ee-bench-v1.0 / README.md
anonyau's picture
Update README.md
f78664b verified
metadata
license: cc-by-4.0
tags:
  - climate
  - weather
  - extreme events
  - machine learning
task_categories:
  - image-segmentation
  - image-to-image
configs:
  - config_name: default
    data_files:
      - split: train
        path:
          - data/weather/coldwave/coldwave_records.csv
          - data/weather/heatwave/heatwave_records.csv
          - data/weather/tropicalCyclone/tropicalCyclone_surface_records.csv
          - data/weather/expcp/expcp_metadata.csv
          - data/weather/storm/storm_metadata.csv
          - data/eo/fire/training/training_index.csv
          - data/eo/fire/flood/training_index.csv
      - split: test
        path:
          - data/weather/coldwave/coldwave_records_test.csv
          - data/weather/heatwave/heatwave_records_test.csv
          - >-
            data/weather/tropicalCyclone/tropicalCyclone_surface_records_test.csv
          - data/weather/expcp/expcp_metadata.csv
          - data/weather/storm/storm_metadata.csv
          - data/eo/fire/validation/validation_index.csv
          - data/eo/flood/validation/validation_index.csv

The ExEBench Datasets are collected from weather and earth observation data from diverse sources.

Category Heatwaves Cold waves Tropical cyclones Storms Extreme precipitation Fires Flood
Data type Weather Weather Weather EO EO EO EO
Data source EmDat, ERA5, ISO-3 EmDat, ERA5, ISO-3 EmDat, ERA5, IBTrACSv04 TASSRAD19 TRMM 3B42 V7, IMERG half-hourly Final Run HLS Burn Scars UrbanSAR-Floods
Sensor/variable t₂m (max), land-, soil-, topography- masks t₂m (min), land-, soil-, topography- masks mslp, u10, v10; z, u, v at levels,land-, soil-, topography- masks Radar prec. rate, noise mask Precip Radar & TRMM Imager Landsat/Sentinel-2, burn masks Sentinel-1, flood masks
Spatial resolution 0.25° 0.25° 0.25° 500 m 0.1° 30 m 20 m
Temporal resolution Daily Daily Hourly 5-minute Half-hourly N.A N.A
Spatial coverage Global Global Tropics Trentino South Tyrol Global Contiguous US Global
Temporal coverage 2019–2023 2019–2023 2019 2010–2019 2020–2023 2018–2021 2016–2023
Event number 55 9 95 931 1092 N.A 11
Frame size CHW (C=4) CHW (C=4) CHW & CDHW (C=3, D=5) LCHW (C=1, 480×480) LCHW (C=1, 50×50) CHW (6×512×512) CHW (8×512×512)
Train split 4,844 338 12,993 810 796 540 405
Test split 366 frames 221 frames 2,438 frames 121 sequences 296 sequences 264 pairs 285 pairs
Task Image-image prediction Image-image prediction Trajectory tracking Video prediction Video prediction Segmentation Segmentation (change detection)