repo_name
stringlengths
7
111
__id__
int64
16.6k
19,705B
blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
151
content_id
stringlengths
40
40
detected_licenses
list
license_type
stringclasses
2 values
repo_url
stringlengths
26
130
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
42
visit_date
timestamp[ns]
revision_date
timestamp[ns]
committer_date
timestamp[ns]
github_id
int64
14.6k
687M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
12 values
gha_fork
bool
2 classes
gha_event_created_at
timestamp[ns]
gha_created_at
timestamp[ns]
gha_updated_at
timestamp[ns]
gha_pushed_at
timestamp[ns]
gha_size
int64
0
10.2M
gha_stargazers_count
int32
0
178k
gha_forks_count
int32
0
88.9k
gha_open_issues_count
int32
0
2.72k
gha_language
stringlengths
1
16
gha_archived
bool
1 class
gha_disabled
bool
1 class
content
stringlengths
10
2.95M
src_encoding
stringclasses
5 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
10
2.95M
extension
stringclasses
19 values
num_repo_files
int64
1
202k
filename
stringlengths
4
112
num_lang_files
int64
1
202k
alphanum_fraction
float64
0.26
0.89
alpha_fraction
float64
0.2
0.89
hex_fraction
float64
0
0.09
num_lines
int32
1
93.6k
avg_line_length
float64
4.57
103
max_line_length
int64
7
931
nikaven/drake
17,712,445,144,014
6ed6df63a6dfcb060da4c77640f42819e89bc176
e6793e7eb54d2105c373a8af7ebc653b7ad94575
/tools/workspace/drake_visualizer/repository.bzl
e43653f11b269aa4c1ef9e6a887078c04514266f
[ "BSD-3-Clause" ]
permissive
https://github.com/nikaven/drake
5c59e88f79b530ddf62496452959abeaf8fff1e3
34bab4ecaa34ac09ade6dcb11cf7bc0d13c5bd4e
refs/heads/master
2020-03-31T01:37:25.441270
2018-10-05T19:42:22
2018-10-05T19:42:22
151,788,663
7
0
null
true
2018-10-05T23:37:07
2018-10-05T23:37:07
2018-10-05T23:30:44
2018-10-05T23:27:34
338,938
0
0
0
null
false
null
# -*- mode: python -*- # vi: set ft=python : """ Downloads and unpacks a precompiled version of drake-visualizer (a subset of Director, https://git.io/vNKjq) and makes it available to be used as a dependency of shell scripts. Archive naming convention: dv-<version>-g<commit>-python-<python version>-qt-<qt version> -vtk-<vtk version>-<platform>-<arch>[-<rebuild>] Build configuration: BUILD_SHARED_LIBS=OFF CMAKE_BUILD_TYPE=Release DD_QT_VERSION=5 USE_EXTERNAL_INSTALL=ON USE_LCM=ON USE_LCMGL=ON USE_SYSTEM_EIGEN=ON USE_SYSTEM_LCM=ON USE_SYSTEM_LIBBOT=ON USE_SYSTEM_VTK=ON Example: WORKSPACE: load( "@drake//tools/workspace/drake_visualizer:repository.bzl", "drake_visualizer_repository", ) drake_visualizer_repository(name = "foo") BUILD: sh_binary( name = "foobar", srcs = ["bar.sh"], data = ["@foo//:drake_visualizer"], ) Argument: name: A unique name for this rule. """ load("@drake//tools/workspace:os.bzl", "determine_os") # TODO(jamiesnape): Publish scripts used to create binaries. There will be a CI # job for developers to build new binaries on demand. def _impl(repository_ctx): os_result = determine_os(repository_ctx) if os_result.error != None: fail(os_result.error) if os_result.is_macos: archive = "dv-0.1.0-314-ga5a6f6f-python-2.7.15-qt-5.11.1-vtk-8.1.1-mac-x86_64.tar.gz" # noqa sha256 = "02f321cf6068068f1aa9747b6b7834c41cd5ccf53aef90ad58229f2c1bfa963c" # noqa elif os_result.ubuntu_release == "16.04": archive = "dv-0.1.0-314-ga5a6f6f-python-2.7.12-qt-5.5.1-vtk-8.1.1-xenial-x86_64.tar.gz" # noqa sha256 = "4bd36e80295006ce4bab57fa57b95b69511623abba80094fb2fdf1eaa18607f9" # noqa elif os_result.ubuntu_release == "18.04": archive = "dv-0.1.0-314-ga5a6f6f-python-2.7.15-qt-5.9.5-vtk-8.1.1-bionic-x86_64.tar.gz" # noqa sha256 = "49d4fe29285ebbc420d19bf91511e36e8b1eb03d23bc7912d982ae12c4b2b36c" # noqa else: fail("Operating system is NOT supported", attr = os_result) urls = [ x.format(archive = archive) for x in repository_ctx.attr.mirrors.get("director") ] root_path = repository_ctx.path("") repository_ctx.download_and_extract(urls, root_path, sha256 = sha256) file_content = """# -*- python -*- # DO NOT EDIT: generated by drake_visualizer_repository() licenses([ "notice", # Apache-2.0 AND BSD-3-Clause AND Python-2.0 "reciprocal", # MPL-2.0 "restricted", # LGPL-2.1-only AND LGPL-2.1-or-later AND LGPL-3.0-or-later "unencumbered", # Public-Domain ]) # drake-visualizer has the following non-system dependencies in addition to # those declared in deps: # bot2-lcmgl: LGPL-3.0-or-later # ctkPythonConsole: Apache-2.0 # Eigen: BSD-3-Clause AND MPL-2.0 AND Public-Domain # LCM: BSD-3-Clause AND LGPL-2.1-only AND LGPL-2.1-or-later # Python: Python-2.0 # PythonQt: LGPL-2.1-only # QtPropertyBrowser: LGPL-2.1-only # TODO(jamiesnape): Enumerate system dependencies. py_library( name = "drake_visualizer_python_deps", deps = [ "@lcm//:lcm-python", "@lcmtypes_bot2_core//:lcmtypes_bot2_core_py", # TODO(eric.cousineau): Expose VTK Python libraries here for Linux. "@lcmtypes_robotlocomotion//:lcmtypes_robotlocomotion_py", ], visibility = ["//visibility:public"], ) filegroup( name = "drake_visualizer", srcs = glob([ "lib/libPythonQt.*", "lib/libddApp.*", "lib/python2.7/site-packages/bot_lcmgl/**/*.py", "lib/python2.7/site-packages/director/**/*.py", "lib/python2.7/site-packages/director/**/*.so", "lib/python2.7/site-packages/urdf_parser_py/**/*.py", ]) + [ "bin/drake-visualizer", "share/doc/director/LICENSE.txt", ], data = [ ":drake_visualizer_python_deps", "@lcm//:libdrake_lcm.so", "@vtk", ], visibility = ["//visibility:public"], ) load("@drake//tools/install:install.bzl", "install_files") install_files( name = "install", dest = ".", files = [":drake_visualizer"], visibility = ["//visibility:public"], ) """ repository_ctx.file( "BUILD.bazel", content = file_content, executable = False, ) drake_visualizer_repository = repository_rule( attrs = { "mirrors": attr.string_list_dict(), }, implementation = _impl, )
UTF-8
Python
false
false
4,525
bzl
279
repository.bzl
262
0.631602
0.575691
0
147
29.782313
103
keshav-c17/python
755,914,284,463
ea636cdefecef6b50ec8ba3ba777ac196f2f1784
130ac79a00e2ae323452a3229f1bd6961d6cf1c3
/Hacker-rank/17_set_add().py
c7c1a33c1af3aec3fa805e36da65d21e048f9195
[]
no_license
https://github.com/keshav-c17/python
7c4bd1e11b359e131cc9ce2bed91e058b0a3ba54
067d4355912a27e512118aed6715113557c8b7e6
refs/heads/master
2023-05-01T15:15:41.605578
2021-05-27T00:16:11
2021-05-27T00:16:11
322,216,929
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
n = int(input("Enter no. of countries: ")) list_of_countries = set() for i in range(n): list_of_countries.add(str(input("Enter names of the countries: "))) print(len(list_of_countries))
UTF-8
Python
false
false
191
py
52
17_set_add().py
52
0.680628
0.680628
0
5
37
71
42Paris/remote-challenges
12,463,995,113,879
d8d99efea4576155ac18120260c0174ad8c692a6
cec0e621218352b3685358c697ecbe9c725e6131
/chall02/hben-yah.py
f3ece231332d21de9edc99e8be282dce4cd57881
[]
no_license
https://github.com/42Paris/remote-challenges
ecf76c101f5f070455e2f54128faebef18a9b000
f9270e7981178243fccebeee2574e3dde91891fd
refs/heads/master
2021-05-21T19:36:36.177086
2020-06-12T12:22:35
2020-06-12T12:22:35
252,772,141
74
209
null
false
2020-06-12T12:22:37
2020-04-03T15:33:34
2020-06-05T12:58:47
2020-06-12T12:22:36
1,920
63
133
1
C
false
false
#!/usr/bin/python3 import sys import re morseDic = { 'a':'.-', 'b':'-...', 'c':'-.-.', 'd':'-..', 'e':'.', 'f':'..-.', 'g':'--.', 'h':'....', 'i':'..', 'j':'.---', 'k':'-.-', 'l':'.-..', 'm':'--', 'n':'-.', 'o':'---', 'p':'.--.', 'q':'--.-', 'r':'.-.', 's':'...', 't':'-', 'u':'..-', 'v':'...-', 'w':'.--', 'x':'-..-', 'y':'-.--', 'z':'--..' } def usage(): print("usage: ./hben-yah.py <a-zA-Z string>") exit() def str_replace(text, dic): rc = re.compile('|'.join(map(re.escape, dic))) def trans(match): return dic[match.group(0)] return rc.sub(trans, text) if len(sys.argv) != 2: usage() word = sys.argv[1] if not re.match("^[A-Za-z0-9 ]*$", word) or len(word) == 0: usage() morse = str_replace(word.lower(), morseDic) print(morse)
UTF-8
Python
false
false
764
py
713
hben-yah.py
55
0.413613
0.40445
0
55
12.909091
59
stellakaniaru/hacker-rank
9,577,777,085,166
cc57b81aeff66ac4f143219c31cbca3298507570
c2843304f68aaa18f6a3d55221061fb19422b3a6
/anagram.py
6a0a0053be79509679ff2ac7f16108842e7166b3
[]
no_license
https://github.com/stellakaniaru/hacker-rank
974ced2514d1ae3ed5afb027b392e2545614e648
8dd886c00e4c2522a728b3456d64c8d4712ca2c0
refs/heads/master
2021-06-06T21:52:54.630431
2018-11-15T07:10:21
2018-11-15T07:10:21
59,646,209
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
'''Given a a string which is a concatation of two substrings, determine if the two are anagrams of each other''' def anagram(word): '''Should find out if a given word is an anagram or not''' #check if the word can be divided into equal substrings #return -1 if the word cant be divided into two equal strings if len(word) % 2 == 0: a,b = word[:len(word)/2], word[len(word)/2:] #sort the substrings to get them in list format a1 = sorted(a) b1 = sorted(b) c = [] #loop through to check if elements in both substrings are equal #return the elements not in both lists in a new list and output the length of the list for i in a1: if i not in b: c.append(i) return len(c) return '-1' # Tests = input('') # for i in range(Tests): # print anagram(str(input()))
UTF-8
Python
false
false
791
py
15
anagram.py
14
0.677623
0.666245
0
29
26.310345
88
BlueMoon3000/newsapp
11,630,771,466,199
e2b568a56b7e8a4714e624ef59b4fc2dcb7288a5
c42bf7ba6dc853ae6a4802a48cfaccdb8419ea8b
/core/migrations/0001_initial.py
db7c7052d61da06c122dc533c0f9dd495b65b20a
[]
no_license
https://github.com/BlueMoon3000/newsapp
6c2b41f4ef9ac85128a3edf680842c04604496dd
767f2265cff5896b364a9afd6945181602351f46
refs/heads/master
2021-01-15T11:49:20.804564
2015-12-20T01:34:30
2015-12-20T01:34:30
15,790,768
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'AppUser' db.create_table(u'core_appuser', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('password', self.gf('django.db.models.fields.CharField')(max_length=128)), ('last_login', self.gf('django.db.models.fields.DateTimeField')(default=datetime.datetime.now)), ('email', self.gf('django.db.models.fields.CharField')(unique=True, max_length=255)), ('first_name', self.gf('django.db.models.fields.CharField')(max_length=50)), ('last_name', self.gf('django.db.models.fields.CharField')(max_length=60)), ('full_name', self.gf('django.db.models.fields.CharField')(max_length=140)), ('fb_user_id', self.gf('django.db.models.fields.CharField')(max_length=20)), ('fb_access_token', self.gf('django.db.models.fields.CharField')(max_length=255, null=True)), ('is_active', self.gf('django.db.models.fields.BooleanField')(default=True)), ('is_admin', self.gf('django.db.models.fields.BooleanField')(default=False)), ('last_updated_time', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('created_time', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), )) db.send_create_signal(u'core', ['AppUser']) # Adding model 'Topic' db.create_table(u'core_topic', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('title', self.gf('django.db.models.fields.CharField')(unique=True, max_length=100)), ('last_updated_time', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('created_time', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), )) db.send_create_signal(u'core', ['Topic']) # Adding model 'SearchTopic' db.create_table(u'core_searchtopic', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('title', self.gf('django.db.models.fields.CharField')(unique=True, max_length=100)), ('topic', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['core.Topic'])), ('is_master', self.gf('django.db.models.fields.BooleanField')(default=False)), ('last_updated_time', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('created_time', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), )) db.send_create_signal(u'core', ['SearchTopic']) # Adding model 'Article' db.create_table(u'core_article', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('url', self.gf('django.db.models.fields.CharField')(unique=True, max_length=500)), ('title', self.gf('django.db.models.fields.CharField')(max_length=250)), ('description', self.gf('django.db.models.fields.CharField')(max_length=1000)), ('pub_date', self.gf('django.db.models.fields.DateTimeField')()), ('last_updated_time', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('created_time', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), )) db.send_create_signal(u'core', ['Article']) def backwards(self, orm): # Deleting model 'AppUser' db.delete_table(u'core_appuser') # Deleting model 'Topic' db.delete_table(u'core_topic') # Deleting model 'SearchTopic' db.delete_table(u'core_searchtopic') # Deleting model 'Article' db.delete_table(u'core_article') models = { u'core.appuser': { 'Meta': {'object_name': 'AppUser'}, 'created_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'email': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}), 'fb_access_token': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True'}), 'fb_user_id': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'full_name': ('django.db.models.fields.CharField', [], {'max_length': '140'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_admin': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '60'}), 'last_updated_time': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, u'core.article': { 'Meta': {'object_name': 'Article'}, 'created_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_updated_time': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'pub_date': ('django.db.models.fields.DateTimeField', [], {}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '250'}), 'url': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '500'}) }, u'core.searchtopic': { 'Meta': {'object_name': 'SearchTopic'}, 'created_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_master': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_updated_time': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'topic': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['core.Topic']"}) }, u'core.topic': { 'Meta': {'object_name': 'Topic'}, 'created_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_updated_time': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}) } } complete_apps = ['core']
UTF-8
Python
false
false
7,467
py
8
0001_initial.py
5
0.582697
0.573323
0
121
60.719008
118
evaseemefly/gsconfig
4,269,197,513,147
482a819837f765d2997d3f0ba74e7a677340fe5f
64bf1b41a05673b3fe64f9a62619975d88bb5410
/src/geoserver/customer_base.py
bbb84292a56f7c67daa4bbf9d646e571cbed2ecd
[ "MIT" ]
permissive
https://github.com/evaseemefly/gsconfig
ef1992dafe13268182acbf9a8b33d0e86b8702b6
a10900bd256018edf00cd1b508a0d1eb6c3ecba6
refs/heads/master
2021-02-11T18:47:06.512853
2020-03-31T09:36:09
2020-03-31T09:36:20
244,520,389
4
1
MIT
true
2020-03-29T13:48:46
2020-03-03T02:12:25
2020-03-29T13:35:40
2020-03-29T13:48:45
1,877
1
1
0
Python
false
false
from catalog import Catalog # TODO:[-] 20-03-31 注意此处存在一个问题,由于修改了 gsconfig的源码,所以此处引用时是引用的系统环境中的 gsconfig(geoserver) from geoserver.workspace import Workspace # from workspace import Workspace class BaseCatalog: ''' 所有 cusotmer 子类需要继承的父类 ''' def __init__(self, cat: Catalog, work_space: str): ''' @param cat: cat 实例 @param work_space: 工作区名称 ''' self.cat = cat self.work_space = Workspace(cat,work_space)
UTF-8
Python
false
false
585
py
18
customer_base.py
12
0.637895
0.625263
0
17
26.823529
86
xuelei-code/test
10,264,971,874,950
13cb93898351bd4b6c92ce89b852ee7b19809f79
a4ff9458cbf1b69c2cc85e522c2f23fea34252f9
/dataless.py
3ab406de3b2e0764058ede8e23b70dc91c4ae703
[]
no_license
https://github.com/xuelei-code/test
06ace35f19375e728aeba857c5767019e80e78f4
0796565ce0a93ed600ca4346e628800e0d4623ac
refs/heads/master
2020-11-26T23:40:09.485007
2019-12-20T09:22:37
2019-12-20T09:22:37
229,232,123
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Apr 23 15:48:47 2018 @author: lei """ import obspy from obspy import read, read_inventory from os import listdir from obspy.core import UTCDateTime # 读入时间 t0 = UTCDateTime("2018-04-22T16:30:00.000") # 读入仪器响应文件 inv = read_inventory('F:/work/mycode/test/FJ.dataless.xml') pre_filt = [0.001, 0.1, 10, 20] # 读入波形数据 filepath='F:/work/mycode/test/mseed' filename_list=listdir(filepath) for filename in filename_list: st = read(filepath + '/' + filename,starttime = t0 - 60, endtime = t0 + 300) # the corresponding response is included in ObsPy as a StationXML file # the routine automatically picks the correct response for each trace # define a filter band to prevent amplifying noise during the deconvolution re_filt = (0.005, 0.1, 10, 11) Vst = st.remove_response(inventory=inv, output='VEL', pre_filt=pre_filt) Ast = st.remove_response(inventory=inv, output='ACC', pre_filt=pre_filt) # Vst.plot() # Ast.plot() tr = Vst[0] print(tr.stats)
UTF-8
Python
false
false
1,064
py
10
dataless.py
7
0.690661
0.633268
0
35
28.4
80
kishansharma3012/HistoNet
2,602,750,187,633
c4f2bf91df7e9ff0f59a7956427e802bb7263a46
cf377c54bd6ea649703923cce924694e3747168b
/code/train.py
3428603e403fa63b6725b3742356ae9c3b0de035
[]
no_license
https://github.com/kishansharma3012/HistoNet
c2424028de90101f80b1e269f0e54855d355b4bc
62bb9120027dfe13b0968af59ad49b0bf57ed836
refs/heads/master
2020-08-12T16:05:45.130289
2020-05-02T20:29:26
2020-05-02T20:29:26
214,796,600
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import lasagne import pickle import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt plt.set_cmap('jet') import sys,os,time,random import numpy as np import theano import theano.tensor as T from data_utils import import_data, import_data_dsn seed = 0 random.seed(seed) np.random.seed(seed) lasagne.random.set_rng(np.random.RandomState(seed)) ef = 1024.0 def evaluate_histonet(dataset_image, dataset_countmap, dataset_count, dataset_hist, Hist_wt, test_op, data_mean, loss_list,\ visualize = False, path = 'Results/', loss_name = 'w_L1', Loss_wt= [0.5, 0.5,], num_bins = 8): """ Function: Evaluate HistoNet network performance on a dataset (For validation and Testing) Input: dataset_image : Input images dataset_countmap: Gt Redundant countmaps dataset_count: Gt object counts dataset_hist: Gt object size distribution histograms Hist_wt: Weights for L1 loss between predicted and target size histogram test_op: Operation for extracting output from network for a given input during test and validation(deterministic) data_mean: Mean image of training dataset loss_list: list of different losses (only for initializing the test loss history list) visualize: Boolean (to visualize the test results) path : path of the result folder loss_name: Name of the L1 loss for histogram (Weighted L1 loss - w_L1 or L1 loss - L1) Loss_wt: Weights for KL divergence loss and L1 loss for histogram num_bins: number of the bins of histogram Output: test_loss_history: list of lists of different losses [loss_total, loss_count, loss_pix, loss_kl, loss_l1, loss_l1_temp, loss_reg (0 for the test)] gt_count: list of object count in the test samples pred_count: list of predicted count in the test samples """ test_loss_history = [[] for _ in range(len(loss_list))] gt_count_list = [] pred_count_list = [] batchsize = 1 for i in range(0,len(dataset_image), batchsize): pred_countmap, pred_hist = test_op(dataset_image, range(i,i+batchsize)) if visualize: visualize_HistoNet_result(path, i, dataset_image[i], dataset_countmap[i], dataset_count[i], dataset_hist[i], \ pred_countmap, pred_hist, Hist_wt, data_mean, num_bins) err_pix= np.abs(pred_countmap - dataset_countmap[i:i+batchsize]).mean(axis=(2,3))[0][0] pred_count = (pred_countmap/(ef)).sum(axis=(1,2,3)) err_count = np.abs((dataset_count[i:i+batchsize]/ef).sum()-pred_count)[0] y_shape = pred_hist.shape[0] gt_hist = dataset_hist[i:i+batchsize] p_prob = pred_hist/pred_hist.sum(axis = 1, keepdims=True) + (1e-6) p_prob1 = p_prob/p_prob.sum(axis =1, keepdims = True) t_prob = gt_hist/gt_hist.sum(axis = 1, keepdims=True) + (1e-6) t_prob1 = t_prob/t_prob.sum(axis = 1, keepdims =True) kl = (t_prob1*np.log((t_prob1)/(p_prob1))) err_kl = kl.sum()/y_shape if loss_name == 'w_L1': err_l1 = (Hist_wt*np.abs(pred_hist - gt_hist)).sum()/y_shape err_l1_temp = np.abs(pred_hist - gt_hist).sum()/y_shape elif loss_name == 'L1': err_l1 = np.abs(pred_hist - gt_hist).sum()/y_shape err_l1_temp = (Hist_wt*np.abs(pred_hist - gt_hist)).sum()/y_shape err_total = Loss_wt[0]*err_kl + Loss_wt[1]*err_l1 + err_pix test_loss_history = update_loss_history(test_loss_history, [err_total, err_count, err_pix, err_kl, err_l1, err_l1_temp, 0.0]) gt_count_list.append((dataset_countmap[i:i+batchsize]/ef).sum()) pred_count_list.append(pred_count[0]) return test_loss_history, gt_count_list, pred_count_list def evaluate_histonet_dsn(dataset_image, dataset_countmap, dataset_count, dataset_hist, dataset_hist_dsn1, dataset_hist_dsn2, Hist_wt, Hist_wt_dsn1, Hist_wt_dsn2, test_op, data_mean, loss_list,\ visualize = False, path = 'Results/', loss_name = 'w_L1', Loss_wt= [0.5, 0.5,], num_bins = [2,4,8]): """ Function: Evaluate HistoNet network performance on a dataset (For validation and Testing) Input: dataset_image : Input images dataset_countmap: Gt Redundant countmaps dataset_count: Gt object counts dataset_hist: Gt object size distribution histograms dataset_hist_dsn1: Gt object size distribution histograms dsn1 dataset_hist_dsn2: Gt object size distribution histograms dsn2 Hist_wt: Weights for L1 loss between predicted and target size histogram Hist_wt_dsn1: Weights for L1 loss between predicted and target size histogram dsn1 Hist_wt_dsn2: Weights for L1 loss between predicted and target size histogram dsn2 test_op: Operation for extracting output from network for a given input during test and validation(deterministic) data_mean: Mean image of training dataset loss_list: list of different losses (only for initializing the test loss history list) visualize: Boolean (to visualize the test results) path : path of the result folder loss_name: Name of the L1 loss for histogram (Weighted L1 loss - w_L1 or L1 loss - L1) Loss_wt: Weights for KL divergence loss and L1 loss for histogram num_bins: list of number of bins of histogram [early layer output hist size, middle layer output hist size, final output hist size] Output: test_loss_history: list of lists of different losses [loss_total, loss_count, loss_pix, loss_kl, loss_l1, loss_l1_temp, loss_reg (0 for the test)] gt_count: list of object count in the test samples pred_count: list of predicted count in the test samples """ test_loss_history = [[] for _ in range(len(loss_list))] gt_count_list = [] pred_count_list = [] batchsize = 1 for i in range(0,len(dataset_image), batchsize): pred_countmap, pred_hist, pred_hist_dsn1, pred_hist_dsn2 = test_op(dataset_image, range(i,i+batchsize)) if visualize: visualize_HistoNet_DSN_result(path, i, dataset_image[i], dataset_countmap[i], dataset_count[i], dataset_hist[i], dataset_hist_dsn1[i], dataset_hist_dsn2[i], \ pred_countmap, pred_hist, pred_hist_dsn1, pred_hist_dsn2, Hist_wt, Hist_wt_dsn1, Hist_wt_dsn2, data_mean, num_bins) err_pix= np.abs(pred_countmap - dataset_countmap[i:i+batchsize]).mean(axis=(2,3))[0][0] pred_count = (pred_countmap/(ef)).sum(axis=(1,2,3)) err_count = np.abs((dataset_count[i:i+batchsize]/ef).sum()-pred_count)[0] y_shape = pred_hist.shape[0] gt_hist = dataset_hist[i:i+batchsize] p_prob = pred_hist/pred_hist.sum(axis = 1, keepdims=True) + (1e-6) p_prob1 = p_prob/p_prob.sum(axis =1, keepdims = True) t_prob = gt_hist/gt_hist.sum(axis = 1, keepdims=True) + (1e-6) t_prob1 = t_prob/t_prob.sum(axis = 1, keepdims =True) kl = (t_prob1*np.log((t_prob1)/(p_prob1))) err_kl = kl.sum()/y_shape # KL Div loss - DSN1 y_shape_dsn1 = pred_hist_dsn1.shape[0] gt_hist_dsn1 = dataset_hist_dsn1[i:i+batchsize] p_prob_dsn1 = pred_hist_dsn1/(pred_hist_dsn1.sum(axis = 1, keepdims=True) + 1e-6) + (1e-6) p_prob1_dsn1 = p_prob_dsn1/p_prob_dsn1.sum(axis =1, keepdims = True) t_prob_dsn1 = gt_hist_dsn1/gt_hist_dsn1.sum(axis = 1, keepdims=True) + (1e-6) t_prob1_dsn1 = t_prob_dsn1/t_prob_dsn1.sum(axis = 1, keepdims =True) kl_dsn1 = (t_prob1_dsn1*np.log((t_prob1_dsn1)/(p_prob1_dsn1))) err_kl_dsn1 = kl_dsn1.sum()/y_shape_dsn1 # KL Div loss - DSN2 y_shape_dsn2 = pred_hist_dsn2.shape[0] gt_hist_dsn2 = dataset_hist_dsn2[i:i+batchsize] p_prob_dsn2 = pred_hist_dsn2/(pred_hist_dsn2.sum(axis = 1, keepdims=True) + 1e-6) + (1e-6) p_prob1_dsn2 = p_prob_dsn2/p_prob_dsn2.sum(axis =1, keepdims = True) t_prob_dsn2 = gt_hist_dsn2/gt_hist_dsn2.sum(axis = 1, keepdims=True) + (1e-6) t_prob1_dsn2 = t_prob_dsn2/t_prob_dsn2.sum(axis = 1, keepdims =True) kl_dsn2 = (t_prob1_dsn2*np.log((t_prob1_dsn2)/(p_prob1_dsn2))) err_kl_dsn2 = kl_dsn2.sum()/y_shape_dsn2 if loss_name == 'w_L1': err_l1 = (Hist_wt*np.abs(pred_hist - gt_hist)).sum()/y_shape err_l1_temp = np.abs(pred_hist - gt_hist).sum()/y_shape err_l1_dsn1 = (Hist_wt_dsn1*np.abs(pred_hist_dsn1 - gt_hist_dsn1)).sum()/y_shape_dsn1 err_l1_temp_dsn1 = np.abs(pred_hist_dsn1 - gt_hist_dsn1).sum()/y_shape_dsn1 err_l1_dsn2 = (Hist_wt_dsn2*np.abs(pred_hist_dsn2 - gt_hist_dsn2)).sum()/y_shape_dsn2 err_l1_temp_dsn2 = np.abs(pred_hist_dsn2 - gt_hist_dsn2).sum()/y_shape_dsn2 elif loss_name == 'L1': err_l1 = np.abs(pred_hist - gt_hist).sum()/y_shape err_l1_temp = (Hist_wt*np.abs(pred_hist - gt_hist)).sum()/y_shape err_l1_dsn1 = np.abs(pred_hist_dsn1 - gt_hist_dsn1).sum()/y_shape_dsn1 err_l1_temp_dsn1 = (Hist_wt_dsn1*np.abs(pred_hist_dsn1 - gt_hist_dsn1)).sum()/y_shape_dsn1 err_l1_dsn2 = np.abs(pred_hist_dsn2 - gt_hist_dsn2).sum()/y_shape_dsn2 err_l1_temp_dsn2 = (Hist_wt_dsn2*np.abs(pred_hist_dsn2 - gt_hist_dsn2)).sum()/y_shape_dsn2 err_total = Loss_wt[0]*(err_kl + err_kl_dsn1 + err_kl_dsn2) + Loss_wt[1]*(err_l1 + err_l1_dsn1 + err_l1_dsn2) + err_pix test_loss_history = update_loss_history(test_loss_history, [err_total, err_count, err_pix, err_kl, err_kl_dsn1, err_kl_dsn2,\ err_l1, err_l1_dsn1, err_l1_dsn2, err_l1_temp, err_l1_temp_dsn1, err_l1_temp_dsn2, 0.0]) gt_count_list.append((dataset_countmap[i:i+batchsize]/ef).sum()) pred_count_list.append(pred_count[0]) return test_loss_history, gt_count_list, pred_count_list def save_network(net, file_name, directory): """ Function: save network weights Input: net : network file_name: name of the model file directory: Logging directory for saving model weights """ np.savez( directory +'/' + file_name, *lasagne.layers.get_all_param_values(net)) def load_network(net, model_path): """ Function: load network weights Input: net : network model_path: path of the model file """ with np.load(model_path) as f: param_values = [f['arr_%d' % i] for i in range(len(f.files))] lasagne.layers.set_all_param_values(net, param_values) def update_loss_history(losses_lists, new_values): for i in range(len(losses_lists)): losses_lists[i].append(float(new_values[i])) return losses_lists def trainer_histonet(net_count, net_hist, dataset_path, loss_list, placeholder_list, epochs, lr_value , \ lr_decay, batch_size, weight_decay_value, root_result, Experiment_name, \ train_op, test_op, loss_name = 'w_L1', Loss_wt = [0.5, 0.5], num_bins = 8, print_every=50): """ Function: Training and evaluating HistoNet network Input: net_count : count map output from network net_hist: histogram vector output from network dataset_path: path to the directory containing train, val and test dataset pickle files loss_list: list of different losses for count and size histogram prediction placeholder_list: list of placeholders for input and target epochs: number of epochs lr_value: Learning rate lr_decay: decay rate of Learning rate (0 - 1.0) batch_size: batch_size for training weight_decay_value: L2 regularization strength root_result: directory to training plots, test results Experiment_name: Name of the experiment train_op: Operation for extracting output from network for a given input during training(non deterministic) test_op: Operation for extracting output from network for a given input during test and validation(deterministic) loss_name: Name of the L1 loss for histogram (Weighted L1 loss - w_L1 or L1 loss - L1) Loss_wt: Weights for KL divergence loss and L1 loss for histogram num_bins: number of bins of histogram print_every: number of iteration after which to show the progress of training losses """ # Import Dataset train_set, val_set, test_set, data_mean = import_data(dataset_path, num_bins) np_train_dataset_x, np_train_dataset_y, np_train_dataset_c, np_train_dataset_s = train_set[0], train_set[1], train_set[2], train_set[3] np_val_dataset_x, np_val_dataset_y, np_val_dataset_c, np_val_dataset_s = val_set[0], val_set[1], val_set[2], val_set[3] np_test_dataset_x, np_test_dataset_y, np_test_dataset_c, np_test_dataset_s = test_set[0], test_set[1], test_set[2], test_set[3] print("Imported Data !!....") # Unpack losses and placeholders lr = theano.shared(np.array(0.0, dtype=theano.config.floatX)) loss_total, loss_count, loss_pix, loss_kl, loss_l1, loss_l1_temp, loss_reg = loss_list input_var, input_var_ex, target_var, target_var_hist, weight_var_hist = placeholder_list # Calculate weights for weighted L1 histogram loss Bins_var = np.linspace(0,200, num_bins + 1) center_bin_hist = (Bins_var[:-1] + Bins_var[1:])/2 Hist_wt = center_bin_hist/center_bin_hist.sum() Hist_wt = np.tile(Hist_wt, (batch_size,1)).astype(dtype = np.float64) # Preparing optimizer params = lasagne.layers.get_all_params([net_count, net_hist], trainable=True) updates = lasagne.updates.adam(loss_total, params, learning_rate=lr) train_fn = theano.function([input_var_ex], [loss_total, loss_count, loss_pix, loss_kl, loss_l1, loss_l1_temp, loss_reg], updates=updates, givens={input_var:np_train_dataset_x, target_var: np_train_dataset_y, target_var_hist: np_train_dataset_s, weight_var_hist: Hist_wt}) print("Training Function Compiled !!.....") lr.set_value(lr_value) best_valid_err = np.inf datasetlength = len(np_train_dataset_x) batch_size = 2 datasetlength = 4 print("batch_size", batch_size) print("lr", lr.eval()) print("datasetlength",datasetlength) training_plot_path = os.path.join(root_result, 'Training_plots') model_dir = os.path.join(root_result, Experiment_name) if not os.path.exists(root_result): os.mkdir(root_result) os.mkdir(training_plot_path) os.mkdir(model_dir) # Resetting Training and Validation loss per epoch history train_loss_epoch_history = [[] for _ in range(len(loss_list))] val_loss_epoch_history = [[] for _ in range(len(loss_list))] for epoch in range(epochs): train_loss_history = [[] for _ in range(len(loss_list))] todo = range(datasetlength) for i in range(0,datasetlength, batch_size): ex = todo[i:i+batch_size] err_total, err_count, err_pix, err_kl, err_l1, err_l1_temp, err_reg = train_fn(ex) if i%print_every == 0 : print("Epoch :", epoch," | Iteration : ", i ,"| Total_Loss :",np.around(err_total,2), \ "| Pix Loss :",np.around(err_pix,2), "| Count_Loss : ",np.around(err_count.mean(),2), \ "| kl_Loss:", np.around(err_kl,2), "| l1_Loss:", np.around(err_l1,2), "| l1_Loss_temp:", np.around(err_l1_temp,2), \ "| reg_Loss:", np.around(err_reg,2), "| Learning_rate:", np.around(lr.get_value(),5)) # Updating Loss history train_loss_history = update_loss_history(train_loss_history, [err_total, err_count, err_pix, err_kl, err_l1, err_l1_temp, err_reg]) # Learning rate decay lr.set_value(lasagne.utils.floatX(lr.get_value() * lr_decay)) val_loss_history, _, _ = evaluate_histonet(np_val_dataset_x[:4], np_val_dataset_y[:4], np_val_dataset_c[:4], np_val_dataset_s[:4], Hist_wt[0,:], test_op, \ data_mean, loss_list, loss_name = loss_name, Loss_wt = Loss_wt, num_bins= num_bins) # Updating Loss Epoch history train_loss_epoch_history = update_loss_history(train_loss_epoch_history, [np.mean(train_loss_history[i]) for i in range(len(train_loss_history))]) val_loss_epoch_history = update_loss_history(val_loss_epoch_history, [np.mean(val_loss_history[i]) for i in range(len(val_loss_history))]) # plot results plot_results(train_loss_epoch_history[0], val_loss_epoch_history[0], training_plot_path,'Total_loss',1) plot_results(train_loss_epoch_history[1], val_loss_epoch_history[1], training_plot_path,'Count_loss',2) plot_results(train_loss_epoch_history[2], val_loss_epoch_history[2], training_plot_path,'Pix_loss',3) plot_results(train_loss_epoch_history[3], val_loss_epoch_history[3], training_plot_path,'kl_loss',4) plot_results(train_loss_epoch_history[4], val_loss_epoch_history[4], training_plot_path,'l1_loss',5) plot_results(train_loss_epoch_history[5], val_loss_epoch_history[5], training_plot_path,'l1_loss_temp',6) plot_results(train_loss_epoch_history[6], val_loss_epoch_history[6], training_plot_path,'reg_loss',7) print("Epoch : ",epoch, "| Train_Total_Loss :", np.around(train_loss_epoch_history[0][-1],2), \ "| Val_Total_Loss :", np.around(val_loss_epoch_history[0][-1],2), \ "| Train_Count Loss:",np.around(train_loss_epoch_history[1][-1],2),\ "| Val_Count Loss:",np.around(val_loss_epoch_history[1][-1],2),\ "| Train_Pix_loss:",np.around(train_loss_epoch_history[2][-1],2),\ "| Val_Pix_loss:",np.around(val_loss_epoch_history[2][-1],2),\ "| Train KL_Loss:",np.around(train_loss_epoch_history[3][-1],2), \ "| Val KL_Loss:",np.around(val_loss_epoch_history[3][-1],2), \ "| Train L1_Loss:",np.around(train_loss_epoch_history[4][-1],2), \ "| Val L1_Loss:",np.around(val_loss_epoch_history[4][-1],2)) save_network([net_count, net_hist], 'model_' +str(epoch) + '.npz', model_dir) # saving best model if (val_loss_epoch_history[0][-1] < best_valid_err): best_valid_err = val_loss_epoch_history[0][-1] save_network([net_count, net_hist], 'model_best.npz', model_dir) Test_directory = root_result + '/Test_results/' if not os.path.exists(Test_directory): os.mkdir(Test_directory) # Loading best model load_network([net_count, net_hist], model_dir + '/model_best.npz') test_loss_history, _, _ = evaluate_histonet(np_test_dataset_x, np_test_dataset_y, np_test_dataset_c, np_test_dataset_s, Hist_wt[0,:], \ test_op, data_mean, loss_list, visualize = True, path = Test_directory, loss_name = loss_name, Loss_wt = Loss_wt, num_bins= num_bins) # saving results for test dataset Error_file = open(model_dir + '/Test_result_Summary.txt', "w") Error_file.write('\n Total_count_Mean abs Error :' + str(np.mean(test_loss_history[1]))) Error_file.write('\n Total_kl_Mean abs Error :' + str(np.mean(test_loss_history[3]))) Error_file.write('\n Total_l1_Mean abs Error :' + str(np.mean(test_loss_history[4]))) Error_file.write('\n Total_l1_ temp Mean abs Error :' + str(np.mean(test_loss_history[5]))) Error_file.close() def trainer_histonet_dsn(net_count, net_hist, net_hist_dsn1, net_hist_dsn2, dataset_path, loss_list, placeholder_list, epochs, lr_value , \ lr_decay, batch_size, weight_decay_value, root_result, Experiment_name, \ train_op, test_op, loss_name = 'w_L1', Loss_wt = [0.5, 0.5], num_bins = [2,4,8], print_every=50): """ Function: Training and evaluating HistoNet DSN network Input: net_count : count map output from network net_hist: histogram vector output of size num_bins[2]from network net_hist_dsn1: histogram vector output of size num_bins[0] from early part of the network net_hist_dsn1: histogram vector output of size num_bins[1] from middle part of the network dataset_path: path to the directory containing train, val and test dataset pickle files loss_list: list of different losses for count and size histogram prediction placeholder_list: list of placeholders for input and target epochs: number of epochs lr_value: Learning rate lr_decay: decay rate of Learning rate (0 - 1.0) batch_size: batch_size for training weight_decay_value: L2 regularization strength root_result: directory to training plots, test results Experiment_name: Name of the experiment train_op: Operation for extracting output from network for a given input during training(non deterministic) test_op: Operation for extracting output from network for a given input during test and validation(deterministic) loss_name: Name of the L1 loss for histogram (Weighted L1 loss - w_L1 or L1 loss - L1) Loss_wt: Weights for KL divergence loss and L1 loss for histogram num_bins: list of number of bins of histogram [early layer output hist size, middle layer output hist size, final output hist size] print_every: number of iteration after which to show the progress of training losses """ # Import Dataset train_set, val_set, test_set, data_mean = import_data_dsn(dataset_path, num_bins) np_train_dataset_x, np_train_dataset_y, np_train_dataset_c, np_train_dataset_s_dsn1, np_train_dataset_s_dsn2, np_train_dataset_s = train_set[0], train_set[1], train_set[2], train_set[3], train_set[4], train_set[5] np_val_dataset_x, np_val_dataset_y, np_val_dataset_c, np_val_dataset_s_dsn1, np_val_dataset_s_dsn2, np_val_dataset_s = val_set[0], val_set[1], val_set[2], val_set[3], val_set[4], val_set[5] np_test_dataset_x, np_test_dataset_y, np_test_dataset_c, np_test_dataset_s_dsn1, np_test_dataset_s_dsn2, np_test_dataset_s = test_set[0], test_set[1], test_set[2], test_set[3], test_set[4], test_set[5] print("Imported Data !!....") # Unpack losses and placeholders lr = theano.shared(np.array(0.0, dtype=theano.config.floatX)) loss_total, loss_count, loss_pix, loss_kl, loss_kl_dsn1, loss_kl_dsn2, loss_l1, loss_l1_dsn1, loss_l1_dsn2,\ loss_l1_temp, loss_l1_temp_dsn1, loss_l1_temp_dsn2, loss_reg = loss_list input_var, input_var_ex, target_var, target_var_hist, target_var_hist_dsn1, target_var_hist_dsn2, \ weight_var_hist, weight_var_hist_dsn1, weight_var_hist_dsn2 = placeholder_list # Calculate weights for weighted L1 histogram loss num_bins[0] Bins_var = np.linspace(0,200, num_bins[0] + 1) center_bin_hist = (Bins_var[:-1] + Bins_var[1:])/2 Hist_wt = center_bin_hist/center_bin_hist.sum() Hist_wt_dsn1 = np.tile(Hist_wt, (batch_size,1)).astype(dtype = np.float64) # Calculate weights for weighted L1 histogram loss num_bins[1] Bins_var = np.linspace(0,200, num_bins[1] + 1) center_bin_hist = (Bins_var[:-1] + Bins_var[1:])/2 Hist_wt = center_bin_hist/center_bin_hist.sum() Hist_wt_dsn2 = np.tile(Hist_wt, (batch_size,1)).astype(dtype = np.float64) # Calculate weights for weighted L1 histogram loss num_bins[2] Bins_var = np.linspace(0,200, num_bins[2] + 1) center_bin_hist = (Bins_var[:-1] + Bins_var[1:])/2 Hist_wt = center_bin_hist/center_bin_hist.sum() Hist_wt = np.tile(Hist_wt, (batch_size,1)).astype(dtype = np.float64) # Preparing optimizer params = lasagne.layers.get_all_params([net_count, net_hist, net_hist_dsn1, net_hist_dsn2], trainable=True) updates = lasagne.updates.adam(loss_total, params, learning_rate=lr) train_fn = theano.function([input_var_ex], [loss_total, loss_count, loss_pix, loss_kl, loss_kl_dsn1, loss_kl_dsn2, \ loss_l1, loss_l1_dsn1, loss_l1_dsn2, loss_l1_temp, loss_l1_temp_dsn1, loss_l1_temp_dsn2, loss_reg], updates=updates, givens={input_var:np_train_dataset_x, target_var: np_train_dataset_y, target_var_hist: np_train_dataset_s, weight_var_hist: Hist_wt, \ target_var_hist_dsn1: np_train_dataset_s_dsn1, weight_var_hist_dsn1: Hist_wt_dsn1,\ target_var_hist_dsn2: np_train_dataset_s_dsn2, weight_var_hist_dsn2: Hist_wt_dsn2 }) print("Training Function Compiled !!.....") lr.set_value(lr_value) best_valid_err = np.inf #dataset_length = len(np_train_dataset_x) dataset_length = 4 print("batch_size", batch_size) print("lr", lr.eval()) print("datasetlength",dataset_length) training_plot_path = os.path.join(root_result, 'Training_plots') model_dir = os.path.join(root_result, Experiment_name) if not os.path.exists(root_result): os.mkdir(root_result) os.mkdir(training_plot_path) os.mkdir(model_dir) # Resetting Training and Validation loss per epoch history train_loss_epoch_history =[[] for _ in range(len(loss_list))] val_loss_epoch_history = [[] for _ in range(len(loss_list))] for epoch in range(epochs): train_loss_history = [[] for _ in range(len(loss_list))] todo = range(dataset_length) for i in range(0,dataset_length, batch_size): ex = todo[i:i+batch_size] err_total, err_count, err_pix, err_kl, err_kl_dsn1, err_kl_dsn2, err_l1, err_l1_dsn1, err_l1_dsn2,\ err_l1_temp, err_l1_temp_dsn1, err_l1_temp_dsn2, err_reg = train_fn(ex) if i%print_every == 0 : print("Epoch :", epoch," | Iteration : ", i ,"| Total_Loss :",np.around(err_total,2), \ "| Pix Loss :",np.around(err_pix,2), "| Count_Loss : ",np.around(err_count.mean(),2), \ "| kl_Loss:", np.around(err_kl,2), "| l1_Loss:", np.around(err_l1,2), "| l1_Loss_temp:", np.around(err_l1_temp,2), \ "| kl_Loss dsn1:", np.around(err_kl_dsn1,2), "| l1_Loss dsn1:", np.around(err_l1_dsn1,2), "| l1_Loss_temp dsn1:", np.around(err_l1_temp_dsn1,2), \ "| kl_Loss dsn2:", np.around(err_kl_dsn2,2), "| l1_Loss dsn2:", np.around(err_l1_dsn2,2), "| l1_Loss_temp dsn2:", np.around(err_l1_temp_dsn2,2), \ "| reg_Loss:", np.around(err_reg,2), "| Learning_rate:", np.around(lr.get_value(),5)) # Updating Loss history train_loss_history = update_loss_history(train_loss_history, [err_total, err_count, err_pix, err_kl, err_kl_dsn1, err_kl_dsn2,\ err_l1, err_l1_dsn1, err_l1_dsn2, err_l1_temp, err_l1_temp_dsn1, err_l1_temp_dsn2, err_reg]) # Learning rate decay lr.set_value(lasagne.utils.floatX(lr.get_value() * lr_decay)) val_loss_history, _, _ = evaluate_histonet_dsn(np_val_dataset_x[:4], np_val_dataset_y[:4], np_val_dataset_c[:4], np_val_dataset_s[:4], np_val_dataset_s_dsn1[:4], np_val_dataset_s_dsn2[:4], Hist_wt[0,:], Hist_wt_dsn1[0,:], Hist_wt_dsn2[0,:], test_op, \ data_mean, loss_list, loss_name = loss_name, Loss_wt = Loss_wt, num_bins= num_bins) # Updating Loss Epoch history train_loss_epoch_history = update_loss_history(train_loss_epoch_history, [np.mean(train_loss_history[i]) for i in range(len(train_loss_history))]) val_loss_epoch_history = update_loss_history(val_loss_epoch_history, [np.mean(val_loss_history[i]) for i in range(len(val_loss_history))]) # plot results plot_results(train_loss_epoch_history[0], val_loss_epoch_history[0], training_plot_path,'Total_loss',1) plot_results(train_loss_epoch_history[1], val_loss_epoch_history[1], training_plot_path,'Count_loss',2) plot_results(train_loss_epoch_history[2], val_loss_epoch_history[2], training_plot_path,'Pix_loss',3) plot_results(train_loss_epoch_history[3], val_loss_epoch_history[3], training_plot_path,'kl_loss',4) plot_results(train_loss_epoch_history[4], val_loss_epoch_history[4], training_plot_path,'kl_loss dsn1',5) plot_results(train_loss_epoch_history[5], val_loss_epoch_history[5], training_plot_path,'kl_loss dsn2',6) plot_results(train_loss_epoch_history[6], val_loss_epoch_history[6], training_plot_path,'l1_loss',7) plot_results(train_loss_epoch_history[7], val_loss_epoch_history[7], training_plot_path,'l1_loss dsn1',8) plot_results(train_loss_epoch_history[8], val_loss_epoch_history[8], training_plot_path,'l1_loss dsn2',9) plot_results(train_loss_epoch_history[9], val_loss_epoch_history[9], training_plot_path,'l1_loss_temp',10) plot_results(train_loss_epoch_history[10], val_loss_epoch_history[10], training_plot_path,'l1_loss_temp dsn1',11) plot_results(train_loss_epoch_history[11], val_loss_epoch_history[11], training_plot_path,'l1_loss_temp dsn2',12) plot_results(train_loss_epoch_history[12], val_loss_epoch_history[12], training_plot_path,'reg_loss',13) print("Epoch : ",epoch, "| Train_Total_Loss :", np.around(train_loss_epoch_history[0][-1],2),\ "| Val_Total_Loss :", np.around(val_loss_epoch_history[0][-1],2),\ "| Train_Count Loss:",np.around(train_loss_epoch_history[1][-1],2),\ "| Val_Count Loss:",np.around(val_loss_epoch_history[1][-1],2),\ "| Train_Pix_loss:",np.around(train_loss_epoch_history[2][-1],2),\ "| Val_Pix_loss:",np.around(val_loss_epoch_history[2][-1],2),\ "| Train KL_Loss:",np.around(train_loss_epoch_history[3][-1],2),\ "| Val KL_Loss:",np.around(val_loss_epoch_history[3][-1],2),\ "| Train L1_Loss:",np.around(train_loss_epoch_history[6][-1],2),\ "| Val L1_Loss:",np.around(val_loss_epoch_history[6][-1],2),\ "| Train KL dsn1_Loss:",np.around(train_loss_epoch_history[4][-1],2),\ "| Val KL_dsn1 Loss:",np.around(val_loss_epoch_history[4][-1],2),\ "| Train L1 dsn1_Loss:",np.around(train_loss_epoch_history[7][-1],2),\ "| Val L1_dsn1 Loss:",np.around(val_loss_epoch_history[7][-1],2),\ "| Train KL_dsn2_Loss:",np.around(train_loss_epoch_history[5][-1],2),\ "| Val KL_dsn2_Loss:",np.around(val_loss_epoch_history[5][-1],2),\ "| Train L1_dsn2_Loss:",np.around(train_loss_epoch_history[8][-1],2),\ "| Val L1_dsn2_Loss:",np.around(val_loss_epoch_history[8][-1],2)) save_network([net_count, net_hist, net_hist_dsn1, net_hist_dsn2], 'model_' +str(epoch) + '.npz', model_dir) # saving best model if (val_loss_epoch_history[0][-1] < best_valid_err): best_valid_err = val_loss_epoch_history[0][-1] save_network([net_count, net_hist, net_hist_dsn1, net_hist_dsn2], 'model_best.npz', model_dir) Test_directory = root_result + '/Test_results/' if not os.path.exists(Test_directory): os.mkdir(Test_directory) # Loading best model load_network([net_count, net_hist, net_hist_dsn1, net_hist_dsn2], model_dir + '/model_best.npz') test_loss_history, _, _ = evaluate_histonet_dsn(np_test_dataset_x, np_test_dataset_y, np_test_dataset_c, np_test_dataset_s, np_test_dataset_s_dsn1, np_test_dataset_s_dsn2,\ Hist_wt[0,:], Hist_wt_dsn1[0,:], Hist_wt_dsn2[0,:], test_op, data_mean, loss_list, visualize = True, path = Test_directory, loss_name = loss_name, Loss_wt = Loss_wt, num_bins= num_bins) # saving results for test dataset Error_file = open(model_dir + '/Test_result_Summary.txt', "w") Error_file.write('\n Total_count_Mean abs Error :' + str(np.mean(test_loss_history[1]))) Error_file.write('\n Total_kl_Mean abs Error :' + str(np.mean(test_loss_history[3]))) Error_file.write('\n Total_l1_Mean abs Error :' + str(np.mean(test_loss_history[6]))) Error_file.write('\n Total_l1_ temp Mean abs Error :' + str(np.mean(test_loss_history[9]))) Error_file.close() def loss_func_histonet(net_count, net_hist, input_var, input_var_ex, reg, loss_name = 'w_L1', Loss_wt = [0.5, 0.5]): """ Function: Defining Loss functions for training HistoNet network Input: net_count : count map output from network net_hist: histogram vector output from network input_var: Place holder for input to the network input_var_ex: Place holder for index for data (input, target) reg: Regularization strength loss_name: Name of the L1 loss for histogram (Weighted L1 loss - w_L1 or L1 loss - L1) Loss_wt: Weights for KL divergence loss and L1 loss for histogram Output: loss_list: list of different losses for count and size histogram prediction placeholder_list: list of placeholders for input and target train_op: Operation for extracting output from network for a given input during training(non deterministic) test_op: Operation for extracting output from network for a given input during test and validation(deterministic) """ # Training forward pass prediction_count_map, prediction_hist = lasagne.layers.get_output([net_count, net_hist], deterministic=False) prediction_count = (prediction_count_map/ef).sum(axis=(2,3)) train_op = theano.function([input_var, input_var_ex], [prediction_count_map, prediction_hist]) # Val/Test forward pass prediction_count_map_t, prediction_hist_t = lasagne.layers.get_output([net_count, net_hist], deterministic=True) prediction_count_t = (prediction_count_map_t/ef).sum(axis=(2,3)) test_op = theano.function([input_var, input_var_ex], [prediction_count_map_t, prediction_hist_t]) # Placeholders for target and weights for histogram weighted L1 loss target_var = T.tensor4('target') target_var_hist = T.matrix('target_hist') weight_var_hist = T.matrix('weight_hist') #Mean Absolute Error is computed between each count of the count map, pixel wise l1_loss = T.abs_(prediction_count_map - target_var[input_var_ex]) loss_pix = l1_loss.mean() #Mean Absolute Error is computed for the overall count loss loss_count = T.abs_(prediction_count - (target_var[input_var_ex]/ef).sum(axis=(2,3))).mean() #KL DIV LOSS between probability distribution of target and predicted histogram to capture shape of histogram y_shape = prediction_hist.shape[0] target_hist = target_var_hist[input_var_ex] p_prob_1 = prediction_hist/prediction_hist.sum(axis = 1, keepdims=True) + (1e-6) p_prob = p_prob_1/p_prob_1.sum(axis=1, keepdims = True) t_prob_1 = target_hist/target_hist.sum(axis = 1, keepdims=True) + (1e-6) t_prob = t_prob_1/t_prob_1.sum(axis = 1, keepdims = True) kl= (t_prob*T.log((t_prob)/(p_prob))) loss_kl = kl.sum()/y_shape # weighted L1 or L1 loss between predicted and target histogram to capture scale of size histogram if loss_name == 'L1': loss_l1 = (T.abs_(prediction_hist - target_hist)).sum()/y_shape loss_l1_temp = (weight_var_hist*T.abs_(prediction_hist - target_hist)).sum()/y_shape elif loss_name == 'w_L1': loss_l1 = (weight_var_hist*T.abs_(prediction_hist - target_hist)).sum()/y_shape loss_l1_temp = (T.abs_(prediction_hist - target_hist)).sum()/y_shape # Regularization loss loss_reg = 0.5*reg*lasagne.regularization.regularize_network_params([net_count, net_hist], lasagne.regularization.l2) # Total Loss loss_total = loss_pix + Loss_wt[0]*loss_kl + Loss_wt[1]*loss_l1 + loss_reg loss_list = [loss_total, loss_count, loss_pix, loss_kl, loss_l1, loss_l1_temp, loss_reg] placeholder_list = [input_var, input_var_ex, target_var, target_var_hist, weight_var_hist] return loss_list, placeholder_list, train_op, test_op def loss_func_histonet_dsn(net_count, net_hist, net_hist_dsn1, net_hist_dsn2, input_var, input_var_ex, reg, loss_name = 'w_L1', Loss_wt = [0.5, 0.5]): """ Function: Defining Loss functions for training HistoNet network Input: net_count : count map output from network net_hist: histogram vector output from network net_hist_dsn1: histogram vector output from early part of the network net_hist_dsn2: histogram vector output from middle part of the network input_var: Place holder for input to the network input_var_ex: Place holder for index for data (input, target) reg: Regularization strength loss_name: Name of the L1 loss for histogram (Weighted L1 loss - w_L1 or L1 loss - L1) Loss_wt: Weights for KL divergence loss and L1 loss for histogram Output: loss_list: list of different losses for count and size histogram prediction placeholder_list: list of placeholders for input and target train_op: Operation for extracting output from network for a given input during training(non deterministic) test_op: Operation for extracting output from network for a given input during test and validation(deterministic) """ # Training forward pass prediction_count_map, prediction_hist, prediction_hist_dsn1, prediction_hist_dsn2 = lasagne.layers.get_output([net_count, net_hist, net_hist_dsn1, net_hist_dsn2], deterministic=False) prediction_count = (prediction_count_map/ef).sum(axis=(2,3)) train_op = theano.function([input_var, input_var_ex], [prediction_count_map, prediction_hist, prediction_hist_dsn1, prediction_hist_dsn2]) # Val/Test forward pass prediction_count_map_t, prediction_hist_t, prediction_hist_dsn1_t, prediction_hist_dsn2_t = lasagne.layers.get_output([net_count, net_hist, net_hist_dsn1, net_hist_dsn2], deterministic=True) prediction_count_t = (prediction_count_map_t/ef).sum(axis=(2,3)) test_op = theano.function([input_var, input_var_ex], [prediction_count_map_t, prediction_hist_t, prediction_hist_dsn1_t, prediction_hist_dsn2_t]) # Placeholders for target and weights for histogram weighted L1 loss target_var = T.tensor4('target') target_var_hist = T.matrix('target_hist') weight_var_hist = T.matrix('weight_hist') target_var_hist_dsn1 = T.matrix('target_hist_dsn1') weight_var_hist_dsn1 = T.matrix('weight_hist_dsn1') target_var_hist_dsn2 = T.matrix('target_hist_dsn2') weight_var_hist_dsn2 = T.matrix('weight_hist_dsn2') #Mean Absolute Error is computed between each count of the count map, pixel wise l1_loss = T.abs_(prediction_count_map - target_var[input_var_ex]) loss_pix = l1_loss.mean() #Mean Absolute Error is computed for the overall count loss loss_count = T.abs_(prediction_count - (target_var[input_var_ex]/ef).sum(axis=(2,3))).mean() #KL DIV LOSS between probability distribution of target and predicted histogram (main objective histogram) to capture shape of histogram y_shape = prediction_hist.shape[0] target_hist = target_var_hist[input_var_ex] p_prob_1 = prediction_hist/(prediction_hist.sum(axis = 1, keepdims=True) + 1e-6) + (1e-6) p_prob = p_prob_1/p_prob_1.sum(axis=1, keepdims = True) t_prob_1 = target_hist/target_hist.sum(axis = 1, keepdims=True) + (1e-6) t_prob = t_prob_1/t_prob_1.sum(axis = 1, keepdims = True) kl= (t_prob*T.log((t_prob)/(p_prob))) loss_kl = kl.sum()/y_shape #KL DIV LOSS - DSN1 between probability distribution of target and predicted histogram DSN1 to capture shape of histogram target_hist_dsn1 = target_var_hist_dsn1[input_var_ex] p_prob_1_dsn1 = prediction_hist_dsn1/(prediction_hist_dsn1.sum(axis = 1, keepdims=True) + 1e-6) + (1e-6) p_prob_dsn1 = p_prob_1_dsn1/p_prob_1_dsn1.sum(axis=1, keepdims = True) t_prob_1_dsn1 = target_hist_dsn1/target_hist_dsn1.sum(axis = 1, keepdims=True) + (1e-6) t_prob_dsn1 = t_prob_1_dsn1/t_prob_1_dsn1.sum(axis = 1, keepdims = True) kl_dsn1= (t_prob_dsn1*T.log((t_prob_dsn1)/(p_prob_dsn1))) loss_kl_dsn1 = kl_dsn1.sum()/y_shape #KL DIV LOSS - DSN2between probability distribution of target and predicted histogram DSN2 to capture shape of histogram target_hist_dsn2 = target_var_hist_dsn2[input_var_ex] p_prob_1_dsn2 = prediction_hist_dsn2/(prediction_hist_dsn2.sum(axis = 1, keepdims=True) + 1e-6) + (1e-6) p_prob_dsn2 = p_prob_1_dsn2/p_prob_1_dsn2.sum(axis=1, keepdims = True) t_prob_1_dsn2 = target_hist_dsn2/target_hist_dsn2.sum(axis = 1, keepdims=True) + (1e-6) t_prob_dsn2 = t_prob_1_dsn2/t_prob_1_dsn2.sum(axis = 1, keepdims = True) kl_dsn2= (t_prob_dsn2*T.log((t_prob_dsn2)/(p_prob_dsn2))) loss_kl_dsn2 = kl_dsn2.sum()/y_shape # weighted L1 or L1 loss between predicted and target histogram to capture scale of size histogram if loss_name == 'L1': loss_l1 = (T.abs_(prediction_hist - target_hist)).sum()/y_shape loss_l1_temp = (weight_var_hist*T.abs_(prediction_hist - target_hist)).sum()/y_shape loss_l1_dsn1 = (T.abs_(prediction_hist_dsn1 - target_hist_dsn1)).sum()/y_shape loss_l1_temp_dsn1 = (weight_var_hist_dsn1*T.abs_(prediction_hist_dsn1 - target_hist_dsn1)).sum()/y_shape loss_l1_dsn2 = (T.abs_(prediction_hist_dsn2 - target_hist_dsn2)).sum()/y_shape loss_l1_temp_dsn2 = (weight_var_hist_dsn2*T.abs_(prediction_hist_dsn2 - target_hist_dsn2)).sum()/y_shape elif loss_name == 'w_L1': loss_l1 = (weight_var_hist*T.abs_(prediction_hist - target_hist)).sum()/y_shape loss_l1_temp = (T.abs_(prediction_hist - target_hist)).sum()/y_shape loss_l1_dsn1 = (weight_var_hist_dsn1*T.abs_(prediction_hist_dsn1 - target_hist_dsn1)).sum()/y_shape loss_l1_temp_dsn1 = (T.abs_(prediction_hist_dsn1 - target_hist_dsn1)).sum()/y_shape loss_l1_dsn2 = (weight_var_hist_dsn2*T.abs_(prediction_hist_dsn2 - target_hist_dsn2)).sum()/y_shape loss_l1_temp_dsn2 = (T.abs_(prediction_hist_dsn2 - target_hist_dsn2)).sum()/y_shape # Regularization loss loss_reg = 0.5*reg*lasagne.regularization.regularize_network_params([net_count, net_hist, net_hist_dsn1, net_hist_dsn2], lasagne.regularization.l2) # Total Loss loss_total = loss_pix + Loss_wt[0]*(loss_kl + loss_kl_dsn1 + loss_kl_dsn2) + Loss_wt[1]*(loss_l1 + loss_l1_dsn1 + loss_l1_dsn2) + loss_reg loss_list = [loss_total, loss_count, loss_pix, loss_kl, loss_kl_dsn1, loss_kl_dsn2, loss_l1, loss_l1_dsn1, loss_l1_dsn2,\ loss_l1_temp, loss_l1_temp_dsn1, loss_l1_temp_dsn2, loss_reg] placeholder_list = [input_var, input_var_ex, target_var, target_var_hist, target_var_hist_dsn1, target_var_hist_dsn2, \ weight_var_hist, weight_var_hist_dsn1, weight_var_hist_dsn2] return loss_list, placeholder_list, train_op, test_op def plot_results( train_loss, val_loss, Log_dir, plotname, i ): """ Function: Plot results training and validation Input: train_loss : List of train loss per epoch val_loss: List of val loss per epoch Log_dir: Logging directory for saving training plots plotname: name of the loss plot i: random integer for different plot """ if not os.path.exists(Log_dir): os.mkdir(Log_dir) # Saving the train and val loss as .txt file Error_file = open(Log_dir + '/' + plotname + '_Summary.txt', "w") Error_file.write('Train_loss: ' + str(train_loss)) Error_file.write('\n val_loss: '+ str(val_loss)) Error_file.close() # Plotting training curves plt.figure(i+10, figsize=(15, 10)) plt.plot(range(len(train_loss)), train_loss, 'r', label = 'train') plt.plot(range(len(val_loss)), val_loss, 'g', label = 'val') plt.xlabel('epochs') plt.ylabel('loss') plt.legend() plt.title('Train & Validation ' + plotname) plt.savefig(Log_dir + '/' + plotname + '.png') plt.close() def visualize_HistoNet_result(path, i, image, gt_countmap, gt_count, gt_hist, pred_countmap, pred_hist, Hist_wt, data_mean, num_bins): """ Function: Visualizing results of HistoNet network Input: path : path of the result folder i : image number gt_countmap: Ground truth redundant count map gt_count: Ground truth object count gt_hist: Ground truth object size distribution histogram pred_countmap: predicted redundant count map pred_hist: predicted object size distribution histogram Hist_wt: Weights for L1 loss between predicted and target size histogram data_mean: Mean image of training dataset num_bins: number of the bins of histogram """ fig = plt.Figure(figsize=(18, 9), dpi=160) gcf = plt.gcf() gcf.set_size_inches(18, 15) fig.set_canvas(gcf.canvas) pred_count = [(l.sum()/(ef)).astype(np.int) for l in pred_countmap] img = image.transpose((1,2,0)) #De-Normalize img = img + data_mean ax2 = plt.subplot2grid((4,6), (0, 0), colspan=2) ax3 = plt.subplot2grid((4,6), (0, 2), colspan=5) ax4 = plt.subplot2grid((4,6), (1, 2), colspan=5) ax5 = plt.subplot2grid((4,6), (1, 0), rowspan=1) ax6 = plt.subplot2grid((4,6), (1, 1), rowspan=1) ax7 = plt.subplot2grid((4,6), (2, 0), colspan=5) ax8 = plt.subplot2grid((4,6), (3, 0), colspan=5) ax2.set_title("Input Image") ax2.imshow(img, interpolation='none', cmap='Greys_r') ax3.set_title("Target Countmap") ax3.imshow(np.concatenate((gt_countmap),axis=1), interpolation='none') ax4.set_title("Predicted Countmap") ax4.imshow(pred_countmap.squeeze(), interpolation='none') ax5.set_title("Target " + str(gt_count)) ax5.set_ylim((0, np.max(gt_count)*2)) ax5.set_xticks(np.arange(0, 1, 1.0)) ax5.bar(range(1),gt_count, align='center') ax6.set_title("Pred " + str(pred_count)) ax6.set_ylim((0, np.max(gt_count)*2)) ax6.set_xticks(np.arange(0, 1, 1.0)) ax6.bar(range(1),pred_count, align='center') Bins = np.linspace(0,200, num_bins + 1) ax7.set_title("Gt Histogram") ax7.hist(Bins[:-1], weights= gt_hist.T , bins = Bins) ax8.set_title("Pred Histogram") ax8.hist(Bins[:-1], weights= pred_hist.T , bins = Bins) if not os.path.exists(path + '/HistoNet_eval_result'): os.mkdir(path + '/HistoNet_eval_result') fig.savefig(path + '/HistoNet_eval_result/image-' + str(i) + '.png', bbox_inches='tight', pad_inches=0) def visualize_HistoNet_DSN_result(path, i, image, gt_countmap, gt_count, gt_hist, gt_hist_dsn1, gt_hist_dsn2, pred_countmap, pred_hist, pred_hist_dsn1, pred_hist_dsn2,\ Hist_wt, Hist_wt_dsn1, Hist_wt_dsn2, data_mean, num_bins): """ Function: Visualizing results of HistoNet network Input: path : path of the result folder i : image number gt_countmap: Ground truth redundant count map gt_count: Ground truth object count gt_hist: Ground truth object size distribution histogram dsn2 gt_hist_dsn1: Ground truth object size distribution histogram gt_hist_dsn2: Ground truth object size distribution histogram dsn1 pred_countmap: predicted redundant count map pred_hist: predicted object size distribution histogram pred_hist_dsn1: predicted object size distribution histogram dsn1 pred_hist_dsn2: predicted object size distribution histogram dsn2 Hist_wt: Weights for L1 loss between predicted and target size histogram Hist_wt_dsn1: Weights for L1 loss between predicted and target size histogram dsn1 Hist_wt_dsn2: Weights for L1 loss between predicted and target size histogram dsn2 data_mean: Mean image of training dataset num_bins: list of number of bins of histogram [early layer output hist size, middle layer output hist size, final output hist size] """ fig = plt.Figure(figsize=(18, 9), dpi=160) gcf = plt.gcf() gcf.set_size_inches(18, 15) fig.set_canvas(gcf.canvas) pred_count = [(l.sum()/(ef)).astype(np.int) for l in pred_countmap] img = image.transpose((1,2,0)) #De-Normalize img = img + data_mean ax2 = plt.subplot2grid((6,6), (0, 0), colspan=2) ax3 = plt.subplot2grid((6,6), (0, 2), colspan=5) ax4 = plt.subplot2grid((6,6), (1, 2), colspan=5) ax5 = plt.subplot2grid((6,6), (1, 0), rowspan=1) ax6 = plt.subplot2grid((6,6), (1, 1), rowspan=1) ax7 = plt.subplot2grid((6,6), (2, 0), colspan=5) ax8 = plt.subplot2grid((6,6), (3, 0), colspan=5) ax9 = plt.subplot2grid((6,6), (4, 0), colspan=3) ax10 = plt.subplot2grid((6,6), (4, 3), colspan=5) ax11 = plt.subplot2grid((6,6), (5, 0), colspan=3) ax12 = plt.subplot2grid((6,6), (5, 3), colspan=5) ax2.set_title("Input Image") ax2.imshow(img, interpolation='none', cmap='Greys_r') ax3.set_title("Target Countmap") ax3.imshow(np.concatenate((gt_countmap),axis=1), interpolation='none') ax4.set_title("Predicted Countmap") ax4.imshow(pred_countmap.squeeze(), interpolation='none') ax5.set_title("Target " + str(gt_count)) ax5.set_ylim((0, np.max(gt_count)*2)) ax5.set_xticks(np.arange(0, 1, 1.0)) ax5.bar(range(1),gt_count, align='center') ax6.set_title("Pred " + str(pred_count)) ax6.set_ylim((0, np.max(gt_count)*2)) ax6.set_xticks(np.arange(0, 1, 1.0)) ax6.bar(range(1),pred_count, align='center') Bins = np.linspace(0,200, num_bins[2] + 1) ax7.set_title("Gt Histogram") ax7.hist(Bins[:-1], weights= gt_hist.T , bins = Bins) ax8.set_title("Pred Histogram") ax8.hist(Bins[:-1], weights= pred_hist.T , bins = Bins) Bins2 = np.linspace(0,200, num_bins[0] + 1) ax9.set_title("Gt Histogram dsn1") ax9.hist(Bins2[:-1], weights= gt_hist_dsn1.T , bins = Bins2) ax11.set_title("Pred Histogram dsn1") ax11.hist(Bins2[:-1], weights= pred_hist_dsn1.T , bins = Bins2) Bins4 = np.linspace(0,200,num_bins[1] + 1) ax10.set_title("Gt Histogram dsn2") ax10.hist(Bins4[:-1], weights= gt_hist_dsn2.T , bins = Bins4) ax12.set_title("Pred Histogram dsn2") ax12.hist(Bins4[:-1], weights= pred_hist_dsn2.T , bins = Bins4) if not os.path.exists(path + '/HistoNet_DSN_eval_result'): os.mkdir(path + '/HistoNet_DSN_eval_result') fig.savefig(path + '/HistoNet_DSN_eval_result/image-' + str(i) + '.png', bbox_inches='tight', pad_inches=0)
UTF-8
Python
false
false
50,094
py
7
train.py
5
0.647682
0.620533
0
905
54.352486
259
felipeumanzor/chilean_parliament_data
18,004,502,937,562
3504c97d3d645fefe12a4423ef41eab5d0ee8442
36ab20069d9da6168df6e703c8fa35d19bcb6292
/votoparlamentario/urls.py
a98f87c8d4387af91c3e17fba87cdb263e0268fe
[]
no_license
https://github.com/felipeumanzor/chilean_parliament_data
86570f3bbedaa9968dc7c7e83b801c8c5fb69d68
4670db93f03eee9b71e3378b09ce9a200e9a4364
refs/heads/master
2020-08-27T12:02:08.428061
2019-11-12T05:53:08
2019-11-12T05:53:08
217,361,374
0
0
null
false
2020-06-06T00:28:52
2019-10-24T17:57:17
2019-11-12T05:53:14
2020-06-06T00:28:50
47
0
0
1
Python
false
false
from api.views import ( get_diputados, get_proyectos, get_proyectos_by_author, get_votos_by_diputado, get_gastos_by_diputado, get_diputado_by_id, get_proyecto_by_id, ) """votoparlamentario URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path urlpatterns = [ path("admin/", admin.site.urls), path("diputados/", get_diputados), path("diputados/<diputado_id>/", get_diputado_by_id), path("diputados/<diputado_id>/votos/", get_votos_by_diputado), path("diputados/<diputado_id>/gastos/", get_gastos_by_diputado), path("proyectos/", get_proyectos), path("proyectos/by_author/<author_id>/", get_proyectos_by_author), path("proyectos/<proyecto_id>/", get_proyecto_by_id), ]
UTF-8
Python
false
false
1,357
py
7
urls.py
6
0.689757
0.683861
0
38
34.710526
77
Steven-Ireland/ProfessorWho-Scraper
3,599,182,619,290
3e81adf3653ab347045460be984c85f818a42a6c
8425fb50a7f22d458875dd7154f4e7f8af8d2106
/parse.py
fb3e8568e33c7c489d5844849db1e8c912bee2ca
[]
no_license
https://github.com/Steven-Ireland/ProfessorWho-Scraper
2814cde9ab9a21326cea253ac6daa307aaf37afb
39299f495cce0ea50bbea2349a9109c7ff1b4f48
refs/heads/master
2016-08-07T20:23:44.085160
2015-02-04T02:09:21
2015-02-04T02:09:21
29,502,390
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import re class Parser: # works for 1-level html structures like table rows, but nesting breaks def __init__(self, dom, attr="html"): self.str = dom self.attr= attr def find(self, q): tag = "<"+q+".*?>.*?</"+q+">" # <q.*?>.*?</q> ret = [] for found in re.findall(tag, self.str, re.DOTALL|re.IGNORECASE): ret.append(Parser(found, q)) return ret def text(self): locator = "<"+self.attr+".*?>(.*?)</"+self.attr+">" innerHTML = re.search(locator, self.str, re.DOTALL|re.IGNORECASE).group(0) # <me>(innerHTML)</me> #Go through and find all plaintext inside element, i.e #<1> <2 class="BORDER">Hello World</2> !</1> #should return "Hello World!" plaintext = "" unclosedABs = 0 #Angle Brackets for c in innerHTML: if (c == '<'): unclosedABs+=1 continue #Move on elif (c == '>'): unclosedABs-=1 continue #Move on if (unclosedABs == 0): plaintext+=c return plaintext def prop(self, attribute): myStartTag = re.search("<"+self.attr+".*?>", self.str, re.IGNORECASE).group(0) locator = attribute+"=\"(.*?)\"" # <me attribute="(/a/b/c)"> return re.search(locator, myStartTag, re.IGNORECASE).group(1) def html(self): return self.str
UTF-8
Python
false
false
1,203
py
6
parse.py
6
0.612635
0.60266
0
43
27
99
faridrashidi/trisicell
15,814,069,613,706
58bf0bff9b86d4fac731ba03505c9a1e3b529fb7
5e84c48158341afa34eae19a2e0db26b11d8a267
/trisicell/pp/__init__.py
5009d08d80e6a62d04e3c24c033248bc973eb7b2
[ "BSD-3-Clause" ]
permissive
https://github.com/faridrashidi/trisicell
53fbd97efd4121f717babd218661edbce48cb10e
eff50c7885053250656a60040612e8097c5032a1
refs/heads/master
2023-07-24T03:54:25.472928
2023-07-21T06:31:18
2023-07-21T06:31:18
342,698,508
6
2
BSD-3-Clause
false
2023-07-21T14:42:58
2021-02-26T20:54:06
2023-02-23T20:10:13
2023-07-21T14:42:57
162,366
8
2
0
Python
false
false
"""Pre/Post-Processing Module.""" from trisicell.pp._bifiltering import bifiltering from trisicell.pp._binary import ( binarym_filter_clonal_mutations, binarym_filter_nonsense_mutations, binarym_filter_private_mutations, binarym_statistics, consensus_combine, ) from trisicell.pp._readcount import ( build_scmatrix, filter_mut_mutant_must_present_in_at_least, filter_mut_reference_must_present_in_at_least, filter_mut_vaf_greater_than_coverage_mutant_greater_than, filter_snpeff, group_obs_apply_func, keep_cell_by_list, keep_mut_by_list, local_cluster_cells_then_merge_muts_pseudo_bulk, remove_cell_by_list, remove_mut_by_list, statistics, ) from trisicell.pp._tree import collapse __all__ = ( bifiltering, binarym_filter_clonal_mutations, binarym_filter_nonsense_mutations, binarym_filter_private_mutations, binarym_statistics, consensus_combine, build_scmatrix, filter_mut_mutant_must_present_in_at_least, filter_mut_reference_must_present_in_at_least, filter_mut_vaf_greater_than_coverage_mutant_greater_than, filter_snpeff, keep_cell_by_list, keep_mut_by_list, remove_cell_by_list, remove_mut_by_list, statistics, collapse, group_obs_apply_func, local_cluster_cells_then_merge_muts_pseudo_bulk, )
UTF-8
Python
false
false
1,348
py
220
__init__.py
180
0.712166
0.712166
0
47
27.680851
61
leeil525/Python
3,341,484,604,058
5fe01d930661e24d8f856082989ba1534e0c6586
3bfc8c92a9aae68a7bd0aaf9fef7e208d0312cb1
/selenium.py
2cde1f255e67891265eec05ed7cf9fa0c75b396e
[]
no_license
https://github.com/leeil525/Python
7abcfecdc86a55939affc0754c59f747bf3a8973
cee85158428cc4922d2a4b9f14d56fada2e726a0
refs/heads/master
2021-01-20T09:06:51.671598
2021-01-20T06:30:31
2021-01-20T06:30:31
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from selenium import webdriver from selenium.webdriver.common.keys import Keys #输入的键盘位键操作 from selenium.webdriver.support.ui import Select #选项卡操作 from selenium.webdriver import ActionChains #拖拽元素 from selenium.webdriver.chrome.options import Options #设置Chrome手机模式 from selenium.webdriver.common.desired_capabilities import DesiredCapabilities #设置PhantomJS手机模式 #browser = webdriver.PhantomJS(executable_path='D:\\phantomjs-2.1.1-windows\\bin\\phantomjs.exe') PhantomJS 用法 #browser=webdriver.Chrome() '''PhantomJs手机模式并截图''' # dcap = dict(DesiredCapabilities.PHANTOMJS) # dcap["phantomjs.page.settings.userAgent"] = ( # "Mozilla/5.0 (Linux; Android 5.1.1; Nexus 6 Build/LYZ28E) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.23 Mobile Safari/537.36" # ) # driver = webdriver.PhantomJS(desired_capabilities=dcap) # driver.get("https://bilibili.com") # driver.get_screenshot_as_file('02.png') # driver.quit() '''Chrome手机模式''' # mobile_emulation = {"deviceName":"Apple iPhone 6"} # chrome_options = Options() # chrome_options.add_experimental_option("mobileEmulation", mobile_emulation) # browser = webdriver.Chrome(chrome_options=chrome_options) # 手机模式浏览 # browser.get("http://www.bilibili.com") #打开bilibili '''查找元素''' #element = browser.find_element_by_id("q") #根据ID查找 #element = browser.find_element_by_css_selector("input") #根据css选择器查找 #element = browser.find_element_by_name("passwd") #根据name属性查找 name='passwd' #element = browser.find_elements_by_tag_name("input") #根据标签查找<input></input> #element = browser.find_element_by_xpath('//*[@id="banner_link"]/div/div/form/input') #根据XPATH语法查找(搜索输入框) #上面是单个 在element后加s就OK '''向表单填写,按键,点击''' #element.send_keys("test") #写入test #element.clear() #清除之前的文本 #element.send_keys("test2") #写入test #element.send_keys(Keys.RETURN) #模拟按enter #element.click() #鼠标点击 '''选项卡操作''' #select = Select(driver.find_element_by_name('name')) #select.select_by_index(index) #根据索引来选择 #select.select_by_visible_text("text") #根据值来选择 #select.select_by_value(value) #根据文字来选择 #select.deselect_all() #取消全部的选择 '''拖拽元素''' #element2 = browser.find_element_by_xpath('//*[@id="banner_link"]/div/div/form/input') #element1 = browser.find_element_by_xpath('//*[@id="banner_link"]/div/div/a') #action_chains = ActionChains(browser) #action_chains.drag_and_drop(element2, element1).perform() #2拖到1 #ActionChains(browser).drag_and_drop_by_offset(element2,10,10).perform() #把element2拖动(10,10)的距离,即向右下方拖动 #browser.close() #关闭浏览器
UTF-8
Python
false
false
2,938
py
30
selenium.py
24
0.715066
0.69555
0
64
38.75
140
sirius9/Project
6,124,623,389,661
1fa5fb75701bcae39f54eb46e8754039bfac04dc
574e4f93ebc4b557f82599c5ce9558c0391ea5ba
/03_Premierleague/function.py
738f34776f181b9fde6eeabceeee52f2f7caef4d
[]
no_license
https://github.com/sirius9/Project
950696144748cba58bfc69bc8febbf0a0defcaff
7f4de79ee722284396b7950b4d1e956c998bb7d9
refs/heads/master
2020-04-09T04:33:37.163893
2018-08-27T01:20:57
2018-08-27T01:20:57
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# 0. basic import numpy as np import pandas as pd import warnings warnings.filterwarnings('ignore') # 1. EDA import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.pyplot import * # Statistic import scipy.stats as stats import urllib from statsmodels.formula.api import ols from statsmodels.stats.anova import anova_lm import matplotlib.pyplot as plt # 2. Feature Select from sklearn.preprocessing import LabelEncoder def category_to_ohe(train_col, test_col): ''' Train / Test 데이터에서 카테고리 데이터에 라벨링을 하기 위한 함수입니다. ''' le = LabelEncoder() le.fit(train_col) labeled_train_col = le.transform(train_col) labeled_train_col = labeled_train_col.reshape(len(labeled_train_col),1) labeled_test_col = le.transform(test_col) labeled_test_col = labeled_test_col.reshape(len(labeled_test_col),1) return labeled_train_col, labeled_test_col # 3. Modeling from statsmodels.stats.outliers_influence import variance_inflation_factor # 3.1 조건부 확률기반 생성모형 from sklearn.discriminant_analysis import LinearDiscriminantAnalysis # LDA from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis # QDA from sklearn.naive_bayes import * # Naive basesian # 3.2 조건부 확률기반 판별모형 from sklearn.tree import DecisionTreeClassifier # 3.3 모형결합 (Ensenble) from sklearn.ensemble import VotingClassifier # voting from sklearn.ensemble import BaggingClassifier # bagging from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier # random Forest from sklearn.ensemble import AdaBoostClassifier # AdaBoost from sklearn.ensemble import GradientBoostingClassifier # GradientBoost import xgboost # xgboost # 3.4 판별함수 모형 from sklearn.linear_model import Perceptron # perceptron from sklearn.linear_model import SGDClassifier # SGD from sklearn.svm import SVC # support vector machine # 4. Optimizer from sklearn.model_selection import validation_curve # validation curve from sklearn.model_selection import GridSearchCV # gridseach from sklearn.model_selection import ParameterGrid # ParameterGrid # 5. Evaluation from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.metrics import * # make confusion matrix from sklearn.preprocessing import label_binarize # ROC curve from sklearn.metrics import auc # AUC from sklearn.metrics import roc_curve
UTF-8
Python
false
false
2,505
py
40
function.py
4
0.794893
0.788196
0
81
28.493827
89
geedubey/soware
13,297,218,788,514
678ddc56c064f14b6bbbefc1f985f9f9cc6eee63
ece9ae460f93b877313c930af7d2e36219cd0942
/link.py
e0e02b78adefa0aabb8aa5e4886bffd168e5823a
[]
no_license
https://github.com/geedubey/soware
c49ae6c740e8c0da3879856236eeb23d91c997d4
138a204f10cfc6f0926a6773a5540c7943ff9adf
refs/heads/master
2020-03-23T09:29:40.880732
2018-09-09T17:57:44
2018-09-09T17:57:44
141,391,014
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Credentials you get from registering a new application client_id = '77xdxq5i655wrv' client_secret = 'Ww37UQ9kcZ9Q9RVD' # OAuth endpoints given in the LinkedIn API documentation authorization_base_url = 'https://www.linkedin.com/uas/oauth2/authorization' token_url = 'https://www.linkedin.com/uas/oauth2/accessToken' from requests_oauthlib import OAuth2Session from requests_oauthlib.compliance_fixes import linkedin_compliance_fix import json linkedin = OAuth2Session(client_id, redirect_uri='https://localhost:8000/') linkedin = linkedin_compliance_fix(linkedin) # Redirect user to LinkedIn for authorization authorization_url, state = linkedin.authorization_url(authorization_base_url) print ('Please go here and authorize,', authorization_url) # Get the authorization verifier code from the callback url redirect_response = input('Paste the full redirect URL here:') # Fetch the access token linkedin.fetch_token(token_url, client_secret=client_secret, authorization_response=redirect_response) # Fetch a protected resource, i.e. user profile r = linkedin.get('https://api.linkedin.com/v1/people/~') #r = linkedin.get("https://api.linkedin.com/v2/me") print (r.content) #sharepost = { "comment": "Check out developer.linkedin.com! http://linkd.in/1FC2PyG", "visibility": {"code": "anyone"}} #p = linkedin.post("https://api.linkedin.com/v1/people/~/shares?format=json", json=sharepost) #print (p.content) comment = { "actor": "urn:li:person:t3gGTvjaJQ", "message": { "attributes": [], "text": "This is a comment on POST developer.linkedin.com" } } cp = linkedin.post("https://api.linkedin.com/v2/socialActions/urn:li:share:6443893670432243712/comments", json=comment) print (cp.content) #urn:li:share:6443893670432243712
UTF-8
Python
false
false
1,761
py
6
link.py
5
0.755253
0.71891
0
42
40.952381
122
shantanu609/PreCourse_1
3,839,700,768,747
98919ef1f3ef37bfe8811dce5734a53a0ddf0783
ce3418afa332e88827068bef0b996b820b144cba
/Exercise_3.py
44ecfdaec6c167fdaedc2313104372c23ce34966
[]
no_license
https://github.com/shantanu609/PreCourse_1
e7d32108b594d6ff0ff09d4cb9e6b5fb690e7af7
68a0929bc183aea6f4063ebb5faaf67cbbe24794
refs/heads/master
2022-07-17T09:32:53.746587
2020-05-20T01:36:46
2020-05-20T01:36:46
265,414,617
0
0
null
true
2020-05-20T01:30:13
2020-05-20T01:30:13
2019-12-16T05:35:35
2020-05-20T01:14:40
20
0
0
0
null
false
false
class ListNode: """ A node in a singly-linked list. """ def __init__(self, data=None, next=None): self.data = data self.next = None class SinglyLinkedList: def __init__(self): """ Create a new singly-linked list. Takes O(1) time. """ self.head = ListNode(0) # O(N) time | O(1) Space def append(self, data): """ Insert a new element at the end of the list. Takes O(n) time. """ node = self.head while node.next is not None: node = node.next node.next = ListNode(data) def find(self, key): """ Search for the first element with `data` matching `key`. Return the element or `None` if not found. Takes O(n) time. """ node = self.head.next while node: if node.data == key: return True node = node.next return False # O(N) time | O(1) Space def remove(self, key): """ Remove the first occurrence of `key` in the list. Takes O(n) time. """ node = self.head.next prev = self.head while node: if node.data == key: prev.next = node.next break node = node.next prev = prev.next if __name__ == '__main__': sl = SinglyLinkedList() sl.append(1) sl.append(2) sl.append(3) res = sl.find(2) print(res) sl.remove(2) print(sl.find(2))
UTF-8
Python
false
false
1,545
py
1
Exercise_3.py
1
0.487379
0.480906
0
65
22.784615
57
Mepond/bitcoin-abc
6,914,897,364,399
97f6ecca5fc66149ff312c7b4d5af33dbf5a3520
781320936dfd058d70873d3e05a7780829267f49
/test/functional/abc_p2p_avalanche_quorum.py
eba9b7c46a7a4928ed8211b89360720f3b55d00e
[ "MIT" ]
permissive
https://github.com/Mepond/bitcoin-abc
38ac072f8e7832bc1e2bd6e395251e97d1beb4a1
47f7a91b4c8911fd1cd05102de1f7e622e8855d8
refs/heads/master
2022-03-27T17:56:18.927737
2022-03-24T03:11:48
2022-03-24T03:12:09
227,140,014
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2020-2022 The Bitcoin developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the quorum detection of avalanche.""" from time import time from test_framework.avatools import ( create_coinbase_stakes, get_ava_p2p_interface, ) from test_framework.key import ECKey, ECPubKey from test_framework.messages import AvalancheVote, AvalancheVoteError from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal from test_framework.wallet_util import bytes_to_wif class AvalancheQuorumTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = [ ['-enableavalanche=1', '-avacooldown=0', '-avatimeout=0', '-avaminquorumstake=100000000', '-avaminquorumconnectedstakeratio=0.8'] ] def mock_forward(self, delta): self.mock_time += delta self.nodes[0].setmocktime(self.mock_time) def run_test(self): self.mock_time = int(time()) self.mock_forward(0) # Create a local node to poll from and a helper to send polls from it # and assert on the response node = self.nodes[0] poll_node = get_ava_p2p_interface(node) poll_node_pubkey = ECPubKey() poll_node_pubkey.set(bytes.fromhex(node.getavalanchekey())) def poll_and_assert_response(expected): # Send poll for best block block = int(node.getbestblockhash(), 16) poll_node.send_poll([block]) # Get response and check that the vote is what we expect response = poll_node.wait_for_avaresponse() r = response.response assert poll_node_pubkey.verify_schnorr(response.sig, r.get_hash()) assert_equal(len(r.votes), 1) actual = repr(r.votes[0]) expected = repr(AvalancheVote(expected, block)) assert_equal(actual, expected) # Create peers to poll num_quorum_peers = 2 coinbase_key = node.get_deterministic_priv_key().key blocks = node.generate(num_quorum_peers) peers = [] for i in range(0, num_quorum_peers): keyHex = "12b004fff7f4b69ef8650e767f18f11ede158148b425660723b9f9a66e61f75" + \ str(i) k = ECKey() k.set(bytes.fromhex(keyHex), True) stakes = create_coinbase_stakes( node, [blocks[i]], coinbase_key) proof = node.buildavalancheproof(1, 1, bytes_to_wif(k.get_bytes()), stakes) peers.append({'key': k, 'proof': proof, 'stake': stakes}) def addavalanchenode(peer): pubkey = peer['key'].get_pubkey().get_bytes().hex() assert node.addavalanchenode( peer['node'].nodeid, pubkey, peer['proof']) is True # Start polling. The response should be UNKNOWN because there's no # score poll_and_assert_response(AvalancheVoteError.UNKNOWN) # Create one peer with half the score and add one node peers[0]['node'] = get_ava_p2p_interface(node) addavalanchenode(peers[0]) poll_and_assert_response(AvalancheVoteError.UNKNOWN) # Create a second peer with the other half and add one node peers[1]['node'] = get_ava_p2p_interface(node) addavalanchenode(peers[1]) poll_and_assert_response(AvalancheVoteError.ACCEPTED) # Disconnect peer 1's node which drops us below the threshold, but we've # latched that the quorum is established self.mock_forward(1) peers[1]['node'].peer_disconnect() peers[1]['node'].wait_for_disconnect() poll_and_assert_response(AvalancheVoteError.ACCEPTED) # Reconnect node and re-establish quorum peers[1]['node'] = get_ava_p2p_interface(node) addavalanchenode(peers[1]) poll_and_assert_response(AvalancheVoteError.ACCEPTED) if __name__ == '__main__': AvalancheQuorumTest().main()
UTF-8
Python
false
false
4,236
py
88
abc_p2p_avalanche_quorum.py
73
0.626534
0.60458
0
111
37.162162
90
kitoku-magic/user_registration_form
7,524,782,746,933
3116871426f215153eed6efe827f350eaf3ac484
b79b540921ba050ee1c12456890414a80c14e639
/python/src/controller/user_registration/user_registration_common_controller.py
4be97be970f6d711da18e92541b02763099255d7
[]
no_license
https://github.com/kitoku-magic/user_registration_form
13758138b4066eddda324693164702f609d1ff60
f530cb9147c197635c3f057421ab26d579b29da0
refs/heads/master
2023-08-08T15:16:19.802530
2021-09-26T05:14:22
2021-09-26T05:14:22
173,554,653
0
0
null
false
2023-07-25T20:22:37
2019-03-03T09:26:29
2021-09-26T05:14:35
2023-07-25T20:22:34
2,642
0
0
5
Python
false
false
from python_library.src.custom_flask.controller import controller from src import abc from src import os from src.model.entity.birth_days_entity import birth_days_entity from src.model.entity.contact_methods_entity import contact_methods_entity from src.model.entity.jobs_entity import jobs_entity from src.model.entity.knew_triggers_entity import knew_triggers_entity from src.model.entity.prefectures_entity import prefectures_entity from src.model.entity.sexes_entity import sexes_entity from src.model.entity.users_entity import users_entity from src.model.repository.birth_days_repository import birth_days_repository from src.model.repository.contact_methods_repository import contact_methods_repository from src.model.repository.jobs_repository import jobs_repository from src.model.repository.knew_triggers_repository import knew_triggers_repository from src.model.repository.prefectures_repository import prefectures_repository from src.model.repository.sexes_repository import sexes_repository class user_registration_common_controller(controller): """ ユーザー登録の、共通処理を定義するクラス """ __abstract__ = True def __init__(self): super().__init__() request = self.get_request() # 使いやすさを考え、本処理を開始する前に、全てのフォームデータを設定しておく if 'GET' == request.environ['REQUEST_METHOD']: request_data = request.args elif 'POST' == request.environ['REQUEST_METHOD']: request_data = request.form self.__users_entity = users_entity() self.__users_entity.set_request_to_entity(request_data) @abc.abstractmethod def execute(self): pass def get_users_entity(self): return self.__users_entity def assign_all_form_data(self): """ 全てのフォーム項目に値を設定する """ properties = self.__users_entity.get_all_properties() for field, value in properties.items(): if value is None: value = '' # DBから郵便番号を取得して表示する時は、ハイフンを付ける if 'zip_code' == field and '' != value and '-' not in value and self.__users_entity.zip_code_error is None: value = value[0:3] + '-' + value[3:] self.add_response_data(field, value) def set_value_item(self): """ 選択項目の表示内容を取得して設定 """ value_items = [ # 性別 { 'repository': sexes_repository(sexes_entity()), 'method': 'find_all', 'select': (sexes_entity.sex_id, sexes_entity.sex_name), 'where': '', 'params': {}, 'order_by': 'sexes_sex_id ASC', 'template_param_name': 'sexes', }, # 都道府県 { 'repository': prefectures_repository(prefectures_entity()), 'method': 'find_all', 'select': (prefectures_entity.prefecture_id, prefectures_entity.prefecture_name), 'where': '', 'params': {}, 'order_by': 'prefectures_prefecture_id ASC', 'template_param_name': 'prefectures', }, # 連絡方法 { 'repository': contact_methods_repository(contact_methods_entity()), 'method': 'find_all', 'select': (contact_methods_entity.contact_method_id, contact_methods_entity.contact_method_name), 'where': '', 'params': {}, 'order_by': 'contact_methods_contact_method_id ASC', 'template_param_name': 'contact_methods', }, # 知ったきっかけ { 'repository': knew_triggers_repository(knew_triggers_entity()), 'method': 'find_all', 'select': (knew_triggers_entity.knew_trigger_id, knew_triggers_entity.knew_trigger_name), 'where': '', 'params': {}, 'order_by': 'knew_triggers_knew_trigger_id ASC', 'template_param_name': 'knew_triggers', }, ] for value_item in value_items: result_data = getattr(value_item['repository'], value_item['method'])( value_item['select'], value_item['where'], value_item['params'], value_item['order_by'] ) response_data = [] for row in result_data: response_dict = {'id': row[0], 'name': row[1]} response_data.append(response_dict) self.add_response_data(value_item['template_param_name'], response_data) # 以下は、特殊なケースの項目 # 誕生日 birth_days_repository_obj = birth_days_repository(birth_days_entity()) birth_days_all_data = birth_days_repository_obj.find_all( (birth_days_entity.birth_day_id, birth_days_entity.birth_day), '', {}, 'birth_days_birth_day_id ASC' ) birth_years = [] birth_months = [] birth_days = [] birth_day = None for row in birth_days_all_data: birth_day = row.birth_day if birth_day.year not in birth_years: birth_years.append(birth_day.year) if birth_day.month not in birth_months: birth_months.append(birth_day.month) if birth_day.day not in birth_days: birth_days.append(birth_day.day) self.add_response_data('birth_years', birth_years) self.add_response_data('birth_months', birth_months) self.add_response_data('birth_days', birth_days) # 職業(その他を末尾に表示させる) jobs_repository_obj = jobs_repository(jobs_entity()) jobs = jobs_repository_obj.find_all_order_by_job_other_last( (jobs_entity.job_id, jobs_entity.job_name), '', {}, 'jobs_job_id ASC' ) self.add_response_data('jobs', jobs) def select_value_item(self): """ 選択項目の選択状態を設定 """ # 単一選択項目 single_items = [ { 'name': 'birth_year', 'default_value': '', }, { 'name': 'birth_month', 'default_value': '', }, { 'name': 'birth_day', 'default_value': '', }, { 'name': 'prefecture_id', 'default_value': '', }, { 'name': 'sex_id', 'default_value': 1, }, { 'name': 'job_id', 'default_value': 2, }, { 'name': 'is_latest_news_hoped', 'default_value': 1, }, { 'name': 'is_personal_information_provide_agreed', 'default_value': '', }, ] for single_item in single_items: form_value = getattr(self.__users_entity, single_item['name'], None) if form_value is None: value = single_item['default_value'] else: value = form_value self.add_response_data(single_item['name'], value) # 複数選択項目 multiple_items = [ { 'name': 'user_contact_methods_collection', 'field': 'contact_method_id', 'default_value': [], }, { 'name': 'user_knew_triggers_collection', 'field': 'knew_trigger_id', 'default_value': [], }, ] for multiple_item in multiple_items: form_value = getattr(self.__users_entity, multiple_item['name'], None) if form_value is None: value = multiple_item['default_value'] else: ids = [] for entity in form_value: ids.append(int(getattr(entity, multiple_item['field'], None))) value = ids self.add_response_data(multiple_item['name'], value) def remove_upload_file(self, users_entity_obj): """ アップロードされたファイルを削除する """ if True == isinstance(users_entity_obj.file_name, str) and os.path.isfile(users_entity_obj.file_path): os.remove(users_entity_obj.file_path)
UTF-8
Python
false
false
8,804
py
101
user_registration_common_controller.py
87
0.524547
0.523594
0
215
38.032558
119
damoncheng/Markdown
18,150,531,823,079
b4680538c614b4ad40555f684bf6e6f2d16f7dbe
06682e4ce38bc10f215e0209e35442025748e381
/Interpreter/Python/lib/metaclass.py
be7bd778fce27aa05484bd6c681bb549477fee8e
[]
no_license
https://github.com/damoncheng/Markdown
6a9983baaf21bd7d67a3846e42fc136679e2a7d8
ae7958aba91e21c4133222978e1028b91a2478cb
refs/heads/master
2023-03-24T14:45:42.000592
2022-04-15T16:31:41
2022-04-15T16:31:41
65,825,196
0
2
null
null
null
null
null
null
null
null
null
null
null
null
null
import inspect print("1......") class UpperMetaClass(type): def __new__(upperattr_metaclass, future_class_name, future_class_parents, future_class_attr, **kwargs): print("upperattr_metaclass : ", upperattr_metaclass) print("future_class_name : ", future_class_name) print("future_class_parents : ", future_class_parents) print("future_class_attr : ", future_class_attr) upper_attr = {} for name,value in future_class_attr.items(): if not name.startswith('__'): upper_attr[name.upper()] = value else: upper_attr[name] = value new_class = super(UpperMetaClass, upperattr_metaclass).__new__(upperattr_metaclass, future_class_name, future_class_parents, upper_attr, **kwargs) new_class._prepare() return new_class def add_to_class(cls, name, value): # We should call the contribute_to_class method only if it's bound if not inspect.isclass(value) and hasattr(value, 'contribute_to_class'): value.contribute_to_class(cls, name) else: setattr(cls, name, value) def _prepare(cls): print("metaclass _pepare") cls.add_to_class("m", "123") print("2......") class ParentTest(metaclass=UpperMetaClass): parent_name = "hello parent metaclass" def __init__(self, *args, **kwargs): self.parent_m = 456 print("3......") class Test(ParentTest): name = "hello metaclass" def __init__(self, *args, **kwargs): self.m = 123 super().__init__() print("4......") test = Test() """ print("test is created...") print("test.parent_m : ", test.parent_m) print("test.PARENT_NAME : ", test.PARENT_NAME) """ """ test = Test() test.n = 123 print(test.__dict__) print(Test.__class__) print(hasattr(test, "NAME")) print(hasattr(test, "name")) """
UTF-8
Python
false
false
1,888
py
476
metaclass.py
252
0.59428
0.585805
0
83
21.746988
154
Zapix/gym-backend
1,898,375,569,024
117deed2b6cd7e89449ece003da80e29d38daea7
7c154a88605bf183c3134708d4f5d4de87c0c92f
/gym_backend/exercises/migrations/0001_initial.py
da1254ef04e321809f9118c20dcafca66a4d9f68
[]
no_license
https://github.com/Zapix/gym-backend
faeae5f8e6447e47b6da1d69ff80585fdb2381f4
e75cbe9fae9ff4b2bebeabe3113f644003b9aa59
refs/heads/master
2021-01-01T18:29:44.055588
2013-11-22T07:16:35
2013-11-22T07:16:35
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'MuscleGroup' db.create_table(u'exercises_musclegroup', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=255)), )) db.send_create_signal(u'exercises', ['MuscleGroup']) # Adding model 'Exercise' db.create_table(u'exercises_exercise', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('muscle_group', self.gf('django.db.models.fields.related.ForeignKey')(related_name='exercise_set', to=orm['exercises.MuscleGroup'])), ('name', self.gf('django.db.models.fields.CharField')(max_length=255)), ('description', self.gf('django.db.models.fields.TextField')()), ('youtube_link', self.gf('django.db.models.fields.URLField')(max_length=200)), )) db.send_create_signal(u'exercises', ['Exercise']) def backwards(self, orm): # Deleting model 'MuscleGroup' db.delete_table(u'exercises_musclegroup') # Deleting model 'Exercise' db.delete_table(u'exercises_exercise') models = { u'exercises.exercise': { 'Meta': {'object_name': 'Exercise'}, 'description': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'muscle_group': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'exercise_set'", 'to': u"orm['exercises.MuscleGroup']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'youtube_link': ('django.db.models.fields.URLField', [], {'max_length': '200'}) }, u'exercises.musclegroup': { 'Meta': {'ordering': "['id']", 'object_name': 'MuscleGroup'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}) } } complete_apps = ['exercises']
UTF-8
Python
false
false
2,339
py
19
0001_initial.py
12
0.592988
0.584438
0
53
43.150943
154
TheEnbyperor/racing_sim
15,805,479,667,501
22df2c29bdf3d0831f62dea4dda9dd07d0b10ee3
97fea2ec15c7a000313537c0c2be2cbe11f6fa24
/game/wheel.py
45758e79e319b58ecb9b4bf19fe83d10ac622a81
[]
no_license
https://github.com/TheEnbyperor/racing_sim
7ea6c0406728863348a134dd3a64bb1a8a7b24e3
1a083fb56792b562f888ea74d53b3eca3b059b3c
refs/heads/master
2020-04-25T18:19:11.442235
2019-03-10T10:21:36
2019-03-10T10:21:36
172,980,411
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from inputs import devices stick = devices.gamepads[0] while True: events = stick.read() for event in events: print(event.ev_type, event.code, event.state)
UTF-8
Python
false
false
174
py
8
wheel.py
6
0.683908
0.678161
0
8
20.75
53
nub8p/2020-Summer-Jookgorithm
7,224,134,992,671
c2349685100e98ed4f0f580feb1b8799f2287f95
8fe5d1db11f5ed8c27fee2740c5dbe188d09f48b
/최민우/[20.07.12] 10825.py
d25363173765263d582c2f82b84252a32ff357fe
[]
no_license
https://github.com/nub8p/2020-Summer-Jookgorithm
ec0f9117be1cbadb1a64bc5a048a9f4efdddd0cd
2bf0aeb3a60e05ab3762d0d54fe5f8c5eb2bdc3f
refs/heads/master
2023-05-05T15:27:31.009599
2021-05-03T18:59:20
2021-05-03T18:59:20
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
people = [] for i in range(int(input())): line = input().split() name = line[0] kor, eng, math = map(int, line[1:]) people.append({'name': name, 'kor': kor, 'eng': eng, 'math': math}) people.sort(key=lambda x: (-x['kor'], x['eng'], -x['math'], x['name'])) print('\n'.join(i['name'] for i in people))
UTF-8
Python
false
false
373
py
419
[20.07.12] 10825.py
345
0.466488
0.461126
0
11
32.909091
71
ceos-seo/data_cube_utilities
1,537,598,312,469
3c05cdbafd0f4389a2ea9cad91e0b0d89d0a1967
45ef0f26edc1fd1940267c3836c30e10b2fecd39
/data_cube_utilities/dc_baseline.py
76ea088c8375a5c5855b6c06b5639c3422e1e4c5
[ "Apache-2.0" ]
permissive
https://github.com/ceos-seo/data_cube_utilities
1834357348c36c2155968af15ceab87721e43d63
1979c2a160f2ad306582c60f9ad6be67dfc353ab
refs/heads/master
2021-11-05T20:22:41.632698
2021-10-25T23:19:56
2021-10-29T15:45:10
77,079,324
16
22
Apache-2.0
false
2021-02-05T19:51:59
2016-12-21T19:13:40
2021-02-03T16:50:42
2021-02-05T19:51:58
489
9
17
3
Python
false
false
import numpy as np import xarray import xarray.core.ops as ops import xarray as xr from itertools import islice def _window(seq, n=2): """Returns a sliding _window (of width n) over data from the iterable" " s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ... """ it = iter(seq) result = tuple(islice(it, n)) if len(result) == n: yield result for elem in it: result = result[1:] + (elem,) yield result def _composite_of_first(arrays, reverse=False, name_suffix="_composite"): #In memory of Rube Goldberg narrays = arrays.copy(deep=True) narrays.values = narrays.values[::-1] if reverse else narrays.values notnulls = [ops.notnull(array) for array in narrays] first_notnull = ops.argmax(ops.stack(notnulls), axis=0) composite = np.choose(first_notnull, narrays) return xr.DataArray( composite, coords=[narrays.latitude, narrays.longitude], dims=['latitude', 'longitude'], name="{band}{suffix}".format(band=narrays.name, suffix=name_suffix)) def _mosaic(dataset, most_recent_first=False, custom_label="_composite"): return xr.merge([ _composite_of_first(dataset[variable], reverse=most_recent_first, name_suffix=custom_label) for variable in dataset.data_vars ]) def _composite_by_average(dataset, custom_label="_composite"): composite = dataset.mean('time') return composite ## This should be the the only method called from dc baseline def generate_baseline(dataset, composite_size=5, mode="average", custom_label=""): ranges = _window(range(len(dataset.time)), n=composite_size + 1) reffs = (dataset.isel(time=list(frame)[:-1]) for frame in ranges) baselines = None if mode == "average": baselines = (_composite_by_average(ref, custom_label=custom_label) for ref in reffs) elif mode == "composite": baselines = (_mosaic(ref, most_recent_first=True, custom_label=custom_label) for ref in reffs) baseline = xr.concat(baselines, dim='time') baseline['time'] = dataset.time[composite_size:] return baseline
UTF-8
Python
false
false
2,116
py
67
dc_baseline.py
60
0.65879
0.653119
0
59
34.864407
102
CodeLogist/RAdam-PLSTM-FX-Trader
2,645,699,879,420
c8cf84b287bd890db802449599a8373a3819cff9
72789db2e7d27995fd364841d33808cdf4326da0
/data.py
de171f00ac8210e5ff182d5caf55df67a6f8c924
[]
no_license
https://github.com/CodeLogist/RAdam-PLSTM-FX-Trader
3a8f5fa0c2a969d5f0a56959401d75a6b35956d5
a38c25a0e49d50a35bd586c15c2b3a10b293b648
refs/heads/master
2021-05-18T19:03:47.494160
2020-03-30T17:02:45
2020-03-30T17:02:45
251,371,181
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import pandas as pd import os from datetime import datetime from sklearn.preprocessing import MinMaxScaler from sklearn.externals import joblib output_scale = 100 def get_day(x): try: y = datetime.strptime(x,'%Y/%m/%d') except: try: y = datetime.strptime(x,'%m/%d/%Y') except: y = datetime.strptime(x,'%d-%m-%y') y = str(y).split(' ')[0] return y def split(X, Y, ratio): """ Split in train and test test set """ train_len = int(len(X) * ratio) trainX = X[:train_len] trainY = Y[:train_len] testX = X[train_len:] testY = Y[train_len:] return trainX, trainY, testX, testY def create_dataset(dataframe, win_size, delta_t, scaler_path, save_scaler = True): dataframe.reset_index(drop=True,inplace=True) data = dataframe[['toHigh','toLow','toClose','Ticks','Spread',\ 'Date','Seconds']] # Disable SettingWithCopyWarning pd.options.mode.chained_assignment = None data['Hour'] = dataframe['Seconds'].apply(lambda x: int(str(x).split(':')[0])/23.) data['Date'] = dataframe['Date'].apply(lambda x: get_day(x)) data['Day'] = data['Date'].apply(lambda x: int(datetime.strptime(x, '%Y-%m-%d').weekday())/6) data['Month'] = data['Date'].apply(lambda x: (int(x.split('-')[1])-1)/11) data = data.drop(['Date','Seconds'],axis=1).values pd.options.mode.chained_assignment = 'warn' if save_scaler: # Create, set-up and save scaler scaler = MinMaxScaler(feature_range=(0, 1)) scaler.fit(data) joblib.dump(scaler, scaler_path) else: # load scaler scaler = joblib.load(scaler_path) # scale data data = scaler.transform(data) #outputs hilo = dataframe[['toHigh','toLow']].values*output_scale dataX, dataY = [], [] for i in range(0, len(data) - win_size, delta_t): a = data[i:(i+win_size), :] dataX.append(a) dataY.append(hilo[i + win_size]) return np.array(dataX), np.array(dataY) def get_win(df,win_size,scaler): df = df.tail(win_size) # Disable SettingWithCopyWarning pd.options.mode.chained_assignment = None data = df[['toHigh','toLow','toClose','Ticks','Spread']] # Convert datetime data.loc[:,'Hour'] = df.loc[:,'Datetime'].apply(lambda x: x.hour/23) data.loc[:,'Weekday'] = df.loc[:,'Datetime'].apply(lambda x: int(x.weekday())/6) data.loc[:,'Month'] = df.loc[:,'Datetime'].apply(lambda x: (x.month-1)/11) pd.options.mode.chained_assignment = 'warn' data = scaler.transform(data) return np.array(data)
UTF-8
Python
false
false
2,741
py
7
data.py
6
0.582999
0.574973
0
80
32.2625
100
FrankSauve/390AntennaPod
4,483,945,899,145
df4f4079423d660944750cc3295ae579baaca1e4
bfdf7c033eec65e7d7393145c809d643cf0824e2
/contributers.template.py
3127baa0c063dfccb2dcd064bd91e2609b1e0bec
[ "MIT" ]
permissive
https://github.com/FrankSauve/390AntennaPod
5c790aa58ccd7e06fe5772ca10de00504a13b44a
dbed5b9841fbfb32ab51b61ab6b83a1950c83796
refs/heads/develop
2021-09-12T18:13:27.484257
2018-04-19T14:47:21
2018-04-19T14:47:21
116,841,114
3
1
MIT
false
2019-03-17T20:50:07
2018-01-09T16:28:34
2018-11-20T12:37:32
2018-04-19T19:09:52
22,758
3
1
2
Java
false
null
#!/usr/bin/env python3 import requests import subprocess TRANSIFEX_USER = "" TRANSIFEX_PW = "" print('DEVELOPERS\n==========\n') p = subprocess.Popen("git log --format='%aN' | sort -fu", shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) for line in p.stdout.readlines(): output = line.decode() print(output, end='') language_codes = { "af_NA": "Afrikaans (Namibia)", "af_ZA": "Afrikaans (South Africa)", "af": "Afrikaans", "ak_GH": "Akan (Ghana)", "ak": "Akan", "sq_AL": "Albanian (Albania)", "sq": "Albanian", "am_ET": "Amharic (Ethiopia)", "am": "Amharic", "ar_DZ": "Arabic (Algeria)", "ar_BH": "Arabic (Bahrain)", "ar_EG": "Arabic (Egypt)", "ar_IQ": "Arabic (Iraq)", "ar_JO": "Arabic (Jordan)", "ar_KW": "Arabic (Kuwait)", "ar_LB": "Arabic (Lebanon)", "ar_LY": "Arabic (Libya)", "ar_MA": "Arabic (Morocco)", "ar_OM": "Arabic (Oman)", "ar_QA": "Arabic (Qatar)", "ar_SA": "Arabic (Saudi Arabia)", "ar_SD": "Arabic (Sudan)", "ar_SY": "Arabic (Syria)", "ar_TN": "Arabic (Tunisia)", "ar_AE": "Arabic (United Arab Emirates)", "ar_YE": "Arabic (Yemen)", "ar": "Arabic", "hy_AM": "Armenian (Armenia)", "hy": "Armenian", "as_IN": "Assamese (India)", "as": "Assamese", "asa_TZ": "Asu (Tanzania)", "asa": "Asu", "az_Cyrl": "Azerbaijani (Cyrillic)", "az_Cyrl_AZ": "Azerbaijani (Cyrillic, Azerbaijan)", "az_Latn": "Azerbaijani (Latin)", "az_Latn_AZ": "Azerbaijani (Latin, Azerbaijan)", "az": "Azerbaijani", "bm_ML": "Bambara (Mali)", "bm": "Bambara", "eu_ES": "Basque (Spain)", "eu": "Basque", "be_BY": "Belarusian (Belarus)", "be": "Belarusian", "bem_ZM": "Bemba (Zambia)", "bem": "Bemba", "bez_TZ": "Bena (Tanzania)", "bez": "Bena", "bn_BD": "Bengali (Bangladesh)", "bn_IN": "Bengali (India)", "bn": "Bengali", "bs_BA": "Bosnian (Bosnia and Herzegovina)", "bs": "Bosnian", "bg_BG": "Bulgarian (Bulgaria)", "bg": "Bulgarian", "my_MM": "Burmese (Myanmar [Burma])", "my": "Burmese", "ca_ES": "Catalan (Spain)", "ca": "Catalan", "tzm_Latn": "Central Morocco Tamazight (Latin)", "tzm_Latn_MA": "Central Morocco Tamazight (Latin, Morocco)", "tzm": "Central Morocco Tamazight", "chr_US": "Cherokee (United States)", "chr": "Cherokee", "cgg_UG": "Chiga (Uganda)", "cgg": "Chiga", "zh": "Chinese (Simplified)", "zh_CN": "Chinese (China)", "zh_HK": "Chinese (Hong Kong SAR China)", "zh_MO": "Chinese (Macau SAR China)", "zh_MO_SG": "Chinese (Singapore)", "zh_TW": "Chinese (Taiwan)", "zh": "Chinese", "kw_GB": "Cornish (United Kingdom)", "kw": "Cornish", "hr_HR": "Croatian (Croatia)", "hr": "Croatian", "cs_CZ": "Czech (Czech Republic)", "cs": "Czech", "da_DK": "Danish (Denmark)", "da": "Danish", "nl_BE": "Dutch (Belgium)", "nl_NL": "Dutch (Netherlands)", "nl": "Dutch", "ebu_KE": "Embu (Kenya)", "ebu": "Embu", "en_AS": "English (American Samoa)", "en_AU": "English (Australia)", "en_BE": "English (Belgium)", "en_BZ": "English (Belize)", "en_BW": "English (Botswana)", "en_CA": "English (Canada)", "en_GU": "English (Guam)", "en_HK": "English (Hong Kong SAR China)", "en_IN": "English (India)", "en_IE": "English (Ireland)", "en_JM": "English (Jamaica)", "en_MT": "English (Malta)", "en_MH": "English (Marshall Islands)", "en_MU": "English (Mauritius)", "en_NA": "English (Namibia)", "en_NZ": "English (New Zealand)", "en_MP": "English (Northern Mariana Islands)", "en_PK": "English (Pakistan)", "en_PH": "English (Philippines)", "en_SG": "English (Singapore)", "en_ZA": "English (South Africa)", "en_TT": "English (Trinidad and Tobago)", "en_UM": "English (U.S. Minor Outlying Islands)", "en_VI": "English (U.S. Virgin Islands)", "en_GB": "English (United Kingdom)", "en_US": "English (United States)", "en_ZW": "English (Zimbabwe)", "en": "English", "eo": "Esperanto", "et_EE": "Estonian (Estonia)", "et": "Estonian", "ee_GH": "Ewe (Ghana)", "ee_TG": "Ewe (Togo)", "ee": "Ewe", "fo_FO": "Faroese (Faroe Islands)", "fo": "Faroese", "fil_PH": "Filipino (Philippines)", "fil": "Filipino", "fi_FI": "Finnish (Finland)", "fi": "Finnish", "fr_BE": "French (Belgium)", "fr_BJ": "French (Benin)", "fr_BF": "French (Burkina Faso)", "fr_BI": "French (Burundi)", "fr_CM": "French (Cameroon)", "fr_CA": "French (Canada)", "fr_CF": "French (Central African Republic)", "fr_TD": "French (Chad)", "fr_KM": "French (Comoros)", "fr_CG": "French (Congo - Brazzaville)", "fr_CD": "French (Congo - Kinshasa)", "fr_CI": "French (Côte d’Ivoire)", "fr_DJ": "French (Djibouti)", "fr_GQ": "French (Equatorial Guinea)", "fr_FR": "French (France)", "fr_GA": "French (Gabon)", "fr_GP": "French (Guadeloupe)", "fr_GN": "French (Guinea)", "fr_LU": "French (Luxembourg)", "fr_MG": "French (Madagascar)", "fr_ML": "French (Mali)", "fr_MQ": "French (Martinique)", "fr_MC": "French (Monaco)", "fr_NE": "French (Niger)", "fr_RW": "French (Rwanda)", "fr_RE": "French (Réunion)", "fr_BL": "French (Saint Barthélemy)", "fr_MF": "French (Saint Martin)", "fr_SN": "French (Senegal)", "fr_CH": "French (Switzerland)", "fr_TG": "French (Togo)", "fr": "French", "ff_SN": "Fulah (Senegal)", "ff": "Fulah", "gl_ES": "Galician (Spain)", "gl": "Galician", "lg_UG": "Ganda (Uganda)", "lg": "Ganda", "ka_GE": "Georgian (Georgia)", "ka": "Georgian", "de_AT": "German (Austria)", "de_BE": "German (Belgium)", "de_DE": "German (Germany)", "de_LI": "German (Liechtenstein)", "de_LU": "German (Luxembourg)", "de_CH": "German (Switzerland)", "de": "German", "el_CY": "Greek (Cyprus)", "el_GR": "Greek (Greece)", "el": "Greek", "gu_IN": "Gujarati (India)", "gu": "Gujarati", "guz_KE": "Gusii (Kenya)", "guz": "Gusii", "ha_Latn": "Hausa (Latin)", "ha_Latn_GH": "Hausa (Latin, Ghana)", "ha_Latn_NE": "Hausa (Latin, Niger)", "ha_Latn_NG": "Hausa (Latin, Nigeria)", "ha": "Hausa", "haw_US": "Hawaiian (United States)", "haw": "Hawaiian", "he_IL": "Hebrew (Israel)", "he": "Hebrew", "hi_IN": "Hindi (India)", "hi": "Hindi", "hu_HU": "Hungarian (Hungary)", "hu": "Hungarian", "is_IS": "Icelandic (Iceland)", "is": "Icelandic", "ig_NG": "Igbo (Nigeria)", "ig": "Igbo", "id_ID": "Indonesian (Indonesia)", "id": "Indonesian", "ga_IE": "Irish (Ireland)", "ga": "Irish", "it_IT": "Italian (Italy)", "it_CH": "Italian (Switzerland)", "it": "Italian", "ja_JP": "Japanese (Japan)", "ja": "Japanese", "kea_CV": "Kabuverdianu (Cape Verde)", "kea": "Kabuverdianu", "kab_DZ": "Kabyle (Algeria)", "kab": "Kabyle", "kl_GL": "Kalaallisut (Greenland)", "kl": "Kalaallisut", "kln_KE": "Kalenjin (Kenya)", "kln": "Kalenjin", "kam_KE": "Kamba (Kenya)", "kam": "Kamba", "kn_IN": "Kannada (India)", "kn": "Kannada", "kk_Cyrl": "Kazakh (Cyrillic)", "kk_Cyrl_KZ": "Kazakh (Cyrillic, Kazakhstan)", "kk": "Kazakh", "km_KH": "Khmer (Cambodia)", "km": "Khmer", "ki_KE": "Kikuyu (Kenya)", "ki": "Kikuyu", "rw_RW": "Kinyarwanda (Rwanda)", "rw": "Kinyarwanda", "kok_IN": "Konkani (India)", "kok": "Konkani", "ko_KR": "Korean (South Korea)", "ko": "Korean", "khq_ML": "Koyra Chiini (Mali)", "khq": "Koyra Chiini", "ses_ML": "Koyraboro Senni (Mali)", "ses": "Koyraboro Senni", "lag_TZ": "Langi (Tanzania)", "lag": "Langi", "lv_LV": "Latvian (Latvia)", "lv": "Latvian", "lt_LT": "Lithuanian (Lithuania)", "lt": "Lithuanian", "luo_KE": "Luo (Kenya)", "luo": "Luo", "luy_KE": "Luyia (Kenya)", "luy": "Luyia", "mk_MK": "Macedonian (Macedonia)", "mk": "Macedonian", "jmc_TZ": "Machame (Tanzania)", "jmc": "Machame", "kde_TZ": "Makonde (Tanzania)", "kde": "Makonde", "mg_MG": "Malagasy (Madagascar)", "mg": "Malagasy", "ms_BN": "Malay (Brunei)", "ms_MY": "Malay (Malaysia)", "ms": "Malay", "ml_IN": "Malayalam (India)", "ml": "Malayalam", "mt_MT": "Maltese (Malta)", "mt": "Maltese", "gv_GB": "Manx (United Kingdom)", "gv": "Manx", "mr_IN": "Marathi (India)", "mr": "Marathi", "mas_KE": "Masai (Kenya)", "mas_TZ": "Masai (Tanzania)", "mas": "Masai", "mer_KE": "Meru (Kenya)", "mer": "Meru", "mfe_MU": "Morisyen (Mauritius)", "mfe": "Morisyen", "naq_NA": "Nama (Namibia)", "naq": "Nama", "ne_IN": "Nepali (India)", "ne_NP": "Nepali (Nepal)", "ne": "Nepali", "nd_ZW": "North Ndebele (Zimbabwe)", "nd": "North Ndebele", "no": "Norwegian", "nb_NO": "Norwegian Bokmål (Norway)", "nb": "Norwegian Bokmål", "nn_NO": "Norwegian Nynorsk (Norway)", "nn": "Norwegian Nynorsk", "nyn_UG": "Nyankole (Uganda)", "nyn": "Nyankole", "or_IN": "Oriya (India)", "or": "Oriya", "om_ET": "Oromo (Ethiopia)", "m_KE": "Oromo (Kenya)", "om": "Oromo", "ps_AF": "Pashto (Afghanistan)", "ps": "Pashto", "fa_AF": "Persian (Afghanistan)", "fa_IR": "Persian (Iran)", "fa": "Persian", "pl_PL": "Polish (Poland)", "pl": "Polish", "pt_BR": "Portuguese (Brazil)", "pt_GW": "Portuguese (Guinea-Bissau)", "pt_MZ": "Portuguese (Mozambique)", "pt_PT": "Portuguese (Portugal)", "pt": "Portuguese", "pa_Arab": "Punjabi (Arabic)", "pa_Arab_PK": "Punjabi (Arabic, Pakistan)", "pa_Guru": "Punjabi (Gurmukhi)", "pa_Guru_IN": "Punjabi (Gurmukhi, India)", "pa": "Punjabi", "ro_MD": "Romanian (Moldova)", "ro_RO": "Romanian (Romania)", "ro": "Romanian", "rm_CH": "Romansh (Switzerland)", "rm": "Romansh", "rof_TZ": "Rombo (Tanzania)", "rof": "Rombo", "ru_MD": "Russian (Moldova)", "ru_RU": "Russian (Russia)", "ru_UA": "Russian (Ukraine)", "ru": "Russian", "rwk_TZ": "Rwa (Tanzania)", "rwk": "Rwa", "saq_KE": "Samburu (Kenya)", "saq": "Samburu", "sg_CF": "Sango (Central African Republic)", "sg": "Sango", "seh_MZ": "Sena (Mozambique)", "seh": "Sena", "sr_Cyrl": "Serbian (Cyrillic)", "sr_Cyrl_BA": "Serbian (Cyrillic, Bosnia and Herzegovina)", "sr_Cyrl_ME": "Serbian (Cyrillic, Montenegro)", "sr_Cyrl_RS": "Serbian (Cyrillic, Serbia)", "sr_Latn": "Serbian (Latin)", "sr_Latn_BA": "Serbian (Latin, Bosnia and Herzegovina)", "sr_Latn_ME": "Serbian (Latin, Montenegro)", "sr_Latn_RS": "Serbian (Latin, Serbia)", "sr": "Serbian", "sn_ZW": "Shona (Zimbabwe)", "sn": "Shona", "ii_CN": "Sichuan Yi (China)", "ii": "Sichuan Yi", "si_LK": "Sinhala (Sri Lanka)", "si": "Sinhala", "sk_SK": "Slovak (Slovakia)", "sk": "Slovak", "sl_SI": "Slovenian (Slovenia)", "sl": "Slovenian", "xog_UG": "Soga (Uganda)", "xog": "Soga", "so_DJ": "Somali (Djibouti)", "so_ET": "Somali (Ethiopia)", "so_KE": "Somali (Kenya)", "so_SO": "Somali (Somalia)", "so": "Somali", "es_AR": "Spanish (Argentina)", "es_BO": "Spanish (Bolivia)", "es_CL": "Spanish (Chile)", "es_CO": "Spanish (Colombia)", "es_CR": "Spanish (Costa Rica)", "es_DO": "Spanish (Dominican Republic)", "es_EC": "Spanish (Ecuador)", "es_SV": "Spanish (El Salvador)", "es_GQ": "Spanish (Equatorial Guinea)", "es_GT": "Spanish (Guatemala)", "es_HN": "Spanish (Honduras)", "es_419": "Spanish (Latin America)", "es_MX": "Spanish (Mexico)", "es_NI": "Spanish (Nicaragua)", "es_PA": "Spanish (Panama)", "es_PY": "Spanish (Paraguay)", "es_PE": "Spanish (Peru)", "es_PR": "Spanish (Puerto Rico)", "es_ES": "Spanish (Spain)", "es_US": "Spanish (United States)", "es_UY": "Spanish (Uruguay)", "es_VE": "Spanish (Venezuela)", "es": "Spanish", "sw_KE": "Swahili (Kenya)", "sw_TZ": "Swahili (Tanzania)", "sw": "Swahili", "sv_FI": "Swedish (Finland)", "sv_SE": "Swedish (Sweden)", "sv": "Swedish", "gsw_CH": "Swiss German (Switzerland)", "gsw": "Swiss German", "shi_Latn": "Tachelhit (Latin)", "shi_Latn_MA": "Tachelhit (Latin, Morocco)", "shi_Tfng": "Tachelhit (Tifinagh)", "shi_Tfng_MA": "Tachelhit (Tifinagh, Morocco)", "shi": "Tachelhit", "dav_KE": "Taita (Kenya)", "dav": "Taita", "ta_IN": "Tamil (India)", "ta_LK": "Tamil (Sri Lanka)", "ta": "Tamil", "te_IN": "Telugu (India)", "te": "Telugu", "teo_KE": "Teso (Kenya)", "teo_UG": "Teso (Uganda)", "teo": "Teso", "th_TH": "Thai (Thailand)", "th": "Thai", "bo_CN": "Tibetan (China)", "bo_IN": "Tibetan (India)", "bo": "Tibetan", "ti_ER": "Tigrinya (Eritrea)", "ti_ET": "Tigrinya (Ethiopia)", "ti": "Tigrinya", "to_TO": "Tonga (Tonga)", "to": "Tonga", "tr_TR": "Turkish (Turkey)", "tr": "Turkish", "uk_UA": "Ukrainian (Ukraine)", "uk": "Ukrainian", "ur_IN": "Urdu (India)", "ur_PK": "Urdu (Pakistan)", "ur": "Urdu", "uz_Arab": "Uzbek (Arabic)", "uz_Arab_AF": "Uzbek (Arabic, Afghanistan)", "uz_Cyrl": "Uzbek (Cyrillic)", "uz_Cyrl_UZ": "Uzbek (Cyrillic, Uzbekistan)", "uz_Latn": "Uzbek (Latin)", "uz_Latn_UZ": "Uzbek (Latin, Uzbekistan)", "uz": "Uzbek", "vi_VN": "Vietnamese (Vietnam)", "vi": "Vietnamese", "vun_TZ": "Vunjo (Tanzania)", "vun": "Vunjo", "cy_GB": "Welsh (United Kingdom)", "cy": "Welsh", "yo_NG": "Yoruba (Nigeria)", "yo": "Yoruba", "zu_ZA": "Zulu (South Africa)", "zu": "Zulu" } print('\n\nTRANSLATORS\n===========\n') r = requests.get('http://www.transifex.com/api/2/project/antennapod/languages/', auth=(TRANSIFEX_USER, TRANSIFEX_PW)) for lang in r.json(): lang_contributers = lang['coordinators'] + lang['reviewers'] + lang['translators'] lang_contributers = sorted(lang_contributers, key=str.lower) print(language_codes[lang['language_code']], ": ", ', '.join(lang_contributers), sep="")
UTF-8
Python
false
false
14,394
py
461
contributers.template.py
358
0.529645
0.529297
0
454
30.687225
119
juancordoba00/carsapp
6,665,789,292,244
ed5c3975a1538dab371199856800e84145d82928
64204193d70c5ab855dc2d591ac656d5557f4b91
/carsapp/migrations/0023_auto_20210705_1940.py
0e01364c12993427b06d6fc917b680f245024541
[]
no_license
https://github.com/juancordoba00/carsapp
563150e5c381a10fd4cbac23bf3b58d69de4516c
38d404a34cdaf5676c83ed6dcb0442e32a12a865
refs/heads/master
2023-06-16T22:49:43.558107
2021-07-07T15:20:37
2021-07-07T15:20:37
372,249,300
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Generated by Django 3.1.4 on 2021-07-06 00:40 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('carsapp', '0022_auto_20210705_1437'), ] operations = [ migrations.AlterField( model_name='detallesfacturas', name='precio', field=models.IntegerField(default=0, null=True), ), migrations.AlterField( model_name='servicios', name='valor_Servicio', field=models.IntegerField(default=0), ), ]
UTF-8
Python
false
false
569
py
55
0023_auto_20210705_1940.py
26
0.579965
0.521968
0
23
23.73913
60
sanshitangmalaban/GraduationProject
19,224,273,655,630
d83965fb1fcb877c2f587d42b3725535fbd5a37d
6c75f452e81c9b8106d4aafe02f16b76cfac0bd2
/MyTest/tests.py
e4c241a501f00d169a6dcae330585a4716150d47
[]
no_license
https://github.com/sanshitangmalaban/GraduationProject
4aebe6226c1251a7ca4b2deddcf69a13f799e9be
b47ce4dc4a490017072c785261ccf0421500a4b0
refs/heads/master
2020-03-24T18:20:52.697395
2018-07-30T15:03:22
2018-07-30T15:03:22
142,889,763
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.test import TestCase import sys,os # Create your tests here. # import time # print(int(time.time())) # url = '/images/ysu_logo.png' # url_list = url.split('/') # print(url_list) import requests,json # print(os.path.dirname(os.path.abspath(__file__))) # print(sys.path.append(os.path.dirname(os.path.abspath(__file__)))) def get_goods_history(goods_url): url = "http://tool.manmanbuy.com/history.aspx?DA=1&action=gethistory&url=https%3A//item.jd.hk/3800679.html&bjid=&spbh=&cxid=&zkid=&w=951&token="+token print(url) headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.167 Safari/537.36", "referer": "www.manmanbuy.com", } response = requests.request('get', url=url, headers=headers) response_json = json.loads(response.text) print(response_json) if __name__ =="__main__": get_goods_history("http://product.dangdang.com/1005161885.html")
UTF-8
Python
false
false
976
py
17
tests.py
12
0.671107
0.620902
0
34
27.735294
154
ryanmuller/quill-lightside
1,511,828,508,187
d0c28c04bab60b0e4fdf6d4c53085b6c6af95853
f88750fd480330bf332b3567c54a4761899a957a
/lightbox.py
5be44d5895224f8393b8f2240b6310e38427e58e
[]
no_license
https://github.com/ryanmuller/quill-lightside
ca76c37242c475fd4e37cbc467185960bfac3163
56f958933017eba1a9b06ed9a6ef916a33297488
refs/heads/master
2020-05-17T11:06:07.596998
2014-12-28T21:13:55
2014-12-28T21:13:55
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests import urlparse import json import random import operator token = "" with open('config/token', 'r') as f: token = f.read().strip() prompts = [ "Why did the United States declare independence?", "How did the moon form?", "In Macbeth, whose ambition is the driving force of the play?", "How does Tom Sawyer change over the course of the story?", "What is Gestalt psychology?" ] class LightboxResource(object): base_url = "https://api.getlightbox.com/api/" endpoint = None HEADERS = { "Authorization": "Token {token}".format(token=token), "Content-Type": "application/json", } @staticmethod def endpoint_for(resource): return urlparse.urljoin(LightboxResource.base_url, resource+"/") @staticmethod def id_from_url(url): return url.split('/')[-1] @classmethod def url_for(cls, _id): return urlparse.urljoin(cls.endpoint, str(_id)) # TODO fail elegantly @classmethod def all(cls): r = requests.get(cls.endpoint, headers=cls.HEADERS) response = r.json() objs = [ cls(cls.id_from_url(obj['url']), obj) for obj in response['results'] ] return objs @classmethod def find(cls, _id): r = requests.get(cls.url_for(_id), headers=cls.HEADERS) obj = cls(_id, r.json()) return obj @classmethod def create(cls, data): r = requests.post(cls.endpoint, data=json.dumps(data), headers=cls.HEADERS) response = r.json() obj = cls(cls.id_from_url(response['url']), response) return obj # TODO test me def reload(self): self = type(self).find(self._id) return self # TODO inherit only from Tasks # TODO better info from status def process(self): if 'process' in self.response: r = requests.post(self.response['process'], headers=type(self).HEADERS) return r.status_code == 200 or r.status_code == 202 else: return False def url(self): return type(self).url_for(self._id) def destroy(self): r = requests.delete(self.url(), headers=type(self).HEADERS) return self def __init__(self, _id, response={}): self._id = _id self.response = response class Prompt(LightboxResource): endpoint = LightboxResource.endpoint_for("prompts") @classmethod def create(cls, title="", text="", description=""): return super(Prompt, cls).create({ 'title': title, 'text': text, 'description': description }) def text(self): return self.response['text'] class Grader(LightboxResource): endpoint = LightboxResource.endpoint_for("graders") @classmethod def create(cls, prompt_id, name="Grader"): return super(Grader, cls).create({ 'prompt': Prompt.url_for(prompt_id), 'name': name }) def prompt(self): p = self.response['prompt'] return Prompt(LightboxResource.id_from_url(p['url']), p) class Lightbox(LightboxResource): endpoint = LightboxResource.endpoint_for("lightboxes") @classmethod def create(cls, grader_id, name="Lightbox"): return super(Lightbox, cls).create({ 'grader': Grader.url_for(grader_id), 'name': name }) # TODO set in __init__? def name(self): return self.response['name'] def grader(self): return Grader.find(LightboxResource.id_from_url(self.response['grader'])) def answer_set(self): aset = self.response['answer_set'] return AnswerSet(LightboxResource.id_from_url(aset['url']), aset) class Corpus(LightboxResource): endpoint = LightboxResource.endpoint_for("corpora") params_endpoint = LightboxResource.endpoint_for("corpus-upload-parameters") s3_params = {} # note: description is required @classmethod def create(cls, prompt_id=None, description="primary corpus"): if not prompt_id: return None return super(Corpus, cls).create({ 'prompt': Prompt.url_for(prompt_id), 'description': description }) @classmethod def get_s3_params(cls): r = requests.get(cls.params_endpoint, headers=cls.HEADERS) cls.s3_params = r.json() @classmethod def send_file(cls, filename): cls.get_s3_params() data = { 'AWSAccessKeyId': cls.s3_params['access_key_id'], 'key': cls.s3_params['key'], 'acl': 'public-read', 'Policy': cls.s3_params['policy'], 'Signature': cls.s3_params['signature'], 'success_action_status': '201', } files = { 'file': open(filename, 'rb') } r = requests.post(cls.s3_params['s3_endpoint'], data=data, files=files) return r.status_code == 201 class CorpusUploadTask(LightboxResource): endpoint = LightboxResource.endpoint_for("corpus-upload-tasks") @classmethod def create(cls, corpus_id, s3_key, content_type="text/csv"): if not s3_key and 'key' in Corpus.s3_params: s3_key = Corpus.s3_params['key'] if not corpus_id or not s3_key: return None return super(CorpusUploadTask, cls).create({ 'corpus': Corpus.url_for(corpus_id), 's3_key': s3_key, 'content_type': content_type }) class Author(LightboxResource): endpoint = LightboxResource.endpoint_for("authors") @classmethod def create(cls, designator=("%016x" % random.getrandbits(64)), email=""): return super(Author, cls).create({ 'designator': designator, 'email': email }) class TrainingAnswer(LightboxResource): endpoint = LightboxResource.endpoint_for("training-answers") @classmethod def create(cls, corpus_id, text): if not corpus_id or not text: return None return super(TrainingAnswer, cls).create({ 'corpus': Corpus.url_for(corpus_id), 'text': text }) class ResolvedScore(LightboxResource): endpoint = LightboxResource.endpoint_for("resolved-scores") @classmethod def create(cls, training_answer_id, label): if not training_answer_id or not label: return None return super(ResolvedScore, cls).create({ 'training_answer': TrainingAnswer.url_for(training_answer_id), 'label': label }) class HumanScore(LightboxResource): endpoint = LightboxResource.endpoint_for("human-scores") @classmethod def create(cls, training_answer_id, label): if not training_answer_id or not label: return None return super(HumanScore, cls).create({ 'training_answer': TrainingAnswer.url_for(training_answer_id), 'label': label }) class TrainingTask(LightboxResource): endpoint = LightboxResource.endpoint_for("training-tasks") @classmethod def create(cls, corpus_id, grader_id): return super(TrainingTask, cls).create({ 'corpus': Corpus.url_for(corpus_id), 'grader': Grader.url_for(grader_id) }) class TrainedModel(LightboxResource): endpoint = LightboxResource.endpoint_for("trained-models") class AnswerSet(LightboxResource): endpoint = LightboxResource.endpoint_for("answer-sets") # FIXME @classmethod def create(cls, lightbox_id): return super(AnswerSet, cls).create({ 'lightbox': Lightbox.url_for(lightbox_id) }) class Answer(LightboxResource): endpoint = LightboxResource.endpoint_for("answers") @classmethod def create(cls, author_id, answer_set_id, text): if not author_id or not answer_set_id or not text: return None return super(Answer, cls).create({ 'author': Author.url_for(author_id), 'answer_set': AnswerSet.url_for(answer_set_id), 'text': text }) def prediction_result(self): if 'prediction_results' in self.response and len(self.response['prediction_results']) > 0: return PredictionResult.find(LightboxResource.id_from_url(self.response['prediction_results'][0])) else: return None def label(self): pr = self.prediction_result() if pr: return pr.label() else: return None class PredictionTask(LightboxResource): endpoint = LightboxResource.endpoint_for("prediction-tasks") @classmethod def create(cls, answer_set_id): return super(PredictionTask, cls).create({ 'answer_set': AnswerSet.url_for(answer_set_id) }) # GET /prediction-results/ # GET /prediction-results/(int: prediction_result_id) class PredictionResult(LightboxResource): endpoint = LightboxResource.endpoint_for("prediction-results") # TODO cleanup training data and figure out value=0 issue def label(self): distribution = {k:v for (k,v) in self.response['distribution'].iteritems() if k != 'D' and k != '4'} return max(distribution.iteritems(), key=operator.itemgetter(1))[0] if __name__ == "__main__": # get s3 params #Corpus.get_s3_params() #print Corpus.s3_params # create a new prompt #p = Prompt("test", "This is a test. Don't answer me!", "only a test") #print p._id # 35, 36 -> test prompts #Prompt.find(35) #p = Prompt.create("test2", "Your answer means nothing, NOTHING!", "yet another test") Prompt.all() # A Proclamation About Rosa Parks # Prompt: 20 (?) # Grader: 34 # Lightbox: 30 # AnswerSet: 30 # Author: 1 # Answer: 1580 # test # prompt: 35 # grader: 44 # lightbox: 31 # answerset: 31 # answer: 1581 # # Water Cycle # prompt: 37 # grader: 45 # lightbox: 33 # answer-set: 33 # corpus: 164 # training answer: 41503 # resolved score: 41503 # human score: 1 # s3 key: corpus-uploads/2014/10/28/56d59c80102d4e7db5bc5707fce24759.csv # training task: 96 # trained model: 164 # prediction task: 1584
UTF-8
Python
false
false
10,327
py
8
lightbox.py
3
0.603079
0.589716
0
350
28.502857
110
Dingrongdeer/X-Village-2018-Exercise
3,607,772,539,212
3d650702ee34f48dd1a42bd3d2a652bb41c40f69
b69ae92ed6bf0d7fd73e73aeb6cdd04e4a024931
/Lesson02-Python_basic/ex3.py
f90abfada8458201ae6120044931aabba465fa36
[]
no_license
https://github.com/Dingrongdeer/X-Village-2018-Exercise
2c68706b8e6cdabf967f8d73d35f09c77f8545c8
856209c28f82798a2ffeede96669ab703f9950e8
refs/heads/master
2020-03-23T07:44:45.888142
2018-07-17T14:06:23
2018-07-17T14:06:23
141,288,101
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def guess_luckynumber(): import random lucky_number=random.randint(1,100) number=int(input("清輸入終極密碼:")) while number!= lucky_number: if number<lucky_number: print ("再大一點") number=int(input("Please enter an luncky number:")) else: print ("再小一點") number=int(input("Please enter an luncky number:")) print ("猜對了!") guess_luckynumber()
UTF-8
Python
false
false
467
py
1
ex3.py
1
0.571096
0.561772
0
15
27.666667
63
JoshuaGhost/e2expred
5,394,478,939,405
0a36d847d1859685dc370564028951dc94cb1229
a9a7c00fd287f4c33d58719f8ec53c17f8560486
/latent_rationale/common/regularizers.py
b5fb2d89b25316e57577023b84988b84084edbf5
[ "MIT" ]
permissive
https://github.com/JoshuaGhost/e2expred
f0ac2bf66c172aad9b47b6d4ebd9ad1ad7ed489b
f4dee47c41748a64509b68daee83d97919b6c978
refs/heads/main
2023-05-14T17:55:13.365088
2021-01-13T17:11:14
2021-01-13T17:11:14
329,074,920
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import torch def l0_for_hardkuma(dists, mask): batch_size = mask.size(0) lengths = mask.sum(1).float() # pre-compute for regularizers: pdf(0.) if len(dists) == 1: pdf0 = dists[0].pdf(0.) else: pdf0 = [] for t in range(len(dists)): pdf_t = dists[t].pdf(0.) pdf0.append(pdf_t) pdf0 = torch.stack(pdf0, dim=1) # [B, T, 1] pdf0 = pdf0.squeeze(-1) pdf0 = torch.where(mask, pdf0, pdf0.new_zeros([1])) # [B, T] # L0 regularizer pdf_nonzero = 1. - pdf0 # [B, T] pdf_nonzero = torch.where(mask, pdf_nonzero, pdf_nonzero.new_zeros([1])) l0 = pdf_nonzero.sum(1) / (lengths + 1e-9) # [B] l0 = l0.sum() / batch_size return l0
UTF-8
Python
false
false
729
py
28
regularizers.py
21
0.541838
0.496571
0
26
27.076923
76
Eiriksak/Network_Security
3,865,470,594,134
9ae42a74ff1b62f22bee91bcec4f82e72ccbb2c4
191353ac721faf66d17ae0a281ab9e0436a51e63
/Assignment3/test_dsa.py
2144bbbe21aca78d71a05291e9bf914c7362bbb3
[]
no_license
https://github.com/Eiriksak/Network_Security
b9ff2f5356a2c70ceb63ceaefd9a75b6819217a6
ada377298cf0f0d550c410f7f511e061cbef0a9b
refs/heads/master
2023-01-07T00:20:21.748482
2020-11-03T19:53:23
2020-11-03T19:53:23
300,072,354
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import dsa import argparse if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--mode', choices=['normal', 'attacker'], required=True, help='Test DSA normally or as an attacker') args = parser.parse_args() if args.mode == 'normal': p, q, g = dsa.gen_pubkeys(L=512) # User 1 generates shared global public key values x, y = dsa.gen_userkeys(p, q ,g) # User 1 generates private and public keys message = input("(User1) Message: ") r, s, message = dsa.sign_message(message, p, q, g, x) # User 1 signs message print(f'(User1) have now signed the message and generated these numbers:\nr: {r}\ns: {s}') # User 2 will now verify the message it receives from User 1 print(f'\n\n********** (User2) has reveived the message and will now verify it **********') verified = dsa.verify_message(message, p, q, g, r, s, y) if verified: print("The message was verified!") else: print("The message was not verifed..") elif args.mode == 'attacker': p, q, g = dsa.gen_pubkeys(L=512) # User 1 generates shared global public key values x, y = dsa.gen_userkeys(p, q ,g) # User 1 generates private and public keys message = input("(User1) Message: ") r, s, message = dsa.sign_message(message, p, q, g, x) # User 1 signs message print(f'(User1) have now signed the message and generated these numbers:\nr: {r}\ns: {s}') delim = '#'*20 print(f'{delim } ATTACKER INTERUPTS {delim}\nEdit the original message') message = input('(Attacker) Edit message: ') # User 2 will now verify the faked message it receives from the attacker print(f'\n\n********** (User2) has reveived the message and will now verify it **********') verified = dsa.verify_message(message, p, q, g, r, s, y) if verified: print("The message was verified!") else: print("The message was not verifed..")
UTF-8
Python
false
false
2,042
py
21
test_dsa.py
16
0.598433
0.587169
0
41
48.658537
124
morawi/TextGAN
3,100,966,416,773
16f509a5afb52b503601e0694e395162ce25281d
64a9b85e24f8c038384473df988a5a480d8db20b
/B_model.py
c8fc5834237c3d5d1d9cff4df6c5bb3c5506f926
[ "LicenseRef-scancode-other-permissive", "MIT" ]
permissive
https://github.com/morawi/TextGAN
4a8af74e499b89a7ddded8637c53b1611df11b42
1633c7cf6ee60c624da6aa2248c41c264225fa8e
refs/heads/master
2020-05-14T16:44:44.136345
2019-08-28T00:46:37
2019-08-28T00:46:37
181,877,666
2
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri May 17 11:41:03 2019 @author: Mohammed Al-Rawi """ from misc_functions import binarize_tensor def get_loss_of_B_classify(real_A, real_B): # item is a string 'A', 'A_neg' of the sample optimizer_classify.zero_grad() B_ = binarize_tensor(G_AB(real_A).detach()) output = B_classify(B_) target = criterion_classify_labeling(B_, binarize_tensor(real_B)) loss_B = criterion_classify(output, target) return loss_B def train_B_classify(no_epochs): print('Training B-Classifier') B_classify.train() loss_of_model = [] # time.sleep(1); # pbar = tqdm(total=no_epochs); # time.sleep(1) loss = None for epoch_ in range(1, no_epochs): scheduler_B.step() total_loss = 0 # pbar.update(1) for i, batch in enumerate(dataloader): real_B_pos = batch['B'].type(Tensor).to(device) # +ve Ground Truth real_B_neg = batch['B_neg'].type(Tensor).to(device) # -ve Ground Truth loss_B_pos = get_loss_of_B_classify(batch['A'].type(Tensor).to(device), real_B_pos) # ''' +ve phase ''' loss_B_neg = get_loss_of_B_classify(batch['A_neg'].type(Tensor).to(device), real_B_neg) # ''' -ve phase pass ''' loss = torch.min(loss_B_pos, loss_B_neg) / ( torch.max(loss_B_pos, loss_B_neg)+ 1) loss.backward() optimizer_classify.step() total_loss += loss.cpu().data.detach().numpy().tolist() print(', ', total_loss/len(dataloader.dataset), end='') loss_of_model.append(total_loss/len(dataloader.dataset)) return loss_of_model def test_B_classify(test_loss, test_dataloader): loss = 0 B_classify.eval() with torch.no_grad(): for batch_idx, batch in enumerate(test_dataloader): real_B = batch['B'].type(Tensor) # since we are thresholding, there is no difference between B and B_neg real_A_pos = batch['A'].type(Tensor) real_A_neg = batch['A_neg'].type(Tensor) GAN_B_pos = G_AB(real_A_pos).detach() GAN_B_neg = G_AB(real_A_neg).detach() out_B_pos = B_classify(binarize_tensor(GAN_B_pos)).detach() # if we do thresholding in training, we should do it here out_B_neg = B_classify(binarize_tensor(GAN_B_neg)).detach() if out_B_neg<out_B_pos: B_good = GAN_B_neg else: B_good = GAN_B_pos loss += test_loss(real_B, B_good) x = G_AB( G_AB(GAN_B_pos) + G_AB(GAN_B_neg ) ) img_sample = torch.cat( (real_A_pos, real_B, GAN_B_pos, GAN_B_neg, G_AB(GAN_B_pos), G_AB(GAN_B_neg), x ), 0) save_image(img_sample, 'images/%s/%s.png' % (opt.dataset_name, batch_idx), nrow=7, normalize=True) model_id = 1 torch.save(B_classify.state_dict(), 'saved_models/%s/model_classify_%d.pth' % (opt.dataset_name, model_id)) return loss/len(test_dataloader.dataset) #lr_classify = 0.01 #B_classify = torchvis_models.resnet18(pretrained=True) #B_classify.fc = torch.nn.Linear(2048, 1) #2048 for 256x256 image #B_classify.aux_logits = False #B_classify = B_classify.to(device) #optimizer_classify = torch.optim.Adam(B_classify.parameters(), lr=lr_classify) #criterion_classify_labeling = torch.nn.L1Loss() #criterion_classify = torch.nn.L1Loss() #scheduler_B = torch.optim.lr_scheduler.MultiStepLR(optimizer_classify, # milestones=[50, 150, 300] , gamma= 0.1) # my_loss = train_B_classify(100) test_performance = test_B_classify(criterion_classify, val_dataloader) print(test_performance.item())
UTF-8
Python
false
false
4,336
py
9
B_model.py
7
0.515913
0.502306
0
104
40.701923
129
danieltimko/aoc2020
9,431,748,189,525
0d9b0f26d355be4808c1b6ca3fd7cf0be277ad7f
5a6aa88acebefcb79d7e33ed0898b9f841816119
/2021/21.py
afd295bfcd248abb0a722ee107670e6be3e980ee
[]
no_license
https://github.com/danieltimko/aoc2020
396cc7ce1380f30f18dbb3523ad9a7b5025dc34f
8961ec2774ed30cb49e8c479e9b6989d31557745
refs/heads/master
2023-02-07T05:23:01.748630
2022-12-25T06:14:02
2022-12-25T06:14:02
318,085,942
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from itertools import product def task1(positions): def roll(): n = 1 while True: yield n n = 1 if n == 100 else n+1 scores = [0, 0] rolls = 0 gen = roll() while True: for i in range(2): rollsum = next(gen) + next(gen) + next(gen) rolls += 3 positions[i] = (positions[i] + rollsum) % 10 scores[i] += positions[i] + 1 if scores[i] >= 1000: return rolls * min(scores) def task2(positions): def get_subresult(pos1, pos2, score1, score2): if score1 >= 21: return 1, 0 if score2 >= 21: return 0, 1 if (pos1, pos2, score1, score2) in cache: return cache[(pos1, pos2, score1, score2)] n1 = 0 n2 = 0 for rolls in list(product([1, 2, 3], repeat=3)): new_pos1 = (pos1 + sum(rolls)) % 10 # switch players every round subresult2, subresult1 = get_subresult(pos2, new_pos1, score2, score1+new_pos1+1) n1 += subresult1 n2 += subresult2 cache[(pos1, pos2, score1, score2)] = (n1, n2) return n1, n2 cache = {} return max(get_subresult(positions[0], positions[1], 0, 0)) def run(): print(task1([1, 0])) print(task2([1, 0])) run()
UTF-8
Python
false
false
1,347
py
75
21.py
74
0.499629
0.437268
0
52
24.903846
93
aajenkins/LTSPM
14,826,227,125,581
f4fe4554070b44c0b2e700d016e90bfa26f29804
4964e8c02053a9616c3fe4800cacd6d74acb2f34
/cofeb_analysis/irmn/image_erosion_stripe_width.py
64c6522110b9e9c7c92a291422ced4e22915e88e
[]
no_license
https://github.com/aajenkins/LTSPM
cbb714c68701fc47f196d29f383fa9fcd6a51f5c
75f640e1b2a7173b083690ec4c84337199bd44ab
refs/heads/master
2020-07-03T15:35:10.578245
2018-03-19T21:45:37
2018-03-19T21:45:37
74,162,494
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# @Author: Jenkins Alec <alec> # @Date: 2017-02-15T11:26:35-08:00 # @Project: LTSPM analysis # @Last modified by: alec # @Last modified time: 2017-02-15T12:01:11-08:00 import matplotlib.pyplot as plt import matplotlib.pylab as pylab import numpy as np from scipy.ndimage.morphology import binary_erosion from scipy.misc import imread scannum = 1836 impath = '/Users/alec/UCSB/scan_images/irmn/domains'+str(scannum)+'contour.png' domains = imread(impath, flatten=True) bdomains = 1*domains bdomains = np.multiply(1/255,domains).astype(int) number_erosions = 15 image_sum = np.zeros((number_erosions)) for i in range(number_erosions): image_sum[i] = np.sum(bdomains) bdomains = binary_erosion(bdomains).astype(np.int) plt.close('all') fig1, ax1 = plt.subplots() plt.imshow(bdomains) fig1, ax1 = plt.subplots() plt.plot(image_sum) plt.show()
UTF-8
Python
false
false
859
py
154
image_erosion_stripe_width.py
142
0.733411
0.67404
0
34
24.264706
79
styler00dollar/Colab-BasicSR
16,741,782,554,234
7649bf53ad2b2c5763ff30b3460145cc11fa1683
af94f63c4ba68c1e06e2550449569a11ee53bee6
/code/scripts/fix_state_dict.py
adc8e1eb5f274a918680b2b43764a34d24d5f3cf
[]
no_license
https://github.com/styler00dollar/Colab-BasicSR
4b79da57a7afaff32bf2d671442a5171e0cc1e87
626d93bf8d3d3db5447ae6946d4ba8bb3d00a482
refs/heads/master
2023-06-13T04:15:05.808917
2023-05-27T01:17:56
2023-05-27T01:17:56
321,114,389
4
1
null
null
null
null
null
null
null
null
null
null
null
null
null
import torch # from this model model1 = torch.load("team04_rlfn.pth") # into this model model2 = torch.load("Checkpoint_0_0_G.pth") for k in model1.keys(): try: if "upsampler.0" in k: continue print(f"setting {k}") model2[k] = model1[k] except Exception as e: print(e) pass torch.save(model2, "fixed.pth") print("done")
UTF-8
Python
false
false
385
py
106
fix_state_dict.py
95
0.587013
0.558442
0
21
17.333333
43
stereoliza/learning
1,082,331,762,265
31a31325c86ce42de44fc7575a92def0b72ef878
7918b5e9997744e2a641c231c80dd257ee742460
/main.py
e7a3602669d3d9221f0d46fac13caae3a28cf828
[]
no_license
https://github.com/stereoliza/learning
cc72cd5d907ae06e01f73bbc30be3499fcd20e6c
6268095ee02c6fcdda54dd86dc26f37a51ffc229
refs/heads/main
2023-09-06T02:24:00.169886
2021-11-11T23:41:24
2021-11-11T23:41:24
394,315,193
0
0
null
false
2021-11-11T23:41:25
2021-08-09T14:07:20
2021-10-30T20:22:19
2021-11-11T23:41:24
33
0
0
0
Python
false
false
from location import find_location import sys ip = sys.argv[1] location = find_location(str(ip)) print(location)
UTF-8
Python
false
false
119
py
11
main.py
10
0.731092
0.722689
0
7
15.428571
34
BahruDa/alx-higher_level_programming-2
15,367,393,024,180
cd7d96d55cb8b434fca5647acb17ec73ede09aa8
b7f25449c2baae8823f1307e134a775d6ab64272
/0x0F-python-object_relational_mapping/model_state.py
ff208ecad1588628c4dad4a3a23774bab485effb
[]
no_license
https://github.com/BahruDa/alx-higher_level_programming-2
85f5155328750430949d49e8d2d27761c71360fe
047d1dd0dec5e942e9c638d0e4cc5fc985061b56
refs/heads/main
2023-08-15T03:07:14.699713
2021-09-22T23:30:52
2021-09-22T23:30:52
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python3 """ a python module that contains the class definition of a State and an instance Base = declarative_base(): """ from sqlalchemy import Column, Integer, String from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class State(Base): ''' defines a state Attr: id (int): auto-generated, unique integer, not null, & is a primary key name (): a column of a string with 128 chars and can’t be null ''' __tablename__ = 'states' id = Column(Integer, primary_key=True, nullable=False, unique=True) name = Column(String(128), nullable=False) def __init__(self, name): self.name = name
UTF-8
Python
false
false
679
py
123
model_state.py
95
0.67356
0.66322
0
26
25.038462
74
paulhodge/graveyard
2,791,728,745,102
a17ec3de4d11d39dde5b6e8c6e885ae0bcf9c060
16294f14ad0e8d2e29201fd1c3d132b7793481ca
/euler_11.py
aba69eb057fd15cdc072c27a6d66fbd35bf2e0a0
[]
no_license
https://github.com/paulhodge/graveyard
05fc3519a9c26be88947867d55980c8a11a573e7
9862a8ddc69bebb8f8df2a57647360d07da34efc
refs/heads/master
2015-08-06T09:34:28.833025
2012-02-02T06:31:00
2012-02-02T06:31:00
2,037,445
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def quadratic(a, b, c=None): import math, cmath if c: # (ax^2 + bx + c = 0) a, b = b / float(a), c / float(a) t = a / 2.0 r = t**2 - b if r >= 0: # real roots y1 = math.sqrt(r) else: # complex roots y1 = cmath.sqrt(r) y2 = -y1 return y1 - t, y2 - t def triangle_numbers(): i = 1 result = 1 yield result while True: i += 1 result += i yield result def triangle(i): out = int(i*i / 2 + i / 2) if i % 2 == 1: out = out + 1 return out print map(triangle, range(1,20)) def find_divisors(n): result = set() for d in range(2, n): if (n / d) * d == n: result.add(d) result.add(1) result.add(n) return result def product(l): out = 1 for i in l: out *= i return out smallest_with_500_divisors = product(range(1,501)) print smallest_with_500_divisors print quadratic(.5,.5,smallest_with_500_divisors) def find(): for n in triangle_numbers(): if n < smallest_with_500_divisors: continue print n if len(find_divisors(n)) > 500: print find_divisors(n) print n exit(0)
UTF-8
Python
false
false
1,168
py
18
euler_11.py
4
0.527397
0.486301
0
60
18.45
50
kimlin20011/data_mining_assignment
5,308,579,620,768
74e16a6b4a4df6ae972c01703c9a495263bca960
c4cbbbeded13f7cfefbd9a40932bc083c6ae0e8d
/q2_6/test.py
972f2d5b73acab962ad5f0037e51d457ff7d58ff
[]
no_license
https://github.com/kimlin20011/data_mining_assignment
e0e51d94b5822aa91b5d1c2d2317ba829ad1ef26
527463b1005877def75e5100ee9088b423016fb8
refs/heads/main
2023-06-24T04:54:33.078896
2021-07-28T07:08:58
2021-07-28T07:08:58
389,860,600
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from sklearn import tree import pandas as pd import graphviz df = pd.read_csv("data.csv", encoding="utf-8") print(df) features = list(df.columns[1:21]) X = df[features] y = df["class"] classifier = tree.DecisionTreeClassifier() classifier = classifier.fit(X, y) tree.plot_tree(classifier) dot_data = tree.export_graphviz(classifier, out_file=None, feature_names=features, class_names=["不能打羽球", "可以打球"], filled=True, rounded=True, leaves_parallel=True) graph = graphviz.Source(dot_data)
UTF-8
Python
false
false
603
py
22
test.py
12
0.622222
0.615385
0
19
29.789474
80
kowoolim/youtube
15,736,760,181,537
c1fb57c8b8b67246e66583bc669d2c50b115faf0
8e8d193d504ce8b136efe8d8c451eb00629b9b7c
/address/admin.py
99e45cb95ba198bb59a88bfd0effea5dfaff6069
[]
no_license
https://github.com/kowoolim/youtube
b8a84e57f57b6ca5430a3f9b3186efa37a7aa06a
fd1bfe3870bb5770e9590dd767405c3e7e272567
refs/heads/master
2023-03-12T11:44:46.495748
2021-03-01T09:18:09
2021-03-01T09:18:09
343,347,541
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.contrib import admin from address.models import Address class AddressAdmin(admin.ModelAdmin): #화면에 출력할 필드 목록을 튜플로 지정 list_display = ("name","tel","email","address") admin.site.register(Address, AddressAdmin)
UTF-8
Python
false
false
262
py
28
admin.py
18
0.747826
0.747826
0
8
27.75
51
csmith49/bach
19,310,172,996,698
72ceac3369c60850c964cf69ec3b34904b7bdd6d
1dcb9060349ac3136b39dc3bb552b9e8b39d66be
/tools/epee/epee.py
2df0eec0854761b4bced94850e78dfaf5fe41ea9
[]
no_license
https://github.com/csmith49/bach
8b0b2c04a68f3a0155083d4f7997a279f5e3e4a5
80b0c1269de3786ab76d627c4fd85205d640ca12
refs/heads/master
2021-05-07T23:15:29.353469
2017-10-18T14:18:48
2017-10-18T14:18:48
107,418,191
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from argparse import ArgumentParser from inspect import signature from importlib import machinery from csv import writer import os # store generators in a map, use decorator to tag them # label them with add_generator anywhere after this section _GENERATORS = {} def add_generator(key): def deco(f): _GENERATORS[key] = f() return f return deco def generate(*args): return [next(_GENERATORS[arg]) for arg in args] # machinery for loading annotated functions from a file class Function(object): def __init__(self, f): self._function = f params = signature(f).parameters self.inputs = [params[p].annotation for p in list(params)] self.name = self._function.__name__ def __call__(self, *args): return self._function(*args) def load_functions(path): module = machinery.SourceFileLoader('sig', path).load_module() functions = [] for name in filter(lambda s: "__" not in s, dir(module)): functions.append(Function(getattr(module, name))) return functions # entry point - args is the structure provided by argparse def main(): parser = ArgumentParser(prog="epee", description="generating CSV files for Bach") parser.add_argument('functions') parser.add_argument('-v', '--verbose', action='store_true') parser.add_argument('-d', '--delimiter', type=str, default="\t") parser.add_argument('-c', '--count', type=int, default=1000) parser.add_argument('-o', '--output', default="output") parser.add_argument('-e', '--error', default="") args = parser.parse_args() functions = load_functions(os.path.join(os.getcwd(), args.functions)) for f in functions: out = "{}/{}.facts".format(args.output, f.name) filename = os.path.join(os.getcwd(), out) os.makedirs(os.path.dirname(filename), exist_ok=True) with open(filename, 'w', newline='') as csvfile: csvwriter = writer(csvfile, delimiter=args.delimiter) for i in range(args.count): inputs = generate(*f.inputs) try: output = f(*inputs) except Exception as e: if args.verbose: print(e) output = args.error csvwriter.writerow(inputs + [output]) # GENERATORS # for dict @add_generator('dict') def dict_gen(): from random import randint while True: size = randint(0, 3) d = {} for i in range(1, size + 1): key = randint(0, 2) value = randint(0, 1) d[key] = value yield d # for finitefield (actually does fp_199) @add_generator('fp17') def fp_gen(): from random import randint while True: yield randint(0, 198) # for geometry @add_generator('point') def point_gen(): from random import randint while True: x = randint(-1, 1) y = x yield (x, y) @add_generator('rect') def rect_gen(): from random import randint while True: x = randint(-1, 1) y = x size = randint(1, 6) yield (x, y, size) @add_generator('int') def int_gen(): from numpy import random while True: a = random.normal(0, 2, 1) yield int(a[0]) @add_generator('rad') def rad_gen(): from numpy import random while True: a = random.normal(0, 2, 1) yield int(a[0]) @add_generator('posint') def posint_gen(): from random import randint while True: a = randint(1, 3) yield a # for list @add_generator('cons_int') def consint_gen(): from random import randint while True: yield randint(0, 2) @add_generator('list') def list_gen(): from random import randint while True: size = randint(0, 3) yield [randint(0, 2) for r in range(size)] # for matrix @add_generator('tensor') def tensor_gen(): from random import randint while True: x1 = randint(-1, 2) y1 = randint(-1, 1) x2 = randint(-1, 1) y2 = randint(-1, 1) yield (x1, x2, y1, y2) # for queue @add_generator('queue') def queue_gen(): from random import randint while True: size = randint(0, 3) s = [] for i in range(1, size + 1): value = randint(0, 1) s.append(value) yield s # for sets @add_generator('set') def set_gen(): from random import randint from numpy import random while True: size = abs(int(random.normal(0, 3, 1)[0])) s = set([]) for i in range(1, size + 1): value = randint(0, 2) s.add(value) yield s # for strings @add_generator('string') def string_gen(): from random import randint while True: size = randint(0,4) s = "" for i in range(1, size + 1): x = randint(0, 2) if x == 0: s += "1" if x == 1: s += "a" if x == 2: s += "A" if s == "": s = "@" yield s # for trig @add_generator('arc') def arc_gen(): from random import randint while True: yield randint(-10, 10) @add_generator('radian') def radian_gen(): from random import randint while True: yield randint(-10, 10) # if called as a standalone, execute as expected if __name__ == "__main__": main()
UTF-8
Python
false
false
5,411
py
107
epee.py
20
0.567548
0.55073
0
211
24.64455
85
pokuk76/HandsOnScikitLearnAndTensorflow
12,275,016,560,309
a30ea85709208cac42a6bc1e0f57b5137f71de4f
e1d133db78cac139e6fa9530f9431b6e81085a45
/Classification/fold.py
bd6afd95fcaa89f2a6522b7662a0db313ba9007a
[]
no_license
https://github.com/pokuk76/HandsOnScikitLearnAndTensorflow
0113dc5439ce91ee5426ac91e51b842a70f2d14e
17b87108da2be980ec913fa1b344f9a5cab7c100
refs/heads/master
2020-12-15T08:07:00.039241
2019-12-05T13:40:04
2019-12-05T13:40:04
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import pullMnist as pm import split_train_test as stt def foldMnistData(X_train, y_train): shuffle_index = np.random.permutation(60000) return X_train[shuffle_index], y_train[shuffle_index] mnist = pm.pull_mnist() X_train, X_test, y_train, y_test = stt.split_train_test(mnist) X_train, y_train = foldMnistData(X_train, y_train)
UTF-8
Python
false
false
368
py
8
fold.py
8
0.711957
0.69837
0
11
31.454545
62
int-brain-lab/iblscripts
8,280,696,963,030
c426e4479613459ce98a25df744efc651919ee9c
3c58e1d04473e8ec8b2c812a492bb7392d4dd5a8
/deploy/serverpc/utils/scan_fix_passive_files.py
ec3cf9e21a4f7feaa4cd523a9746183a5fa7a3e6
[ "MIT" ]
permissive
https://github.com/int-brain-lab/iblscripts
cf2d401ca555f20c0eea1a0d78c7e78330fb809b
44e828c3c3607bb326569bbaf136951dfb1fabad
refs/heads/master
2023-08-31T23:59:04.889864
2023-08-04T14:42:56
2023-08-04T14:42:56
187,838,029
3
9
MIT
false
2023-08-18T18:14:14
2019-05-21T13:00:12
2023-06-27T20:36:36
2023-08-18T18:14:14
11,950
3
8
7
Jupyter Notebook
false
false
from pathlib import Path import argparse import logging from ibllib.pipes.scan_fix_passive_files import execute log = logging.getLogger('ibllib') if __name__ == "__main__": parser = argparse.ArgumentParser(description='Scan and fix badly transfered passive sessions') parser.add_argument('root_data_folder', default='/mnt/s0/Data', help='Root data folder [/mnt/s0/Data]') parser.add_argument('--dry', required=False, default=False, action='store_true', help='Dry run? default: False') args = parser.parse_args() # returns data from the options specified (echo) root_path = Path(args.root_data_folder) if not root_path.exists(): log.error(f"{root_path} does not exist") from_to_pairs, moved_ok = execute(root_path, dry=args.dry) if args.dry: log.info(from_to_pairs)
UTF-8
Python
false
false
842
py
162
scan_fix_passive_files.py
110
0.67696
0.674584
0
21
39.095238
107
MrJVM/Python-Practice
609,885,356,838
7a91052052d19dabd406fc8d5153002de1afe39b
a950c299e0aab8acde0540bb0efd66ffe66177a2
/basics/prime_practice.py
7a76fd92fab6d55d4dda60a6b718aab6a88e6c96
[ "Apache-2.0" ]
permissive
https://github.com/MrJVM/Python-Practice
3cb06a159e11f55179a5dcd2701f7125a9e49f94
2f8716b149afa18f6979329cc12036e63c515823
refs/heads/master
2021-04-24T00:26:52.442841
2020-04-08T17:26:32
2020-04-08T17:26:32
250,043,590
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from math import sqrt value = 10 print(f'The value is {value}') d = dict(tom='22',sam='50') for k,v in d.items(): print("Key={} Value={}",k,v) #Collection comprehension def is_prime(x): if x < 2: return False for i in range(2, int(sqrt(x))+1): if x%i == 0: return False return True l = [x for x in range(101) if is_prime(x)] print(l)
UTF-8
Python
false
false
384
py
7
prime_practice.py
6
0.565104
0.53125
0
21
17.333333
43
vindafadilla/ta_backend
11,252,814,315,618
222dae8bef272455ca93060e6e890e58f9c7cac9
dea2639a56122d36624d7ab2687bff4a32c8cd90
/datacleaning/dataCleaning.py
f875fd4e8e3ecbd24d497566d4218f6a8e038daf
[]
no_license
https://github.com/vindafadilla/ta_backend
139bb8e4026f07ca4a6658683e466f0ce3fe486e
db4b819bda668c1531d12c49ca61454dec2b57bb
refs/heads/master
2021-01-20T04:12:27.883453
2017-06-21T01:38:53
2017-06-21T01:38:53
89,660,284
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from ta_backend.datapreparation.dataTwitter import DataTwitter from ta_backend.datapreparation.appropriateDataTweetFilter import AppropriateDataTweetFilter from ta_backend.datacleaning.normalization import Normalization class DataCleaning: def dataCleaningProcess(self, listTweet): try: normalization = Normalization() print(listTweet["tweetList"][1]["text"]) listDataTweetNormalized = [] for index in range(len(listTweet["tweetList"])): dataTweetWithoutHTMLChar = normalization.escapingHTMLChar(listTweet["tweetList"][index]["text_processed"]) listTweet["tweetList"][index]["text_processed"] = dataTweetWithoutHTMLChar dataTwitterURLRemoved = normalization.urlRemoval(listTweet["tweetList"][index]["text_processed"]) listTweet["tweetList"][index]["text_processed"] = dataTwitterURLRemoved dataTweetWhitespacesNormalized = normalization.whitespace(listTweet["tweetList"][index]["text_processed"]) listTweet["tweetList"][index]["text_processed"] = dataTweetWhitespacesNormalized dataTweetAbbreviationNormalized = normalization.abbreviations(listTweet["tweetList"][index]["text_processed"]) listTweet["tweetList"][index]["text_processed"] = dataTweetAbbreviationNormalized dataTweetContractionNormalized = normalization.contractions(listTweet["tweetList"][index]["text_processed"]) listTweet["tweetList"][index]["text_processed"] = dataTweetContractionNormalized dataTweetSpellfixNormalized = normalization.spellfix(listTweet["tweetList"][index]["text_processed"]) listTweet["tweetList"][index]["text_processed"] = dataTweetSpellfixNormalized dataTweetAttachedWordsSplitted = normalization.splitAttachedWords(listTweet["tweetList"][index]["text_processed"]) listTweet["tweetList"][index]["text_processed"] = dataTweetAttachedWordsSplitted listDataTweetNormalized.append(listTweet["tweetList"][index]) tweetperDay = { 'datePeriod': listTweet["datePeriod"], 'tweetList': listDataTweetNormalized } return tweetperDay except Exception as e: return e # def insertToDatabase(self, listTweet):
UTF-8
Python
false
false
2,380
py
29
dataCleaning.py
27
0.686134
0.685714
0
37
63.351351
130
wani-hackase/wani-writeup
14,379,550,507,173
16f266b31fda360387ad509d4036acc0ab56e6f4
bffb95af93d36ecff3ed7a7cd991a6a2b82b1d57
/2020/03-b01lers/cry-safety/solve.py
48bddd88f6632e100db13db3b0ad0351d9c701d0
[ "MIT" ]
permissive
https://github.com/wani-hackase/wani-writeup
287159907aa2bb54e119bbb907836574871fa455
dd4ad0607d2f2193ad94c1ce65359294aa591681
refs/heads/master
2021-12-27T16:48:21.017138
2021-12-16T10:30:14
2021-12-16T10:30:14
170,531,761
26
1
MIT
false
2020-06-25T07:29:11
2019-02-13T15:32:43
2020-05-28T03:48:01
2020-06-25T07:27:17
55,790
17
0
0
HTML
false
false
import gmpy2 e = 0x10001 with open('flag.enc', 'rb') as f: flag = f.read() flag = int.from_bytes(flag, byteorder='little') m, exact = gmpy2.iroot(flag, e) m = int(m) if exact: flag = m.to_bytes(m.bit_length()//8+1, byteorder='little') print(flag) else: print('Failed')
UTF-8
Python
false
false
289
py
235
solve.py
86
0.619377
0.584775
0
16
17.0625
62
HonglinChu/SiamTrackers
9,603,546,880,003
99b4f1a19786ba49db6b026b9f543f6849c04de9
abbc2d332bdfa036ac12438983e6d74cf4107e64
/SiamFCpp/SiamFCpp-video_analyst/siamfcpp/evaluation/davis_benchmark/davis2017/results.py
0c39580725cf40366e2e87f9096b7f733595fb2c
[]
permissive
https://github.com/HonglinChu/SiamTrackers
c494cff7543a433e8ec7dbf6d9439b1e7395b0c0
805208b5348346d35e64abcbe901a3829743e157
refs/heads/master
2023-08-29T06:50:59.532271
2023-03-06T09:13:53
2023-03-06T09:13:53
253,718,080
1,166
243
Apache-2.0
false
2023-08-03T16:39:53
2020-04-07T07:24:00
2023-08-03T02:47:52
2023-08-03T16:39:53
67,076
1,054
227
86
Python
false
false
import os import numpy as np from PIL import Image import sys class Results(object): def __init__(self, root_dir): self.root_dir = root_dir def _read_mask(self, sequence, frame_id): try: mask_path = os.path.join(self.root_dir, sequence, '{}.png'.format(frame_id)) return np.array(Image.open(mask_path)) except IOError as err: sys.stdout.write(sequence + " frame %s not found!\n" % frame_id) sys.stdout.write( "The frames have to be indexed PNG files placed inside the corespondent sequence " "folder.\nThe indexes have to match with the initial frame.\n") sys.stderr.write("IOError: " + err.strerror + "\n") sys.exit() def read_masks(self, sequence, masks_id): mask_0 = self._read_mask(sequence, masks_id[0]) masks = np.zeros((len(masks_id), *mask_0.shape)) for ii, m in enumerate(masks_id): masks[ii, ...] = self._read_mask(sequence, m) num_objects = int(np.max(masks)) tmp = np.ones((num_objects, *masks.shape)) tmp = tmp * np.arange(1, num_objects + 1)[:, None, None, None] masks = (tmp == masks[None, ...]) > 0 return masks
UTF-8
Python
false
false
1,285
py
629
results.py
318
0.558755
0.554086
0
33
37.939394
98
Rapator-Tech-Academy/rapator-final-project
335,007,452,715
6c79149ac877d2d8fc101ba38d8dd241d769e539
06d1a334cbf7c02db43ba3890a9ef8f1d862123e
/app/core/admin.py
d7d55b2b3cb3a3f3aedede5907f9255d711cf992
[]
no_license
https://github.com/Rapator-Tech-Academy/rapator-final-project
42a85b7229e7b68a806c48fb69e9a65f21f2fd62
63e6df63f7a16d5402a7b437da3939d93549ca8e
refs/heads/main
2023-03-19T04:21:30.527519
2021-03-04T09:09:28
2021-03-04T09:09:28
322,076,812
0
2
null
false
2021-03-04T09:09:29
2020-12-16T19:06:10
2021-02-24T00:48:14
2021-03-04T09:09:28
31,204
0
1
0
Python
false
false
from django.contrib import admin from django.contrib.flatpages.admin import FlatPageAdmin from django.contrib.flatpages.models import FlatPage from django.db import models from mptt.admin import MPTTModelAdmin from ckeditor.widgets import CKEditorWidget from mptt.admin import MPTTModelAdmin from core.models import Category, City, ProductImage, Product class FlatPageCustom(FlatPageAdmin): formfield_overrides = { models.TextField: {'widget': CKEditorWidget} } admin.site.unregister(FlatPage) admin.site.register(FlatPage, FlatPageCustom) admin.site.register(City) admin.site.register(Category, MPTTModelAdmin) admin.site.register(ProductImage) admin.site.register(Product)
UTF-8
Python
false
false
701
py
83
admin.py
37
0.810271
0.810271
0
27
24.925926
61
hugovk/EveryElection
1,778,116,494,175
f1e817b0dae2360b08971327f9c86d274decdb0c
d8c209163273688c9eb460674b89a10a951e4cb4
/every_election/apps/organisations/constants.py
bb4ffe68603cb5280acb1724b7483e2bfd8bf24c
[ "MIT" ]
permissive
https://github.com/hugovk/EveryElection
9fa51edee42de06ab8caff225c64dfed4c61211b
b79123347dbfe1f7610f3b092fb5418b8e12f393
refs/heads/master
2018-04-07T15:37:19.278115
2017-04-25T13:08:19
2017-04-25T13:08:19
89,626,719
0
0
null
true
2017-04-27T18:18:44
2017-04-27T18:10:16
2017-04-27T18:10:19
2017-04-27T18:12:30
32,698
0
0
1
Python
null
null
PARENT_TO_CHILD_AREAS = { 'DIS': ['DIW',], 'MTD': ['MTW',], 'CTY': ['CED',], 'LBO': ['LBW',], 'CED': ['CPC',], 'UTA': ['UTW', 'UTE'], 'NIA': ['NIE',], 'COI': ['COP',], } CHILD_TO_PARENT_AREAS = { 'DIW': 'DIS', 'MTW': 'MTD', 'UTW': 'UTA', 'UTE': 'UTA', 'CED': 'CTY', 'LBW': 'LBO', 'CPC': 'CED', 'COP': 'COI', } AREAS_WITHOUT_PCCS = [ "metropolitan", "city-of-london", "northern-ireland", ] AREAS_IN_WALES = [ 'south-wales', 'north-wales', 'gwent', 'dyfed-powys', ] POLICE_AREA_NAME_TO_GSS = { 'avon-and-somerset': [ 'E10000027', 'E06000022', 'E06000023', 'E06000024', 'E06000025'], 'bedfordshire': ['E06000055', 'E06000056', 'E06000032'], 'cambridgeshire': ['E10000003', 'E06000031'], 'cheshire': ['E06000049', 'E06000050', 'E06000006', 'E06000007'], 'cleveland': ['E06000001', 'E06000002', 'E06000003', 'E06000004'], 'cumbria': ['E10000006'], 'derbyshire': ['E10000007', 'E06000015'], 'devon-and-cornwall': [ 'E10000008', 'E06000052', 'E06000026', 'E06000027', 'E06000053'], 'dorset': ['E10000009', 'E06000028', 'E06000029'], 'durham': ['E06000005', 'E06000047'], 'dyfed-powys': ['W06000008', 'W06000010', 'W06000009', 'W06000023'], 'essex': ['E10000012', 'E06000033', 'E06000034'], 'gloucestershire': ['E10000013'], 'warwickshire': ['E10000031'], 'greater-manchester': [ 'E08000001', 'E08000002', 'E08000003', 'E08000004', 'E08000005', 'E08000006', 'E08000007', 'E08000008', 'E08000009', 'E08000010'], 'gwent': ['W06000021', 'W06000019', 'W06000018', 'W06000022', 'W06000020'], 'hampshire': ['E10000014', 'E06000046', 'E06000044', 'E06000045'], 'hertfordshire': ['E10000015'], 'humberside': ['E06000011', 'E06000012', 'E06000013', 'E06000010'], 'kent': ['E10000016', 'E06000035'], 'lancashire': ['E10000017', 'E06000008', 'E06000009'], 'leicestershire': ['E10000018', 'E06000016', 'E06000017'], 'lincolnshire': ['E10000019'], 'merseyside': [ 'E08000011', 'E08000012', 'E08000014', 'E08000015', 'E08000013'], 'norfolk': ['E10000020'], 'north-wales': ['W06000001', 'W06000002', 'W06000004', 'W06000005', 'W06000003', 'W06000006'], 'north-yorkshire': ['E10000023', 'E06000014'], 'northamptonshire': ['E10000021'], 'northumbria': ['E06000057', 'E08000037', 'E08000021', 'E08000022', 'E08000023', 'E08000024'], 'nottinghamshire': ['E10000024', 'E06000018'], 'south-wales': ['W06000015', 'W06000011', 'W06000013', 'W06000024', 'W06000012', 'W06000016', 'W06000014'], 'south-yorkshire': ['E08000016', 'E08000017', 'E08000018', 'E08000019'], 'staffordshire': ['E10000028', 'E06000021'], 'suffolk': ['E10000029'], 'surrey': ['E10000030'], 'sussex': ['E10000011', 'E10000032', 'E06000043'], 'thames-valley': ['E06000036', 'E06000038', 'E06000039', 'E06000037', 'E06000040', 'E06000041', 'E10000002', 'E10000025', 'E06000042'], 'west-mercia': ['E06000051', 'E10000034', 'E06000019', 'E06000020'], 'west-midlands': ['E08000025', 'E08000026', 'E08000027', 'E08000028', 'E08000029', 'E08000030', 'E08000031'], 'west-yorkshire': [ 'E08000032', 'E08000033', 'E08000034', 'E08000035', 'E08000036'], 'wiltshire': ['E06000054', 'E06000030'], } COMBINED_AUTHORITY_SLUG_TO_GSS = { 'cambridgeshire-and-peterborough': ['E06000031', 'E10000003', 'E07000008', 'E07000011', 'E07000009', 'E07000012', 'E07000010'], 'greater-manchester-ca': ['E08000001', 'E08000002', 'E08000003', 'E08000004', 'E08000005', 'E08000006', 'E08000007', 'E08000008', 'E08000009', 'E08000010'], 'liverpool-city-ca': ['E06000006', 'E08000011', 'E08000012', 'E08000013', 'E08000014', 'E08000015'], 'tees-valley': ['E06000005', 'E06000001', 'E06000002', 'E06000003', 'E06000004'], 'west-midlands': ['E08000025', 'E08000026', 'E08000027', 'E08000028', 'E08000029', 'E08000030', 'E08000031'], 'west-of-england': ['E06000022', 'E06000023', 'E06000025'], }
UTF-8
Python
false
false
4,209
py
5
constants.py
5
0.576146
0.235923
0
104
39.471154
81
peernode/offline_platform
7,490,422,977,018
86b60e420087a6b9c9e82ffdd77831c6cb059dbc
5c5e917a2ca20a2f3fdd6d1a01d66f3df0553a6c
/flashVoD/rate/connect_ratio_views.py
0a7671df5d1fabbdbd7972fba15156d83f9755d2
[ "Apache-2.0" ]
permissive
https://github.com/peernode/offline_platform
9d384262c4aee2c626630d5c5e3a321a351bd00c
3458dc3be422af3670776d35140b37b9f9637edd
refs/heads/master
2020-05-26T21:45:44.997335
2015-01-27T02:04:58
2015-01-27T02:04:58
29,892,543
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- import json from django.http import HttpResponse from rate.models import * def update_connect_ratio(request): result="ok" if request.method=='POST': decodes=json.loads(request.body) try: ver=version_info.get_version(decodes['ver']) create_date='%s-%s-%s'%(decodes['create_date'][0:4], decodes['create_date'][4:6], decodes['create_date'][6:8]) # total suc info total_obj=connect_ratio(Date=create_date, Version=ver, ConnectType=0, Hour=decodes['hour'], PostTotal=decodes['post_total'], Fenzi=decodes['suc_total']) total_obj.save() # total offline info offline_obj=connect_ratio(Date=create_date, Version=ver, ConnectType=2, Hour=decodes['hour'], PostTotal=decodes['post_total'], Fenzi=decodes['fail_total']) offline_obj.save() # first suc info first_obj=connect_ratio(Date=create_date, Version=ver, ConnectType=1, Hour=decodes['hour'], PostTotal=decodes['first_post_total'], Fenzi=decodes['first_suc_total']) first_obj.save() # first offline info first_offline_obj=connect_ratio(Date=create_date, Version=ver, ConnectType=3, Hour=decodes['hour'], PostTotal=decodes['first_post_total'], Fenzi=decodes['first_fail_total']) first_offline_obj.save() except ValueError, e: result="error: %s"%e print e except Exception, e: result="error: %s"%e print e else: result="error" respStr=json.dumps({"result":result}) return HttpResponse(respStr, content_type="application/json")
UTF-8
Python
false
false
2,442
py
65
connect_ratio_views.py
41
0.423423
0.418919
0
60
39.7
122
Gregorh98/PlanterCostCalculator
6,597,069,783,886
0bc508fc1d5b5309cedead5f4aaf1026e189863f
3210361298a54c2415ac9b70dc4fcd59051a1de9
/planters.py
caa45fa9f84702a50fd273bc1beff0ce35a9f5ab
[]
no_license
https://github.com/Gregorh98/PlanterCostCalculator
dc6f421157fbd59c55e59791e3d9d245bdcc6012
24907112b8247f27d20819e34814c64c0aa3e696
refs/heads/main
2023-03-02T19:30:30.749010
2021-02-13T23:35:29
2021-02-13T23:35:29
336,054,569
0
0
null
false
2021-02-07T01:09:50
2021-02-04T19:02:03
2021-02-07T01:09:11
2021-02-07T01:09:09
49
0
0
0
Python
false
false
import planks, linerRoll import json, math class Planter(): def __init__(self, dimensions, settings): self.height, self.width, self.length = dimensions self.settings = settings self.markup = self.settings["general"]["markup"] self.measurementType = self.settings["general"]["defaultUnitOfMeasurement"] self.plank = planks.Plank(self.settings) if self.length >= 90: self.numberOfSupportPlanks = 6 else: self.numberOfSupportPlanks = 4 def getAreaInside(self): areaOfAirFloor = (self.width-(self.plank.height*2))*(self.length-(self.plank.height*2)) innerArea = areaOfAirFloor * self.height return innerArea def getAreaOutside(self): innerArea = self.getAreaInside() totalArea = (self.width * self.length) * self.height outsideArea = totalArea - innerArea return outsideArea def calcScrewsNeeded(self): return 50 def calcScrewCost(self): screwsPerPlanter = self.calcScrewsNeeded() screwsPerBox = self.settings["screws"]["numberPerBox"] costPerBox = self.settings["screws"]["cost"] costPerPlanter = ((costPerBox/screwsPerBox)*screwsPerPlanter) return (costPerPlanter) def calcWoodCostArea(self): totalArea = self.getAreaOutside() costPerArea = totalArea*self.plank.getCostPerCm3() return costPerArea def calcWoodCostPlanks(self): woodCost = self.calcWoodNeeded() * self.plank.cost return woodCost def calcLinerCost(self): #calculate areas of all box faces and ground #Multiply the sum of these by liner cost per cm2 self.liner = linerRoll.Liner(self.settings) longSideAreas = 2*((self.length*self.height) - (2*self.plank.height)) shortSideAreas = 2*((self.width*self.height) - (2*self.plank.height)) baseArea = ((self.length*self.width)-(4*self.plank.width)) totalAreaToCover = longSideAreas+shortSideAreas+baseArea totalLinerCost = self.liner.getCostPerCm2()*totalAreaToCover return totalLinerCost def calcTotalCost(self): total = self.calcScrewCost() + self.calcWoodCostPlanks() + self.calcLinerCost() return total def calcWoodNeeded(self): planterArea = self.getAreaOutside() plankArea = self.plank.getArea() supportPlanks = ((self.plank.height*self.plank.width*self.height)*self.numberOfSupportPlanks) woodNeeded = math.ceil((planterArea+supportPlanks)/plankArea) return woodNeeded def calcPlanksNeeded(self): planksNeededForSections = int((2*(self.height/self.plank.width))) lengthPlankDimensions = (str(self.length)+ "x" + str(self.plank.width)) widthPlankDimensions = (str(self.width) + "x" + str(self.plank.width)) supportPlankDimensions = (str(self.height) + "x" + str(self.plank.width)) planksNeeded = [["Length", lengthPlankDimensions, planksNeededForSections], ["Width", widthPlankDimensions, planksNeededForSections], ["Supports", supportPlankDimensions, self.numberOfSupportPlanks]] return planksNeeded def calcSoilNeeded(self): innerVolume = self.getAreaInside() soilLitresNeeded = math.ceil(innerVolume/1000) return soilLitresNeeded
UTF-8
Python
false
false
3,035
py
13
planters.py
7
0.739703
0.732784
0
94
31.255319
201
pgmac/aws_helpers
9,818,295,246,684
5d35a462f29e03a62847aa0f129004d922ca6d28
ca769b501ae3b5a9cc62c203aca749579eea5abf
/route_53.py
a29d69cffb0df7c123fb288b01a9332d082c1c3a
[]
no_license
https://github.com/pgmac/aws_helpers
3fb8c08cf9f9acfbb53916c193eea0532cf15777
ce0b7c22d2c1f78400dde758330cb2394751f19c
refs/heads/master
2022-10-19T09:31:07.212200
2022-09-19T07:33:50
2022-09-19T07:33:50
123,996,034
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python3 """List the Route 53 DNS Entries""" from pprint import pprint import boto3 from botocore.exceptions import ClientError def rr_display(client, rrset, level=0): #print(rrset) print("{}{}\t{}".format("\t"*level, rrset['Name'], rrset['Type'])) print("{}{}".format("\t"*(level+1), rrset['ResourceRecords'])) def zone_display(client, zone_det, level=0): """Display the zone details""" print("{}{}".format("\t"*level, zone_det['Name'])) #print(zone_det) response = client.list_resource_record_sets(HostedZoneId=zone_det['Id']) zone = [rr_display(client, rrset, (level+1)) for rrset in response['ResourceRecordSets']] return zone def main(): """Get the details""" r53 = boto3.client('route53') try: response = r53.list_hosted_zones() zones = [zone_display(r53, item) for item in response['HostedZones']] #pprint(out_put) #_ = (print(out_item) for out_item in out_put) except ClientError as c_e: print(c_e) return zones if __name__ == '__main__': main()
UTF-8
Python
false
false
1,070
py
10
route_53.py
9
0.621495
0.605607
0
35
29.571429
93
SEA-group/wowp_scripts
12,506,944,802,968
fae8ae7215f5149ae378762fbc38b38ad1fe1590
3b504a983f1807ae7c5af51078bfab8c187fc82d
/client/fm/FMAvatarMethods.py
eae6f704f9f35b890ede8902abad6704e7ef4eda
[]
no_license
https://github.com/SEA-group/wowp_scripts
7d35fd213db95ea6b3dbd1ec6d3e0f13de86ba58
2fe54a44df34f2dcaa6860a23b835dcd8dd21402
refs/heads/master
2021-09-07T23:10:13.706605
2018-03-02T17:23:48
2018-03-02T17:23:48
117,280,141
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Embedded file name: scripts/client/fm/FMAvatarMethods.py def fmEmpty(func): return func def fmAvatarMethods(decorator): if decorator is None: decorator = fmEmpty def addFMAvatarMethods(objClass): class decorated(objClass): @decorator def fmData(self, data): pass @decorator def fmInit(self, ticksPerUpdate, position, rotation): pass @decorator def fmSync(self, frames): pass @decorator def fmDiff(self, data): pass @decorator def fmBinDataBegin(self): pass @decorator def fmBinData(self, data): pass @decorator def fmBinDataComplete(self): pass decorated.__name__ = objClass.__name__ return decorated return addFMAvatarMethods
UTF-8
Python
false
false
971
py
1,504
FMAvatarMethods.py
1,016
0.513903
0.513903
0
47
19.680851
65
lxtxl/aws_cli
18,056,042,525,306
f319c11571d96425064427abda317d1a87ac3181
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/ec2_write_1/route-table_delete.py
bfb1a78ebfb2bfbaf6ac1d06ffec84059302e827
[]
no_license
https://github.com/lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_one_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/delete-route-table.html if __name__ == '__main__': """ associate-route-table : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/associate-route-table.html create-route-table : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/create-route-table.html describe-route-tables : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-route-tables.html disassociate-route-table : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/disassociate-route-table.html """ parameter_display_string = """ # route-table-id : The ID of the route table. """ add_option_dict = {} ####################################################################### # parameter display string add_option_dict["parameter_display_string"] = parameter_display_string # ex: add_option_dict["no_value_parameter_list"] = "--single-parameter" write_one_parameter("ec2", "delete-route-table", "route-table-id", add_option_dict)
UTF-8
Python
false
false
1,306
py
3,596
route-table_delete.py
3,594
0.686064
0.676876
0
26
49.038462
128
J-Pai/408DaisyJetson
1,735,166,815,570
89ef5193ee265e22e2c4386e82a93a56dda47c42
12af2534582974d8f07ccde9deda54e4d8967a73
/tests/pure_face_tracking.py
e89753a08f5c6f06d3fad38c5c20bb8818c9b58d
[ "MIT" ]
permissive
https://github.com/J-Pai/408DaisyJetson
853d8a1f3b0f0350128f149295a150b360bd3008
a873154325c790303f09ecfc03377066751cd601
refs/heads/master
2021-01-24T00:04:30.947233
2019-08-29T21:50:15
2019-08-29T21:50:15
122,752,585
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 import numpy as np import cv2 import face_recognition import sys from multiprocessing import Queue from multiprocessing.managers import SyncManager from queue import Queue as ImageQueue from pylibfreenect2 import Freenect2, SyncMultiFrameListener from pylibfreenect2 import FrameType, Registration, Frame from pylibfreenect2 import setGlobalLogger setGlobalLogger(None) print("OpenGL Pipeline") from pylibfreenect2 import OpenGLPacketPipeline print("Starting Tracking") def __draw_bbox(valid, frame, bbox, color, text): if not valid: return cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2, 1) cv2.putText(frame, text, (bbox[0], bbox[1] - 4), \ cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1) def __scale_frame(frame, scale_factor = 1): if scale_factor == 1: return frame return cv2.resize(frame, (0,0), fx=scale_factor, fy=scale_factor) def face_locations(image): pass class NeuronManager(SyncManager): pass NeuronManager.register('get_web_neuron') NeuronManager.register('get_alexa_neuron') manager = NeuronManager(address=('', 4081), authkey=b'daisy') manager.connect() web_neuron = manager.get_web_neuron() alexa_neuron = manager.get_alexa_neuron() faces = { "JessePai": "../faces/JPai-1.jpg", # "VladMok": "./faces/Vlad.jpg", # "TeddyMen": "./faces/TMen-1.jpg" } known_faces = {} for person in faces: image = face_recognition.load_image_file(faces[person]) print(person) face_encoding_list = face_recognition.face_encodings(image) if len(face_encoding_list) > 0: known_faces[person] = face_encoding_list[0] else: print("\tCould not find face for person...") pipeline = OpenGLPacketPipeline() target = "JessePai" fn = Freenect2() num_devices = fn.enumerateDevices() if num_devices == 0: print("No device connected!") serial = fn.getDeviceSerialNumber(0) device = fn.openDevice(serial, pipeline = pipeline) listener = SyncMultiFrameListener(FrameType.Color | FrameType.Depth) device.setColorFrameListener(listener) device.setIrAndDepthFrameListener(listener) device.start() registration = Registration(device.getIrCameraParams(), device.getColorCameraParams()) undistorted = Frame(512, 424, 4) registered = Frame(512, 424, 4) bigdepth = Frame(1920, 1082, 4) trackerObj = None face_process_frame = True bbox = None track_bbox = None while True: timer = cv2.getTickCount() frames = listener.waitForNewFrame() color = frames["color"] depth = frames["depth"] registration.apply(color, depth, undistorted, registered, bigdepth=bigdepth) bd = np.resize(bigdepth.asarray(np.float32), (1080, 1920)) c = cv2.cvtColor(color.asarray(), cv2.COLOR_RGB2BGR) face_bbox = None new_track_bbox = None face_locations = face_recognition.face_locations(c, number_of_times_to_upsample=0, model="cnn") face_encodings = face_recognition.face_encodings(c, face_locations) for face_encoding in face_encodings: matches = face_recognition.compare_faces( [known_faces[target]], face_encoding, 0.6) if len(matches) > 0 and matches[0]: (top, right, bottom, left) = face_locations[0] face_bbox = (left, top, right, bottom) mid_w = int((left + right) / 2) mid_h = int((top + bottom) / 2) break __draw_bbox(face_bbox is not None, c, face_bbox, (0, 0, 255), target) c = __scale_frame(c, scale_factor = 0.5) fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer) cv2.putText(c, "FPS : " + str(int(fps)), (100,50), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,0,255), 1) image = cv2.imencode('.jpg', c)[1].tostring() web_neuron.update([('image', image)]) listener.release(frames) self.so.close() cv2.destroyAllWindows() device.stop() device.close()
UTF-8
Python
false
false
3,881
py
12
pure_face_tracking.py
10
0.679979
0.651121
0
140
26.707143
99
hglasser/phonebook-app
5,076,651,379,539
ea43b518c046b404e0da002ff7e1cf92b02fb659
cc3bb2bf5dd9d20c3b7976a803313bd723d46ccd
/set_an_entry.py
0f84d7707926c8971578953026ac7c1456175214
[]
no_license
https://github.com/hglasser/phonebook-app
e7bab09b34e7cdffcd39d7abc13d847f84feaf8d
a49c8a03140de735fac84fb75c6653f17d8e8405
refs/heads/master
2020-03-22T05:57:24.027367
2018-07-09T13:24:30
2018-07-09T14:27:08
139,602,203
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def set_an_entry(phonebook): name = raw_input("Name: ") phone_number = raw_input("Enter phone number formatted like this ###-###-####: ") phonebook[name] = phone_number return "Entry stored for %s" % name
UTF-8
Python
false
false
220
py
8
set_an_entry.py
7
0.631818
0.631818
0
5
43.2
85
ProkopHapala/SimpleSimulationEngine
180,388,669,678
ae192ac14dcb97fbb19fc7959b83ae087b52a8b4
07e6fc323f657d1fbfc24f861a278ab57338b80a
/python/pySimE/space/exp/pykep/lambert_Prokop.py
a9901e407553f656542150e379af6b6744fa6025
[ "MIT" ]
permissive
https://github.com/ProkopHapala/SimpleSimulationEngine
99cf2532501698ee8a03b2e40d1e4bedd9a12609
47543f24f106419697e82771289172d7773c7810
refs/heads/master
2022-09-05T01:02:42.820199
2022-08-28T10:22:41
2022-08-28T10:22:41
40,007,027
35
4
null
null
null
null
null
null
null
null
null
null
null
null
null
import numpy as np import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from PyKEP import epoch, DAY2SEC, planet_ss, AU, MU_SUN, lambert_problem from PyKEP.orbit_plots import plot_planet, plot_lambert mpl.rcParams['legend.fontsize'] = 10 fig = plt.figure() ax = fig.gca(projection='3d') t1 = epoch(0) t2 = epoch(740) dt = (t2.mjd2000 - t1.mjd2000) * DAY2SEC ax.scatter(0,0,0, color='y') pl = planet_ss('earth') plot_planet(ax,pl, t0=t1, color=(0.8,0.8,1), legend=True, units = AU) rE,vE = pl.eph(t1) pl = planet_ss('mars') plot_planet(ax,pl, t0=t2, color=(0.8,0.8,1), legend=True, units = AU) rM, vM = pl.eph(t2) l = lambert_problem(rE,rM,dt,MU_SUN) nmax = l.get_Nmax() print "max number of revolutions",nmax plot_lambert(ax,l , color=(1,0,0), legend=True, units = AU) for i in range(1,nmax*2+1): print i plot_lambert(ax,l,sol=i, color=(1,0,i/float(nmax*2)), legend=True, units = AU) def axisEqual3D(ax): extents = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz']) sz = extents[:,1] - extents[:,0] centers = np.mean(extents, axis=1) maxsize = max(abs(sz)) r = maxsize/2 for ctr, dim in zip(centers, 'xyz'): getattr(ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r) axisEqual3D(ax) plt.show()
UTF-8
Python
false
false
1,376
py
1,233
lambert_Prokop.py
875
0.621366
0.579942
0
55
22.945455
81
Muele93/Ndivhu
16,338,055,628,387
6851cdc6e99a5c8cd429a19561186adeddb42896
0924cd1386c59dc746196b9a01a8dd817c9fc9cd
/Ndifunc/recursion.py
02d03a179305c11d2e7e1c28e5593d57901f292c
[]
no_license
https://github.com/Muele93/Ndivhu
2ef79771d6d3328bdb282dd10d8f2802754a3619
80c18b2c4f58bc25c59360eeeb7bfa6a62d44c47
refs/heads/master
2020-04-30T23:25:09.460560
2019-07-02T13:00:59
2019-07-02T13:00:59
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def sum_array(array): """funtion returns the sum of all items in array""" x= len(array) if x == 1: return array[0] else: return array[0] + sum_array(array[1:],) def fibonacci(n): """"Returns the nth term in a fibonacci sequence when n==0 and n==1""" if n==0 or n==1: return n else: #When n>1, the nth term of a fibonacci sequence is returned by adding the 2 previous terms return fibonacci(n-1) + fibonacci(n-2) def factorial(n): """Returns the factorial of n when it is greater than 0""" if n==0: return 1 #The factorial of 0 is always 1 else: return n* factorial(n-1) def reverse(word): """The function returns a string in reverse""" reversed_string = '' index = len(word) while index: index =index- 1 reversed_string = reversed_string + word[index] return reversed_string
UTF-8
Python
false
false
918
py
6
recursion.py
3
0.600218
0.579521
0
36
24.5
98
fbartusch/travellingSalesperson
2,216,203,154,597
5855d33f13431a9b0fdfb5ffa75d9c852d7196e3
12151fd50e483a8a68594eb795f7bc83d4e0a3ca
/tests/test_tspsolver.py
db92de8ea86a2b4f48d1e5ccb9eba91b0b264212
[ "MIT" ]
permissive
https://github.com/fbartusch/travellingSalesperson
ece0b2abdedf777125aaa959a3f9ebb13eee25c7
94d8245a08b5c17612d00d8e4704bb08f595fc1c
refs/heads/master
2022-11-13T23:07:52.911235
2020-07-02T20:01:33
2020-07-02T20:01:33
275,645,328
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from unittest import TestCase import numpy as np from tsp.tspsolver import NaiveTSPSolver from tsp.tspsolver import NearestNeighbor from tsp.tspsolver import Christofides class TestTSPSolver(TestCase): def __init__(self, *args): super().__init__(*args) # From: https://people.sc.fsu.edu/~jburkardt/datasets/tsp/tsp.html self.d = np.array([[0.0, 3.0, 4.0, 2.0, 7.0], [3.0, 0.0, 4.0, 6.0, 3.0], [4.0, 4.0, 0.0, 5.0, 8.0], [2.0, 6.0, 5.0, 0.0, 6.0], [7.0, 3.0, 8.0, 6.0, 0.0]]) def test_naive(self): solver = NaiveTSPSolver(self.d) solver.solve() self.assertEqual(solver.dist, 19) self.assertEqual(solver.solution, [0, 2, 1, 4, 3]) def test_nearest_neighbor(self): solver = NearestNeighbor(self.d) solver.solve() self.assertEqual(solver.dist, 21) self.assertEqual(solver.solution, [0, 3, 2, 1, 4]) def test_christofides(self): solver = Christofides(self.d) solver.solve() self.assertEqual(solver.dist, 21) self.assertEqual(solver.solution, [0, 2, 3, 4, 1])
UTF-8
Python
false
false
1,185
py
6
test_tspsolver.py
5
0.564557
0.504641
0
36
31.916667
74
gistable/gistable
17,411,797,444,224
9ec3489c240813c984ad94fea4c0c5a8a07e8818
255e19ddc1bcde0d3d4fe70e01cec9bb724979c9
/dockerized-gists/55c132a1941254e9ba899cbb28db8327/snippet.py
61ec914bf1f4e288d229a009547a5cf7088e9510
[ "MIT" ]
permissive
https://github.com/gistable/gistable
26c1e909928ec463026811f69b61619b62f14721
665d39a2bd82543d5196555f0801ef8fd4a3ee48
refs/heads/master
2023-02-17T21:33:55.558398
2023-02-11T18:20:10
2023-02-11T18:20:10
119,861,038
76
19
null
false
2020-07-26T03:14:55
2018-02-01T16:19:24
2020-07-19T04:11:52
2018-03-19T15:12:34
12,234
64
16
1
Python
false
false
"""Python switch-statement pseudo-implementation Mimics C-style switch statements The following code blocks should be equivalent ----------------------------------------------- switch(arg): case 1: // Handle case case 2: // Handle case default: // Handle default case ----------------------------------------------- class Case1(SwitchCall): def __init__(self, arg1, arg2): self.__arg1 = arg1 self.__arg2 = arg2 def do_call(self, *args, **kwargs) # Handle call return self.__arg1 - self.__arg2 class Case2(SwitchCall): def __init__(self, arg1, arg2): self.__arg1 = arg1 self.__arg2 = arg2 def do_call(self, *args, **kwargs) # Handle call return self.__arg1 * self.__arg2 class CaseDefault(SwitchCall): def __init__(self, arg1, arg2): self.__arg1 = arg1 self.__arg2 = arg2 def do_call(self, *args, **kwargs) return self.__arg1 + self.__arg2 switch(arg, { case_1 : Case1(arg1, arg2), case_2 : Case2(arg1, arg2) }, CaseDefault(arg1, arg2)) """ __author__ = 'Thomas Li Fredriksen' __license__ = 'MIT' class SwitchCall(object): """Switch-call master class All switch-call objects must inherit from this class """ def do_call(self, *args, **kwargs): """Overload this function to simulate function call""" pass def __call__(self, *args, **kwargs): """Call do_call-method""" self.do_call(args, kwargs) class switch(object): def __init__(self, key, cases, default=None): """Switch-statement implementation :param key: Switch parameter :param cases: Dictionary of callbacks :param default: Default callback if key is not in cases """ ret = None try: ret = cases[key]() except KeyError: if default: ret = default() finally: return ret
UTF-8
Python
false
false
1,959
py
7,080
snippet.py
7,021
0.54926
0.529862
0
65
29.153846
63
sleao/ex_fastapi
14,508,399,575,477
f8d9a9965890bd2369975090861840129791648c
3658eeaaa4906d44e11ad894af61534513dabb64
/app/api/api_v1/endpoints/example.py
bbcaa03e383e22d2be4852b44cfe0ebb32f71c43
[]
no_license
https://github.com/sleao/ex_fastapi
8a95c043e5b3c77081256d28449f93a9b43f7a05
71459182eeccb4f0cf06cd881ce48a3083fbc9b4
refs/heads/master
2023-05-31T13:00:37.161891
2020-07-24T13:11:50
2020-07-24T13:11:50
282,109,949
1
0
null
false
2021-06-11T18:14:33
2020-07-24T03:08:01
2021-06-02T13:40:26
2021-06-11T18:14:32
7
1
0
4
Python
false
false
from fastapi import APIRouter from app.schemas import echo, hello router = APIRouter() @router.get('/hello', response_model=hello.Hello) def hello_world(): return {'msg': 'Hello World'} @router.post('/echo', response_model=echo.Echo) def echo(msg_in: echo.Echo): return {'msg': echo}
UTF-8
Python
false
false
295
py
7
example.py
5
0.701695
0.701695
0
13
21.769231
49
dragos-vacariu/Python-Exercises
9,964,324,165,603
4692baa04d679ea559dd9cb93e41b121657c7499
9b262e9b291902abd7fa567a2edf50799c7952ac
/Basic Practice/program18 distance between circle point.py
b3513f720ef75b718ed5542e2f60e237e6ed8255
[]
no_license
https://github.com/dragos-vacariu/Python-Exercises
983ad571879cb24f9ae29f67d57adb94356bf1b1
1578cfb973409f40aa658fe59d967861eac6b070
refs/heads/master
2021-06-13T17:37:52.624589
2021-04-22T16:18:22
2021-04-22T16:18:22
172,189,766
0
2
null
null
null
null
null
null
null
null
null
null
null
null
null
#clasa PUNCT cu 2 parametri x, y #clasa CERC mosteneste PUNCT, si defineste o raza #CERC are o metoda de calculul a ariei class PUNCT: #constructor def __init__(self, xCoord, yCoord): self.x=xCoord #non-static field self.y=yCoord #non-static field #public method def calculateDistance(self, Punct): distanceX = Punct.x - self.x distanceY = Punct.y - self.y distance = (distanceX**2) + (distanceY**2) return distance ** 0.5 #operator overloading def __add__(self, other): #overloading the "+" operator for addition if(isinstance(other, POLYLINIE)): points = [self] for x in other.Points: points.append(x) return POLYLINIE(*points) else: polilinie = POLYLINIE(self, other) return polilinie #built-in function overloading def __str__(self): return "Punct(" +str(self.x) + ", " +str(self.y) +")" class CERC(PUNCT): #CERC inherits from PUNCT #constructor def __init__(self, Punct, Rad): super().__init__(Punct.x, Punct.y) #super() returns the parent class self.Radius = float(Rad) #public methods def getArea(self): return 3.14 * self.Radius**2 def calculateDistanceToObject(self, Data): if isinstance(Data, CERC): return super().calculateDistance(Data) - self.Radius - Data.Radius elif isinstance(Data, PUNCT): return super().calculateDistance(Data) - self.Radius class SEGMENT(PUNCT): def calculateDistance(self, Punct1, Punct2): distanceX = Punct2.x - Punct1.x distanceY = Punct2.y - Punct1.y distance = (distanceX**2) + (distanceY**2) return distance ** 0.5 #constructor def __init__(self, Punct1, Punct2): super().__init__(Punct1.x, Punct1.y) super().__init__(Punct2.x, Punct2.y) self.length = self.calculateDistance(Punct1,Punct2) #build-in function overloading def __str__(self): #redefining the function __str__ so it can be printed directly print(obj) return "Length of segment: " + str(self.length) #Operator overloading def __gt__(self, other): #overloading > operators (gt comes from greater) return self.length < other.length #also work for <, because of negations def __ge__(self, other): #overloading >= operators (ge comes from greater than or equal to) return self.length < other.length #also work for <= because of negations def __eq__(self, other): #overloading == operator return self.length == other.length class POLYLINIE: #constructor def __init__(self, *Points): self.Points=list(Points) #built-in function overloading def __str__(self): value="Polilinie(" for p in self.Points: value+=str(p)+", " value+=")" return value #operator overloading def __add__(self, other): #overloading the "+" operator for addition puncte = [] for x in self.Points: puncte.append(x) puncte.append(other) return POLYLINIE(*puncte) def __iter__(self): #making class iterable self.counter=0 def __next__(self): #making clas iterable if self.counter < len(self.Points): self.counter+=1 else: raise Exception ("Object reached boundaries") x = 3; y = 4 #x = float(input("p1.x: ")) #y = float(input("p1.y: ")) punctUnu = PUNCT(x,y) cerc = CERC(punctUnu, Rad = 2.0) x = 5; y = 6 #x = float(input("p2.x: ")) #y = float(input("p2.y: ")) punctDoi = PUNCT(x,y) cerc2 = CERC(punctDoi, Rad = 3.0) print("\nArea of circle = " + str(cerc.getArea())) print("Distance PointToPoint = " + str(punctUnu.calculateDistance(punctDoi))) print("Distance CircleToPoint = " + str(cerc.calculateDistanceToObject(punctDoi))) print("Distance CircleToCircle = " + str(cerc.calculateDistanceToObject(cerc2))) segment = SEGMENT(punctUnu, punctDoi) print(segment) segmentSec = SEGMENT(punctDoi, PUNCT(10,7)) print() #put a new line print(segmentSec) print(segment < segmentSec) print(segment >= segmentSec) print(segment == segmentSec) print() #put a new line polyline = POLYLINIE(punctUnu, punctDoi) #print(polyline) print("Result: ") polylineDoi = punctUnu + (punctDoi + punctUnu) # building a polyline from 3 points print(polylineDoi)
UTF-8
Python
false
false
4,421
py
72
program18 distance between circle point.py
64
0.62271
0.612079
0
148
28.871622
96
Jirapongs55/CP3-Jirapong-Sirichottanawong
12,515,534,751,432
0946c9e920fcd155dce100e652265b623c7e465c
a0bee93fa987d2ac5f7f8e4f830b5e8965326f52
/Exercise11_Jirapong_S.py
6cb8717ac8746253ed98af6801794a785b9abdc7
[]
no_license
https://github.com/Jirapongs55/CP3-Jirapong-Sirichottanawong
563bd855c31d77deb8b789a77b4cd5fccba094ca
6ddbba0b4724cfe5fce7414d6850a440acf58d61
refs/heads/main
2023-07-09T03:45:28.207272
2021-08-09T15:06:50
2021-08-09T15:06:50
384,119,133
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
inputNumber = int(input("Input the pyramid level : ")) blankText = " " text = input("Input the character for pyramid monomer : ") for i in range(inputNumber): print(blankText*(inputNumber-(i+1)),end=text*((2*i)+1)) print(blankText*(inputNumber-(i+1))) print("-"*12,"The End","-"*12) ''' # Pattern print(" "*2,end="*") print(" "*2) print(" "*1,end="***") print(" "*1) print(" "*0,end="*****") print(" "*0) '''
UTF-8
Python
false
false
471
py
16
Exercise11_Jirapong_S.py
14
0.518047
0.488323
0
17
23.588235
59
LillyParker/Python_ExercisesNMNH
9,612,136,855,826
01a8c08695a24f51467fcdcff90270287993eabe
6faa1e9b3e5a149a0081b9387407bdb30ce72ef2
/Week2Hmwk_calculator.py
40482ac3b25d2075cea53e2d36c128090ce53f9e
[]
no_license
https://github.com/LillyParker/Python_ExercisesNMNH
648d8647c63bb9f3769db40fbee0f03419a50c62
41a6d21e188a45f3f8ec7b98546de4ee38bb7008
refs/heads/master
2021-01-19T03:35:04.862394
2016-07-31T22:00:46
2016-07-31T22:00:46
63,359,777
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# Homework for Week2 of the Python course at NMNH # Assignment: Make a program that will perform addition, subtraction, division or multiplication of two numbers. Use appropriate error messages. print("Welcome to the calculator!","\nPlease enter two numbers, followed by the operator to use.") try: response1 = input("Enter the first number:") num1=float(response1) response2 = input("Enter the second number:") num2=float(response2) except: "Please enter a valid number" print("Addition=1","\nSubtraction=2","\nDivision=3","\nMultiplication=4") while True: response3 = input("Please enter the number for the operator you want, when finished, enter done:") operator=str(response3) if operator=="1": print("The sum of ",num1,"and ",num2,"equals: ",num1+num2) elif operator=="2": print("The difference between ",num1,"and ",num2,"equals: ",num1-num2) elif operator=="3": print("The quotient of ",num1,"and ",num2,"equals: ",num1/num2) elif operator=="4": print("The product of ",num1,"and ",num2,"equal: ",num1*num2) elif operator=="done": break else: print("Please enter a valid operator") print("Thanks for using the calculator!")
UTF-8
Python
false
false
1,169
py
6
Week2Hmwk_calculator.py
4
0.714286
0.686056
0
32
35.375
144
aegiacometti/netconf-backup
7,086,696,075,229
cf25934a294747155a97b9b8614d5f493c747282
86cf7b195564849ea73a405f32eaa732495d367a
/scripts/netconf-backup-f5.py
a6160a18d4041b2b493bff533ee5a0c61bebb207
[ "Apache-2.0" ]
permissive
https://github.com/aegiacometti/netconf-backup
10a26ba403dcaca3b9a434c56016df44f5913e2f
f0a890f8ba614a3fe33e6408665dac60fcbbab4c
refs/heads/master
2021-03-16T15:13:42.035759
2020-10-22T13:21:20
2020-10-22T13:21:20
246,919,449
1
1
null
null
null
null
null
null
null
null
null
null
null
null
null
import sys import time import glob import os device_hostname = sys.argv[1] historic_files_to_keep = sys.argv[2] def remove_old_files(): list_files = glob.glob('./backups/{}*'.format(device_hostname)) if len(list_files) >= int(historic_files_to_keep): list_files.sort() for index in range(int(historic_files_to_keep)-1, len(list_files)-1): os.remove(list_files[index]) def rename_current_file(): get_date = time.localtime() current_date = time.strftime('%Y-%m-%d-%H-%M-%S', get_date) filename = './backups/{}-{}.ucs'.format(device_hostname, current_date) os.rename('./backups/backup.ucs', filename) if __name__ == '__main__': rename_current_file() remove_old_files()
UTF-8
Python
false
false
736
py
11
netconf-backup-f5.py
3
0.634511
0.629076
0
30
23.533333
77
BrenoBaiardi/GSC
10,943,576,675,657
602a7541fc08fde5a9fb7a81b5cf6dc85934de37
937c24b2d1df5731ed76d0254d7a8de495bfdd34
/test_GSC.py
c90369b9c32e6704c9c06a3a24cd80dafeafd100
[]
no_license
https://github.com/BrenoBaiardi/GSC
b3bdab288ecf4b88f5ce9ff22652d6d9a16bb62c
cd713e0925eebcd78242e319a17dd01d031667ce
refs/heads/master
2020-07-01T23:03:35.391405
2019-08-08T21:05:55
2019-08-08T21:05:55
201,334,224
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# O sistema dos correios de Gotham City tiveram um problema e perderam seu validador de CEPs. Hoje, sua missão é criar um validador de CEPs baseados em algumas pequenas regras listadas abaixo: # # 1. O CEP é um número maior que 100.000 e menor que 999999 # 2. O CEP não pode conter nenhum nenhum dígito repetitivo alternado em pares # # # 121426 # Aqui, 1 é um dígito repetitivo alternado em par. # 523563 # Aqui nenhum digito é alternado. # 552523 # Aqui os números 2 e 5 são dígitos alternados repetitivos em par. # 112233 # Aqui nenhum dígito é repetitivo alternado em par. from unittest import TestCase from GSC import GSC class TestGSC(TestCase): def test_verificar_cep_dentro_de_range_aceito(self): CEP = str(112233) self.assertEqual(True, GSC.validar_cep(CEP)) def test_verificar_cep_abaixo_de_range_aceito(self): CEP = "002233" with self.assertRaises(ValueError): GSC.validar_cep(CEP) def test_verificar_cep_acima_de_range_aceito(self): CEP = str(1999999) with self.assertRaises(ValueError): GSC.validar_cep(CEP) def test_verificar_cep_nao_repetido_alternado(self): CEP = str(112233) self.assertEqual(True, GSC.validar_cep(CEP)) def test_verificar_cep_nao_alternado(self): CEP = str(523563) self.assertEqual(True, GSC.validar_cep(CEP)) def test_verificar_todos_numeros_repetidos(self): CEP = str(999999) self.assertEqual(False, GSC.validar_cep(CEP)) def test_verificar_1_digito_repetido_alternado_par_no_comeco(self): CEP = str(121426) self.assertEqual(False, GSC.validar_cep(CEP)) def test_verificar_1_digito_repetido_alternado_par_no_meio(self): CEP = str(123256) self.assertEqual(False, GSC.validar_cep(CEP)) def test_verificar_1_digito_repetido_alternado_par_no_fim(self): CEP = str(163252) self.assertEqual(False, GSC.validar_cep(CEP)) def test_verificar_2_digitos_repetidos_alternados_pares(self): CEP = str(552523) self.assertEqual(False, GSC.validar_cep(CEP)) def test_verificar_entrada_de_CEP_por_texto(self): CEP = str(112233) self.assertEqual(True, GSC.validar_cep(CEP)) def test_verificar_entrada_de_CEP_por_numero(self): CEP = 112233 self.assertEqual(True, GSC.validar_cep(CEP)) def test_verificar_entrada_de_CEP_texto_formatado(self): try: CEP = '1-1-2-2-3-3' GSC.validar_cep(CEP) CEP = '1.1.2.2.3.3' GSC.validar_cep(CEP) CEP = '1 1 2 2 3 3' GSC.validar_cep(CEP) CEP = '11 22 33' GSC.validar_cep(CEP) except: self.fail()
UTF-8
Python
false
false
2,764
py
3
test_GSC.py
3
0.650909
0.599273
0
78
34.25641
192
vaibhavkollipara/URLShortener
9,423,158,290,217
407b664999c2082c04f01709a0263b9e5fc0d6c2
626b4425852f5de011008b09bfda787133fd3e95
/shortener/models.py
5a2bae4e50825f00b57dcd1f69fb0c632ee4a95e
[]
no_license
https://github.com/vaibhavkollipara/URLShortener
ea789ac9a13354957fbe163a71a59acc52624bf9
ac5ed774e02f962177fb7b1ee1a93f9869e83c7c
refs/heads/master
2021-01-18T16:39:10.677863
2017-04-06T21:26:08
2017-04-06T21:26:08
86,754,016
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.db import models from .utils import create_shortcode from django.conf import settings SHORTCODE_MAX = getattr(settings, "SHORTCODE_MAX",15) class ShortURLManager(models.Manager): def all(self,*args,**kwargs): qs_main = super(ShortURLManager,self).all(*args,**kwargs) qs = qs_main.filter(active=True) return qs def refresh_shorturls(self): qs = ShortURL.objects.filter(id__gte=1) new_codes = 0 for q in qs: q.shorturl = None q.save() new_codes += 1 return "refreshed {} urls".format(new_codes) class ShortURL(models.Model): url = models.CharField(max_length=250) shorturl = models.CharField(max_length=SHORTCODE_MAX, unique=True, blank=True ) updated = models.DateTimeField(auto_now=True) timestamp = models.DateTimeField(auto_now_add=True) active = models.BooleanField(default=True) objects = ShortURLManager() def save(self,*args,**kwargs): if self.shorturl is None or self.shorturl=='': self.shorturl = create_shortcode(self) super(ShortURL,self).save(*args,**kwargs) def __str__(self): return str(self.url) def __unicode__(self): return str(self.url) def get_shorturl(self): return
UTF-8
Python
false
false
1,396
py
11
models.py
8
0.594556
0.588825
0
49
27.510204
65
wenshixiaoying/chapter7
3,908,420,283,988
5ba046d70ebc4dda8fe32b0919ab56b7c51d5ca1
b315b0ee1ba44402c03035ca90c78e0cc3f1d3f1
/modules/environment.py
bb4823618ef984522e3215b0a926df5970033e2a
[]
no_license
https://github.com/wenshixiaoying/chapter7
c46717662635a89c0b0323141619eba540aaae7f
82398e59eff845558e56dbacc4e3f92b00810c19
refs/heads/master
2023-02-02T17:03:25.409530
2020-12-21T11:26:03
2020-12-21T11:26:03
322,233,563
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/python3 #-*- coding: utf-8 -*- import os #返回木马所在主机的环境变量 def run(**kwargs): print('This is environment module') return str(os.environ)
UTF-8
Python
false
false
181
py
3
environment.py
2
0.658065
0.645161
0
9
16.222222
39
luispedro/mahotas
13,357,348,321,177
0d6a3fd3e72850d6ed26fbd7cf542f62f91dc23d
829a7b38243821a1d3f274952fd7c4e5140c9f40
/mahotas/edge.py
18fbbee69a075d1035e39eb75e0ff13b24d01f19
[ "MIT", "BSL-1.0" ]
permissive
https://github.com/luispedro/mahotas
e6f9c1e21acaded80946ebf8b1c0366cbcd91d2f
f7edeb22a4b47e6c5200c008a8e7386067d72443
refs/heads/master
2023-08-23T22:38:05.018281
2023-06-09T12:57:00
2023-06-09T22:11:37
495,613
648
175
NOASSERTION
false
2023-05-26T18:46:28
2010-01-31T00:13:06
2023-05-15T13:09:07
2023-04-29T05:36:35
3,965
800
154
24
Python
false
false
# -*- coding: utf-8 -*- # Copyright (C) 2008-2014, Luis Pedro Coelho <[email protected]> # vim: set ts=4 sts=4 sw=4 expandtab smartindent: # # License: MIT (see COPYING file) from __future__ import division import numpy as np import mahotas as mh from . import convolve, gaussian_filter _hsobel_filter = np.array([ [-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])/8. _vsobel_filter = np.array([ [-1, -2, -1], [ 0, 0, 0], [ 1, 2, 1]])/8. __all__ = [ 'sobel', 'dog', ] def sobel(img, just_filter=False): ''' edges = sobel(img, just_filter=False) Compute edges using Sobel's algorithm `edges` is a binary image of edges computed according to Sobel's algorithm. This implementation is tuned to match MATLAB's implementation. Parameters ---------- img : Any 2D-ndarray just_filter : boolean, optional If true, then return the result of filtering the image with the sobel filters, but do not threashold (default is False). Returns ------- edges : ndarray Binary image of edges, unless `just_filter`, in which case it will be an array of floating point values. ''' # This is based on Octave's implementation, # but with some reverse engineering to match Matlab exactly img = np.array(img, dtype=float) if img.ndim != 2: raise ValueError('mahotas.sobel: Only available for 2-dimensional images') img -= img.min() ptp = img.ptp() if ptp == 0: return img img /= ptp # Using 'nearest' seems to be MATLAB's implementation vfiltered = convolve(img, _vsobel_filter, mode='nearest') hfiltered = convolve(img, _hsobel_filter, mode='nearest') vfiltered **= 2 hfiltered **= 2 filtered = vfiltered filtered += hfiltered if just_filter: return filtered thresh = 2*np.sqrt(filtered.mean()) return mh.regmax(filtered) * (np.sqrt(filtered) > thresh) def dog(img, sigma1 = 2, multiplier = 1.001, just_filter = False): ''' edges = dog(img, sigma1 = 2, thresh= None, just_filter = False) Compute edges using the Difference of Gaussian (DoG) operator. `edges` is a binary image of edges. Parameters ---------- img : Any 2D-ndarray sigma1 : the sigma value of the first Gaussian filter. The second filter will have sigma value 1.001*sigma1 multiplier : the multiplier to get sigma2. sigma2 = sigma1 * multiplier just_filter : boolean, optional If true, then return the result of filtering the image with the DoG filters, no zero-crossing is detected (default is False). Returns ------- edges : ndarray Binary image of edges, unless `just_filter`, in which case it will be an array of floating point values. ''' img = np.array(img, dtype=float) if img.ndim != 2: raise ValueError('mahotas.dog: Only available for 2-dimensional images') sigma2 = sigma1 * multiplier G1 = gaussian_filter(img, sigma1, mode = 'nearest') G2 = gaussian_filter(img, sigma2, mode = 'nearest') DoG = G2 - G1 (m, n) = img.shape if not just_filter: e = np.zeros((m, n), dtype=bool) else: return DoG thresh = .75 * np.mean(abs(DoG)) # Look for the zero crossings: +-, -+ and their transposes # Choose the edge to be the negative point rr = np.arange(1, m-2) cc = np.arange(1, n-2) (rx,cx) = np.nonzero( np.logical_and(np.logical_and(DoG[np.ix_(rr,cc)] < 0, DoG[np.ix_(rr,cc+1)] > 0), abs( DoG[np.ix_(rr,cc)] - DoG[np.ix_(rr,cc+1)]) > thresh) ) # [- +] e[(rx,cx)] = 1 (rx,cx) = np.nonzero( np.logical_and(np.logical_and(DoG[np.ix_(rr,cc-1)] > 0, DoG[np.ix_(rr,cc+1)] < 0), abs( DoG[np.ix_(rr,cc-1)] - DoG[np.ix_(rr,cc)]) > thresh) ) # [+ -] e[(rx,cx)] = 1 (rx,cx) = np.nonzero( np.logical_and(np.logical_and(DoG[np.ix_(rr,cc)] < 0, DoG[np.ix_(rr+1,cc)] > 0), abs( DoG[np.ix_(rr,cc)] - DoG[np.ix_(rr+1,cc)]) > thresh) ) # [- +]' e[(rx,cx)] = 1 (rx,cx) = np.nonzero( np.logical_and(np.logical_and(DoG[np.ix_(rr-1,cc)] > 0, DoG[np.ix_(rr,cc)] < 0), abs( DoG[np.ix_(rr-1,cc)] - DoG[np.ix_(rr,cc)]) > thresh) ) # [+ -]' e[(rx,cx)] = 1 # Another case: DoG can be precisely zero (rz,cz) = np.nonzero(DoG[np.ix_(rr,cc)] == 0) if rz.size != 0: # Look for the zero crossings: +0-, -0+ and their transposes # The edge lies on the Zero point (rx,cx) = np.nonzero( np.logical_and(np.logical_and(DoG[np.ix_(rz,cz-1)] < 0, DoG[np.ix_(rz,cz+1)] > 0), abs( DoG[np.ix_(rz,cz+1)] - DoG[np.ix_(rz,cz-1)]) > thresh) ) # [- 0 +] e[(rx,cx)] = 1 (rx,cx) = np.nonzero( np.logical_and(np.logical_and(DoG[np.ix_(rz,cz-1)] > 0, DoG[np.ix_(rz,cz+1)] < 0), abs( DoG[np.ix_(rz,cz-1)] - DoG[np.ix_(rz,cz+1)]) > thresh) ) # [+ 0 -] e[(rx,cx)] = 1 (rx,cx) = np.nonzero( np.logical_and(np.logical_and(DoG[np.ix_(rz-1,cz)] < 0, DoG[np.ix_(rz+1,cz)] > 0), abs( DoG[np.ix_(rz+1,cz)] - DoG[np.ix_(rz-1,cz)]) > thresh) ) # [- 0 +]' e[(rx,cx)] = 1 (rx,cx) = np.nonzero( np.logical_and(np.logical_and(DoG[np.ix_(rz-1,cz)] > 0, DoG[np.ix_(rz+1,cz)] < 0), abs( DoG[np.ix_(rz-1,cz)] - DoG[np.ix_(rz+1,cz)]) > thresh) ) # [+ 0 -]' e[(rx,cx)] = 1 return e
UTF-8
Python
false
false
5,678
py
160
edge.py
121
0.544382
0.521486
0
160
34.3
101
s-kyum/Python
15,058,155,376,638
f00d834a9033871d6e2e123e845479c0de705c18
27fc04a95b0d268adef4d4497c27ea9ae295d8a4
/ch02/calcu.py
47c677978bd91b50f959944e2d24735f47abff80
[]
no_license
https://github.com/s-kyum/Python
2b35b333557db0698a3fd305d550baaa5304f206
e5b31036acd2bfb79f98ff02d59096a2429eb41f
refs/heads/master
2023-07-09T18:45:26.179057
2021-08-23T03:07:57
2021-08-23T03:07:57
378,803,615
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#산술 연산자 print("7+4=",7+4) print("7-4=",7-4) print("7*4=",7*4) print("7/4=",7/4) print("7%4=",7%4) print("7//4=",7//4) #몫 print("7**4=",7**4) #제곱
UTF-8
Python
false
false
162
py
101
calcu.py
95
0.486301
0.294521
0
9
15.222222
23
Silentsoul04/FTSP_2020
9,405,978,385,334
31a4b5eaf14f1b5f16068cd1c527d2229da270b8
c3d0a0b6336a3ff73724fe1615eb1809dbdaaed8
/Forsk Pandas/baltimore.py
9cc6cda3afb6fa44620494517d06203ed8625c01
[]
no_license
https://github.com/Silentsoul04/FTSP_2020
db0dae6cd9c371f3daa9219f86520dfa66348236
7e603af918da2bcfe4949a4cf5a33107c837894f
refs/heads/master
2022-12-21T20:44:32.031640
2020-09-20T12:29:58
2020-09-20T12:29:58
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Mar 2 18:01:43 2020 @author: Rajesh """ """ Code Challenge Name: Baltimore City Analysis Filename: baltimore.py Problem Statement: Read the Baltimore_City_Employee_Salaries_FY2014.csv file and perform the following task : 0. remove the dollar signs in the AnnualSalary field and assign it as a int. 0. Group the data on JobTitle and AnnualSalary, and aggregate with sum, mean, etc. Sort the data and display to show who get the highest salary 0. Try to group on JobTitle only and sort the data and display 0. How many employess are there for each JobRoles and Graph it 0. Graph and show which Job Title spends the most 0. List All the Agency ID and Agency Name 0. Find all the missing Gross data in the dataset """ import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('E:\Forsk Pandas\CSV files\Baltimore_City_Employee_Salaries_FY2014.csv') print(df) df.columns # remove the dollar signs in the AnnualSalary field and assign it as a int. df['AnnualSalary'] #Annual salary is in float and we need to convert into int64 format. """ 0 11310.0 1 53428.0 2 68300.0 3 62000.0 4 43999.0 18976 11310.0 18977 11310.0 18978 43999.0 18979 44104.0 18980 53568.0 Name: AnnualSalary, Length: 18981, dtype: float64 """ df['AnnualSalary'].astype('int64') """ 0 11310 1 53428 2 68300 3 62000 4 43999 18976 11310 18977 11310 18978 43999 18979 44104 18980 53568 Name: AnnualSalary, Length: 18981, dtype: int64 """ # Group the data on JobTitle and AnnualSalary, and aggregate with sum, mean, etc. #Sort the data and display to show who get the highest salary df[['JobTitle','AnnualSalary']] df['AnnualSalary'].agg(['sum','mean','std']) sum 7.546237e+08 mean 3.975679e+04 std 2.517305e+04 Name: AnnualSalary, dtype: float64 # Try to group on JobTitle only and sort the data and display. df['JobTitle'] df['JobTitle'].unique() df['JobTitle'].count() # 18981 sort=df['JobTitle'] sorted(sort) # How many employess are there for each JobRoles and Graph it. df.columns df['JobTitle'].value_counts() df['JobTitle'].unique() plt.pie(df['JobTitle'].value_counts(),labels=df['JobTitle'].unique(),radius =3 , autopct='%1.2f%%') plt.savefig('E:\Forsk Pandas\Baltmore.jpg') plt.show() df.columns # Graph and show which Job Title spends the most. df['HireDate'].value_counts() df['HireDate'].unique() plt.pie(df['HireDate'].value_counts(dropna=False),labels=df['HireDate'].unique(),radius =3 , autopct='%1.2f%%') plt.savefig('E:\Forsk Pandas\Baltmore1.jpg') plt.show() # List All the Agency ID and Agency Name. df[['AgencyID','Agency']] AgencyID Agency 0 W02200 Youth Summer 1 A03031 OED-Employment Dev 2 A29005 States Attorneys Office 3 A65026 HLTH-Health Department 4 A99416 Police Department ... ... 18976 W02235 Youth Summer 18977 W02629 Youth Summer 18978 A99416 Police Department 18979 A99262 Police Department 18980 A50206 DPW-Water & Waste Water [18981 rows x 2 columns] # Find all the missing Gross data in the dataset . df[df[df.columns].isnull()] Name JobTitle AgencyID Agency HireDate AnnualSalary GrossPay 0 NaN NaN NaN NaN NaN NaN NaN 1 NaN NaN NaN NaN NaN NaN NaN 2 NaN NaN NaN NaN NaN NaN NaN 3 NaN NaN NaN NaN NaN NaN NaN 4 NaN NaN NaN NaN NaN NaN NaN ... ... ... ... ... ... ... 18976 NaN NaN NaN NaN NaN NaN NaN 18977 NaN NaN NaN NaN NaN NaN NaN 18978 NaN NaN NaN NaN NaN NaN NaN 18979 NaN NaN NaN NaN NaN NaN NaN 18980 NaN NaN NaN NaN NaN NaN NaN [18981 rows x 7 columns] --------------------------------------------------------------------------------------- plt.figure(figsize= (50,10)) x = df['JobTitle'].unique() y = df['JobTitle'].value_counts() plt.bar(x,y) # simple line plot plt.plot(x,y) plt.savefig('E:\Forsk Pandas\Baltmore_Bar.jpg') plt.show()
UTF-8
Python
false
false
4,541
py
553
baltimore.py
450
0.590399
0.506276
0
162
26.876543
111
ronrest/deepQ_bananas
17,566,416,275,950
9cc61b6dbf345cd5b710ece8fee67627a7e5c0d8
5fff6e387f47b564c8b3d214af459c72553e6eb2
/model.py
41b66330a2a2fb450c7cd2649701a397fbc5e72b
[]
no_license
https://github.com/ronrest/deepQ_bananas
63a4ba9007d9f0a9f65587c3a8caceab0ea4eeca
0ec3965140bcf399a209d63c9137ce65d5fb55a2
refs/heads/master
2020-03-27T11:41:45.220679
2018-08-28T20:41:29
2018-08-28T20:41:29
146,502,670
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F class QNetwork(nn.Module): """ A neural network that represents the Q-action values for a reinforcement learning agent. Two fully connected hidden layers, with ReLu activations, followed by a fully connected output layer. """ def __init__(self, state_size, action_size, seed=333, n_hidden=32): """ Initialize the weights and build the components of the model. Args: state_size (int): Shape of the state (as the input layer size) action_size (int): Number of actions (as the output layer size) seed (int): Random seed, for reproducibility n_hidden (int): Number of nodes in the hidden layers. """ super(QNetwork, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(in_features=state_size, out_features=n_hidden, bias=True) self.fc2 = nn.Linear(in_features=n_hidden, out_features=n_hidden, bias=True) self.fc_out = nn.Linear(in_features=n_hidden, out_features=action_size, bias=False) def forward(self, state): """ Builds the forward pass structure of the network, which maps from state to action values """ x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) x = self.fc_out(x) return x
UTF-8
Python
false
false
1,402
py
8
model.py
5
0.624108
0.617689
0
34
40.235294
91
AllenInstitute/bmtk
7,980,049,266,364
f13e67d855a181fd9f3a60adfe3b1b1a06af8c99
d813a392c7cbc8dbbec273b3a2366a50f9df45c9
/bmtk/utils/sonata/group.py
589d5a6a8ba264783c0e20a106a65529e5436f62
[ "BSD-3-Clause" ]
permissive
https://github.com/AllenInstitute/bmtk
1496d6e0bd7cbef7b1b8cac64a8589d01548f897
ae9c24c415a3fbd60397b4ead160b72b4b3e4e4f
refs/heads/develop
2023-08-24T20:09:32.763686
2023-08-20T18:29:19
2023-08-20T18:29:19
104,507,294
253
111
BSD-3-Clause
false
2023-08-24T14:38:57
2017-09-22T18:42:44
2023-08-14T14:51:54
2023-08-24T13:29:55
201,704
239
79
37
Python
false
false
# Copyright 2017. Allen Institute. All rights reserved # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following # disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import numpy as np import pandas as pd from .column_property import ColumnProperty from .node import Node, NodeSet from .edge import Edge, EdgeSet class Group(object): """A container containig a node/edge population groups. A node or edge population will have one or more groups, each having a unique identifier. Each group shared the same columns and datatypes, thus each group is essentially a different model. """ def __init__(self, group_id, h5_group, parent): self._group_id = int(group_id) self._parent = parent self._types_table = parent.types_table self._h5_group = h5_group self._types_index_col = self._types_table.index_column_name self._group_columns = ColumnProperty.from_h5(h5_group) # TODO: combine group_columns, group_column_names and group_columns_map, doesn't need to be 3 structures self._group_column_map = {col.name: col for col in self._group_columns} self._group_column_names = set(col.name for col in self._group_columns) self._group_table = {prop: h5_group[prop.name] for prop in self._group_columns} self._ncolumns = len(self._group_columns) self._all_columns = self._group_columns + self._types_table.columns self._all_column_names = set(col.name for col in self._all_columns) self._nrows = 0 # number of group members # For storing dynamics_params subgroup (if it exists) self._has_dynamics_params = 'dynamics_params' in self._h5_group and len(self._h5_group['dynamics_params']) > 0 self._dynamics_params_columns = [] # An index of all the rows in parent population that map onto a member of this group self._parent_indicies = None # A list of parent rows indicies self._parent_indicies_built = False self.check_format() @property def group_id(self): return self._group_id @property def has_dynamics_params(self): return False @property def columns(self): return self._group_columns @property def group_columns(self): return self._group_columns @property def all_columns(self): return self._all_columns @property def has_gids(self): return self._parent.has_gids @property def parent(self): return self._parent def get_dataset(self, column_name): return self._group_table[column_name] def column(self, column_name, group_only=False): if column_name in self._group_column_map: return self._group_column_map[column_name] elif not group_only and column_name in self._types_table.columns: return self._types_table.column(column_name) else: return KeyError def check_format(self): # Check that all the properties have the same number of rows col_counts = [col.nrows for col in self._group_columns + self._dynamics_params_columns] if len(set(col_counts)) > 1: # TODO: Would be nice to warn user which dataset have different size raise Exception('properties in {}/{} have different ranks'.format(self._parent.name, self._group_id)) elif len(set(col_counts)) == 1: self._nrows = col_counts[0] def build_indicies(self, force=False): raise NotImplementedError def to_dataframe(self): raise NotImplementedError def get_values(self, property_name, all_rows=False): """Returns all values for a group property. Note that a row within a group may not have a corresponding node/edge, or they may have a different order or multiple node/edges may share the same group row. Setting all_rows=False will return all the values as you see if you iterated through all the population's items. Setting all_rows=True just returns the data as a list as they appear in the dataset (will be faster). :param property_name: Name of dataset property/column to fetch. :param all_rows: Set false to return order in which they appear in population, false to return entire dataset :return: A list of values for the given column name. """ raise NotImplementedError def __len__(self): return self._nrows def __getitem__(self, group_index): group_props = {} for cname, h5_obj in self._group_table.items(): group_props[cname] = h5_obj[group_index] return group_props def __contains__(self, prop_name): """Search that a column name exists in this group""" return prop_name in self._group_column_names class NodeGroup(Group): def __init__(self, group_id, h5_group, parent): super(NodeGroup, self).__init__(group_id, h5_group, parent) # Note: Don't call build_indicies right away so uses can call __getitem__ without having to load all the # node_ids @property def node_ids(self): self.build_indicies() # print self._parent_indicies return self._parent.inode_ids(self._parent_indicies) @property def node_type_ids(self): self.build_indicies() return self._parent.inode_type_ids(self._parent_indicies) @property def gids(self): self.build_indicies() return self._parent.igids(self._parent_indicies) def build_indicies(self, force=False): if self._parent_indicies_built and not force: return # TODO: Check for the special case where there is only one group # TODO: If memory becomes an issue on very larget nodes (10's of millions) consider using a generator # I've pushed the actual building of the population->group indicies onto the parent population self._parent_indicies = self._parent.group_indicies(self.group_id, build_cache=True) self._parent_indicies_built = True def get_values(self, property_name, filtered_indicies=True): self.build_indicies() # TODO: Check if property_name is node_id, node_type, or gid if property_name in self._group_columns: if not filtered_indicies: # Just return all values in dataset return np.array(self._group_table[property_name]) else: # Return only those values for group indicies with associated nodes grp_indicies = self._parent.igroup_indicies(self._parent_indicies) # It is possible that the group_index is unorderd or contains duplicates which will cause h5py slicing # to fail. Thus convert to a numpy array # TODO: loading the entire table is not good if the filtered nodes is small, consider building. tmp_array = np.array(self._group_table[property_name]) return tmp_array[grp_indicies] elif property_name in self._parent.node_types_table.columns: # For properties that come from node-types table we need to build the results from scratch # TODO: Need to performance test, I think this code could be optimized. node_types_table = self._parent.node_types_table nt_col = node_types_table.column(property_name) tmp_array = np.empty(shape=len(self._parent_indicies), dtype=nt_col.dtype) for i, ntid in enumerate(self.node_type_ids): tmp_array[i] = node_types_table[ntid][property_name] return tmp_array def to_dataframe(self): self.build_indicies() # Build a dataframe of group properties # TODO: Include dynamics_params? properties_df = pd.DataFrame() for col in self._group_columns: if col.dimension > 1: for i in range(col.dimension): # TODO: see if column name exists in the attributes col_name = '{}.{}'.format(col.name, i) properties_df[col_name] = pd.Series(self._h5_group[col.name][:, i]) else: properties_df[col.name] = pd.Series(self._h5_group[col.name]) # Build a dataframe of parent node (node_id, gid, node_types, etc) root_df = pd.DataFrame() root_df['node_type_id'] = pd.Series(self.node_type_ids) root_df['node_id'] = pd.Series(self.node_ids) root_df['node_group_index'] = pd.Series(self._parent.igroup_indicies(self._parent_indicies)) # used as pivot if self._parent.has_gids: root_df['gid'] = self.gids # merge group props df with parent df results_df = root_df.merge(properties_df, how='left', left_on='node_group_index', right_index=True) results_df = results_df.drop('node_group_index', axis=1) # Build node_types dataframe and merge node_types_df = self._parent.node_types_table.to_dataframe() # remove properties that exist in the group node_types_cols = [c.name for c in self._parent.node_types_table.columns if c not in self._group_columns] node_types_df = node_types_df[node_types_cols] # TODO: consider caching these results return results_df.merge(node_types_df, how='left', left_on='node_type_id', right_index=True) def filter(self, **filter_props): """Filter all nodes in the group by key=value pairs. The filter specifications may apply to either node_type or group column properties. Currently at the moment it only supports equivlency. An intersection (and operator) is done for every different filter pair. This will produce a generator of all nodes matching the the filters. for node in filter(pop_name='VIp', depth=10.0): assert(node['pop_name'] == 'VIp' and node['depth'] == 10.0) :param filter_props: keys and their values to filter nodes on. :return: A generator that produces all valid nodes within the group with matching key==value pairs. """ # TODO: Integrate this with NodeSet. self.build_indicies() node_types_table = self._parent.node_types_table node_type_filter = set(node_types_table.node_type_ids) # list of valid node_type_ids type_filter = False group_prop_filter = {} # list of 'prop_name'==prov_val for group datasets group_filter = False node_id_filter = [] # Build key==value lists for filter_key, filter_val in filter_props.items(): # TODO: Check if node_type_id is an input if filter_key in self._group_columns: # keep of list of group_popertiess to filter group_prop_filter[filter_key] = filter_val group_filter = True elif filter_key in node_types_table.columns: # for node_types we just keep a list of all node_type_ids with matching key==value pairs node_type_filter &= set(node_types_table.find(filter_key, filter_val)) type_filter = True elif filter_key in ['node_id', 'node_ids']: node_id_filter += filter_val else: # TODO: should we raise an exception? # TODO: User logger print('Could not find property {} in either group or types table. Ignoring.'.format(filter_key)) # iterate through all nodes, skipping ones that don't have matching key==value pairs for indx in self._parent_indicies: # TODO: Don't build the node until you filter out node_type_id node = self._parent.get_row(indx) if type_filter and node.node_type_id not in node_type_filter: # confirm node_type_id is a correct one continue if node_id_filter and node.node_id not in node_id_filter: continue if group_filter: # Filter by group property values # TODO: Allow group properties to handle lists src_failed = True for k, v in group_prop_filter.items(): if node[k] != v: break else: src_failed = False if src_failed: continue yield node def __iter__(self): self.build_indicies() # Pass a list of indicies into the NodeSet, the NodeSet will take care of the iteration return NodeSet(self._parent_indicies, self._parent).__iter__() class EdgeGroup(Group): def __init__(self, group_id, h5_group, parent): super(EdgeGroup, self).__init__(group_id, h5_group, parent) self._indicies_count = 0 # Used to keep track of number of indicies (since it contains multple ranges) self.__itr_index = 0 self.__itr_range = [] self.__itr_range_idx = 0 self.__itr_range_max = 0 def build_indicies(self, force=False): if self._parent_indicies_built and not force: return # Saves indicies as a (potentially empty) list of ranges # TODO: Turn index into generator, allows for cheaper iteration over the group self._indicies_count, self._parent_indicies = self._parent.group_indicies(self.group_id, build_cache=False) self._parent_indicies_built = True def to_dataframe(self): self.build_indicies() # Build a dataframe of group properties # TODO: Include dynamics_params? properties_df = pd.DataFrame() for col in self._group_columns: if col.dimension > 1: for i in range(col.dimension): # TODO: see if column name exists in the attributes col_name = '{}.{}'.format(col.name, i) properties_df[col_name] = pd.Series(self._h5_group[col.name][:, i]) else: properties_df[col.name] = pd.Series(self._h5_group[col.name]) # Build a dataframe of parent node root_df = pd.DataFrame() root_df['edge_type_id'] = pd.Series(self.edge_type_ids) root_df['source_node_id'] = pd.Series(self.src_node_ids) root_df['target_node_id'] = pd.Series(self.trg_node_ids) root_df['edge_group_index'] = pd.Series(self._parent.group_indicies(self.group_id, as_list=True)) # pivot col # merge group props df with parent df results_df = root_df.merge(properties_df, how='left', left_on='edge_group_index', right_index=True) results_df = results_df.drop('edge_group_index', axis=1) # Build node_types dataframe and merge edge_types_df = self._parent.edge_types_table.to_dataframe() # remove properties that exist in the group edge_types_cols = [c.name for c in self._parent.edge_types_table.columns if c not in self._group_columns] edge_types_df = edge_types_df[edge_types_cols] # TODO: consider caching these results return results_df.merge(edge_types_df, how='left', left_on='edge_type_id', right_index=True) def _get_parent_ds(self, parent_ds): self.build_indicies() ds_vals = np.zeros(self._indicies_count, dtype=parent_ds.dtype) c_indx = 0 for indx_range in self._parent_indicies: indx_beg, indx_end = indx_range[0], indx_range[1] n_indx = c_indx + (indx_end - indx_beg) ds_vals[c_indx:n_indx] = parent_ds[indx_beg:indx_end] c_indx = n_indx return ds_vals @property def src_node_ids(self): return self._get_parent_ds(self.parent._source_node_id_ds) @property def trg_node_ids(self): return self._get_parent_ds(self.parent._target_node_id_ds) @property def edge_type_ids(self): return self._get_parent_ds(self.parent._type_id_ds) def get_values(self, property_name, all_rows=False): # TODO: Need to take into account if property_name is in the edge-types if property_name not in self.columns: raise KeyError if all_rows: return np.array(self._h5_group[property_name]) else: self.build_indicies() # Go through all ranges and build the return list dataset = self._h5_group[property_name] return_list = np.empty(self._indicies_count, self._h5_group[property_name].dtype) i = 0 for r_beg, r_end in self._parent_indicies: r_len = r_end - r_beg return_list[i:(i+r_len)] = dataset[r_beg:r_end] i += r_len return return_list def filter(self, **filter_props): # TODO: I'm not sure If I want to do this? Need to check on a larger dataset than I currently have. raise NotImplementedError def __iter__(self): self.build_indicies() # TODO: Implement using an EdgeSet if len(self._parent_indicies) == 0: self.__itr_max_range = 0 self.__itr_range = [] self.__itr_index = 0 else: # Stop at the largest range end (I'm not sure if the indicies are ordered, if we can make it ordered then # in the future just use self_parent_indicies[-1][1] self.__itr_range_max = len(self._parent_indicies) self.__itr_range_idx = 0 self.__itr_range = self._parent_indicies[0] self.__itr_index = self.__itr_range[0] return self def next(self): return self.__next__() def __next__(self): if self.__itr_range_idx >= self.__itr_range_max: raise StopIteration nxt_edge = self._parent.get_row(self.__itr_index) self.__itr_index += 1 if self.__itr_index >= self.__itr_range[1]: # iterator has moved past the current range self.__itr_range_idx += 1 if self.__itr_range_idx < self.__itr_range_max: # move the iterator onto next range self.__itr_range = self._parent_indicies[self.__itr_range_idx] # update range self.__itr_index = self.__itr_range[0] # update iterator to start and the beginning of new range else: self.__itr_range = [] return nxt_edge
UTF-8
Python
false
false
19,742
py
625
group.py
329
0.625975
0.622581
0
457
42.199125
120
itdream-dev/python
13,374,528,198,069
b703be32bf63e0b44cc06559ad5e182fae9754cb
079c07c5d97eb60d36269e27309e84b25ea0aaeb
/guidehero-backend/lib/models/answer.py
8a8bf5de12fd00b9b80792ab04d4528620647756
[]
no_license
https://github.com/itdream-dev/python
3aa44329673f05e2a86e1cba56cb88101c777233
eda81b802b99f45933bdf0d22b508837cfa538f0
refs/heads/master
2023-03-05T12:27:42.776870
2020-05-11T15:54:45
2020-05-11T15:54:45
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- from tag import Tag # NOQA from lib.registry import get_registry db = get_registry()['DB'] relationship_table = db.Table( 'answer_association', db.Column('tag_id', db.Integer, db.ForeignKey('tag.id')), db.Column('answer_id', db.Integer, db.ForeignKey('answer.id')) ) class Answer(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(255), nullable=False) tags = db.relationship( 'Tag', secondary=relationship_table, backref='answer' )
UTF-8
Python
false
false
532
py
221
answer.py
194
0.657895
0.650376
0
20
25.6
66
MBMunzi/Math_Algorithm
4,750,233,871,073
6b923be428214cc757a10072a284b8662aa4c3a1
5668fc337f2365f3b5cf1efb98ba7d975ed5da20
/Test.Polynomial.py
279ae69a70405b794248fd7aa03a3ed26cdf101e
[]
no_license
https://github.com/MBMunzi/Math_Algorithm
c65a2d0698820301c8b3d6e06cf982227762a2f6
8f46c3c91535504fded01c13ce5f2d059ef8e878
refs/heads/master
2020-09-25T09:38:35.439611
2020-03-17T20:02:36
2020-03-17T20:02:36
225,976,873
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import unittest from .Polynomio import Polynomial class TestPolynomial(unittest.TestCase): def test_evaluate_roots_about_polynomial(self): roots = [-3.0, -2.0, 1.0] self.assertEqual(roots, Polynomial([1, 4, 1, -6])) def test_Evaluate_Polynomial(self): self.assertEqual(0, Polynomial.evaluate_polynomial(1)) if __name__ == "__main__": unittest.main()
UTF-8
Python
false
false
394
py
2
Test.Polynomial.py
2
0.654822
0.624365
0
16
23.5
62
victor-nerd/finansez-python
17,875,653,900,137
bb962265c165fec97c34d6ab7c983d0a8f47a1d4
b6b4a0f011f9fadcde3a800e73e0afbf2377ad79
/finansez/finansez/api/serializers/category_view.py
6ebf682e49a9649a0e10f3fa10ecb2c1d810b919
[]
no_license
https://github.com/victor-nerd/finansez-python
c65a3a3369665176c8bd56ad993c9f0a9af78b41
48f83fc34d5ef534551f31c70c79e96e50ae2a74
refs/heads/master
2019-04-07T11:32:55.586359
2017-04-01T08:15:17
2017-04-01T08:15:17
86,661,342
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from rest_framework import serializers from rest_framework.exceptions import ValidationError from rest_framework.fields import empty from finansez.api.responses.category_info import CategoryInfoResponse from finansez.api.serializers.base import BaseApiSerializer from finansez.core.models import Category class CategoryViewSerializer(BaseApiSerializer): id = serializers.UUIDField(required=True) def __init__(self, instance=None, data=empty, **kwargs): self.category = None super().__init__(instance, data, **kwargs) def validate(self, data): try: self.category = Category.objects.get(id=data['id'], user=self.user, deleted=False) except Category.DoesNotExist: raise ValidationError({'id': 'Категория не существует, удалена или принадлежит другому пользователю.'}) return data def process_internal(self): return CategoryInfoResponse(self.category).get_response()
UTF-8
Python
false
false
1,020
py
90
category_view.py
77
0.729927
0.729927
0
26
35.846154
115
dr-dos-ok/Code_Jam_Webscraper
7,997,229,131,612
9b6826e35989d84b628504b9d0e073131df53c2a
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_43/14.py
96aa39bf1ca67c879035913bde0bf7096e818b9f
[]
no_license
https://github.com/dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
execfile('utils.py') def process(fn): cases = [x.strip() for x in read1(fn)[1:]] res = [processCase(x) for x in cases] write2(fn+".out",res) def processCase(case): scase = set(case) base = len(scase) lencase = len(case) res = 0 if base == 1: base = 2 digitsOrder = [1,0]+range(2,base) digitsIndex = 0 T = {} for i in range(lencase): if case[i] not in T: T[case[i]] = digitsOrder[digitsIndex] digitsIndex += 1 res *= base res += T[case[i]] return str(res)
UTF-8
Python
false
false
597
py
60,747
14.py
60,742
0.500838
0.482412
0
28
19.321429
49
Bikashbhaila/mycode
16,844,861,745,760
6b4315768d7faa0acbfa75a4142351aaa32ac660
cc4b04c90f9546f734efb938c5a4d6694b2f4b84
/FizzBuzz/fizz_buzz01.py
0db8d99df5e07c9bfd4ea868cf41df79b0536962
[]
no_license
https://github.com/Bikashbhaila/mycode
f87befdca556c06815e8815c466c5f667a7f780b
cd82fb965f1c26480a07921ab391415919b27013
refs/heads/main
2023-07-10T16:15:11.907952
2021-08-13T21:01:54
2021-08-13T21:01:54
392,015,300
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#!/usr/bin/env python3 def readFile(): with open("numfile.txt", "r") as input_file: numlist = [] for num in input_file: numlist.append(int(num)) return numlist def playGame(numlist): fizz, buzz, fizzbuzz = 0, 0, 0 for num in numlist: if num % 3 == 0 and num % 5 == 0: print("FizzBuzz") fizzbuzz +=1 elif num % 3 == 0: print("Fizz") fizz +=1 elif num % 5 == 0: print("Buzz") fizzbuzz+=1 else: print(num) return "Fizzes: {fizz} Buzzes: {buzz} FizzBuzzes: {fizzbuzz}" def main(): playGame(readFile()) if __name__ == "__main__": main()
UTF-8
Python
false
false
714
py
25
fizz_buzz01.py
22
0.483193
0.462185
0
31
22.032258
66
sala0320/Algorithm
13,615,046,328,710
b4e074fb1b50cc816971e7daff5823637235a6d8
75730862a05fe5f53655f784f299c542d9c55c37
/BFS+DFS/BackJoon/1520.py
32926ad64d601fc318798bfd321a5ca8c09a852b
[]
no_license
https://github.com/sala0320/Algorithm
630404c0f053b0e87c0a16804245fa836a24e29b
c4abc8070b7e9c4cbee7e691b4e80c07efce0f3d
refs/heads/main
2023-04-21T08:04:55.565437
2022-02-25T05:27:31
2022-02-25T05:27:31
365,438,662
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#DFS + DP import sys sys.setrecursionlimit(10**5) input = sys.stdin.readline M, N = map(int, input().split()) board = [list(map(int, input().split())) for _ in range(M)] dir = [[1,0], [0,1], [-1,0], [0,-1]] dp = [[-1 for _ in range(N)] for _ in range(M)] def dfs(x, y): #끝점에 도달하면 1 반환(끝점에서 끝점까지 갈 수 있는 길은 하나니까) if x == M-1 and y == N-1: return 1 #한번도 방문하지 않은 곳이라면 if dp[x][y] == -1: dp[x][y] = 0 for d in dir: nx = x + d[0] ny = y + d[1] if nx < 0 or nx >= M or ny < 0 or ny >= N: continue #다음으로 가는 곳이 지금보다 작으면 if board[nx][ny] < board[x][y]: #dp 현재 위치에서 끝점까지 갈 수 있는 경로의 수 = 다음 위치에서 끝점까지 갈 수 있는 경로의 수들의 합 dp[x][y] += dfs(nx, ny) return dp[x][y] print(dfs(0,0)) print(dp)
UTF-8
Python
false
false
1,014
py
136
1520.py
122
0.467312
0.438257
0
30
26.566667
77
tedrepo/go_bot
16,338,055,601,612
830de61f6f095c8483fe03bca2f0e3675a33e5aa
f4406f32e727707cc787212520dd952f73afdcc7
/slotfill.py
0987323ede680629fe1554f39bb75b9e854c2434
[]
no_license
https://github.com/tedrepo/go_bot
3256b8c53e7f962bad801a9797587e10341d2a8a
3f02f189346c0a8011c64b2a6ce25c65baf1e574
refs/heads/master
2020-03-28T03:47:27.421768
2018-09-09T12:18:44
2018-09-09T12:18:44
147,671,447
0
1
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- import json from fuzzywuzzy import process from overrides import overrieds from math import exp from collections import defaultdict class DstcSlotFillingNetwork(): """ """ def __init__(self, threshold=0.8, **kwargs): self.threshold = threshold self.load() def __call__(self, tokens_batch, tags_batch, *args, **kwargs): slots = [{}] * len(tokens_batch) m = [i for i, v in enumerate(tokens_batch) if v] if m: tags_batch = [tags_batch[i] for i in m] tokens_batch = [tokens_batch[i] for i in m] for i, tokens, tags in zip(m, tokens_batch, tags_batch): slots[i] = self.predict_slots(tokens, tags) return slots def predict_slots(slot, tokens, tags): entities, slots = self._chunk_finder(tokens, tags) slot_values = {} for entity, slot in zip(entities, slots): match, score = self.ner2slot(entity, slot) if score >= self.threshold * 100: slot_values[slot] = match return slot_values def ner2slot(self, input_entity, slot): if isinstance(input_entity, list): input_entity = " ".join(input_entity) entities = [] normalized_slot_vals = [] for entity_name in self._slot_vals[slot]: for entity in self._slot_vals[slot][entity_name]: entites.append(entity) normalized_slot_vals.append(entity_name) best_match, score = process.extract(input_entity, entites, limit=2**20)[0] def _chunk_finder(tokens, tags): # For BIO labeled sequence of tags extract all named entities form tokens prev_tag = '' chunk_tokens = [] entities = [] slots = [] for token, tag in zip(tokens, tags): curent_tag = tag.split('-')[-1].strip() current_prefix = tag.split('-')[0] if tag.startswith('B-'): if len(chunk_tokens) > 0: entities.append(' '.join(chunk_tokens)) slots.append(prev_tag) chunk_tokens = [] chunk_tokens.append(token) if current_prefix == 'I': if curent_tag != prev_tag: if len(chunk_tokens) > 0: entities.append(' '.join(chunk_tokens)) slots.append(prev_tag) chunk_tokens = [] else: chunk_tokens.append(token) if current_prefix == 'O': if len(chunk_tokens) > 0: entities.append(' '.join(chunk_tokens)) slots.append(prev_tag) chunk_tokens = [] prev_tag = curent_tag if len(chunk_tokens) > 0: entities.append(' '.join(chunk_tokens)) slots.append(prev_tag) return entities, slots def save(self,*args, **kwargs): with open(self.save_path, 'w', encoding='utf8') as f: json.dump(self._slot_vals, f) def load(self, *args, **kwargs): if open(self.load_path, encoding='utf8') as f: self._slot_vals = json.laod(f) class SlotFillingComponent(): def __init__(self, threshold=0.7, return_all=False, **kwargs): self.threshold = threshold self.return_all = return_all self._slot_vals = None self.load() def __call__(self, batch, *args, **kwargs): if isinstance(batch[0], str): batch = [tokenize_reg(instance.strip()) for instance in batch] slots = [{}] * len(batch)
UTF-8
Python
false
false
3,650
py
20
slotfill.py
19
0.532877
0.526575
0
107
33.093458
82
zhanglei1949/AttackSpeakerVerificationSystem
11,175,504,908,020
3c2f3cc8b9708fd532a90c06d1019c6f43ea5728
56aba02e07581eb3de286fe361d3e590af5aee03
/utils/copy_vad_clip.py
4207858e078eff899d351e19d4ca4f2247af551a
[]
no_license
https://github.com/zhanglei1949/AttackSpeakerVerificationSystem
51daf281a7fe9b919fd6ef85703a3ef0a2e664c9
e698dec73132b420b16beb3ae544fe3eaffdddb8
refs/heads/master
2020-06-13T01:02:34.452105
2019-08-01T06:46:42
2019-08-01T06:46:42
194,480,818
5
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import glob import numpy as np import os import soundfile import sys sys.path.append('../speakerVerificationSystem/') from pre_process import read_audio import constants as c def VAD_and_save(source_path, target_path, target_len = 25840): # do vad audio = read_audio(source_path) # vad doneinside if (len(audio) > target_len): a = int( (len(audio) - target_len)/2 ) audio = audio[a : a + target_len] elif (len(audio < target_len)): return soundfile.write(target_path, audio, c.SAMPLE_RATE, subtype='PCM_16') def get_wavs(dir, pattern): res = glob.glob(os.path.join(dir, pattern)) return res def do_vad(source_dir, target_dir): wavs = get_wavs(source_dir, "*/*/*.wav") print("obtain %d wavs files" % len(wavs)) for i in range(len(wavs)): wav = wavs[i] basename = wav.split('/')[-1] new_basename = basename[:-4] + '-clip.wav' target_wav_path = target_dir + new_basename VAD_and_save(wav, target_wav_path) if (i%100 == 0): print(wav, target_wav_path) def clipped_audio(x, num_frames=c.NUM_FRAMES): if x.shape[0] > num_frames + 20: bias = np.random.randint(20, x.shape[0] - num_frames) clipped_x = x[bias: num_frames + bias] elif x.shape[0] > num_frames: bias = np.random.randint(0, x.shape[0] - num_frames) clipped_x = x[bias: num_frames + bias] else: clipped_x = x return clipped_x if __name__ == '__main__': source_dir = '/home/lei/d/LibriSpeech/dev-clean/' target_dir = '/home/lei/2019/dataset/LibriSpeech/dev-clean-clip/' do_vad(source_dir, target_dir)
UTF-8
Python
false
false
1,653
py
66
copy_vad_clip.py
30
0.61222
0.595886
0
52
30.788462
72
nilankh/LeetCodeProblems
12,446,815,238,888
9d136cd73bb4c51c917d7f8f8cb86f7d1f51132d
46dacdcbaca4f1a3eeb6cc69aba7f37460673200
/Queue/QueueUsingTwoStacks#232.py
42aee906279af3445f109e99d7d4fd078a2f23b5
[]
no_license
https://github.com/nilankh/LeetCodeProblems
668bcdc9736d89898fc39082f5271391d5e27395
3594ea53ccc9de69edfbc67e6eab6e3b20959f4d
refs/heads/master
2023-06-24T13:09:45.809535
2021-07-22T16:36:12
2021-07-22T16:36:12
266,919,021
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#232 class QueueUsingTwoStacks: def __init__(self): self.__s1=[] self.__s2=[] def enqueue(self,data): #(O(n)) while(len(self.__s1)!=0): self.__s2.append(self.__s1.pop()) self.__s1.append(data) while(len(self.__s2)!=0): self.__s1.append(self.__s2.pop()) return def dequeue(self): #(O(1)) if(len(self.__s1)==0): return -1 return self.__s1.pop() def front(self): if(len(self.__s1)==0): return -1 return self.__s1[-1] def size(self): return len(self.__s1) def isEmpty(self): return self.size()==0 q=QueueUsingTwoStacks() q.enqueue(1) q.enqueue(2) q.enqueue(3) q.enqueue(4) while(q.isEmpty() is False): print(q.front()) q.dequeue()
UTF-8
Python
false
false
841
py
134
QueueUsingTwoStacks#232.py
134
0.485137
0.449465
0
47
16.702128
45
mdrohmann/txtemplates
16,904,991,315,209
2c4e48653d564ab41273c9abe2a60f113c5ccf79
b4687bd0817c6d00d8afde2721102416462cd73f
/tests/server_templates/test_server_templates.py
fd392113ed8a233092ec762e2013eaf4c2b6b26c
[]
no_license
https://github.com/mdrohmann/txtemplates
a8818b5213c38f1d27d497e3578129d07f764c06
b346b15d3eb465ec828a31fea0a00df3ae582942
refs/heads/master
2020-06-02T21:37:31.690441
2015-04-21T16:00:41
2015-04-21T16:00:41
40,129,367
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# encoding: utf-8 import os import argparse import sys import re import pytest from txtemplates import server_templates import txtemplates def test_get_parser_error(capsys): parser = server_templates.get_parser() with pytest.raises(SystemExit): parser.parse_args([]) _, err = capsys.readouterr() assert re.search('error: too few arguments', err) @pytest.mark.parametrize('argstr, expected', [ ('module', {'name': 'module', 'module': 'txtemplates'}), ('module package', {'name': 'module', 'module': 'package'}), ('module package -C directory -f', {'directory': 'directory', 'force_overwrite': True}) ]) def test_get_parser(argstr, expected): parser = server_templates.get_parser() args = parser.parse_args(argstr.split(' ')) for (k, v) in expected.items(): assert hasattr(args, k) assert getattr(args, k) == v def test_get_target_module(): directory = os.path.dirname(os.path.dirname(txtemplates.__file__)) args = argparse.Namespace(module='txtemplates', directory=directory) module = server_templates.get_target_module(args) assert module == txtemplates args = argparse.Namespace(module='txtemplates', directory='/tmp') module = server_templates.get_target_module(args) assert module == txtemplates @pytest.fixture(scope="function") def testpackage(tmpdir): p = tmpdir.mkdir("testpackage").join("__init__.py") p.write("") args = argparse.Namespace(module='testpackage', directory=str(tmpdir)) package = server_templates.get_target_module(args) return tmpdir, package def test_dirs(testpackage): tempdir, package = testpackage basedir = str(tempdir) parser = server_templates.get_parser() args = parser.parse_args('module testpackage'.split(' ')) dirs = server_templates.Dirs(args, package) assert dirs.module == os.path.join(basedir, 'testpackage', 'module') assert dirs.twistedplugin == os.path.join( basedir, 'testpackage', 'twisted', 'plugins') assert dirs.testbase == os.path.join(basedir, 'tests') assert dirs.test == os.path.join(basedir, 'tests', 'module') def test_run(testpackage, monkeypatch, capsys): tempdir, package = testpackage monkeypatch.setattr( sys, "argv", "main.py testmodule testpackage -C {}" .format(str(tempdir)).split(" ")) server_templates.main() files = [str(f)[len(str(tempdir)):] for f in tempdir.visit() if not str(f).endswith('.pyc') and not '__pycache__' in str(f)] assert len(files) == 21 assert '/testpackage/testmodule/backend/__init__.py' in files assert '/tests/testmodule/test_testmodule_backend.py' in files # second run should skip all files p = tempdir.join('testpackage').join('__init__.py') text = "# This should not be overwritten" p.write(text) server_templates.main() out, _ = capsys.readouterr() assert re.search(text, p.read()) assert re.search('exists: Skipped', out) # another run with overwrite flag turned on, should overwrite the existing # files. monkeypatch.setattr( sys, "argv", "main.py testmodule testpackage -C {} -f" .format(str(tempdir)).split(" ")) server_templates.main() p = tempdir.join('testpackage').join('__init__.py') out, _ = capsys.readouterr() assert re.search(text, p.read()) assert not re.search('exists: Skipped', out) # vim:set ft=python sw=4 et spell spelllang=en:
UTF-8
Python
false
false
3,487
py
53
test_server_templates.py
45
0.658159
0.657012
0
107
31.588785
78
haka913/programmers
6,313,601,944,888
ba5056e8cb541938e5f4463209523bc333afff21
0c95ba47207f85f1d0d8a500f174f459226695f3
/p_3_단속카메라.py
ddb950a9dddb6be1497ea9c8afecae97646a185a
[]
no_license
https://github.com/haka913/programmers
31cf37117ce220e3992ff2f3cb5a4c59f280c457
2cee9ef1a77fb7fe8a1b6aa738485720efafc254
refs/heads/master
2022-12-04T14:40:00.993494
2020-09-02T12:48:30
2020-09-02T12:48:30
255,633,491
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def solution(routes): routes.sort() cam = 30000 answer = 0 for route in reversed(routes): if cam > route[1]: answer += 1 cam = route[0] return answer print(solution(routes=[[-20, 15], [-14, -5], [-18, -13], [-5, -3]]))
UTF-8
Python
false
false
275
py
82
p_3_단속카메라.py
82
0.498182
0.418182
0
14
18.642857
68
vivekshah1801/Python-RPC-Demo
9,904,194,634,430
dcf9ffd7491cd6dcd51b3ddcf3e64d46bde58296
08cb94509796aae2a8b0ed4fd28bd51801ef157a
/client.py
491d1c6d24268d5817a330f58dd44c52030d8f3a
[]
no_license
https://github.com/vivekshah1801/Python-RPC-Demo
3f1e85fd18220aa24f11bb7485bddec91761d7a2
4dcd569c6c0cee634b43922f2a141a573fbfdb59
refs/heads/master
2022-12-11T05:24:50.142356
2020-08-31T05:04:08
2020-08-31T05:04:08
291,620,497
1
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import rpyc host = "localhost" port = 9876 r = rpyc.connect(host, port).root print(r) print(r.helloworld()) print("Done")
UTF-8
Python
false
false
125
py
3
client.py
2
0.688
0.656
0
11
10.454545
33
thohajati/scard-login
4,209,067,982,147
10ebeb1e39f6a5659547b4a162ca14705268be89
2d8b7f7f5d59005966b7802089a5f6f6ba8fee03
/SCardLogin_test.py
3f71d8099f0a52c1709977be4f30c9e767910cb0
[]
no_license
https://github.com/thohajati/scard-login
b1f9d37f80e94d0f4c50b3cc9e923e4d4e262149
04afa1e6bc981bd5e6faf74459005949ba768c38
refs/heads/master
2021-01-19T16:42:50.552786
2017-08-21T07:43:44
2017-08-21T07:43:44
101,021,172
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import SCardLogin if __name__ == '__main__': dict = {} print("Insert your card!") dict = SCardLogin.get_scard_login() print(str(dict))
UTF-8
Python
false
false
227
py
5
SCardLogin_test.py
3
0.387665
0.387665
0
8
19.625
43
devjaynemorais/tcc_gen_figures
5,729,486,418,889
3dad758e817bc40522f5e92a650c2d9e47733873
287df5ff9d3f3384af2c9bb33126caf1df558858
/bin/countstrategies.py
e9e1ec316fbb84703bd6186996456718ec2beaa6
[]
no_license
https://github.com/devjaynemorais/tcc_gen_figures
eba58a6453c1f2a277ae0f79684c94c834f12cf5
07a1f7d0a060e797749926446546608a3bb14788
refs/heads/master
2022-07-07T19:22:02.479523
2020-05-12T00:27:55
2020-05-12T00:27:55
263,218,044
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- import sys import pandas as pd from importlib import reload reload(sys) # Classe que contem todas as estrategias # de contagem de acertos class EstrategiasDeContagem: def __init__(self): self.pond_df = pd.read_csv( 'data/medidas_ponderadas.csv', encoding='utf-8', sep=',') self.pond_df = self.pond_df.set_index('PA') self.pts_articulacao = {} self.pts_articulacao['1-Quadril-EN'] = 'Espaco neutro do Quadril' self.pts_articulacao['2-Quadril'] = 'Quadril' self.pts_articulacao['3-Quadril-E'] = 'E Quadril' self.pts_articulacao['4-Quadril-D'] = 'D Quadril' self.pts_articulacao['5-Estomago-EN'] = 'Espaco neutro do Estomago' self.pts_articulacao['6-Estomago'] = 'Estomago' self.pts_articulacao['7-Estomago-E'] = 'E Estomago' self.pts_articulacao['8-Estomago-D'] = 'D Estomago' self.pts_articulacao['9-Peito-EN'] = 'Espaco neutro do Peito' self.pts_articulacao['10-Peito'] = 'Peito' self.pts_articulacao['11-Peito-E'] = 'E Peito' self.pts_articulacao['12-Peito-D'] = 'D Peito' self.pts_articulacao['13-Pescoco-EN'] = 'Espaco neutro do Pescoco' self.pts_articulacao['14-Pescoco'] = 'Pescoco' self.pts_articulacao['15-Ombro-E'] = 'E Ombro' self.pts_articulacao['16-Ombro-D'] = 'D Ombro' self.pts_articulacao['17-Cabeca-EN'] = 'Espaco neutro da Cabeca' self.pts_articulacao['18-Cabeca'] = 'Cabeca' self.pts_articulacao['19-Cabeca-E'] = 'E Cabeca' self.pts_articulacao['20-Cabeca-D'] = 'D da Cabeca' self.pts_articulacao['21-Acima-Cabeca'] = 'Acima da Cabeca' self.pts_articulacao_inverse = {} self.pts_articulacao_inverse['1-Quadril-EN'] = 'Espaco neutro do Quadril' self.pts_articulacao_inverse['2-Quadril'] = 'Quadril' self.pts_articulacao_inverse['3-Quadril-E'] = 'D Quadril' self.pts_articulacao_inverse['4-Quadril-D'] = 'E Quadril' self.pts_articulacao_inverse['5-Estomago-EN'] = 'Espaco neutro do Estomago' self.pts_articulacao_inverse['6-Estomago'] = 'Estomago' self.pts_articulacao_inverse['7-Estomago-E'] = 'D Estomago' self.pts_articulacao_inverse['8-Estomago-D'] = 'E Estomago' self.pts_articulacao_inverse['9-Peito-EN'] = 'Espaco neutro do Peito' self.pts_articulacao_inverse['10-Peito'] = 'Peito' self.pts_articulacao_inverse['11-Peito-E'] = 'D Peito' self.pts_articulacao_inverse['12-Peito-D'] = 'E Peito' self.pts_articulacao_inverse['13-Pescoco-EN'] = 'Espaco neutro do Pescoco' self.pts_articulacao_inverse['14-Pescoco'] = 'Pescoco' self.pts_articulacao_inverse['15-Ombro-E'] = 'D Ombro' self.pts_articulacao_inverse['16-Ombro-D'] = 'E Ombro' self.pts_articulacao_inverse['17-Cabeca-EN'] = 'Espaco neutro da Cabeca' self.pts_articulacao_inverse['18-Cabeca'] = 'Cabeca' self.pts_articulacao_inverse['19-Cabeca-E'] = 'D Cabeca' self.pts_articulacao_inverse['20-Cabeca-D'] = 'E da Cabeca' self.pts_articulacao_inverse['21-Acima-Cabeca'] = 'Acima da Cabeca' # Estrategia baseada em condicionais para contagem de acertos def todos(self, dataframe, args): m_direita = str(args[0]) m_esquerda = str(args[1]) ponto_articulacao = str(args[2]) movimento = str(args[3]) nome = str(args[4]) if(movimento == 'Ambas'): if((m_direita == self.pts_articulacao[ponto_articulacao]) and (m_esquerda == self.pts_articulacao[ponto_articulacao])): return 1 elif ((m_direita == self.pts_articulacao_inverse[ponto_articulacao]) and (m_esquerda == self.pts_articulacao_inverse[ponto_articulacao])): return 1 elif(m_direita == 'nan' or m_direita == 'FALHOU') or (m_esquerda == 'nan' or m_esquerda == 'FALHOU'): return 3 else: return 0 elif(movimento == 'Mao Esquerda'): if (m_esquerda == self.pts_articulacao[ponto_articulacao]): return 1 elif (m_esquerda == self.pts_articulacao_inverse[ponto_articulacao]): return 1 elif(m_esquerda == 'nan' or m_esquerda == 'FALHOU'): return 3 else: return 0 elif(movimento == 'Mao Direita'): if(m_direita == self.pts_articulacao[ponto_articulacao]): return 1 elif (m_direita == self.pts_articulacao_inverse[ponto_articulacao]): return 1 elif(m_direita == 'nan' or m_direita == 'FALHOU'): return 3 else: return 0 else: return 4 def ponderado(self, dataframe, args): m_direita = str(args[0]) m_esquerda = str(args[1]) ponto_articulacao = str(args[2]) movimento = str(args[3]) nome = str(args[4]) if (movimento == 'Mao Esquerda'): if (m_esquerda != 'FALHOU'): return self.pond_df.loc[ponto_articulacao][m_esquerda] if (movimento == 'Mao Direita'): if (m_direita != 'FALHOU'): return self.pond_df.loc[ponto_articulacao][m_direita] if (movimento == 'Ambas'): if (m_direita != 'FALHOU' and m_esquerda != 'FALHOU'): resultado_soma = (self.pond_df.loc[ponto_articulacao][m_esquerda] + self.pond_df.loc[ponto_articulacao][m_direita]) if (resultado_soma != 0): return resultado_soma / 2 return 0
UTF-8
Python
false
false
5,815
py
10
countstrategies.py
5
0.573001
0.556836
0
134
42.298507
154
doublevcodes/pyformatter
16,853,451,672,749
bc67a2474975ea4518c4cc1e4bb20392cf9f3b74
9738536bad6e3c7644ea99c0bae2ce8b41535ed1
/formatter/pep8/statement/comparisons.py
0df1d4ce8dbe777c8efb0ff47c6b71c1b91456b5
[]
no_license
https://github.com/doublevcodes/pyformatter
7788518dfda49d5d974b851ba9682ac5c8850df4
1a061c071e66b90cc4e7f1fd2ce11b3754729ad5
refs/heads/master
2023-06-23T07:29:15.691694
2021-07-21T16:05:01
2021-07-21T16:05:01
387,006,646
0
0
null
false
2021-07-18T23:45:35
2021-07-17T17:59:57
2021-07-18T21:17:21
2021-07-18T23:45:35
11
0
0
1
Python
false
false
import ast import itertools from formatter.pep8.helpers import _reduce_module, _replace_tokens class ComparisonParser: def __init__(self, source: str) -> None: self.source = source return None def get_comparisons(self): for comp in self.get_none_comparisons(): yield comp def get_none_comparisons(self): comparisons = [comparison for comparison in self._parse()] none_comparisons = [ comparison for comparison in comparisons if (isinstance(comparison.left, ast.Constant) and (comparison.left.value) is None) or (any((isinstance(comparator, ast.Constant) and (comparator.value is None)) for comparator in comparison.comparators)) ] for comparison in none_comparisons: yield ( ast.unparse( ComparisonParser.fix_none_comparisons(comparison) ), comparison.lineno, comparison.end_lineno, comparison.col_offset, comparison.end_col_offset ) def _parse(self): tree: ast.Module = ast.parse(self.source) comparisons = list(set([node for node in _reduce_module(tree) if isinstance(node, ast.Compare)])) return comparisons @staticmethod def fix_none_comparisons(comparison: ast.Compare) -> ast.Compare: FIXED_COMP_OPS = { ast.Eq: ast.Is(), ast.NotEq: ast.IsNot(), } if comparison.ops[0] not in (ast.Is, ast.IsNot): return ast.Compare( left=comparison.left, ops=[FIXED_COMP_OPS.get(type(comparison.ops[0]), comparison.ops[0])], comparators=comparison.comparators ) else: return comparison class ComparisonFormatter: def __init__(self, filenames) -> None: self.filenames = filenames def format_comparisons(self) -> None: for filename in self.filenames: with open(filename, "r+") as file: comparisonparser = ComparisonParser(file.read()) new_comparisons = [comp for comp in comparisonparser.get_comparisons()] _replace_tokens(filename, new_comparisons)
UTF-8
Python
false
false
2,271
py
12
comparisons.py
12
0.590489
0.588727
0
68
32.411765
132
Diego07101985/challenge-bravo
15,762,529,996,549
9db29cfb82b4addee668d25baa3d1e729785e57d
4dd53b57cb310428e07ad85e96f4ef5463e6f366
/desafio/currency/repository.py
24fa0cf6e1d583d1ac243ab382c9bf0e049d8fde
[]
no_license
https://github.com/Diego07101985/challenge-bravo
91177ab13899dc492b59c0c7b713dfd7a07cd0a5
f8df7e6663ce1ce13d1f7a670acbc85e205c788b
refs/heads/master
2022-12-01T21:10:04.241867
2020-08-17T20:28:12
2020-08-17T20:28:12
285,547,846
0
0
null
true
2020-08-17T20:24:36
2020-08-06T11:01:34
2020-08-16T23:30:13
2020-08-17T20:24:35
74
0
0
0
Python
false
false
from desafio.currency.model import Currency from desafio.extensions import session_scope class CurrencyRepository(): def get_all_currency(self): with session_scope() as session: return session.query(Currency).all() def get_currency_by_simbol_currency(self, currency): with session_scope() as session: currency = session.query(Currency).filter( Currency.simbol_currency == currency.simbol_currency).first() return currency def get_currency_by_id(self, currency): with session_scope() as session: currency = session.query(Currency).filter( Currency.id == currency.id).first() return currency def insert(self, currency): with session_scope() as session: session.add(currency) currency = session.query(Currency).filter( Currency.simbol_currency == currency.simbol_currency).first() print('Insert', currency) return currency.id def update(self, currency): with session_scope() as session: session.query(Currency).filter( Currency.id == currency.id).update( {"simbol_currency": currency.simbol_currency, "name_description": currency.name_description} ) update_currency = session.query(Currency).filter( Currency.simbol_currency == currency.simbol_currency).first() return update_currency def delete(self, currency): with session_scope() as session: currency = session.query(Currency).filter( currency.simbol_currency == currency.simbol_currency).first() session.delete(currency) currency = session.query(Currency).filter( currency.simbol_currency == currency.simbol_currency).first() return currency is None
UTF-8
Python
false
false
1,923
py
29
repository.py
18
0.615185
0.615185
0
49
38.244898
77
nelli369/Data_Scraping
14,018,773,298,266
d511a695f575d9c7b1ac1ac8d137af4f5ed6ae69
1c789a24715863c405e194e6e4447cbb652d0737
/BooksToScrape3.py
c4c28ff8d2c15cbe5c630029ceb74ce008a0370e
[]
no_license
https://github.com/nelli369/Data_Scraping
b14522a9089d7d52f575ed761c368b5f7d546692
60f27562660a54ac23a25e65a253c38b404c7f2e
refs/heads/master
2022-11-14T10:08:18.497811
2020-07-01T14:05:13
2020-07-01T14:05:13
274,640,854
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
# -*- coding: utf-8 -*- """DS hmk2 pr3.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/16q0T7UI1N82myYQ1iyOyCiLJKZ5j-pM_ """ !pip install scrapy import time import requests import numpy as np import pandas as pd from scrapy.http import TextResponse import re def books_scraper(url,base_url="http://books.toscrape.com/"): page = requests.get(url) response = TextResponse(body=page.text,url=url,encoding="utf-8") title = response.css("h3 > a::attr(title)").extract() price_l = response.css("p.price_color::text").extract() price = [i.replace("A", "") for i in price_l] book_url = response.css("h3 >a::attr(href)").extract() picture_url = response.css("img::attr(src)").extract() star = response.css("p[class^='star-rating']::attr(class)").extract() star_rating = [] for i in star: star_rating.append(i.replace("star-rating", "")) stock =response.css("p.price_color ~ p[class^='instock']::attr(class)").extract() instock = [i.replace("availability", " ") for i in stock] base_url = "http://books.toscrape.com/catalogue/" bookurl = [base_url + i for i in book_url] picurl = [base_url + i for i in picture_url] return pd.DataFrame({"Title":title, "Price":price, "Book_urls":bookurl, "Image_urls":picurl,"Star_Rating":star_rating,"Instock":instock}) books = [] for i in range(1,1000): pages =books_scraper(url = f"http://books.toscrape.com/catalogue/page-{i}.html") if pages.shape[0] == 0: break else: books.append(pages) books = pd.concat(books) books
UTF-8
Python
false
false
1,635
py
9
BooksToScrape3.py
4
0.658104
0.644648
0
48
33.041667
142
wpovell/twitter-kov
1,941,325,217,831
0776c314498d9efea6a0a49f365091f7382fe028
16d8ed403af2184c9db4026cc84b9fd040beeeea
/TwitterKov/util/recall.py
67cb907bc1d69b0bbb67d387750abde4a84a5326
[]
no_license
https://github.com/wpovell/twitter-kov
a51267e026aae983b0579d2f193d8c2e98f2f61b
371a7894783d33e68d64d67feca9379ba166017a
refs/heads/master
2016-09-06T15:13:55.346790
2014-10-11T04:04:57
2014-10-11T04:04:57
11,493,473
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import json import os import datetime import inspect import importlib class recall: def __init__(self, fname=None): self.callingFile = inspect.stack()[1][1] if fname is None: self.fname = ''.join(self.callingFile.split('.')[:-1]) + '.log' else: self.fname = '/'.join(self.callingFile.split('/')[:-1]) + '/' + fname def __call__(self, func): class ret: def __init__(self, fname, callingFile): self.original_func = func self.fname = fname self.callingFile = callingFile def original(self, *args, **kwargs): self.original_func(*args, **kwargs) def __call__(self, *args, **kwargs): if os.path.isfile(self.fname): with open(self.fname) as f: history = json.load(f) else: history = [] history.insert(0, { 'cwd': os.getcwd(), 'file': self.callingFile, 'funcname': func.__name__, 'time':str(datetime.datetime.now()), 'args':args, 'kwargs':kwargs }) with open(self.fname, 'w') as f: json.dump(history, f) return func(*args, **kwargs) return ret(self.fname, self.callingFile) if __name__ == '__main__': from sys import argv history = 0 if len(argv) > 1: fileName = argv[1] if not os.path.isfile(fileName): print("Log file does not exist.") exit(1) if len(argv) > 2 and argv[2].isdigit(): history = int(argv[2]) else: print("No log file provided.") exit(1) direct = os.path.dirname(fileName) with open(fileName) as f: data = json.load(f) data = data[history] rpath = ''.join(os.path.relpath(data['file'], data['cwd']).split('.')[:-1]) func = getattr(importlib.import_module(rpath.replace('/', '.')), data['funcname']) func.original(*data['args'], **data['kwargs'])
UTF-8
Python
false
false
2,152
py
31
recall.py
30
0.486524
0.480019
0
61
34.295082
86
AlanShea/Comsci_12700-Assignments
5,686,536,727,560
4cc32122f62e64c88de7460ef3afa4d0c227dde3
ae6f66a3d1e667ae94e282a039bd1cb140310dbb
/32. Air Pollution.py
6a385332b1cc886a1698b2ee26a2bdad0b975ebe
[]
no_license
https://github.com/AlanShea/Comsci_12700-Assignments
f76dfd8a0af82b8d0a789bb01d8e882935237679
1bb67f2397f114919a1f36fd6826b64d1bcdb07e
refs/heads/master
2023-02-06T01:10:25.500465
2020-12-19T01:02:07
2020-12-19T01:02:07
322,739,064
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
#Name: Alan Q. Shea #Email: [email protected] #Date: October 21, 2020 import pandas as pd import matplotlib.pyplot as plt fileIn = input("Enter name of input file: ") fileOut = input("Enter name of output file: ") data = pd.read_csv(fileIn) avgAsthma = data.groupby("geo_entity_name").mean()["data_valuemessage"] avgAsthma.plot.bar() plt.gcf().subplots_adjust(bottom = 0.5) dataGraph = plt.gcf() dataGraph.savefig(fileOut)
UTF-8
Python
false
false
445
py
66
32. Air Pollution.py
51
0.721348
0.698876
0
18
23.722222
71
DarthThanatos/QuantumSimulator
11,647,951,338,360
2ed27490a2dab502938bf45becc51ea009a02d49
11e43f083afad6e84c947332bb60327a1539b836
/view/ProbabilitiesTable.py
59089e844d407cf43318d949b87be75248df3a44
[]
no_license
https://github.com/DarthThanatos/QuantumSimulator
e33a226efc06e08ccda44a5ccb5727ae31dbfbab
9f05113b9b0c980536afb9bddca6a9596afdb459
refs/heads/master
2020-04-02T15:23:45.380210
2019-06-02T08:26:23
2019-06-02T08:26:23
154,566,220
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import wx import wx.grid class ButtonRenderer(wx.grid.GridCellRenderer): def __init__(self, state_details_fun): wx.grid.GridCellRenderer.__init__(self) self.down = False self.click_handled = False self.__state_details_fun = state_details_fun def Draw(self, grid, attr, dc, rect, row, col, isSelected): if self.down: state = wx.CONTROL_PRESSED | wx.CONTROL_SELECTED else: state = 0 x,y = rect.GetTopLeft() tw, th = dc.GetTextExtent("argand") w, h = rect.GetWidth(), rect.GetHeight() wx.RendererNative.Get().DrawPushButton(grid, dc, rect, state) dc.DrawText("argand", x + w/2 - tw/2, y + h/2 - th/2) if self.down and not self.click_handled: self.click_handled = True self.HandleClick() def HandleClick(self): self.__state_details_fun() def GetBestSize(self, grid, attr, dc, row, col): text = grid.GetCellValue(row, col) dc.SetFont(attr.GetFont()) w, h = dc.GetTextExtent(text) return wx.Size(w, h) def Clone(self): return ButtonRenderer(self.__state_details_fun) class StateDetailsFun: def __init__(self, amplitude, probabilities_mediator): self.__amplitude = amplitude self.__probabilities_mediator = probabilities_mediator def __call__(self): self.__probabilities_mediator.visualise_amplitude(self.__amplitude) COLUMNS = 4 class ProbabilitiesTable(wx.grid.Grid): def __init__(self, parent, register_representation, probabilities_mediator): wx.grid.Grid.__init__(self, parent) self.__probabilities_mediator = probabilities_mediator self.CreateGrid(len(register_representation), COLUMNS) self.__renderer = ButtonRenderer(StateDetailsFun(0, self.__probabilities_mediator)) for i, row_representation in enumerate(register_representation): self.__update_row(row_representation, i) self.__setup_titles() self.SetRowLabelSize(0) self.SetGridLineColour(wx.WHITE) self.GetGridWindow().Bind(wx.EVT_LEFT_DOWN, self.__on_left_down) self.GetGridWindow().Bind(wx.EVT_LEFT_UP, self.__on_left_up) self.Bind(wx.grid.EVT_GRID_ROW_SIZE, self.__on_resize) self.Bind(wx.grid.EVT_GRID_COL_SIZE, self.__on_resize) def __on_resize(self, _): self.__probabilities_mediator.probs_table_resized() def __update_row(self, row_representation, i): for j in range(COLUMNS): self.SetReadOnly(i, j, True) if j == 4: pass # self.SetCellRenderer(i, 4, ButtonRenderer(StateDetailsFun(complex(row_representation[3]), self.__probabilities_mediator))) else: self.SetCellAlignment(i, j, wx.ALIGN_CENTRE, wx.ALIGN_CENTRE) self.SetCellValue(i, j, row_representation[j]) def __setup_titles(self): titles = ["val", "qubits", "prob", "ampl", ""] for i in range(4): self.SetColLabelValue(i, titles[i]) def __on_left_down(self, evt): col, row = self.__hit_test_cell(evt.GetPosition().x, evt.GetPosition().y) if isinstance(self.GetCellRenderer(row, col), ButtonRenderer): self.GetCellRenderer(row, col).down = True self.Refresh() evt.Skip() def __on_left_up(self, evt): col, row = self.__hit_test_cell(evt.GetPosition().x, evt.GetPosition().y) if isinstance(self.GetCellRenderer(row, col), ButtonRenderer): self.GetCellRenderer(row, col).down = False self.GetCellRenderer(row, col).click_handled = False self.Refresh() evt.Skip() def __hit_test_cell(self, x, y): x, y = self.CalcUnscrolledPosition(x, y) return self.XToCol(x), self.YToRow(y) if __name__ == '__main__': app = wx.App(0) frame = ProbabilitiesTable(None, [], None) app.MainLoop()
UTF-8
Python
false
false
3,968
py
107
ProbabilitiesTable.py
93
0.612651
0.609375
0
110
35.081818
140
vishnun/python-programs
8,744,553,434,865
f85392f60b2534a32bfcdfcb32c28157917fe061
c7ffca464ef7bef4f64df5b471c9b6eca2c80e29
/string_to_int.py
953d298b3ab4a492cbea341cf52caabb5c24b119
[ "MIT" ]
permissive
https://github.com/vishnun/python-programs
2f3f2d6fc4a8ec3268a111d134dd57bb8d32df77
8e27f88a2a7174a0ca10596a328c4031bedd602c
refs/heads/master
2021-01-11T18:47:25.801435
2017-02-05T07:10:08
2017-02-05T07:10:08
79,625,310
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
def is_valid_digit(digit): return 0 <= digit <= 9 def str_to_int(num_str): num_str, sign = get_sign(num_str) value = 0 for digit in num_str: digit = ord(digit) - ord('0') if is_valid_digit(digit): value = value * 10 + digit else: return "Not a number" if sign == '-': value = -value return value def get_sign(num_str): sign = '+' if num_str[0] == '-' or num_str[0] == '+': sign = num_str[0] num_str = num_str[1:] return num_str, sign
UTF-8
Python
false
false
465
py
18
string_to_int.py
17
0.587097
0.565591
0
24
18.375
43
jordan-simonovski/seefood-slackbot
17,265,768,555,272
69ff4ddd51adb54ba6453f0628f39fe6527bc071
ce62f2bf8e6495d62223831611e6903f149f394e
/modules/slackMessage.py
5e9ae0f544fab3c547e1aea5958d1c30ac2cf30b
[]
no_license
https://github.com/jordan-simonovski/seefood-slackbot
c3e57239fdbb206502509d9541d3c8a7867b1688
be639afc91995cd088751544547a1eb29aff36e2
refs/heads/master
2021-01-21T11:37:39.572209
2017-05-23T12:45:31
2017-05-23T12:45:31
91,748,549
6
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import requests import json def buildSlackMessage(imageUrl, hotdogAnswer): slackMessage = { "response_type": "in_channel", "attachments": [{ "title": hotdogAnswer, "fallback": "This is going to rollback your deployment", "color": "#3AA3E3", "attachment_type": "default", "image_url": imageUrl }] } return slackMessage def notifySlackChannel(requestForm, hotdogAnswer): myMessage = buildSlackMessage(requestForm['text'], hotdogAnswer) return myMessage # webHookUrl = requestForm['response_url'] # response = requests.post(webHookUrl, data=json.dumps(myMessage)) # if response.status_code == 200: # return "ok" # return "there was an error getting a response from slack"
UTF-8
Python
false
false
799
py
8
slackMessage.py
5
0.634543
0.627034
0
25
31
70
princeofdatamining/django_celery_management
16,621,523,441,809
b5b40b1b1f6ffacf4b82a767b5af37927d636039
86e7f45989e4081fdc7d1676043839560e7dec72
/django_celery_management/__init__.py
80e48593a02c51b0b61679e79c600b2c387b6c26
[]
no_license
https://github.com/princeofdatamining/django_celery_management
d861f537c91202a35cc2f7bed8a14ca4473552d8
9ef99a4ecb30d16f5bfe3d24141be617308e4308
refs/heads/master
2020-09-20T05:34:13.911441
2020-06-29T07:20:08
2020-06-29T07:20:08
94,501,014
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
__version__ = "1.0.0" default_app_config = 'django_celery_management.apps.django_celery_managementAppConfig'
UTF-8
Python
false
false
110
py
6
__init__.py
6
0.754545
0.727273
0
3
35.666667
86
peteranny/research
18,554,258,728,692
f3a0706a68857bc36d682b4b4ed2de90792c0f63
327ce897521087bf9a3d44dd0bc2377e85bb8425
/lib/factory.py
29606d6cf508e6094a2adea43cf88f1105275799
[]
no_license
https://github.com/peteranny/research
75f1fdefe322049c3344ececfd6405fbb562cd95
f2674f536d0f758682a1dc195cadcd577205390a
refs/heads/master
2021-01-23T08:39:58.492377
2015-01-18T17:07:07
2015-01-18T17:07:07
27,134,312
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
''' @ Ting-Yi Shih #Usage Example from factory import Factory Factory(source=[1,2,3], filename="factory_out", func=lambda x:str(x), num_workers=1).run() source: a list/an iterator/a generator of items filename: output filename func: function that returns a string as the result of the item can take either 1 argument: item, or take 2 arguments: item and fparam item: 1 out of source fparam(optional): parameters fparam: parameters to this function shared by all items (None by default) if func takes exactly 1 argument, fparam must be None if func takes exactly 2 arguments, fparam must not be None num_worker: number of process to be executed ''' from __future__ import division class Factory: def __init__(this, source=[], filename="factory_out", func=lambda x:str(x), fparam=None, num_workers=1): this.source = source this.fout_name = filename this.func = func this.num_workers = num_workers this.fparam = fparam @staticmethod def worker(worker_id, in_queue, func, fparam, fout): # make args a tuple while True: item = in_queue.get() result = func(item, fparam) if fparam else func(item) # input=item,args output=string fout.write("%s\n"%result) fout.flush() in_queue.task_done() @staticmethod def progressor(in_queue,total_num): if total_num==0: return import time,sys while True: Factory.pg("%5.1f%%..."%(100-in_queue.qsize()/total_num*100)) time.sleep(1) @staticmethod def pg(msg, br=False): import sys sys.stderr.write("\rFactory: "+msg+"\033[K"+("\n" if br else "")) sys.stderr.flush() def test(this): try: this.source = iter(this.source) except: raise Exception("source should be a iterable") import inspect if this.fparam is None: if len(inspect.getargspec(this.func).args)!=1: raise Exception("function should take exactly 1 argument: item") if this.fparam is not None: if len(inspect.getargspec(this.func).args)!=2: raise Exception("function should take exactly 2 arguments:item and parameters") if this.fout_name=="": raise Exception("filename cannot be an empty string") if type(this.num_workers)!=type(1) or this.num_workers<=0: raise Exception("invalid value of num_workers") try: item = next(this.source) except: raise Exception("source is empty") result = this.func(item, this.fparam) if this.fparam else this.func(item) if type(result)!=type(""): raise Exception("function should return a string") with open("%s_part"%this.fout_name, "w") as fout: fout.write("%s\n"%result) fout.flush() def run(this): Factory.pg("configuration test...") this.test() # check configuration source = this.source fout_name = this.fout_name func = this.func fparam = this.fparam num_workers = this.num_workers worker = this.worker progressor = this.progressor # queue settings Factory.pg("arranging source elements...") from multiprocessing import JoinableQueue,Process in_queue = JoinableQueue() for item in source: in_queue.put(item) # worker progressing progressor = Process(target=progressor, args=(in_queue, in_queue.qsize())) import time start_time = time.time() progressor.start() # worker settings fouts, workers = [], [] for w_id in xrange(num_workers): fouts.append(open("%s_part%d"%(fout_name,w_id),"w")) workers.append(Process(target=worker, args=(w_id, in_queue, func, fparam, fouts[w_id]))) workers[w_id].start() # post processing in_queue.join() for w_id in xrange(num_workers): workers[w_id].terminate() progressor.terminate() end_time = time.time() Factory.pg("working done (%.1fs lapsed)"%(end_time - start_time), br=True) import os os.system("cat %s_part* > %s"%(fout_name,fout_name)) os.system("rm -f %s_part*"%(fout_name)) # useful when the output is not str (not recommended) def obj2line(obj): return str(obj) def line2obj(line): import ast return ast.literal_eval(line) # useful when batch processing (1 result for all instead of for each) (not recommended) def src2chunk(source, nChunks): import math source = list(source) chunk_size = int(math.ceil(len(source)/nChunks)) return [source[i:i+chunk_size] for i in xrange(0,len(source),chunk_size)] def mergeLines(filename, res, update): with open(filename, "r") as fin: for line in fin: res_prt = line2obj(line) res = update(res,res_prt) with open(filename, "w") as fout: fout.write(obj2line(res)) if __name__ == "__main__": def simple(x,fparam): import time time.sleep(fparam) return str(x) Factory(source=range(10), filename="factory_out", func=simple, fparam=3, num_workers=5).run()
UTF-8
Python
false
false
5,247
py
38
factory.py
22
0.611016
0.603202
0
150
33.973333
108
ruyfreire/python-introducao
8,504,035,253,532
5168794c689ad3c0d48c2b75fa24d232a8267be6
e2adbbc7512933027100747db1db79653b45a716
/sessao4/02_metodos/get_set.py
2589c60e6f9d39bb760a25e32024f1142d3103e3
[]
no_license
https://github.com/ruyfreire/python-introducao
128dfeb24f7981a3b16891bf8c421e7a2767fee9
9088d216de7fe940f523b2a3c817fcc340aba730
refs/heads/master
2023-05-29T10:13:58.801677
2021-04-18T18:29:15
2021-04-18T18:29:15
277,381,147
0
0
null
false
2021-06-09T00:41:30
2020-07-05T20:49:51
2021-06-09T00:41:07
2021-06-08T23:21:50
11,942
0
0
1
Python
false
false
""" Métodos Getter e Setter - Getter Métodos getter obtém o valor de um atributo da instancia, e possuem o decorador '@property' ex: class MinhaClasse: def __init__(self, nome): self.nome = nome @property def nome(self): return self._nome - Setter Métodos setter inserem o valor de um atributo da instancia, e possuem o decorador '@[nome_do_atributo].setter' ex: class MinhaClasse: def __init__(self, nome): self.nome = nome @nome.setter def nome(self, valor): self._nome = valor """ from random import randint class Produto: def __init__(self, nome): self._nome = nome @property def nome(self): id = randint(100, 999) return f'{id}_{self._nome}' @nome.setter def nome(self, valor): self._nome = valor print('\n##### Inserindo valor com setter #####') nome = 'Caneca' print(nome) p1 = Produto(nome) print('\n##### Obtendo valor SEM o getter #####') print(p1._nome) print('\n##### Obtendo valor COM o getter #####') print(p1.nome)
UTF-8
Python
false
false
1,054
py
160
get_set.py
128
0.614286
0.605714
0
54
18.444444
59
FrauElster/ocr_test
5,712,306,548,340
3d7035159fe5fc03521eb4d9a4dda4cbb640b702
fe0d709d75885c2e0250c1fb1dd18b1945d7b7c9
/ocr-test/create_pdf.py
89e7a1824ace649682ae5750724622226c5f280e
[]
no_license
https://github.com/FrauElster/ocr_test
2845ab0c0d73d274961f2d46c28dfe242d6a15b7
8d0cd2df411fd45f18dbee1d8ab1c02ce352d364
refs/heads/master
2022-02-13T20:44:14.378611
2019-07-31T10:50:43
2019-07-31T10:50:43
196,885,809
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
import os from fpdf import FPDF import glob from typing import List from .FileHandler import FileHandler FONTS = ['Courier', 'Arial', 'Times'] def main(min_font_size: int, max_font_size: int): assert min_font_size <= max_font_size lorem: str = FileHandler.load_file(FileHandler.get_path('../lorem.txt')) create_pdfs(min_font_size, max_font_size, lorem) FileHandler.delete_with_ending('../fonts', 'pkl') def create_pdfs(min_font_size: int, max_font_size: int, text: str): special_fonts = get_special_fonts() for font_size in range(min_font_size, max_font_size + 1): for font in FONTS: pdf = FPDF('P', 'mm', 'A4') pdf.set_font(font) make_pdf(pdf, font, font_size, text) for special_font in special_fonts: pdf = FPDF('P', 'mm', 'A4') pdf.add_font(family=special_font, fname=special_font, uni=True) print(f'Special Font: {special_font}') pdf.set_font(special_font) font_name = special_font.split('/')[-1] font_name = font_name.split('.')[0] make_pdf(pdf, font_name, font_size, text) def get_special_fonts(): os.environ['FPDF_FONTPATH'] = FileHandler.get_path('../fonts') os.environ['FPDF_CACHE_MODE'] = FileHandler.get_path('1') special_fonts: List[str] = [] # for filename in glob.glob(os.path.join(FileHandler.get_path('../fonts'), '*.ttf')): for filename in glob.glob(os.path.join(FileHandler.get_path('../fonts'), '*.ttf')): print(f'DEBUG: {filename}') special_fonts.append(filename) return special_fonts def make_pdf(pdf, font_name: str, font_size: int, lorem: str): dir_path = FileHandler.get_path('../out_create') if not os.path.isdir(dir_path): os.mkdir(dir_path) title = f'{font_name}_{font_size}.pdf' pdf.add_page() pdf.set_font_size(font_size) pdf.multi_cell(150, 10, txt=lorem) pdf.output(f'{dir_path}/{title}') print(f'Created {title}')
UTF-8
Python
false
false
2,003
py
186
create_pdf.py
5
0.614578
0.609086
0
59
32.949153
92
smautner/pig
18,837,726,560,357
55452bd17fc5f1fac5f55683f85acdbf577409bd
9419966d7debad3ed14738c90ad5020fe59713cf
/yoda/nanaman/milad_data.py
f70b7d8b556f4de4791357c364d6239e57fb1526
[]
no_license
https://github.com/smautner/pig
378ef98a8d90e60a8e304536495e5d9fc4664a2f
784877db54d078b4ccca839ef9b3d77c3b032508
refs/heads/master
2023-08-30T23:44:05.986116
2023-08-16T12:10:21
2023-08-16T12:10:21
209,278,646
1
2
null
false
2020-11-09T13:26:13
2019-09-18T10:13:27
2020-11-04T14:41:59
2020-11-09T13:26:12
4,316
1
1
0
Jupyter Notebook
false
false
from lmz import Map,Zip,Filter,Grouper,Range,Transpose import yoda.filein from yoda import filein, alignment, ali2graph , simpleMl from ubergauss import tools as ut import eden.graph as eg def rfamOme_labeldistribution(): '''just looks at the distribution of labels in the rfamome dataset''' import glob from collections import Counter f = glob.glob(f'../../rfamome/*.stk') m = map(alignment.grepfamily, f) # the name is in the filename c = Counter(m) print(sum([v for v in c.values() if v > 2])) print(c) def runbaseline(): alis = filein.loadrfamome(path = f'../../rfamome') alis = filein.addstructure(alis) # a.struct alis = filein.addcov(alis) # a.rscape [(start,stop,e-valus)] alis = yoda.filein.process_cov(alis, debug = False) graphs = Map(ali2graph.scclust,alis) # not done! X = eg.vectorize(graphs) y = [a.label for a in alis] # 1nn check print(f"{simpleMl.knn_accuracy(X,y,n_neighbors = 1)=}") print(f"{simpleMl.knn_f1(X,y,n_neighbors = 1,cv_strati_splits = 3)=}") # cv kmeans clustering print(f"{simpleMl.kmeans_ari(X,y,k=28)=}") # loguru! # so.grpint pos RNA # https://github.com/fabriziocosta/EDeN/blob/master/eden/display/__init__.py # vectorizer should have many options... why are the fake nodes decreasing performance? # especially removing the fakenodes is improving performance, with the so.rna stuff # i should be able to debug and see if i implemented it correctly # experiment a bit with this dataset... # then build the rfam tree or cluster the clan ones!
UTF-8
Python
false
false
1,609
py
38
milad_data.py
31
0.675575
0.66936
0
48
32.520833
91
payerhans/patienten
5,987,184,412,324
f79cb14a6318a44e33f4ada2c9ca0c241b264a1d
66576843eff9f518131c27cd9c92504a0b6dbd5b
/vvt/apps.py
7d47cbdee7d8951e8ecfeb0afdebf24ec27234ac
[]
no_license
https://github.com/payerhans/patienten
431049d99e295e9d59f9516440fcdad46ae9bb9b
3c490762a9dd666a35ba6619713780dc6515990f
refs/heads/master
2020-03-11T03:14:12.796823
2018-05-28T14:41:23
2018-05-28T14:41:23
129,741,162
0
0
null
null
null
null
null
null
null
null
null
null
null
null
null
from django.apps import AppConfig class VvtConfig(AppConfig): name = 'vvt'
UTF-8
Python
false
false
81
py
36
apps.py
15
0.728395
0.728395
0
5
15.2
33