free host memory delete[] h_inputImage; delete[] h_outputImage; std::cout << "Image segmentation completed successfully." << std::endl; return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> #include <thrust/host_vector.h> #include <thrust/device_vector.h> #include <thrust/sort.h> #include <thrust/copy.h> #include <thrust/adjacent_difference.h> #include <thrust/scan.h> #include <thrust/sequence.h> #include <thrust/fill.h> #include <thrust/transform.h> #include <thrust/remove.h> #include <thrust/reduce.h> #include <thrust/execution_policy.h> #include <curand_kernel.h> #define BLOCK_SIZE 256 // Kernel to calculate betweenness centrality of edges __global__ void calculateBetweenness( int *edge_betweenness, int *edge_weights, int *node_degrees, int *node_neighbors, int *node_neighbor_indices, int num_nodes, int num_edges, int *sorted_nodes, int *sorted_edges, int *sorted_edge_indices, int *edge_credits, int *edge_credits_accum, int *node_credits, int *node_credits_accum, int *node_paths, int *node_paths_accum, int *node_predecessors, int *node_predecessor_counts, int *node_predecessor_indices, int *node_predecessor_weights, int *node_predecessor_weights_accum) { extern __shared__ int shared_data[]; int *shared_node_credits = shared_data; int *shared_node_paths = shared_data + num_nodes; int *shared_node_predecessors = shared_data + 2 * num_nodes; int *shared_node_predecessor_counts = shared_data + 3 * num_nodes; int *shared_node_predecessor_indices = shared_data + 4 * num_nodes; int *shared_node_predecessor_weights = shared_data + 5 * num_nodes; int node = blockIdx.x * blockDim.x + threadIdx.x; if (node >= num_nodes) return; // Initialize shared memory shared_node_credits[node] = 0; shared_node_paths[node] = 0; shared_node_predecessor_counts[node] = 0; __syncthreads(); // Breadth-first search to find shortest paths if (node == sorted_nodes[0]) { shared_node_paths[node] = 1; } __syncthreads(); for (int i = 1; i < num_nodes; ++i) { int current_node = sorted_nodes[i]; int start = node_neighbor_indices[current_node]; int end = node_neighbor_indices[current_node + 1]; for (int j = start; j < end; ++j) { int neighbor = node_neighbors[j]; if (shared_node_paths[neighbor] == 0) { atomicAdd(&shared_node_paths[neighbor], shared_node_paths[current_node]); int pred_count = atomicAdd(&shared_node_predecessor_counts[neighbor], 1); shared_node_predecessors[shared_node_predecessor_indices[neighbor] + pred_count] = current_node; } else if (shared_node_paths[current_node] <= shared_node_paths[neighbor]) { int pred_count = atomicAdd(&shared_node_predecessor_counts[neighbor], 1); shared_node_predecessors[shared_node_predecessor_indices[neighbor] + pred_count] = current_node; } } __syncthreads(); } // Backpropagation to accumulate betweenness centrality for (int i = num_nodes - 1; i >= 0; --i) { int current_node = sorted_nodes[i]; int start = node_predecessor_indices[current_node]; int end = node_predecessor_indices[current_node + 1]; for (int j = start; j < end; ++j) { int predecessor = node_predecessors[j]; int weight = node_predecessor_weights[j]; int delta = (shared_node_credits[current_node] + shared_node_paths[current_node]) * weight / shared_node_paths[predecessor]; atomicAdd(&shared_node_credits[predecessor], delta); atomicAdd(&edge_betweenness[sorted_edge_indices[predecessor]], delta); } if (current_node != sorted_nodes[0]) { atomicAdd(&shared_node_credits[current_node], shared_node_paths[current_node]); } __syncthreads(); } } int main() { const int num_nodes = 8192; const int num_edges = 32768; // Example number of edges // Initialize random number generator curandState *devStates; cudaMalloc(&devStates, num_nodes * sizeof(curandState)); cudaMemset(devStates, 0, num_nodes * sizeof(curandState)); // Allocate and initialize host data thrust::host_vector<int> h_node_degrees(num_nodes, 0); thrust::host_vector<int> h_node_neighbors(num_edges, 0); thrust::host_vector<int> h_node_neighbor_indices(num_nodes + 1, 0); thrust::host_vector<int> h_edge_weights(num_edges, 1); thrust::host_vector<int> h_edge_betweenness(num_edges, 0); // Example graph initialization (random edges) thrust::host_vector<int> h_sorted_nodes(num_nodes); thrust::sequence(h_sorted_nodes.begin(), h_sorted_nodes.end()); thrust::host_vector<int> h_sorted_edges(num_edges); thrust::sequence(h_sorted_edges.begin(), h_sorted_edges.end()); thrust::host_vector<int> h_sorted_edge_indices(num_nodes + 1, 0); // Allocate device memory int *d_node_degrees, *d_node_neighbors, *d_node_neighbor_indices, *d_edge_weights, *d_edge_betweenness; cudaMalloc(&d_node_degrees, num_nodes * sizeof(int)); cudaMalloc(&d_node_neighbors, num_edges * sizeof(int)); cudaMalloc(&d_node_neighbor_indices, (num_nodes + 1) * sizeof(int)); cudaMalloc(&d_edge_weights, num_edges * sizeof(int)); cudaMalloc(&d_edge_betweenness, num_edges * sizeof(int)); // Copy data to device cudaMemcpy(d_node_degrees, h_node_degrees.data(), num_nodes * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_node_neighbors, h_node_neighbors.data(), num_edges * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_node_neighbor_indices, h_node_neighbor_indices.data(), (num_nodes + 1) * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_edge_weights, h_edge_weights.data(), num_edges * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_edge_betweenness, h_edge_betweenness.data(), num_edges * sizeof(int), cudaMemcpyHostToDevice); // Allocate shared memory for each block size_t shared_mem_size = 6 * num_nodes * sizeof(int); // Launch kernel int blocks = (num_nodes + BLOCK_SIZE - 1) / BLOCK_SIZE; calculateBetweenness<<<blocks, BLOCK_SIZE, shared_mem_size>>>( d_edge_betweenness, d_edge_weights, d_node_degrees, d_node_neighbors, d_node_neighbor_indices, num_nodes, num_edges, thrust::raw_pointer_cast(h_sorted_nodes.data()), thrust::raw_pointer_cast(h_sorted_edges.data()), thrust::raw_pointer_cast(h_sorted_edge_indices.data()), nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr); // Check for errors cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { std::cerr << "CUDA error: " << cudaGetErrorString(err) << std::endl; return -1; } // Copy results back to host cudaMemcpy(h_edge_betweenness.data(), d_edge_betweenness, num_edges * sizeof(int), cudaMemcpyDeviceToHost); // Free device memory cudaFree(d_node_degrees); cudaFree(d_node_neighbors); cudaFree(d_node_neighbor_indices); cudaFree(d_edge_weights); cudaFree(d_edge_betweenness); cudaFree(devStates); // Output results (for demonstration purposes) std::cout << "Edge betweenness centralities:" << std::endl; for (int i = 0; i < 10; ++i) { // Print first 10 for brevity std::cout << "Edge " << i << ": " << h_edge_betweenness[i] << std::endl; } return 0; }
#include <iostream> #include <hip/hip_runtime.h> #include <thrust/host_vector.h> #include <thrust/device_vector.h> #include <thrust/sort.h> #include <thrust/copy.h> #include <thrust/adjacent_difference.h> #include <thrust/scan.h> #include <thrust/sequence.h> #include <thrust/fill.h> #include <thrust/transform.h> #include <thrust/remove.h> #include <thrust/reduce.h> #include <thrust/execution_policy.h> #include <hiprand/hiprand_kernel.h> #define BLOCK_SIZE 256 // Kernel to calculate betweenness centrality of edges __global__ void calculateBetweenness( int *edge_betweenness, int *edge_weights, int *node_degrees, int *node_neighbors, int *node_neighbor_indices, int num_nodes, int num_edges, int *sorted_nodes, int *sorted_edges, int *sorted_edge_indices, int *edge_credits, int *edge_credits_accum, int *node_credits, int *node_credits_accum, int *node_paths, int *node_paths_accum, int *node_predecessors, int *node_predecessor_counts, int *node_predecessor_indices, int *node_predecessor_weights, int *node_predecessor_weights_accum) { extern __shared__ int shared_data[]; int *shared_node_credits = shared_data; int *shared_node_paths = shared_data + num_nodes; int *shared_node_predecessors = shared_data + 2 * num_nodes; int *shared_node_predecessor_counts = shared_data + 3 * num_nodes; int *shared_node_predecessor_indices = shared_data + 4 * num_nodes; int *shared_node_predecessor_weights = shared_data + 5 * num_nodes; int node = blockIdx.x * blockDim.x + threadIdx.x; if (node >= num_nodes) return; // Initialize shared memory shared_node_credits[node] = 0; shared_node_paths[node] = 0; shared_node_predecessor_counts[node] = 0; __syncthreads(); // Breadth-first search to find shortest paths if (node == sorted_nodes[0]) { shared_node_paths[node] = 1; } __syncthreads(); for (int i = 1; i < num_nodes; ++i) { int current_node = sorted_nodes[i]; int start = node_neighbor_indices[current_node]; int end = node_neighbor_indices[current_node + 1]; for (int j = start; j < end; ++j) { int neighbor = node_neighbors[j]; if (shared_node_paths[neighbor] == 0) { atomicAdd(&shared_node_paths[neighbor], shared_node_paths[current_node]); int pred_count = atomicAdd(&shared_node_predecessor_counts[neighbor], 1); shared_node_predecessors[shared_node_predecessor_indices[neighbor] + pred_count] = current_node; } else if (shared_node_paths[current_node] <= shared_node_paths[neighbor]) { int pred_count = atomicAdd(&shared_node_predecessor_counts[neighbor], 1); shared_node_predecessors[shared_node_predecessor_indices[neighbor] + pred_count] = current_node; } } __syncthreads(); } // Backpropagation to accumulate betweenness centrality for (int i = num_nodes - 1; i >= 0; --i) { int current_node = sorted_nodes[i]; int start = node_predecessor_indices[current_node]; int end = node_predecessor_indices[current_node + 1]; for (int j = start; j < end; ++j) { int predecessor = node_predecessors[j]; int weight = node_predecessor_weights[j]; int delta = (shared_node_credits[current_node] + shared_node_paths[current_node]) * weight / shared_node_paths[predecessor]; atomicAdd(&shared_node_credits[predecessor], delta); atomicAdd(&edge_betweenness[sorted_edge_indices[predecessor]], delta); } if (current_node != sorted_nodes[0]) { atomicAdd(&shared_node_credits[current_node], shared_node_paths[current_node]); } __syncthreads(); } } int main() { const int num_nodes = 8192; const int num_edges = 32768; // Example number of edges // Initialize random number generator hiprandState *devStates; hipMalloc(&devStates, num_nodes * sizeof(hiprandState)); hipMemset(devStates, 0, num_nodes * sizeof(hiprandState)); // Allocate and initialize host data thrust::host_vector<int> h_node_degrees(num_nodes, 0); thrust::host_vector<int> h_node_neighbors(num_edges, 0); thrust::host_vector<int> h_node_neighbor_indices(num_nodes + 1, 0); thrust::host_vector<int> h_edge_weights(num_edges, 1); thrust::host_vector<int> h_edge_betweenness(num_edges, 0); // Example graph initialization (random edges) thrust::host_vector<int> h_sorted_nodes(num_nodes); thrust::sequence(h_sorted_nodes.begin(), h_sorted_nodes.end()); thrust::host_vector<int> h_sorted_edges(num_edges); thrust::sequence(h_sorted_edges.begin(), h_sorted_edges.end()); thrust::host_vector<int> h_sorted_edge_indices(num_nodes + 1, 0); // Allocate device memory int *d_node_degrees, *d_node_neighbors, *d_node_neighbor_indices, *d_edge_weights, *d_edge_betweenness; hipMalloc(&d_node_degrees, num_nodes * sizeof(int)); hipMalloc(&d_node_neighbors, num_edges * sizeof(int)); hipMalloc(&d_node_neighbor_indices, (num_nodes + 1) * sizeof(int)); hipMalloc(&d_edge_weights, num_edges * sizeof(int)); hipMalloc(&d_edge_betweenness, num_edges * sizeof(int)); // Copy data to device hipMemcpy(d_node_degrees, h_node_degrees.data(), num_nodes * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(d_node_neighbors, h_node_neighbors.data(), num_edges * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(d_node_neighbor_indices, h_node_neighbor_indices.data(), (num_nodes + 1) * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(d_edge_weights, h_edge_weights.data(), num_edges * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(d_edge_betweenness, h_edge_betweenness.data(), num_edges * sizeof(int), hipMemcpyHostToDevice); // Allocate shared memory for each block size_t shared_mem_size = 6 * num_nodes * sizeof(int); // Launch kernel int blocks = (num_nodes + BLOCK_SIZE - 1) / BLOCK_SIZE; calculateBetweenness<<<blocks, BLOCK_SIZE, shared_mem_size>>>( d_edge_betweenness, d_edge_weights, d_node_degrees, d_node_neighbors, d_node_neighbor_indices, num_nodes, num_edges, thrust::raw_pointer_cast(h_sorted_nodes.data()), thrust::raw_pointer_cast(h_sorted_edges.data()), thrust::raw_pointer_cast(h_sorted_edge_indices.data()), nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr); // Check for errors hipError_t err = hipGetLastError(); if (err != hipSuccess) { std::cerr << "CUDA error: " << hipGetErrorString(err) << std::endl; return -1; } // Copy results back to host hipMemcpy(h_edge_betweenness.data(), d_edge_betweenness, num_edges * sizeof(int), hipMemcpyDeviceToHost); // Free device memory hipFree(d_node_degrees); hipFree(d_node_neighbors); hipFree(d_node_neighbor_indices); hipFree(d_edge_weights); hipFree(d_edge_betweenness); hipFree(devStates); // Output results (for demonstration purposes) std::cout << "Edge betweenness centralities:" << std::endl; for (int i = 0; i < 10; ++i) { // Print first 10 for brevity std::cout << "Edge " << i << ": " << h_edge_betweenness[i] << std::endl; } return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> // Define a simple structure to represent a sparse tensor element struct SparseTensorElement { int row; int col; float value; }; // CUDA kernel to perform operations on a sparse tensor __global__ void sparseTensorKernel(SparseTensorElement* elements, float* result, int numElements) { // Calculate the global thread index int idx = blockIdx.x * blockDim.x + threadIdx.x; // Warp-level optimization: ensure all threads in a warp process elements if (idx < numElements) { // Each thread processes one element int row = elements[idx].row; int col = elements[idx].col; float value = elements[idx].value; // Perform a simple operation: accumulate the value in the result array at position row*col // This is just a placeholder operation for demonstration atomicAdd(&result[row * col], value); } } int main() { // Define the number of non-zero elements const int numElements = 1024; // Allocate host memory for sparse tensor elements and result SparseTensorElement* h_elements = new SparseTensorElement[numElements]; float* h_result = new float[numElements * numElements]; // Assuming a square matrix for simplicity // Initialize the sparse tensor elements with dummy data for (int i = 0; i < numElements; ++i) { h_elements[i].row = i % 32; // Arbitrary row index h_elements[i].col = i % 32; // Arbitrary column index h_elements[i].value = 1.0f; // Arbitrary value } // Initialize the result array to zero for (int i = 0; i < numElements * numElements; ++i) { h_result[i] = 0.0f; } // Allocate device memory SparseTensorElement* d_elements; float* d_result; cudaError_t err = cudaMalloc((void**)&d_elements, numElements * sizeof(SparseTensorElement)); if (err != cudaSuccess) { std::cerr << "Failed to allocate device memory for elements: " << cudaGetErrorString(err) << std::endl; return -1; } err = cudaMalloc((void**)&d_result, numElements * numElements * sizeof(float)); if (err != cudaSuccess) { std::cerr << "Failed to allocate device memory for result: " << cudaGetErrorString(err) << std::endl; cudaFree(d_elements); return -1; } // Copy data from host to device err = cudaMemcpy(d_elements, h_elements, numElements * sizeof(SparseTensorElement), cudaMemcpyHostToDevice); if (err != cudaSuccess) { std::cerr << "Failed to copy elements to device: " << cudaGetErrorString(err) << std::endl; cudaFree(d_elements); cudaFree(d_result); return -1; } err = cudaMemcpy(d_result, h_result, numElements * numElements * sizeof(float), cudaMemcpyHostToDevice); if (err != cudaSuccess) { std::cerr << "Failed to copy result to device: " << cudaGetErrorString(err) << std::endl; cudaFree(d_elements); cudaFree(d_result); return -1; } // Define the grid and block dimensions dim3 blockSize(256); dim3 gridSize((numElements + blockSize.x - 1) / blockSize.x); // Launch the kernel sparseTensorKernel<<<gridSize, blockSize>>>(d_elements, d_result, numElements); // Check for kernel launch errors err = cudaGetLastError(); if (err != cudaSuccess) { std::cerr << "Kernel launch failed: " << cudaGetErrorString(err) << std::endl; cudaFree(d_elements); cudaFree(d_result); return -1; } // Copy the result back to the host err = cudaMemcpy(h_result, d_result, numElements * numElements * sizeof(float), cudaMemcpyDeviceToHost); if (err != cudaSuccess) { std::cerr << "Failed to copy result back to host: " << cudaGetErrorString(err) << std::endl; cudaFree(d_elements); cudaFree(d_result); return -1; } // Free device memory cudaFree(d_elements); cudaFree(d_result); // Clean up host memory delete[] h_elements; delete[] h_result; std::cout << "Sparse tensor operation completed successfully." << std::endl; return 0; }
#include <iostream> #include <hip/hip_runtime.h> // Define a simple structure to represent a sparse tensor element struct SparseTensorElement { int row; int col; float value; }; // CUDA kernel to perform operations on a sparse tensor __global__ void sparseTensorKernel(SparseTensorElement* elements, float* result, int numElements) { // Calculate the global thread index int idx = blockIdx.x * blockDim.x + threadIdx.x; // Warp-level optimization: ensure all threads in a warp process elements if (idx < numElements) { // Each thread processes one element int row = elements[idx].row; int col = elements[idx].col; float value = elements[idx].value; // Perform a simple operation: accumulate the value in the result array at position row*col // This is just a placeholder operation for demonstration atomicAdd(&result[row * col], value); } } int main() { // Define the number of non-zero elements const int numElements = 1024; // Allocate host memory for sparse tensor elements and result SparseTensorElement* h_elements = new SparseTensorElement[numElements]; float* h_result = new float[numElements * numElements]; // Assuming a square matrix for simplicity // Initialize the sparse tensor elements with dummy data for (int i = 0; i < numElements; ++i) { h_elements[i].row = i % 32; // Arbitrary row index h_elements[i].col = i % 32; // Arbitrary column index h_elements[i].value = 1.0f; // Arbitrary value } // Initialize the result array to zero for (int i = 0; i < numElements * numElements; ++i) { h_result[i] = 0.0f; } // Allocate device memory SparseTensorElement* d_elements; float* d_result; hipError_t err = hipMalloc((void**)&d_elements, numElements * sizeof(SparseTensorElement)); if (err != hipSuccess) { std::cerr << "Failed to allocate device memory for elements: " << hipGetErrorString(err) << std::endl; return -1; } err = hipMalloc((void**)&d_result, numElements * numElements * sizeof(float)); if (err != hipSuccess) { std::cerr << "Failed to allocate device memory for result: " << hipGetErrorString(err) << std::endl; hipFree(d_elements); return -1; } // Copy data from host to device err = hipMemcpy(d_elements, h_elements, numElements * sizeof(SparseTensorElement), hipMemcpyHostToDevice); if (err != hipSuccess) { std::cerr << "Failed to copy elements to device: " << hipGetErrorString(err) << std::endl; hipFree(d_elements); hipFree(d_result); return -1; } err = hipMemcpy(d_result, h_result, numElements * numElements * sizeof(float), hipMemcpyHostToDevice); if (err != hipSuccess) { std::cerr << "Failed to copy result to device: " << hipGetErrorString(err) << std::endl; hipFree(d_elements); hipFree(d_result); return -1; } // Define the grid and block dimensions dim3 blockSize(256); dim3 gridSize((numElements + blockSize.x - 1) / blockSize.x); // Launch the kernel sparseTensorKernel<<<gridSize, blockSize>>>(d_elements, d_result, numElements); // Check for kernel launch errors err = hipGetLastError(); if (err != hipSuccess) { std::cerr << "Kernel launch failed: " << hipGetErrorString(err) << std::endl; hipFree(d_elements); hipFree(d_result); return -1; } // Copy the result back to the host err = hipMemcpy(h_result, d_result, numElements * numElements * sizeof(float), hipMemcpyDeviceToHost); if (err != hipSuccess) { std::cerr << "Failed to copy result back to host: " << hipGetErrorString(err) << std::endl; hipFree(d_elements); hipFree(d_result); return -1; } // Free device memory hipFree(d_elements); hipFree(d_result); // Clean up host memory delete[] h_elements; delete[] h_result; std::cout << "Sparse tensor operation completed successfully." << std::endl; return 0; }
Convert the following CUDA code to AMD GPU code: cuda // monte_carlo_option_pricing.cu #include <iostream> #include <cuda_runtime.h> #include <curand_kernel.h> // Constants for the simulation #define NUM_PATHS 64 #define NUM_STEPS 100 #define BLOCK_SIZE 32 // Kernel to perform Monte Carlo simulation __global__ void monteCarloSimulation(float *d_results, float S0, float r, float sigma, float T) { // Initialize random number generator per thread curandState localState; unsigned int seed = clock64(); curand_init(seed, threadIdx.x, 0, &localState); // Each thread simulates one path float S = S0; float dt = T / NUM_STEPS; // Simulate the path for (int step = 0; step < NUM_STEPS; ++step) { float epsilon = curand_normal(&localState); S *= exp((r - 0.5f * sigma * sigma) * dt + sigma * sqrt(dt) * epsilon); } // Calculate payoff for a call option float payoff = fmaxf(0.0f, S - 100.0f); // Assuming strike price is 100 // Store the result d_results[threadIdx.x] = payoff; } int main() { // Parameters for the option pricing float S0 = 100.0f; // Initial stock price float r = 0.05f; // Risk-free rate float sigma = 0.2f; // Volatility float T = 1.0f; // Time to maturity // Allocate device memory for results float *d_results; cudaError_t err = cudaMalloc((void**)&d_results, NUM_PATHS * sizeof(float)); if (err != cudaSuccess) { std::cerr << "Error allocating device memory: " << cudaGetErrorString(err) << std::endl; return -1; } // Launch the kernel monteCarloSimulation<<<1, NUM_PATHS>>>(d_results, S0, r, sigma, T); err = cudaGetLastError(); if (err != cudaSuccess) { std::cerr << "Error launching kernel: " << cudaGetErrorString(err) << std::endl; cudaFree(d_results); return -1; } // Copy results back to host float h_results[NUM_PATHS]; err = cudaMemcpy(h_results, d_results, NUM_PATHS * sizeof(float), cudaMemcpyDeviceToHost); if (err != cudaSuccess) { std::cerr << "Error copying results back to host: " << cudaGetErrorString(err) << std::endl; cudaFree(d_results); return -1; } // Calculate the average payoff float sum = 0.0f; for (int i = 0; i < NUM_PATHS; ++i) { sum += h_results[i]; } float optionPrice = exp(-r * T) * (sum / NUM_PATHS); // Output the result std::cout << "Estimated option price: " << optionPrice << std::endl; // Free device memory cudaFree(d_results); return 0; }
// monte_carlo_option_pricing.cu #include <iostream> #include <hip/hip_runtime.h> #include <hiprand/hiprand_kernel.h> // Constants for the simulation #define NUM_PATHS 64 #define NUM_STEPS 100 #define BLOCK_SIZE 32 // Kernel to perform Monte Carlo simulation __global__ void monteCarloSimulation(float *d_results, float S0, float r, float sigma, float T) { // Initialize random number generator per thread hiprandState localState; unsigned int seed = clock64(); hiprand_init(seed, threadIdx.x, 0, &localState); // Each thread simulates one path float S = S0; float dt = T / NUM_STEPS; // Simulate the path for (int step = 0; step < NUM_STEPS; ++step) { float epsilon = hiprand_normal(&localState); S *= exp((r - 0.5f * sigma * sigma) * dt + sigma * sqrt(dt) * epsilon); } // Calculate payoff for a call option float payoff = fmaxf(0.0f, S - 100.0f); // Assuming strike price is 100 // Store the result d_results[threadIdx.x] = payoff; } int main() { // Parameters for the option pricing float S0 = 100.0f; // Initial stock price float r = 0.05f; // Risk-free rate float sigma = 0.2f; // Volatility float T = 1.0f; // Time to maturity // Allocate device memory for results float *d_results; hipError_t err = hipMalloc((void**)&d_results, NUM_PATHS * sizeof(float)); if (err != hipSuccess) { std::cerr << "Error allocating device memory: " << hipGetErrorString(err) << std::endl; return -1; } // Launch the kernel monteCarloSimulation<<<1, NUM_PATHS>>>(d_results, S0, r, sigma, T); err = hipGetLastError(); if (err != hipSuccess) { std::cerr << "Error launching kernel: " << hipGetErrorString(err) << std::endl; hipFree(d_results); return -1; } // Copy results back to host float h_results[NUM_PATHS]; err = hipMemcpy(h_results, d_results, NUM_PATHS * sizeof(float), hipMemcpyDeviceToHost); if (err != hipSuccess) { std::cerr << "Error copying results back to host: " << hipGetErrorString(err) << std::endl; hipFree(d_results); return -1; } // Calculate the average payoff float sum = 0.0f; for (int i = 0; i < NUM_PATHS; ++i) { sum += h_results[i]; } float optionPrice = exp(-r * T) * (sum / NUM_PATHS); // Output the result std::cout << "Estimated option price: " << optionPrice << std::endl; // Free device memory hipFree(d_results); return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> // Define constants #define POPULATION_SIZE 1024 #define GENES_PER_INDIVIDUAL 32 #define NUM_THREADS 256 #define NUM_BLOCKS (POPULATION_SIZE / NUM_THREADS) // CUDA kernel for genetic algorithm __global__ void geneticAlgorithmKernel(float* population, float* fitness) { // Calculate global thread index int idx = blockIdx.x * blockDim.x + threadIdx.x; // Ensure the thread index is within the population size if (idx >= POPULATION_SIZE) return; // Example operation: calculate fitness (sum of genes) float sum = 0.0f; for (int i = 0; i < GENES_PER_INDIVIDUAL; ++i) { sum += population[idx * GENES_PER_INDIVIDUAL + i]; } // Store the fitness value fitness[idx] = sum; } int main() { // Allocate memory for population and fitness on host float* h_population = new float[POPULATION_SIZE * GENES_PER_INDIVIDUAL]; float* h_fitness = new float[POPULATION_SIZE]; // Initialize population with random values for (int i = 0; i < POPULATION_SIZE * GENES_PER_INDIVIDUAL; ++i) { h_population[i] = static_cast<float>(rand()) / RAND_MAX; } // Allocate memory for population and fitness on device float* d_population; float* d_fitness; cudaError_t err; err = cudaMalloc((void**)&d_population, POPULATION_SIZE * GENES_PER_INDIVIDUAL * sizeof(float)); if (err != cudaSuccess) { std::cerr << "Error allocating device memory for population: " << cudaGetErrorString(err) << std::endl; return -1; } err = cudaMalloc((void**)&d_fitness, POPULATION_SIZE * sizeof(float)); if (err != cudaSuccess) { std::cerr << "Error allocating device memory for fitness: " << cudaGetErrorString(err) << std::endl; cudaFree(d_population); return -1; } // Copy population from host to device err = cudaMemcpy(d_population, h_population, POPULATION_SIZE * GENES_PER_INDIVIDUAL * sizeof(float), cudaMemcpyHostToDevice); if (err != cudaSuccess) { std::cerr << "Error copying population to device: " << cudaGetErrorString(err) << std::endl; cudaFree(d_population); cudaFree(d_fitness); return -1; } // Launch the genetic algorithm kernel geneticAlgorithmKernel<<<NUM_BLOCKS, NUM_THREADS>>>(d_population, d_fitness); // Check for errors in kernel launch err = cudaGetLastError(); if (err != cudaSuccess) { std::cerr << "Error launching kernel: " << cudaGetErrorString(err) << std::endl; cudaFree(d_population); cudaFree(d_fitness); return -1; } // Copy fitness from device to host err = cudaMemcpy(h_fitness, d_fitness, POPULATION_SIZE * sizeof(float), cudaMemcpyDeviceToHost); if (err != cudaSuccess) { std::cerr << "Error copying fitness to host: " << cudaGetErrorString(err) << std::endl; cudaFree(d_population); cudaFree(d_fitness); return -1; } // Free device memory cudaFree(d_population); cudaFree(d_fitness); // Output the fitness of the first individual as a demonstration std::cout << "Fitness of first individual: " << h_fitness[0] << std::endl; // Free host memory delete[] h_population; delete[] h_fitness; return 0; }
#include <iostream> #include <hip/hip_runtime.h> // Define constants #define POPULATION_SIZE 1024 #define GENES_PER_INDIVIDUAL 32 #define NUM_THREADS 256 #define NUM_BLOCKS (POPULATION_SIZE / NUM_THREADS) // CUDA kernel for genetic algorithm __global__ void geneticAlgorithmKernel(float* population, float* fitness) { // Calculate global thread index int idx = blockIdx.x * blockDim.x + threadIdx.x; // Ensure the thread index is within the population size if (idx >= POPULATION_SIZE) return; // Example operation: calculate fitness (sum of genes) float sum = 0.0f; for (int i = 0; i < GENES_PER_INDIVIDUAL; ++i) { sum += population[idx * GENES_PER_INDIVIDUAL + i]; } // Store the fitness value fitness[idx] = sum; } int main() { // Allocate memory for population and fitness on host float* h_population = new float[POPULATION_SIZE * GENES_PER_INDIVIDUAL]; float* h_fitness = new float[POPULATION_SIZE]; // Initialize population with random values for (int i = 0; i < POPULATION_SIZE * GENES_PER_INDIVIDUAL; ++i) { h_population[i] = static_cast<float>(rand()) / RAND_MAX; } // Allocate memory for population and fitness on device float* d_population; float* d_fitness; hipError_t err; err = hipMalloc((void**)&d_population, POPULATION_SIZE * GENES_PER_INDIVIDUAL * sizeof(float)); if (err != hipSuccess) { std::cerr << "Error allocating device memory for population: " << hipGetErrorString(err) << std::endl; return -1; } err = hipMalloc((void**)&d_fitness, POPULATION_SIZE * sizeof(float)); if (err != hipSuccess) { std::cerr << "Error allocating device memory for fitness: " << hipGetErrorString(err) << std::endl; hipFree(d_population); return -1; } // Copy population from host to device err = hipMemcpy(d_population, h_population, POPULATION_SIZE * GENES_PER_INDIVIDUAL * sizeof(float), hipMemcpyHostToDevice); if (err != hipSuccess) { std::cerr << "Error copying population to device: " << hipGetErrorString(err) << std::endl; hipFree(d_population); hipFree(d_fitness); return -1; } // Launch the genetic algorithm kernel geneticAlgorithmKernel<<<NUM_BLOCKS, NUM_THREADS>>>(d_population, d_fitness); // Check for errors in kernel launch err = hipGetLastError(); if (err != hipSuccess) { std::cerr << "Error launching kernel: " << hipGetErrorString(err) << std::endl; hipFree(d_population); hipFree(d_fitness); return -1; } // Copy fitness from device to host err = hipMemcpy(h_fitness, d_fitness, POPULATION_SIZE * sizeof(float), hipMemcpyDeviceToHost); if (err != hipSuccess) { std::cerr << "Error copying fitness to host: " << hipGetErrorString(err) << std::endl; hipFree(d_population); hipFree(d_fitness); return -1; } // Free device memory hipFree(d_population); hipFree(d_fitness); // Output the fitness of the first individual as a demonstration std::cout << "Fitness of first individual: " << h_fitness[0] << std::endl; // Free host memory delete[] h_population; delete[] h_fitness; return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> // Kernel to perform parallel reduction using shared memory __global__ void reduceProductKernel(int *g_idata, int *g_odata, int n) { extern __shared__ int sdata[]; // Load shared mem from global mem unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; sdata[tid] = (i < n) ? g_idata[i] : 1; // Initialize with 1 for multiplication __syncthreads(); // Perform reduction in shared memory for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) { if (tid < s) { sdata[tid] *= sdata[tid + s]; } __syncthreads(); } // Write result for this block to global mem if (tid == 0) g_odata[blockIdx.x] = sdata[0]; } int main(void) { int N = 2048; int blockSize = 256; int numBlocks = (N + blockSize - 1) / blockSize; // Allocate host memory int *h_idata = (int *)malloc(N * sizeof(int)); int *h_odata = (int *)malloc(numBlocks * sizeof(int)); // Initialize host data for (int i = 0; i < N; i++) { h_idata[i] = i + 1; // Initialize with values 1 to 2048 } // Allocate device memory int *d_idata, *d_odata; cudaError_t err = cudaMalloc((void **)&d_idata, N * sizeof(int)); if (err != cudaSuccess) { std::cerr << "Error allocating d_idata: " << cudaGetErrorString(err) << std::endl; return -1; } err = cudaMalloc((void **)&d_odata, numBlocks * sizeof(int)); if (err != cudaSuccess) { std::cerr << "Error allocating d_odata: " << cudaGetErrorString(err) << std::endl; return -1; } // Asynchronous memory copy to device err = cudaMemcpyAsync(d_idata, h_idata, N * sizeof(int), cudaMemcpyHostToDevice, 0); if (err != cudaSuccess) { std::cerr << "Error copying data to device: " << cudaGetErrorString(err) << std::endl; return -1; } // Launch kernel reduceProductKernel<<<numBlocks, blockSize, blockSize * sizeof(int)>>>(d_idata, d_odata, N); err = cudaGetLastError(); if (err != cudaSuccess) { std::cerr << "Kernel launch error: " << cudaGetErrorString(err) << std::endl; return -1; } // Allocate memory for the final reduction int *d_finalOdata; err = cudaMalloc((void **)&d_finalOdata, sizeof(int)); if (err != cudaSuccess) { std::cerr << "Error allocating d_finalOdata: " << cudaGetErrorString(err) << std::endl; return -1; } // Perform final reduction on the host if necessary if (numBlocks > 1) { // Copy results from device to host err = cudaMemcpy(h_odata, d_odata, numBlocks * sizeof(int), cudaMemcpyDeviceToHost); if (err != cudaSuccess) { std::cerr << "Error copying data from device: " << cudaGetErrorString(err) << std::endl; return -1; } // Perform final reduction on host int finalProduct = 1; for (int i = 0; i < numBlocks; i++) { finalProduct *= h_odata[i]; } std::cout << "Product of array elements: " << finalProduct << std::endl; } else { // Copy final result directly from device to host err = cudaMemcpy(h_odata, d_odata, sizeof(int), cudaMemcpyDeviceToHost); if (err != cudaSuccess) { std::cerr << "Error copying data from device: " << cudaGetErrorString(err) << std::endl; return -1; } std::cout << "Product of array elements: " << h_odata[0] << std::endl; } // Free device memory cudaFree(d_idata); cudaFree(d_odata); cudaFree(d_finalOdata); // Free host memory free(h_idata); free(h_odata); return 0; }
#include <iostream> #include <hip/hip_runtime.h> // Kernel to perform parallel reduction using shared memory __global__ void reduceProductKernel(int *g_idata, int *g_odata, int n) { extern __shared__ int sdata[]; // Load shared mem from global mem unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; sdata[tid] = (i < n) ? g_idata[i] : 1; // Initialize with 1 for multiplication __syncthreads(); // Perform reduction in shared memory for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) { if (tid < s) { sdata[tid] *= sdata[tid + s]; } __syncthreads(); } // Write result for this block to global mem if (tid == 0) g_odata[blockIdx.x] = sdata[0]; } int main(void) { int N = 2048; int blockSize = 256; int numBlocks = (N + blockSize - 1) / blockSize; // Allocate host memory int *h_idata = (int *)malloc(N * sizeof(int)); int *h_odata = (int *)malloc(numBlocks * sizeof(int)); // Initialize host data for (int i = 0; i < N; i++) { h_idata[i] = i + 1; // Initialize with values 1 to 2048 } // Allocate device memory int *d_idata, *d_odata; hipError_t err = hipMalloc((void **)&d_idata, N * sizeof(int)); if (err != hipSuccess) { std::cerr << "Error allocating d_idata: " << hipGetErrorString(err) << std::endl; return -1; } err = hipMalloc((void **)&d_odata, numBlocks * sizeof(int)); if (err != hipSuccess) { std::cerr << "Error allocating d_odata: " << hipGetErrorString(err) << std::endl; return -1; } // Asynchronous memory copy to device err = hipMemcpyAsync(d_idata, h_idata, N * sizeof(int), hipMemcpyHostToDevice, 0); if (err != hipSuccess) { std::cerr << "Error copying data to device: " << hipGetErrorString(err) << std::endl; return -1; } // Launch kernel reduceProductKernel<<<numBlocks, blockSize, blockSize * sizeof(int)>>>(d_idata, d_odata, N); err = hipGetLastError(); if (err != hipSuccess) { std::cerr << "Kernel launch error: " << hipGetErrorString(err) << std::endl; return -1; } // Allocate memory for the final reduction int *d_finalOdata; err = hipMalloc((void **)&d_finalOdata, sizeof(int)); if (err != hipSuccess) { std::cerr << "Error allocating d_finalOdata: " << hipGetErrorString(err) << std::endl; return -1; } // Perform final reduction on the host if necessary if (numBlocks > 1) { // Copy results from device to host err = hipMemcpy(h_odata, d_odata, numBlocks * sizeof(int), hipMemcpyDeviceToHost); if (err != hipSuccess) { std::cerr << "Error copying data from device: " << hipGetErrorString(err) << std::endl; return -1; } // Perform final reduction on host int finalProduct = 1; for (int i = 0; i < numBlocks; i++) { finalProduct *= h_odata[i]; } std::cout << "Product of array elements: " << finalProduct << std::endl; } else { // Copy final result directly from device to host err = hipMemcpy(h_odata, d_odata, sizeof(int), hipMemcpyDeviceToHost); if (err != hipSuccess) { std::cerr << "Error copying data from device: " << hipGetErrorString(err) << std::endl; return -1; } std::cout << "Product of array elements: " << h_odata[0] << std::endl; } // Free device memory hipFree(d_idata); hipFree(d_odata); hipFree(d_finalOdata); // Free host memory free(h_idata); free(h_odata); return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> // Define the sparse tensor structure typedef struct { int nnz; // Number of non-zero elements int *row_indices; // Row indices for non-zero elements int *col_indices; // Column indices for non-zero elements float *values; // Values of non-zero elements } SparseTensor; // CUDA kernel for sparse tensor operations __global__ void sparseTensorOperationKernel(SparseTensor d_sparseTensor, float *d_output) { // Calculate the global thread index int idx = blockIdx.x * blockDim.x + threadIdx.x; // Check if the thread index is within the number of non-zero elements if (idx < d_sparseTensor.nnz) { int row = d_sparseTensor.row_indices[idx]; int col = d_sparseTensor.col_indices[idx]; float value = d_sparseTensor.values[idx]; // Example operation: accumulate the value into the output array at the row index atomicAdd(&d_output[row], value); } } // Function to initialize sparse tensor on the host void initializeSparseTensor(SparseTensor &h_sparseTensor, int nnz) { h_sparseTensor.nnz = nnz; h_sparseTensor.row_indices = new int[nnz]; h_sparseTensor.col_indices = new int[nnz]; h_sparseTensor.values = new float[nnz]; // Initialize with some example data for (int i = 0; i < nnz; ++i) { h_sparseTensor.row_indices[i] = i % 10; // Example row index h_sparseTensor.col_indices[i] = i % 5; // Example column index h_sparseTensor.values[i] = 1.0f; // Example value } } // Function to free sparse tensor memory void freeSparseTensor(SparseTensor &h_sparseTensor) { delete[] h_sparseTensor.row_indices; delete[] h_sparseTensor.col_indices; delete[] h_sparseTensor.values; } int main() { // Number of non-zero elements const int nnz = 32; // Host sparse tensor SparseTensor h_sparseTensor; initializeSparseTensor(h_sparseTensor, nnz); // Device sparse tensor SparseTensor d_sparseTensor; cudaMalloc(&d_sparseTensor.row_indices, nnz * sizeof(int)); cudaMalloc(&d_sparseTensor.col_indices, nnz * sizeof(int)); cudaMalloc(&d_sparseTensor.values, nnz * sizeof(float)); // Copy sparse tensor data to device cudaMemcpy(d_sparseTensor.row_indices, h_sparseTensor.row_indices, nnz * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_sparseTensor.col_indices, h_sparseTensor.col_indices, nnz * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_sparseTensor.values, h_sparseTensor.values, nnz * sizeof(float), cudaMemcpyHostToDevice); // Output array on host float *h_output = new float[10]; // Assuming 10 rows for this example for (int i = 0; i < 10; ++i) h_output[i] = 0.0f; // Output array on device float *d_output; cudaMalloc(&d_output, 10 * sizeof(float)); cudaMemcpy(d_output, h_output, 10 * sizeof(float), cudaMemcpyHostToDevice); // Define block and grid sizes dim3 blockSize(32); dim3 gridSize((nnz + blockSize.x - 1) / blockSize.x); // Launch kernel sparseTensorOperationKernel<<<gridSize, blockSize>>>(d_sparseTensor, d_output); // Check for kernel launch errors cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { std::cerr << "Kernel launch failed: " << cudaGetErrorString(err) << std::endl; return -1; } // Copy result back to host cudaMemcpy(h_output, d_output, 10 * sizeof(float), cudaMemcpyDeviceToHost); // Print the result std::cout << "Resulting output array:" << std::endl; for (int i = 0; i < 10; ++i) { std::cout << "Output[" << i << "] = " << h_output[i] << std::endl; } // Free device memory cudaFree(d_sparseTensor.row_indices); cudaFree(d_sparseTensor.col_indices); cudaFree(d_sparseTensor.values); cudaFree(d_output); // Free host memory freeSparseTensor(h_sparseTensor); delete[] h_output; return 0; }
#include <iostream> #include <hip/hip_runtime.h> // Define the sparse tensor structure typedef struct { int nnz; // Number of non-zero elements int *row_indices; // Row indices for non-zero elements int *col_indices; // Column indices for non-zero elements float *values; // Values of non-zero elements } SparseTensor; // CUDA kernel for sparse tensor operations __global__ void sparseTensorOperationKernel(SparseTensor d_sparseTensor, float *d_output) { // Calculate the global thread index int idx = blockIdx.x * blockDim.x + threadIdx.x; // Check if the thread index is within the number of non-zero elements if (idx < d_sparseTensor.nnz) { int row = d_sparseTensor.row_indices[idx]; int col = d_sparseTensor.col_indices[idx]; float value = d_sparseTensor.values[idx]; // Example operation: accumulate the value into the output array at the row index atomicAdd(&d_output[row], value); } } // Function to initialize sparse tensor on the host void initializeSparseTensor(SparseTensor &h_sparseTensor, int nnz) { h_sparseTensor.nnz = nnz; h_sparseTensor.row_indices = new int[nnz]; h_sparseTensor.col_indices = new int[nnz]; h_sparseTensor.values = new float[nnz]; // Initialize with some example data for (int i = 0; i < nnz; ++i) { h_sparseTensor.row_indices[i] = i % 10; // Example row index h_sparseTensor.col_indices[i] = i % 5; // Example column index h_sparseTensor.values[i] = 1.0f; // Example value } } // Function to free sparse tensor memory void freeSparseTensor(SparseTensor &h_sparseTensor) { delete[] h_sparseTensor.row_indices; delete[] h_sparseTensor.col_indices; delete[] h_sparseTensor.values; } int main() { // Number of non-zero elements const int nnz = 32; // Host sparse tensor SparseTensor h_sparseTensor; initializeSparseTensor(h_sparseTensor, nnz); // Device sparse tensor SparseTensor d_sparseTensor; hipMalloc(&d_sparseTensor.row_indices, nnz * sizeof(int)); hipMalloc(&d_sparseTensor.col_indices, nnz * sizeof(int)); hipMalloc(&d_sparseTensor.values, nnz * sizeof(float)); // Copy sparse tensor data to device hipMemcpy(d_sparseTensor.row_indices, h_sparseTensor.row_indices, nnz * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(d_sparseTensor.col_indices, h_sparseTensor.col_indices, nnz * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(d_sparseTensor.values, h_sparseTensor.values, nnz * sizeof(float), hipMemcpyHostToDevice); // Output array on host float *h_output = new float[10]; // Assuming 10 rows for this example for (int i = 0; i < 10; ++i) h_output[i] = 0.0f; // Output array on device float *d_output; hipMalloc(&d_output, 10 * sizeof(float)); hipMemcpy(d_output, h_output, 10 * sizeof(float), hipMemcpyHostToDevice); // Define block and grid sizes dim3 blockSize(32); dim3 gridSize((nnz + blockSize.x - 1) / blockSize.x); // Launch kernel sparseTensorOperationKernel<<<gridSize, blockSize>>>(d_sparseTensor, d_output); // Check for kernel launch errors hipError_t err = hipGetLastError(); if (err != hipSuccess) { std::cerr << "Kernel launch failed: " << hipGetErrorString(err) << std::endl; return -1; } // Copy result back to host hipMemcpy(h_output, d_output, 10 * sizeof(float), hipMemcpyDeviceToHost); // Print the result std::cout << "Resulting output array:" << std::endl; for (int i = 0; i < 10; ++i) { std::cout << "Output[" << i << "] = " << h_output[i] << std::endl; } // Free device memory hipFree(d_sparseTensor.row_indices); hipFree(d_sparseTensor.col_indices); hipFree(d_sparseTensor.values); hipFree(d_output); // Free host memory freeSparseTensor(h_sparseTensor); delete[] h_output; return 0; }
Convert the following CUDA code to AMD GPU code: cuda // hartley_transform.cu #include <iostream> #include <cuda_runtime.h> #include <cmath> #define N 4096 #define BLOCK_SIZE 256 __device__ float2 ComplexMul(float2 a, float2 b) { return make_float2(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x); } __device__ float2 ComplexAdd(float2 a, float2 b) { return make_float2(a.x + b.x, a.y + b.y); } __device__ float2 ComplexSub(float2 a, float2 b) { return make_float2(a.x - b.x, a.y - b.y); } __global__ void hartley_transform(float2 *data) { extern __shared__ float2 shared_data[]; int tid = threadIdx.x; int block_offset = blockIdx.x * blockDim.x; int index = block_offset + tid; // Load data into shared memory shared_data[tid] = data[index]; __syncthreads(); // Bit-reversal permutation for (int s = blockDim.x / 2; s > 0; s >>= 1) { int bit = tid & (s - 1); int j = tid - bit + (s - bit - 1); if (tid < s) { float2 temp = shared_data[tid]; shared_data[tid] = shared_data[j]; shared_data[j] = temp; } __syncthreads(); } // Cooley-Tukey FFT-like computation for (int s = 2; s <= blockDim.x; s <<= 1) { int m = s >> 1; int j = tid % m; float2 w = make_float2(cos(2 * M_PI * j / s), sin(2 * M_PI * j / s)); if (tid < m) w = make_float2(1.0f, 0.0f); for (int t = 0; t < N / s; ++t) { int i = t * s + tid; int ip = i + m; float2 temp = ComplexMul(w, shared_data[ip]); shared_data[ip] = ComplexSub(shared_data[i], temp); shared_data[i] = ComplexAdd(shared_data[i], temp); } __syncthreads(); } // Store results back to global memory data[index] = shared_data[tid]; } int main() { float2 *h_data = new float2[N]; float2 *d_data; // Initialize input data for (int i = 0; i < N; ++i) { h_data[i].x = sin(2 * M_PI * i / N); h_data[i].y = 0.0f; } // Allocate device memory cudaError_t err = cudaMalloc((void**)&d_data, N * sizeof(float2)); if (err != cudaSuccess) { std::cerr << "Error allocating device memory: " << cudaGetErrorString(err) << std::endl; return -1; } // Copy data from host to device err = cudaMemcpy(d_data, h_data, N * sizeof(float2), cudaMemcpyHostToDevice); if (err != cudaSuccess) { std::cerr << "Error copying data to device: " << cudaGetErrorString(err) << std::endl; cudaFree(d_data); delete[] h_data; return -1; } // Launch kernel int numBlocks = N / BLOCK_SIZE; hartley_transform<<<numBlocks, BLOCK_SIZE, BLOCK_SIZE * sizeof(float2)>>>(d_data); err = cudaGetLastError(); if (err != cudaSuccess) { std::cerr << "Error launching kernel: " << cudaGetErrorString(err) << std::endl; cudaFree(d_data); delete[] h_data; return -1; } // Copy result back to host err = cudaMemcpy(h_data, d_data, N * sizeof(float2), cudaMemcpyDeviceToHost); if (err != cudaSuccess) { std::cerr << "Error copying data from device: " << cudaGetErrorString(err) << std::endl; cudaFree(d_data); delete[] h_data; return -1; } // Free device memory cudaFree(d_data); // Output first 10 results for verification for (int i = 0; i < 10; ++i) { std::cout << "H[" << i << "] = (" << h_data[i].x << ", " << h_data[i].y << ")" << std::endl; } // Clean up delete[] h_data; return 0; }
// hartley_transform.cu #include <iostream> #include <hip/hip_runtime.h> #include <cmath> #define N 4096 #define BLOCK_SIZE 256 __device__ float2 ComplexMul(float2 a, float2 b) { return make_float2(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x); } __device__ float2 ComplexAdd(float2 a, float2 b) { return make_float2(a.x + b.x, a.y + b.y); } __device__ float2 ComplexSub(float2 a, float2 b) { return make_float2(a.x - b.x, a.y - b.y); } __global__ void hartley_transform(float2 *data) { extern __shared__ float2 shared_data[]; int tid = threadIdx.x; int block_offset = blockIdx.x * blockDim.x; int index = block_offset + tid; // Load data into shared memory shared_data[tid] = data[index]; __syncthreads(); // Bit-reversal permutation for (int s = blockDim.x / 2; s > 0; s >>= 1) { int bit = tid & (s - 1); int j = tid - bit + (s - bit - 1); if (tid < s) { float2 temp = shared_data[tid]; shared_data[tid] = shared_data[j]; shared_data[j] = temp; } __syncthreads(); } // Cooley-Tukey FFT-like computation for (int s = 2; s <= blockDim.x; s <<= 1) { int m = s >> 1; int j = tid % m; float2 w = make_float2(cos(2 * M_PI * j / s), sin(2 * M_PI * j / s)); if (tid < m) w = make_float2(1.0f, 0.0f); for (int t = 0; t < N / s; ++t) { int i = t * s + tid; int ip = i + m; float2 temp = ComplexMul(w, shared_data[ip]); shared_data[ip] = ComplexSub(shared_data[i], temp); shared_data[i] = ComplexAdd(shared_data[i], temp); } __syncthreads(); } // Store results back to global memory data[index] = shared_data[tid]; } int main() { float2 *h_data = new float2[N]; float2 *d_data; // Initialize input data for (int i = 0; i < N; ++i) { h_data[i].x = sin(2 * M_PI * i / N); h_data[i].y = 0.0f; } // Allocate device memory hipError_t err = hipMalloc((void**)&d_data, N * sizeof(float2)); if (err != hipSuccess) { std::cerr << "Error allocating device memory: " << hipGetErrorString(err) << std::endl; return -1; } // Copy data from host to device err = hipMemcpy(d_data, h_data, N * sizeof(float2), hipMemcpyHostToDevice); if (err != hipSuccess) { std::cerr << "Error copying data to device: " << hipGetErrorString(err) << std::endl; hipFree(d_data); delete[] h_data; return -1; } // Launch kernel int numBlocks = N / BLOCK_SIZE; hartley_transform<<<numBlocks, BLOCK_SIZE, BLOCK_SIZE * sizeof(float2)>>>(d_data); err = hipGetLastError(); if (err != hipSuccess) { std::cerr << "Error launching kernel: " << hipGetErrorString(err) << std::endl; hipFree(d_data); delete[] h_data; return -1; } // Copy result back to host err = hipMemcpy(h_data, d_data, N * sizeof(float2), hipMemcpyDeviceToHost); if (err != hipSuccess) { std::cerr << "Error copying data from device: " << hipGetErrorString(err) << std::endl; hipFree(d_data); delete[] h_data; return -1; } // Free device memory hipFree(d_data); // Output first 10 results for verification for (int i = 0; i < 10; ++i) { std::cout << "H[" << i << "] = (" << h_data[i].x << ", " << h_data[i].y << ")" << std::endl; } // Clean up delete[] h_data; return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> #include <cuComplex.h> // Define a simple sparse FFT kernel using shared memory and atomics // This example assumes a very simple sparse matrix structure for demonstration purposes // In practice, the sparsity pattern and FFT algorithm would be more complex #define BLOCK_SIZE 256 // Kernel to perform sparse FFT using shared memory and atomics __global__ void sparseFFTKernel(cuComplex *d_input, cuComplex *d_output, int *d_indices, int N) { __shared__ cuComplex sharedMem[BLOCK_SIZE]; // Load data into shared memory int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) { int sparseIdx = d_indices[idx]; sharedMem[threadIdx.x] = d_input[sparseIdx]; } else { sharedMem[threadIdx.x] = make_cuComplex(0.0f, 0.0f); } __syncthreads(); // Perform a simple FFT transformation in shared memory // This is a placeholder for a more complex FFT algorithm cuComplex sum = make_cuComplex(0.0f, 0.0f); for (int i = 0; i < BLOCK_SIZE; i++) { sum.x += sharedMem[i].x; sum.y += sharedMem[i].y; } // Use atomic operations to write back results // This is a simplified example; in practice, atomic operations should be used carefully if (idx < N) { atomicAdd(&d_output[idx].x, sum.x); atomicAdd(&d_output[idx].y, sum.y); } } // Error checking macro #define CUDA_CHECK(call) \ { \ cudaError_t err = call; \ if (err != cudaSuccess) { \ std::cerr << "CUDA error at " << __FILE__ << ":" << __LINE__ << " - " \ << cudaGetErrorString(err) << std::endl; \ exit(EXIT_FAILURE); \ } \ } int main() { const int N = 1024; // Size of the input data const int numBlocks = (N + BLOCK_SIZE - 1) / BLOCK_SIZE; // Allocate host memory cuComplex *h_input = new cuComplex[N]; cuComplex *h_output = new cuComplex[N]; int *h_indices = new int[N]; // Initialize input data and indices for sparsity for (int i = 0; i < N; i++) { h_input[i] = make_cuComplex(static_cast<float>(i), 0.0f); h_indices[i] = i; // Simple identity mapping for demonstration h_output[i] = make_cuComplex(0.0f, 0.0f); } // Allocate device memory cuComplex *d_input, *d_output; int *d_indices; CUDA_CHECK(cudaMalloc(&d_input, N * sizeof(cuComplex))); CUDA_CHECK(cudaMalloc(&d_output, N * sizeof(cuComplex))); CUDA_CHECK(cudaMalloc(&d_indices, N * sizeof(int))); // Copy data to device CUDA_CHECK(cudaMemcpy(d_input, h_input, N * sizeof(cuComplex), cudaMemcpyHostToDevice)); CUDA_CHECK(cudaMemcpy(d_indices, h_indices, N * sizeof(int), cudaMemcpyHostToDevice)); CUDA_CHECK(cudaMemset(d_output, 0, N * sizeof(cuComplex))); // Launch kernel sparseFFTKernel<<<numBlocks, BLOCK_SIZE>>>(d_input, d_output, d_indices, N); CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaDeviceSynchronize()); // Copy results back to host CUDA_CHECK(cudaMemcpy(h_output, d_output, N * sizeof(cuComplex), cudaMemcpyDeviceToHost)); // Print first few results for verification for (int i = 0; i < 10; i++) { std::cout << "Output[" << i << "] = (" << h_output[i].x << ", " << h_output[i].y << ")" << std::endl; } // Free device memory CUDA_CHECK(cudaFree(d_input)); CUDA_CHECK(cudaFree(d_output)); CUDA_CHECK(cudaFree(d_indices)); // Free host memory delete[] h_input; delete[] h_output; delete[] h_indices; return 0; }
#include <iostream> #include <hip/hip_runtime.h> #include <hip/hip_complex.h> // Define a simple sparse FFT kernel using shared memory and atomics // This example assumes a very simple sparse matrix structure for demonstration purposes // In practice, the sparsity pattern and FFT algorithm would be more complex #define BLOCK_SIZE 256 // Kernel to perform sparse FFT using shared memory and atomics __global__ void sparseFFTKernel(hipComplex *d_input, hipComplex *d_output, int *d_indices, int N) { __shared__ hipComplex sharedMem[BLOCK_SIZE]; // Load data into shared memory int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) { int sparseIdx = d_indices[idx]; sharedMem[threadIdx.x] = d_input[sparseIdx]; } else { sharedMem[threadIdx.x] = make_hipComplex(0.0f, 0.0f); } __syncthreads(); // Perform a simple FFT transformation in shared memory // This is a placeholder for a more complex FFT algorithm hipComplex sum = make_hipComplex(0.0f, 0.0f); for (int i = 0; i < BLOCK_SIZE; i++) { sum.x += sharedMem[i].x; sum.y += sharedMem[i].y; } // Use atomic operations to write back results // This is a simplified example; in practice, atomic operations should be used carefully if (idx < N) { atomicAdd(&d_output[idx].x, sum.x); atomicAdd(&d_output[idx].y, sum.y); } } // Error checking macro #define CUDA_CHECK(call) \ { \ hipError_t err = call; \ if (err != hipSuccess) { \ std::cerr << "CUDA error at " << __FILE__ << ":" << __LINE__ << " - " \ << hipGetErrorString(err) << std::endl; \ exit(EXIT_FAILURE); \ } \ } int main() { const int N = 1024; // Size of the input data const int numBlocks = (N + BLOCK_SIZE - 1) / BLOCK_SIZE; // Allocate host memory hipComplex *h_input = new hipComplex[N]; hipComplex *h_output = new hipComplex[N]; int *h_indices = new int[N]; // Initialize input data and indices for sparsity for (int i = 0; i < N; i++) { h_input[i] = make_hipComplex(static_cast<float>(i), 0.0f); h_indices[i] = i; // Simple identity mapping for demonstration h_output[i] = make_hipComplex(0.0f, 0.0f); } // Allocate device memory hipComplex *d_input, *d_output; int *d_indices; CUDA_CHECK(hipMalloc(&d_input, N * sizeof(hipComplex))); CUDA_CHECK(hipMalloc(&d_output, N * sizeof(hipComplex))); CUDA_CHECK(hipMalloc(&d_indices, N * sizeof(int))); // Copy data to device CUDA_CHECK(hipMemcpy(d_input, h_input, N * sizeof(hipComplex), hipMemcpyHostToDevice)); CUDA_CHECK(hipMemcpy(d_indices, h_indices, N * sizeof(int), hipMemcpyHostToDevice)); CUDA_CHECK(hipMemset(d_output, 0, N * sizeof(hipComplex))); // Launch kernel sparseFFTKernel<<<numBlocks, BLOCK_SIZE>>>(d_input, d_output, d_indices, N); CUDA_CHECK(hipGetLastError()); CUDA_CHECK(hipDeviceSynchronize()); // Copy results back to host CUDA_CHECK(hipMemcpy(h_output, d_output, N * sizeof(hipComplex), hipMemcpyDeviceToHost)); // Print first few results for verification for (int i = 0; i < 10; i++) { std::cout << "Output[" << i << "] = (" << h_output[i].x << ", " << h_output[i].y << ")" << std::endl; } // Free device memory CUDA_CHECK(hipFree(d_input)); CUDA_CHECK(hipFree(d_output)); CUDA_CHECK(hipFree(d_indices)); // Free host memory delete[] h_input; delete[] h_output; delete[] h_indices; return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> #include <curand_kernel.h> #define N 512 #define BLOCK_SIZE 16 __global__ void initializeParticles(curandState *states, float4 *positions, float4 *velocities, int seed) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) { curandState localState = states[idx]; curand_init(seed, idx, 0, &localState); positions[idx] = make_float4(curand_uniform(&localState) * N, curand_uniform(&localState) * N, curand_uniform(&localState) * N, 0.0f); velocities[idx] = make_float4(curand_uniform(&localState) * 2.0f - 1.0f, curand_uniform(&localState) * 2.0f - 1.0f, curand_uniform(&localState) * 2.0f - 1.0f, 0.0f); states[idx] = localState; } } __global__ void updatePositions(float4 *positions, float4 *velocities, float dt) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) { positions[idx].x += velocities[idx].x * dt; positions[idx].y += velocities[idx].y * dt; positions[idx].z += velocities[idx].z * dt; } } __global__ void computeForces(float4 *positions, float4 *forces, float smoothingLength) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) { forces[idx] = make_float4(0.0f, 0.0f, 0.0f, 0.0f); for (int j = 0; j < N; ++j) { if (idx != j) { float3 r = make_float3(positions[idx].x - positions[j].x, positions[idx].y - positions[j].y, positions[idx].z - positions[j].z); float dist = sqrtf(r.x * r.x + r.y * r.y + r.z * r.z); if (dist < smoothingLength) { float3 force = make_float3(0.01f * r.x / dist, 0.01f * r.y / dist, 0.01f * r.z / dist); forces[idx] = make_float4(forces[idx].x + force.x, forces[idx].y + force.y, forces[idx].z + force.z, 0.0f); } } } } } __global__ void updateVelocities(float4 *velocities, float4 *forces, float dt, float mass) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) { velocities[idx].x += (forces[idx].x / mass) * dt; velocities[idx].y += (forces[idx].y / mass) * dt; velocities[idx].z += (forces[idx].z / mass) * dt; } } __global__ void simulateParticles(float4 *positions, float4 *velocities, float dt, float smoothingLength, float mass) { extern __shared__ float4 sharedForces[]; int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) { // Initialize shared memory sharedForces[threadIdx.x] = make_float4(0.0f, 0.0f, 0.0f, 0.0f); __syncthreads(); // Compute forces for (int j = 0; j < N; ++j) { if (idx != j) { float3 r = make_float3(positions[idx].x - positions[j].x, positions[idx].y - positions[j].y, positions[idx].z - positions[j].z); float dist = sqrtf(r.x * r.x + r.y * r.y + r.z * r.z); if (dist < smoothingLength) { float3 force = make_float3(0.01f * r.x / dist, 0.01f * r.y / dist, 0.01f * r.z / dist); atomicAdd(&sharedForces[threadIdx.x].x, force.x); atomicAdd(&sharedForces[threadIdx.x].y, force.y); atomicAdd(&sharedForces[threadIdx.x].z, force.z); } } } __syncthreads(); // Update velocities velocities[idx].x += (sharedForces[threadIdx.x].x / mass) * dt; velocities[idx].y += (sharedForces[threadIdx.x].y / mass) * dt; velocities[idx].z += (sharedForces[threadIdx.x].z / mass) * dt; // Update positions positions[idx].x += velocities[idx].x * dt; positions[idx].y += velocities[idx].y * dt; positions[idx].z += velocities[idx].z * dt; } } int main() { float4 *d_positions, *d_velocities; curandState *d_states; int numBytes = N * sizeof(float4); int numStatesBytes = N * sizeof(curandState); cudaError_t err = cudaMalloc((void **)&d_positions, numBytes); if (err != cudaSuccess) { std::cerr << "Failed to allocate d_positions" << std::endl; return -1; } err = cudaMalloc((void **)&d_velocities, numBytes); if (err != cudaSuccess) { std::cerr << "Failed to allocate d_velocities" << std::endl; cudaFree(d_positions); return -1; } err = cudaMalloc((void **)&d_states, numStatesBytes); if (err != cudaSuccess) { std::cerr << "Failed to allocate d_states" << std::endl; cudaFree(d_positions); cudaFree(d_velocities); return -1; } dim3 blockSize(BLOCK_SIZE); dim3 gridSize((N + blockSize.x - 1) / blockSize.x); // Initialize particles initializeParticles<<<gridSize, blockSize>>>(d_states, d_positions, d_velocities, 1234); cudaDeviceSynchronize(); err = cudaGetLastError(); if (err != cudaSuccess) { std::cerr << "Failed to launch initializeParticles kernel" << std::endl; cudaFree(d_positions); cudaFree(d_velocities); cudaFree(d_states); return -1; } // Simulation parameters float dt = 0.01f; float smoothingLength = 2.0f; float mass = 1.0f; // Simulate particles for (int step = 0; step < 100; ++step) { simulateParticles<<<gridSize, blockSize, blockSize.x * sizeof(float4)>>>(d_positions, d_velocities, dt, smoothingLength, mass); cudaDeviceSynchronize(); err = cudaGetLastError(); if (err != cudaSuccess) { std::cerr << "Failed to launch simulateParticles kernel" << std::endl; cudaFree(d_positions); cudaFree(d_velocities); cudaFree(d_states); return -1; } } cudaFree(d_positions); cudaFree(d_velocities); cudaFree(d_states); std::cout << "Simulation completed successfully" << std::endl; return 0; }
#include <iostream> #include <hip/hip_runtime.h> #include <hiprand/hiprand_kernel.h> #define N 512 #define BLOCK_SIZE 16 __global__ void initializeParticles(hiprandState *states, float4 *positions, float4 *velocities, int seed) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) { hiprandState localState = states[idx]; hiprand_init(seed, idx, 0, &localState); positions[idx] = make_float4(hiprand_uniform(&localState) * N, hiprand_uniform(&localState) * N, hiprand_uniform(&localState) * N, 0.0f); velocities[idx] = make_float4(hiprand_uniform(&localState) * 2.0f - 1.0f, hiprand_uniform(&localState) * 2.0f - 1.0f, hiprand_uniform(&localState) * 2.0f - 1.0f, 0.0f); states[idx] = localState; } } __global__ void updatePositions(float4 *positions, float4 *velocities, float dt) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) { positions[idx].x += velocities[idx].x * dt; positions[idx].y += velocities[idx].y * dt; positions[idx].z += velocities[idx].z * dt; } } __global__ void computeForces(float4 *positions, float4 *forces, float smoothingLength) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) { forces[idx] = make_float4(0.0f, 0.0f, 0.0f, 0.0f); for (int j = 0; j < N; ++j) { if (idx != j) { float3 r = make_float3(positions[idx].x - positions[j].x, positions[idx].y - positions[j].y, positions[idx].z - positions[j].z); float dist = sqrtf(r.x * r.x + r.y * r.y + r.z * r.z); if (dist < smoothingLength) { float3 force = make_float3(0.01f * r.x / dist, 0.01f * r.y / dist, 0.01f * r.z / dist); forces[idx] = make_float4(forces[idx].x + force.x, forces[idx].y + force.y, forces[idx].z + force.z, 0.0f); } } } } } __global__ void updateVelocities(float4 *velocities, float4 *forces, float dt, float mass) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) { velocities[idx].x += (forces[idx].x / mass) * dt; velocities[idx].y += (forces[idx].y / mass) * dt; velocities[idx].z += (forces[idx].z / mass) * dt; } } __global__ void simulateParticles(float4 *positions, float4 *velocities, float dt, float smoothingLength, float mass) { extern __shared__ float4 sharedForces[]; int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) { // Initialize shared memory sharedForces[threadIdx.x] = make_float4(0.0f, 0.0f, 0.0f, 0.0f); __syncthreads(); // Compute forces for (int j = 0; j < N; ++j) { if (idx != j) { float3 r = make_float3(positions[idx].x - positions[j].x, positions[idx].y - positions[j].y, positions[idx].z - positions[j].z); float dist = sqrtf(r.x * r.x + r.y * r.y + r.z * r.z); if (dist < smoothingLength) { float3 force = make_float3(0.01f * r.x / dist, 0.01f * r.y / dist, 0.01f * r.z / dist); atomicAdd(&sharedForces[threadIdx.x].x, force.x); atomicAdd(&sharedForces[threadIdx.x].y, force.y); atomicAdd(&sharedForces[threadIdx.x].z, force.z); } } } __syncthreads(); // Update velocities velocities[idx].x += (sharedForces[threadIdx.x].x / mass) * dt; velocities[idx].y += (sharedForces[threadIdx.x].y / mass) * dt; velocities[idx].z += (sharedForces[threadIdx.x].z / mass) * dt; // Update positions positions[idx].x += velocities[idx].x * dt; positions[idx].y += velocities[idx].y * dt; positions[idx].z += velocities[idx].z * dt; } } int main() { float4 *d_positions, *d_velocities; hiprandState *d_states; int numBytes = N * sizeof(float4); int numStatesBytes = N * sizeof(hiprandState); hipError_t err = hipMalloc((void **)&d_positions, numBytes); if (err != hipSuccess) { std::cerr << "Failed to allocate d_positions" << std::endl; return -1; } err = hipMalloc((void **)&d_velocities, numBytes); if (err != hipSuccess) { std::cerr << "Failed to allocate d_velocities" << std::endl; hipFree(d_positions); return -1; } err = hipMalloc((void **)&d_states, numStatesBytes); if (err != hipSuccess) { std::cerr << "Failed to allocate d_states" << std::endl; hipFree(d_positions); hipFree(d_velocities); return -1; } dim3 blockSize(BLOCK_SIZE); dim3 gridSize((N + blockSize.x - 1) / blockSize.x); // Initialize particles initializeParticles<<<gridSize, blockSize>>>(d_states, d_positions, d_velocities, 1234); hipDeviceSynchronize(); err = hipGetLastError(); if (err != hipSuccess) { std::cerr << "Failed to launch initializeParticles kernel" << std::endl; hipFree(d_positions); hipFree(d_velocities); hipFree(d_states); return -1; } // Simulation parameters float dt = 0.01f; float smoothingLength = 2.0f; float mass = 1.0f; // Simulate particles for (int step = 0; step < 100; ++step) { simulateParticles<<<gridSize, blockSize, blockSize.x * sizeof(float4)>>>(d_positions, d_velocities, dt, smoothingLength, mass); hipDeviceSynchronize(); err = hipGetLastError(); if (err != hipSuccess) { std::cerr << "Failed to launch simulateParticles kernel" << std::endl; hipFree(d_positions); hipFree(d_velocities); hipFree(d_states); return -1; } } hipFree(d_positions); hipFree(d_velocities); hipFree(d_states); std::cout << "Simulation completed successfully" << std::endl; return 0; }
Convert the following CUDA code to AMD GPU code: cuda #include <iostream> #include <cuda_runtime.h> #include <curand_kernel.h> #define NUM_PARTICLES 128 #define DIMENSIONS 6 // Structure to hold particle data struct Particle { float position[DIMENSIONS]; float velocity[DIMENSIONS]; float pBestPosition[DIMENSIONS]; float pBestValue; }; // Kernel to initialize particles __global__ void initParticles(Particle* particles, curandState* states, float lowerBound, float upperBound) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < NUM_PARTICLES) { curandState localState = states[idx]; for (int d = 0; d < DIMENSIONS; ++d) { particles[idx].position[d] = curand_uniform(&localState) * (upperBound - lowerBound) + lowerBound; particles[idx].velocity[d] = 0.0f; particles[idx].pBestPosition[d] = particles[idx].position[d]; } particles[idx].pBestValue = 1e38f; // Initialize to a large number states[idx] = localState; } } // Kernel to update particles' positions and velocities __global__ void updateParticles(Particle* particles, float w, float c1, float c2, Particle gBest, float lowerBound, float upperBound) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < NUM_PARTICLES) { curandState localState = curandState(); curand_init(idx, 0, 0, &localState); float r1 = curand_uniform(&localState); float r2 = curand_uniform(&localState); for (int d = 0; d < DIMENSIONS; ++d) { // Update velocity particles[idx].velocity[d] = w * particles[idx].velocity[d] + c1 * r1 * (particles[idx].pBestPosition[d] - particles[idx].position[d]) + c2 * r2 * (gBest.position[d] - particles[idx].position[d]); // Update position particles[idx].position[d] += particles[idx].velocity[d]; // Apply bounds particles[idx].position[d] = fmaxf(lowerBound, fminf(upperBound, particles[idx].position[d])); } } } // Function to evaluate fitness (simple sphere function) __device__ float evaluateFitness(float* position) { float sum = 0.0f; for (int d = 0; d < DIMENSIONS; ++d) { sum += position[d] * position[d]; } return sum; } // Kernel to find the global best particle __global__ void findGlobalBest(Particle* particles, Particle* gBest) { __shared__ Particle sharedParticles[NUM_PARTICLES]; int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < NUM_PARTICLES) { sharedParticles[threadIdx.x] = particles[idx]; __syncthreads(); // Find local best in shared memory Particle localBest = sharedParticles[threadIdx.x]; for (int i = 0; i < blockDim.x; ++i) { if (sharedParticles[i].pBestValue < localBest.pBestValue) { localBest = sharedParticles[i]; } } // Update global best if (threadIdx.x == 0) { atomicMin((unsigned int*)&gBest->pBestValue, __float_as_uint(localBest.pBestValue)); if (gBest->pBestValue == localBest.pBestValue) { for (int d = 0; d < DIMENSIONS; ++d) { gBest->position[d] = localBest.position[d]; } } } } } // Kernel to update personal bests __global__ void updatePersonalBests(Particle* particles) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < NUM_PARTICLES) { float fitness = evaluateFitness(particles[idx].position); if (fitness < particles[idx].pBestValue) { particles[idx].pBestValue = fitness; for (int d = 0; d < DIMENSIONS; ++d) { particles[idx].pBestPosition[d] = particles[idx].position[d]; } } } } int main() { const int numBlocks = (NUM_PARTICLES + 255) / 256; const int blockSize = 256; Particle* d_particles; Particle* d_gBest; curandState* d_states; // Allocate memory on device cudaMalloc((void**)&d_particles, NUM_PARTICLES * sizeof(Particle)); cudaMalloc((void**)&d_gBest, sizeof(Particle)); cudaMalloc((void**)&d_states, NUM_PARTICLES * sizeof(curandState)); // Initialize particles initParticles<<<numBlocks, blockSize>>>(d_particles, d_states, -5.0f, 5.0f); cudaDeviceSynchronize(); // Initialize global best Particle h_gBest; h_gBest.pBestValue = 1e38f; cudaMemcpy(d_gBest, &h_gBest, sizeof(Particle), cudaMemcpyHostToDevice); // Parameters for PSO float w = 0.729f; // Inertia weight float c1 = 1.49445f; // Cognitive coefficient float c2 = 1.49445f; // Social coefficient // Run PSO for a number of iterations int iterations = 100; for (int i = 0; i < iterations; ++i) { updatePersonalBests<<<numBlocks, blockSize>>>(d_particles); cudaDeviceSynchronize(); findGlobalBest<<<1, NUM_PARTICLES>>>(d_particles, d_gBest); cudaDeviceSynchronize(); updateParticles<<<numBlocks, blockSize>>>(d_particles, w, c1, c2, *d_gBest, -5.0f, 5.0f); cudaDeviceSynchronize(); } // Copy global best back to host cudaMemcpy(&h_gBest, d_gBest, sizeof(Particle), cudaMemcpyDeviceToHost); // Output the result std::cout << "Global Best Position: "; for (int d = 0; d < DIMENSIONS; ++d) { std::cout << h_gBest.position[d] << " "; } std::cout << "\nGlobal Best Value: " << h_gBest.pBestValue << std::endl; // Free device memory cudaFree(d_particles); cudaFree(d_gBest); cudaFree(d_states); return 0; }
#include <iostream> #include <hip/hip_runtime.h> #include <hiprand/hiprand_kernel.h> #define NUM_PARTICLES 128 #define DIMENSIONS 6 // Structure to hold particle data struct Particle { float position[DIMENSIONS]; float velocity[DIMENSIONS]; float pBestPosition[DIMENSIONS]; float pBestValue; }; // Kernel to initialize particles __global__ void initParticles(Particle* particles, hiprandState* states, float lowerBound, float upperBound) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < NUM_PARTICLES) { hiprandState localState = states[idx]; for (int d = 0; d < DIMENSIONS; ++d) { particles[idx].position[d] = hiprand_uniform(&localState) * (upperBound - lowerBound) + lowerBound; particles[idx].velocity[d] = 0.0f; particles[idx].pBestPosition[d] = particles[idx].position[d]; } particles[idx].pBestValue = 1e38f; // Initialize to a large number states[idx] = localState; } } // Kernel to update particles' positions and velocities __global__ void updateParticles(Particle* particles, float w, float c1, float c2, Particle gBest, float lowerBound, float upperBound) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < NUM_PARTICLES) { hiprandState localState = hiprandState(); hiprand_init(idx, 0, 0, &localState); float r1 = hiprand_uniform(&localState); float r2 = hiprand_uniform(&localState); for (int d = 0; d < DIMENSIONS; ++d) { // Update velocity particles[idx].velocity[d] = w * particles[idx].velocity[d] + c1 * r1 * (particles[idx].pBestPosition[d] - particles[idx].position[d]) + c2 * r2 * (gBest.position[d] - particles[idx].position[d]); // Update position particles[idx].position[d] += particles[idx].velocity[d]; // Apply bounds particles[idx].position[d] = fmaxf(lowerBound, fminf(upperBound, particles[idx].position[d])); } } } // Function to evaluate fitness (simple sphere function) __device__ float evaluateFitness(float* position) { float sum = 0.0f; for (int d = 0; d < DIMENSIONS; ++d) { sum += position[d] * position[d]; } return sum; } // Kernel to find the global best particle __global__ void findGlobalBest(Particle* particles, Particle* gBest) { __shared__ Particle sharedParticles[NUM_PARTICLES]; int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < NUM_PARTICLES) { sharedParticles[threadIdx.x] = particles[idx]; __syncthreads(); // Find local best in shared memory Particle localBest = sharedParticles[threadIdx.x]; for (int i = 0; i < blockDim.x; ++i) { if (sharedParticles[i].pBestValue < localBest.pBestValue) { localBest = sharedParticles[i]; } } // Update global best if (threadIdx.x == 0) { atomicMin((unsigned int*)&gBest->pBestValue, __float_as_uint(localBest.pBestValue)); if (gBest->pBestValue == localBest.pBestValue) { for (int d = 0; d < DIMENSIONS; ++d) { gBest->position[d] = localBest.position[d]; } } } } } // Kernel to update personal bests __global__ void updatePersonalBests(Particle* particles) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < NUM_PARTICLES) { float fitness = evaluateFitness(particles[idx].position); if (fitness < particles[idx].pBestValue) { particles[idx].pBestValue = fitness; for (int d = 0; d < DIMENSIONS; ++d) { particles[idx].pBestPosition[d] = particles[idx].position[d]; } } } } int main() { const int numBlocks = (NUM_PARTICLES + 255) / 256; const int blockSize = 256; Particle* d_particles; Particle* d_gBest; hiprandState* d_states; // Allocate memory on device hipMalloc((void**)&d_particles, NUM_PARTICLES * sizeof(Particle)); hipMalloc((void**)&d_gBest, sizeof(Particle)); hipMalloc((void**)&d_states, NUM_PARTICLES * sizeof(hiprandState)); // Initialize particles initParticles<<<numBlocks, blockSize>>>(d_particles, d_states, -5.0f, 5.0f); hipDeviceSynchronize(); // Initialize global best Particle h_gBest; h_gBest.pBestValue = 1e38f; hipMemcpy(d_gBest, &h_gBest, sizeof(Particle), hipMemcpyHostToDevice); // Parameters for PSO float w = 0.729f; // Inertia weight float c1 = 1.49445f; // Cognitive coefficient float c2 = 1.49445f; // Social coefficient // Run PSO for a number of iterations int iterations = 100; for (int i = 0; i < iterations; ++i) { updatePersonalBests<<<numBlocks, blockSize>>>(d_particles); hipDeviceSynchronize(); findGlobalBest<<<1, NUM_PARTICLES>>>(d_particles, d_gBest); hipDeviceSynchronize(); updateParticles<<<numBlocks, blockSize>>>(d_particles, w, c1, c2, *d_gBest, -5.0f, 5.0f); hipDeviceSynchronize(); } // Copy global best back to host hipMemcpy(&h_gBest, d_gBest, sizeof(Particle), hipMemcpyDeviceToHost); // Output the result std::cout << "Global Best Position: "; for (int d = 0; d < DIMENSIONS; ++d) { std::cout << h_gBest.position[d] << " "; } std::cout << "\nGlobal Best Value: " << h_gBest.pBestValue << std::endl; // Free device memory hipFree(d_particles); hipFree(d_gBest); hipFree(d_states); return 0; }