text_prompt
stringlengths
168
30.3k
code_prompt
stringlengths
67
124k
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Grading Step2: Word embedding Step3: How to work with Google's word2vec embeddings? Step5: From word to text embeddings Step6: To check the basic correctness of your implementation, run the function question_to_vec_tests. Step7: You can submit embeddings for the questions from file test_embeddings.tsv to earn the points. In this task you don't need to transform the text of a question somehow. Step9: Now we have a method to create a representation of any sentence and we are ready for the first evaluation. So, let's check how well our solution (Google's vectors + question_to_vec) will work. Step11: Test your code on the tiny examples Step12: Submit results of the functions hits_count and dcg_score for the following examples to earn the points. Step13: First solution Step15: We will use cosine distance to rank candidate questions which you need to implement in the function rank_questions. The function should return a sorted list of pairs (initial position in candidates list, question). Index of some pair corresponds to its rank (the first is the best). For example, if the list of candidates was [a, b, c] and the most similar is c, then a and b, the function should return a list [(2, c), (0, a), (1, b)]. Step16: Test your code on the tiny examples Step17: Now we can test the quality of the current approach. Run the next two cells to get the results. Pay attention that calculation of similarity between vectors takes time and this calculation is computed approximately in 10 minutes. Step18: If you did all the steps correctly, you should be frustrated by the received results. Let's try to understand why the quality is so low. First of all, when you work with some data it is necessary to have an idea how the data looks like. Print several questions from the data Step19: As you can see, we deal with the raw data. It means that we have many punctuation marks, special characters and unlowercased letters. In our case, it could lead to the situation where we can't find some embeddings, e.g. for the word "grid?". Step20: Now transform all the questions from the validation set Step21: Let's evaluate the approach again after the preparation Step22: Now, prepare also train and test data, because you will need it in the future Step23: Task 4 (W2VTokenizedRanks). For each question from prepared test.tsv submit the ranks of the candidates to earn the points. It should take about 3-5 minutes. Pay attention that the function rank_candidates returns a ranking, while in this case you should find a position in this ranking. Ranks should start with 1. Step24: Advanced solution Step25: And now we can compare the new embeddings with the previous ones. You can find trained word vectors in the file [model_file_name].tsv. Upload the embeddings from StarSpace into a dict. Step26: Due to training for the particular task with the supervised data, you should expect to obtain a higher quality than for the previous approach. In additiion, despite the fact that StarSpace's trained vectors have a smaller dimension than word2vec's, it provides better results in this task. Step27: Authorization & Submission Step28: If you want to submit these answers, run cell below
<ASSISTANT_TASK:> Python Code: import sys sys.path.append("..") from common.download_utils import download_week3_resources download_week3_resources() from grader import Grader grader = Grader() import gensim wv_embeddings = ######### YOUR CODE HERE ############# def check_embeddings(embeddings): error_text = "Something wrong with your embeddings ('%s test isn't correct)." most_similar = embeddings.most_similar(positive=['woman', 'king'], negative=['man']) if len(most_similar) < 1 or most_similar[0][0] != 'queen': return error_text % "Most similar" doesnt_match = embeddings.doesnt_match(['breakfast', 'cereal', 'dinner', 'lunch']) if doesnt_match != 'cereal': return error_text % "Doesn't match" most_similar_to_given = embeddings.most_similar_to_given('music', ['water', 'sound', 'backpack', 'mouse']) if most_similar_to_given != 'sound': return error_text % "Most similar to given" return "These embeddings look good." print(check_embeddings(wv_embeddings)) import numpy as np def question_to_vec(question, embeddings, dim=300): question: a string embeddings: dict where the key is a word and a value is its' embedding dim: size of the representation result: vector representation for the question ###################################### ######### YOUR CODE HERE ############# ###################################### def question_to_vec_tests(): if (np.zeros(300) != question_to_vec('', wv_embeddings)).any(): return "You need to return zero vector for empty question." if (np.zeros(300) != question_to_vec('thereisnosuchword', wv_embeddings)).any(): return "You need to return zero vector for the question, which consists only unknown words." if (wv_embeddings['word'] != question_to_vec('word', wv_embeddings)).any(): return "You need to check the corectness of your function." if ((wv_embeddings['I'] + wv_embeddings['am']) / 2 != question_to_vec('I am', wv_embeddings)).any(): return "Your function should calculate a mean of word vectors." return "Basic tests are passed." print(question_to_vec_tests()) from util import array_to_string question2vec_result = [] for question in open('data/test_embeddings.tsv'): question = question.strip() answer = question_to_vec(question, wv_embeddings) question2vec_result = np.append(question2vec_result, answer) grader.submit_tag('Question2Vec', array_to_string(question2vec_result)) def hits_count(best_ranks, k): best_ranks: list with ranks for each element (the best rank is 1, the worst — len(best_ranks)) k: number of top-ranked elements result: float number ###################################### ######### YOUR CODE HERE ############# ###################################### def test_hits(): answers = ['woman', 'man'] candidates_ranking = [['woman', 'queen'], ['man', 'king']] best_ranks = [1, 1] correct_answers = [1, 1] for k in range(1, 3): if not np.isclose(hits_count(best_ranks, k), correct_answers[k - 1]): return "Check the function." candidates_ranking = [['woman', 'queen'], ['king', 'man']] best_ranks = [1, 2] correct_answers = [0.5, 1] for k in range(1, 3): if not np.isclose(hits_count(best_ranks, k), correct_answers[k - 1]): return "Check the function." return "Basic tests are passed." print(test_hits()) def dcg_score(best_ranks, k): best_ranks: list with ranks for each element (the best rank is 1, the worst — len(best_ranks)) k: number of top-ranked elements result: float number ###################################### ######### YOUR CODE HERE ############# ###################################### def test_dcg(): answers = ['woman', 'man'] candidates_ranking = [['woman', 'queen'], ['man', 'king']] best_ranks = [1, 1] correct_answers = [1.0, 1.0] for k in range(1, 3): if not np.isclose(dcg_score(best_ranks, k), correct_answers[k - 1]): return "Check the function." candidates_ranking = [['woman', 'queen'], ['king', 'man']] best_ranks = [1, 2] correct_answers = [0.5, 0.8154] for k in range(1, 3): if not np.isclose(dcg_score(best_ranks, k), correct_answers[k - 1], atol=1e-03): return "Check the function." return "Basic tests are passed." print(test_dcg()) test_examples = [ [1], [1, 2], [2, 1], [1, 2, 3], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [9, 5, 4, 2, 8, 10, 7, 6, 1, 3], [4, 3, 5, 1, 9, 10, 7, 8, 2, 6], [5, 1, 7, 6, 2, 3, 8, 9, 10, 4], [6, 3, 1, 4, 7, 2, 9, 8, 10, 5], [10, 9, 8, 7, 6, 5, 4, 3, 2, 1], ] hits_results = [] for example in test_examples: for k in range(len(example)): hits_results.append(hits_count(example, k + 1)) grader.submit_tag('HitsCount', array_to_string(hits_results)) dcg_results = [] for example in test_examples: for k in range(len(example)): dcg_results.append(dcg_score(example, k + 1)) grader.submit_tag('DCGScore', array_to_string(dcg_results)) def read_corpus(filename): data = [] for line in open(filename, encoding='utf-8'): data.append(line.strip().split('\t')) return data validation = ######### YOUR CODE HERE ############# from sklearn.metrics.pairwise import cosine_similarity def rank_candidates(question, candidates, embeddings, dim=300): question: a string candidates: a list of strings (candidates) which we want to rank embeddings: some embeddings dim: dimension of the current embeddings result: a list of pairs (initial position in the list, question) ###################################### ######### YOUR CODE HERE ############# ###################################### def test_rank_candidates(): questions = ['converting string to list', 'Sending array via Ajax fails'] candidates = [['Convert Google results object (pure js) to Python object', 'C# create cookie from string and send it', 'How to use jQuery AJAX for an outside domain?'], ['Getting all list items of an unordered list in PHP', 'WPF- How to update the changes in list item of a list', 'select2 not displaying search results']] results = [[(1, 'C# create cookie from string and send it'), (0, 'Convert Google results object (pure js) to Python object'), (2, 'How to use jQuery AJAX for an outside domain?')], [(0, 'Getting all list items of an unordered list in PHP'), (2, 'select2 not displaying search results'), (1, 'WPF- How to update the changes in list item of a list')]] for question, q_candidates, result in zip(questions, candidates, results): ranks = rank_candidates(question, q_candidates, wv_embeddings, 300) if not np.all(ranks == result): return "Check the function." return "Basic tests are passed." print(test_rank_candidates()) wv_ranking = [] for line in validation: q, *ex = line ranks = rank_candidates(q, ex, wv_embeddings) wv_ranking.append([r[0] for r in ranks].index(0) + 1) for k in [1, 5, 10, 100, 500, 1000]: print("DCG@%4d: %.3f | Hits@%4d: %.3f" % (k, dcg_score(wv_ranking, k), k, hits_count(wv_ranking, k))) for line in validation[:3]: q, *examples = line print(q, *examples[:3]) from util import text_prepare prepared_validation = [] for line in validation: ######### YOUR CODE HERE ############# wv_prepared_ranking = [] for line in prepared_validation: q, *ex = line ranks = rank_candidates(q, ex, wv_embeddings) wv_prepared_ranking.append([r[0] for r in ranks].index(0) + 1) for k in [1, 5, 10, 100, 500, 1000]: print("DCG@%4d: %.3f | Hits@%4d: %.3f" % (k, dcg_score(wv_prepared_ranking, k), k, hits_count(wv_prepared_ranking, k))) def prepare_file(in_, out_): out = open(out_, 'w') for line in open(in_, encoding='utf8'): line = line.strip().split('\t') new_line = [text_prepare(q) for q in line] print(*new_line, sep='\t', file=out) out.close() ###################################### ######### YOUR CODE HERE ############# ###################################### from util import matrix_to_string w2v_ranks_results = [] prepared_test_data = ######### YOUR CODE HERE ############# for line in open(prepared_test_data): q, *ex = line.strip().split('\t') ranks = rank_candidates(q, ex, wv_embeddings, 300) ranked_candidates = [r[0] for r in ranks] w2v_ranks_results.append([ranked_candidates.index(i) + 1 for i in range(len(ranked_candidates))]) grader.submit_tag('W2VTokenizedRanks', matrix_to_string(w2v_ranks_results)) ######### TRAINING HAPPENING HERE ############# starspace_embeddings = ######### YOUR CODE HERE ############# ss_prepared_ranking = [] for line in prepared_validation: q, *ex = line ranks = rank_candidates(q, ex, starspace_embeddings, 100) ss_prepared_ranking.append([r[0] for r in ranks].index(0) + 1) for k in [1, 5, 10, 100, 500, 1000]: print("DCG@%4d: %.3f | Hits@%4d: %.3f" % (k, dcg_score(ss_prepared_ranking, k), k, hits_count(ss_prepared_ranking, k))) starspace_ranks_results = [] prepared_test_data = ######### YOUR CODE HERE ############# for line in open(prepared_test_data): q, *ex = line.strip().split('\t') ranks = rank_candidates(q, ex, starspace_embeddings, 100) ranked_candidates = [r[0] for r in ranks] starspace_ranks_results.append([ranked_candidates.index(i) + 1 for i in range(len(ranked_candidates))]) grader.submit_tag('StarSpaceRanks', matrix_to_string(starspace_ranks_results)) STUDENT_EMAIL = # EMAIL STUDENT_TOKEN = # TOKEN grader.status() grader.submit(STUDENT_EMAIL, STUDENT_TOKEN) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now we move onto the ISPAQ-specific ones. Because of the directory structure and where this example lives, we need to add the main ispaq directory to our path. Then we will be able to import the ISPAQ modules. Step2: With the modules imported, we now need to set up some variables that will be required to run the ISPAQ code. This includes a logger and an arguments class that contains the fields from the preference file. Step3: Those will now be used to create a userRequest, which will then be used to create a concierge object. The concierge object will need to later be passed into the method that actually calculates the PDFs. Step4: Now that we've handled that, we can calculate the PDFs. First, we move into the directory that contains the database, since that's where the ISPAQ code expects us to be. Then we call on the calculate_PDF method, which will return dataframes that contain Step5: With it in a dataframe, you can now do what you want with it! Manipulate it how you want.
<ASSISTANT_TASK:> Python Code: import sys import os import logging import pandas as pd from obspy import UTCDateTime path_parent = os.path.dirname(os.getcwd()) sys.path.insert(1, f'{path_parent}/ispaq/') import concierge from user_request import UserRequest import PDF_aggregator logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S') class args: db_name = 'ispaq_example.db' starttime = UTCDateTime('2020-10-01') endtime = UTCDateTime('2021-10-15') metrics = 'pdf' stations = 'IU.ANMO.00.BHZ.M' # The "stations" must refer to a single target, including the quality code (N.S.L.C.Q) preferences_file = f'{path_parent}/preference_files/default.txt' station_url = 'IRIS' dataselect_url = 'IRIS' event_url = 'IRIS' resp_dir = '' output = 'db' csv_dir = f'{path_parent}/csv/' sncl_format = 'N.S.L.C.' sigfigs = 6 pdf_type = 'plot' pdf_interval = 'aggregated' plot_include = '' pdf_dir = f'{path_parent}/pdfs/' psd_dir = f'{path_parent}/psds/' user_request = UserRequest(args, logger=logger) concierge = concierge.Concierge(user_request, logger=logger) print(concierge, logger) print(concierge.logger) os.chdir(path_parent) [pdfDF,modesDF, maxDF, minDF] = PDF_aggregator.calculate_PDF(pd.DataFrame(), args.stations, args.starttime, args.endtime, concierge) print(pdfDF) PDF_aggregator.plot_PDF(args.stations, args.starttime, args.endtime, pdfDF, modesDF, maxDF, minDF, concierge) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Here we have to find the 'NaN' values and fill them with the mean. Probably it's not the best way to complete the info where we have empty values but at least we are keeping the same distribution. Step2: The 'SalePrice' has a skewed graph. We can stabilize it applying a logarithmic operation because we know that all the values are positive. Step3: There are a lot of features in this dataset so we are going to select only the most correlated features with the 'SalePrice'. Step4: KFold Step5: We implement two methos to plot the PCA in case we need to visualize the information in a 2D graph. We'll need to reduce all the features to only one feature (component). Step6: Removing the 1% of the anomalies we can get an stable prediction but it's not sure. Probably it's going to help but this would be removed from the final calculation. Step7: Model Step8: Running Models Step9: Adding Categorical Step10: Get Predictions
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd #load the files train = pd.read_csv('input/train.csv') test = pd.read_csv('input/test.csv') data = pd.concat([train, test]) #size of training dataset train_samples = train.shape[0] test_samples = test.shape[0] # remove the Id feature data.drop(['Id'],1, inplace=True); #data.describe() datanum = data.select_dtypes([np.number]) datanum = datanum.fillna(datanum.dropna().mean()) import matplotlib.pyplot as plt %matplotlib inline # Transforming to non-skewed SalePrice data.SalePrice = data.SalePrice.apply(np.log) data.SalePrice.hist(bins=50) # Correlation features datanum.corr()['SalePrice'].drop('SalePrice').sort_values(ascending=False).head(10) def getDataWithHighCorrFeatures(data, numberFeatures=10): high_corr_feat_names = data.corr()['SalePrice'].drop('SalePrice').sort_values(ascending=False).head(numberFeatures).axes[0].tolist() #high_corr_feat_names.remove('SalePrice') return data[high_corr_feat_names] from sklearn.model_selection import KFold kf = KFold(n_splits=10, random_state=13)#, shuffle=True) print(kf) #plotting PCA from sklearn.decomposition import PCA def getX_PCA(X): pca = PCA(n_components=1) return pca.fit(X).transform(X) def plotPCA(X, y): pca = PCA(n_components=1) X_r = pca.fit(X).transform(X) plt.plot(X_r, y, 'x') from sklearn.covariance import EllipticEnvelope def removeAnomalies(X_train, y_train, verbose=False): # fit the model ee = EllipticEnvelope(contamination=0.01, assume_centered=True, random_state=13) ee.fit(X_train) pred = ee.predict(X_train) X_anom = X_train[pred != 1] y_anom = y_train[pred != 1] X_no_anom = X_train[pred == 1] y_no_anom = y_train[pred == 1] if (verbose): print("Number samples no anomalies: {}".format(X_no_anom.shape[0])) #after removing anomalies #plt.scatter(getX_PCA(X_no_anom), y_no_anom) #plt.scatter(getX_PCA(X_anom), y_anom) return X_no_anom, y_no_anom def idxNotAnomalies(X): ee = EllipticEnvelope(contamination=0.01, assume_centered=True, random_state=13) ee.fit(X) pred = ee.predict(X) return [index[0] for index, x in np.ndenumerate(pred) if x == 1] # Linear regression from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error def train(X_train, y_train, verbose=False): #lr = LinearRegression() import xgboost as xgb lr = xgb.XGBRegressor(max_depth=5, n_estimators=250, min_child_weight=7, n_jobs=4) # batch = 0 for train_idx, val_idx in kf.split(X_train, y_train): X_t, X_v = X_train[train_idx], X_train[val_idx] y_t, y_v = y_train[train_idx], y_train[val_idx] #training lr.fit(X_t, y_t) #calculate costs t_error = mean_squared_error(y_t, lr.predict(X_t))**0.5 v_error = mean_squared_error(y_v, lr.predict(X_v))**0.5 if verbose: print("{}) Training error: {:.2f} Validation error: {:.2f} Score: {:.2f}" .format(batch, t_error, v_error, lr.score(X_v, y_v))) batch += 1 return lr def metrics(model, X, y, verbose=False): #Scores if verbose: print("Training score: {:.4f}".format(model.score(X, y))) #RMSLE #print(np.count_nonzero(~np.isfinite(model.predict(X)))) rmsle = mean_squared_error(y, model.predict(X))**0.5 if verbose: print("RMSLE: {:.4f}".format(rmsle)) # Plotting the results plt.scatter(model.predict(X), y) return rmsle, model.score(X, y) # Get polynomial features from sklearn.preprocessing import PolynomialFeatures def getPolynomial(X_train, X_no_anom, X_test): poly = PolynomialFeatures(degree=2) return poly.fit_transform(X_train), poly.fit_transform(X_no_anom), poly.fit_transform(X_test) def getKeyWithMinError(X_train, X_no_amon, y_train, y_no_anom, verbose=False): rmsles = {} for f in range(1,X_train.shape[1]): model = train(X_no_anom[:,:f], y_no_anom, verbose=False) rmsles[f] = metrics(model, X_train[:,:f], y_train, verbose=False) min_error_key = min(rmsles, key=rmsles.get) if (verbose): print("Min error (k={}):{}".format(min_error_key, rmsles[min_error_key])) #model = train(X_train_pol[:,:min_error_key], y_train) #metrics(model, X_train_orig_pol[:,:min_error_key], y_train_orig) #pd.Series(rmsles).plot() return min_error_key import warnings warnings.filterwarnings('ignore') errors = [] for f in range(1,17): #print("====Corr feat: {}====".format(f)) datanum_high_corr = getDataWithHighCorrFeatures(datanum, f) y = np.array(data['SalePrice']) X = np.array(datanum_high_corr) #split by idx idx = train_samples X_train, X_test = X[:idx], X[idx:] y_train, y_test = y[:idx], y[idx:] #print("Shape X train: {}".format(X_train.shape)) X_no_anom, y_no_anom = removeAnomalies(X_train, y_train) #print("Shape X train (no anom): {}".format(X_no_anom.shape)) X_train, X_no_anom, X_test = getPolynomial(X_train, X_no_anom, X_test) #print("Shape X train (poly): {}".format(X_no_anom.shape)) key = 1000 #getKeyWithMinError(X_train, X_no_anom, y_train, y_no_anom) model = train(X_no_anom[:,:key], y_no_anom) error, score = metrics(model, X_train[:,:key], y_train) print("f:{} err:{:.3f} score:{:.3f}".format(f, error, score)) errors.append(error) # show graph pd.Series(errors).plot() features = data.select_dtypes([np.object]).axes[1].tolist() features.append('SalePrice') datacat = pd.get_dummies(data[features]) datacat = datacat.fillna(datacat.dropna().mean()) datacat.corr()['SalePrice'].drop('SalePrice').sort_values(ascending=False).head(10) features_order_by_corr = datacat.corr()['SalePrice'].drop('SalePrice').sort_values(ascending=False).axes[0].tolist() import warnings warnings.filterwarnings('ignore') datanum_high_corr = getDataWithHighCorrFeatures(datanum, 15) Xn = np.array(datanum_high_corr) #choosing the number of categorical num_cat = 10 Xc = np.array(datacat[features_order_by_corr[:num_cat]]) y = np.array(data['SalePrice']) poly = PolynomialFeatures(degree=2) Xpn = poly.fit_transform(Xn) X = np.concatenate([Xpn, Xc], axis=1) no_anom_idx = idxNotAnomalies(Xn[:idx]) #only from numeric features print(Xpn.shape) print(Xc.shape) print(X.shape) #split by idx idx = train_samples X_train, X_test = X[:idx], X[idx:] y_train, y_test = y[:idx], y[idx:] print("Shape X train: {}".format(X_train.shape)) print("Shape X test: {}".format(X_test.shape)) print("Shape X train (no anom): {}".format(X_train[no_anom_idx].shape)) X_no_anom = X_train[no_anom_idx] y_no_anom = y_train[no_anom_idx] errors = {} scores = {} for f in range(15^2, X_train.shape[1]): modelt = train(X_no_anom[:,:f], y_no_anom, verbose=False) err, score = metrics(modelt, X_train[:,:f], y_train, verbose=False) if err > 1e-7: errors[f] = err scores[f] = score else: break min_error_key = min(errors, key=errors.get) max_score_key = max(scores, key=scores.get) print("Min error: {:.3f}".format(errors[min_error_key])) print("Max score: {:.3f}".format(scores[max_score_key])) modelt = train(X_no_anom[:,:235], y_no_anom, verbose=False) err, score = metrics(modelt, X_train[:,:235], y_train, verbose=False) print(err) print(score) pd.Series(errors).plot() pd.Series(scores).plot() print(min_error_key) import os from sklearn.model_selection import cross_val_score from sklearn.metrics import make_scorer min_error_key = 235 def RMSE(y_true,y_pred): rmse = mean_squared_error(y_true, y_pred)**0.5 return rmse modelt = train(X_no_anom[:,:min_error_key], y_no_anom, verbose=False) err, score = metrics(modelt, X_train[:,:min_error_key], y_train, verbose=False) print("Err: {:.3f} | R2: {:.3f}".format(err, score)) scores = cross_val_score(modelt, X_train[:,:min_error_key], y_train, scoring=make_scorer(RMSE, greater_is_better=True), cv=10) print("Scores: {}".format(scores)) print("Score (mean): {:.3f}".format(scores.mean())) predict = modelt.predict(X_test[:,:min_error_key]) #predictions are logs, return to the value predict = np.exp(predict) file = "Id,SalePrice" + os.linesep startId = 1461 for i in range(len(X_test)): file += "{},{}".format(startId, (int)(predict[i])) + os.linesep startId += 1 # Save to file with open('attempt.txt', 'w') as f: f.write(file) # Using XGRegressor? #lr = XGBRegressor(max_depth=5, n_estimators=250,min_child_weight=10) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step 1. Step 2. Step 3. Step 4. Step1: 1.3. Descriptive Statistics Step2: 1.4. Data Cleaning Step3: 2. Implementation of machine learning pipeline. (25%) Step4: 3. Evaluation and test of model. (20%) Step5: 4. Model fine-tuning. (35%) Step6: 4.2. Machine Learning Model Hyperparameter search
<ASSISTANT_TASK:> Python Code: # import dependencies for creating a data frame from pyspark.sql import SparkSession from pyspark.sql import Row from pyspark.sql.types import * import csv # Create SparkSession spark = SparkSession.builder.getOrCreate() # create RDD from csv files trainRDD = spark.read.csv("hdfs://saltdean/data/data/santander-products/train_ver2.csv", header=True, mode="DROPMALFORMED", schema=schema) # alternatively... # create RDD from csv files trainRDD = sc.textFile("hdfs://saltdean/data/data/santander-products/train_ver2.csv") trainRDD = trainRDD.mapPartitions(lambda x: csv.reader(x)) # alternatively... from https://spark.apache.org/docs/latest/sql-programming-guide.html#programmatically-specifying-the-schema # create RDD from csv files lines = sc.textFile("hdfs://saltdean/data/data/santander-products/train_ver2.csv") elements = lines.map(lambda l: l.split(",")) # Each line is converted to a tuple. clients = elements.map(lambda p: (p[0], p[1].strip(),p[2],...)) # The schema is encoded in a string. schemaString = "name age ..." fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()] schema = StructType(fields) # Apply the schema to the RDD and register the DataFrame to be used with Spark SQL. trainRDD = spark.createDataFrame(clients, schema) trainRDD.createOrReplaceTempView('trainingset') # alternatively, as seen in tutorial 8: lines = sc.textFile("hdfs://saltdean/data/data/santander-products/train_ver2.csv") parts = lines.map(lambda l: l.split(",")) trainRDD = parts.map(lambda p: Row(userId=int(p[0]), movieId=int(p[1]), rating=float(p[2]), timestamp=int(p[3]))) # Create DataFrame and register it to be used with Spark SQL. trainData = spark.createDataFrame(trainRDD) trainData.createOrReplaceTempView('Clients') # For testing print(trainData.describe()) # columns info print(trainData.count()) # number of instances # Code modified from # https://www.kaggle.com/apryor6/santander-product-recommendation/detailed-cleaning-visualization-python/notebook # import dependencies import numpy as np import pandas as pd # create dataframe 'df' limit_rows = 7000000 df = pd.read_csv("hdfs://saltdean/data/data/santander-products/train_ver2.csv", dtype={"sexo":str, "ult_fec_cli_1t":str, "indext":str}, nrows=limit_rows) unique_ids = pd.Series(df["ncodpers"].unique()) limit_people = 1.2e4 unique_id = unique_ids.sample(n=limit_people) df = df[df.ncodpers.isin(unique_id)] df.count() # number of instances df.describe() # find missing values df.isnull().any() # Remove age outliers and nan from dataframe df.loc[df.age < 18,"age"] = df.loc[(df.age >= 18) & (df.age <= 30),"age"].mean(skipna=True) # replace outlier con mean df.loc[df.age > 100,"age"] = df.loc[(df.age >= 30) & (df.age <= 100),"age"].mean(skipna=True) # replace outlier con mean df["age"].fillna(df["age"].mean(),inplace=True) # replace nan with mean df["age"] = df["age"].astype(int) # Replace missing values df.loc[df["ind_nuevo"].isnull(),"ind_nuevo"] = 1 # new customers id '1' df.loc[df.antiguedad.isnull(),"antiguedad"] = df.antiguedad.min() df.loc[df.antiguedad <0, "antiguedad"] = 0 # new customer antiguedad '0' df.loc[df.indrel.isnull(),"indrel"] = 1 dates=df.loc[:,"fecha_alta"].sort_values().reset_index() median_date = int(np.median(dates.index.values)) df.loc[df.fecha_alta.isnull(),"fecha_alta"] = dates.loc[median_date,"fecha_alta"] # fill join date missing values df.loc[df.ind_actividad_cliente.isnull(),"ind_actividad_cliente"] = \ df["ind_actividad_cliente"].median() # fill in customer activity missing df.loc[df.nomprov.isnull(),"nomprov"] = "UNKNOWN" # known values for city of residence df.loc[df.indfall.isnull(),"indfall"] = "N" # missing deceased index set to N df.loc[df.tiprel_1mes.isnull(),"tiprel_1mes"] = "A" # customer status, if missing = active df.tiprel_1mes = df.tiprel_1mes.astype("category") # customer status as categorical # Customer type normalization as categorical variable map_dict = { 1.0:"1", "1.0":"1", "1":"1", "3.0":"3", "P":"P", 3.0:"3", 2.0:"2", "3":"3", "2.0":"2", "4.0":"4", "4":"4", "2":"2"} df.indrel_1mes.fillna("P",inplace=True) df.indrel_1mes = df.indrel_1mes.apply(lambda x: map_dict.get(x,x)) df.indrel_1mes = df.indrel_1mes.astype("category") # Replace missing values in target features with 0 # target features = boolean indicator as to whether or not that product was owned that month df.loc[df.ind_nomina_ult1.isnull(), "ind_nomina_ult1"] = 0 df.loc[df.ind_nom_pens_ult1.isnull(), "ind_nom_pens_ult1"] = 0 # Elimnate entries with nan values in given variable, eg: print("Total number of entries before removing nan= ", df.count()) df.renta.isnull().sum() df.na.drop(subset=["renta","indfall","tiprel_1mes","indrel_1mes"]) # !!!! need to be tested that only nan entries are removed df.renta.isnull().sum() print("Total number of entries after removing nan= ", df.count()) # Eliminate redundant variables df.drop(["tipodom","cod_prov"],axis=1,inplace=True) # check all missing values are gone df.isnull().any() # Convert target features column into integers feature_cols = df.iloc[:1,].filter(regex="ind_+.*ult.*").columns.values for col in feature_cols: df[col] = df[col].astype(int) # code modified from Spark documentation at: # https://spark.apache.org/docs/2.1.0/ml-classification-regression.html#random-forest-classifier # and DataBricks at: # https://docs.databricks.com/spark/latest/mllib/binary-classification-mllib-pipelines.html # imports dependencies for Random Forest pipeline from pyspark.ml import Pipeline from pyspark.ml.classification import RandomForestClassifier from pyspark.ml.feature import IndexToString, StringIndexer, VectorIndexer, OneHotEncoder, StringIndexer, VectorAssembler # stages in the Pipeline stages = [] # One-Hot Encoding categoricalColumns = ["a", "b", "c", "d", "e", "f", "g", "j"] for categoricalCol in categoricalColumns: stringIndexer = StringIndexer(inputCol=categoricalCol, outputCol=categoricalCol+"Index") # Category Indexing with StringIndexer encoder = OneHotEncoder(inputCol=categoricalCol+"Index", outputCol=categoricalCol+"classVec") # Use OneHotEncoder to convert categorical variables into binary SparseVectors stages += [stringIndexer, encoder] # Add stages to the pipeline # Convert labels into label indices using the StringIndexer label_stringIdx = StringIndexer(inputCol = "add here target column in csv file", outputCol = "labels") stages += [label_stringIdx] # Add stage to the pipeline # Transform all features into a vector using VectorAssembler numericCols = ["m", "n", "o", "p", "q", "r"] assemblerInputs = map(lambda c: c + "classVec", categoricalColumns) + numericCols assembler = VectorAssembler(inputCols=assemblerInputs, outputCol="features") stages += [assembler] # Add stage to the pipeline # Train a RandomForest model. rf = RandomForestClassifier(labelCol="labels", featuresCol="features", numTrees=100, # Number of trees in the random forest impurity='entropy', # Criterion used for information gain calculation featureSubsetStrategy="auto", predictionCol="prediction" maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, subsamplingRate=1.0) stages += [rf] # Add stage to the pipeline # Machine Learning Pipeline pipeline = Pipeline(stages=stages) # imports dependencies from pyspark.ml.tuning import CrossValidator, ParamGridBuilder, TrainValidationSplit from pyspark.ml.evaluation import MulticlassClassificationEvaluator # Split data into training set and testing set [trainData, testData] = trainData.randomSplit([0.8, 0.2], seed = 100) # Train model in pipeline rfModel = pipeline.fit(trainData) # Make predictions for training set and compute training set accuracy predictions = rfModel.transform(trainData) evaluator = MulticlassClassificationEvaluator(labelCol="labels", predictionCol="prediction", metricName="accuracy") accuracy = evaluator.evaluate(predictions) print("Test Error = %g" % (1.0 - accuracy)) print(train_pipeline.stages[0]) # summary # Run the feature transformations pipeline on the test data set pipelineModel = prePro_pipeline.fit(testClients) # computes feature statistics testData = pipelineModel.transform(testClients) # transforms the features # Make predictions for test set and compute test error test_predictions = rfModel.transform(testData) test_accuracy = evaluator.evaluate(test_predictions) print("Test Error = %g" % (1.0 - test_accuracy)) print('Training set size evaluation') # size of different training set to be evaluated, and split of training set sizes = [0.5, 0.1, 0.05, 0.01, 0.001] data = trainData.randomSplit(sizes, seed = 100) print('\n=== training set of size 100%') # Train model in pipeline tempModel = pipeline.fit(trainData) # Make predictions for training set and compute training set accuracy tempPredictions = tempModel.transform(trainData) tempAccuracy = evaluator.evaluate(tempPredictions) print("Classification Error = %g" % (1.0 - tempAccuracy)) for x in data: print('\n=== training set of size reduced to %g' % x) # Train model in pipeline tempModel = pipeline.fit(data[x]) # Make predictions for training set and compute training set accuracy tempPredictions = tempModel.transform(data[x]) tempAccuracy = evaluator.evaluate(tempPredictions) print("Classification Error = %g" % (1.0 - tempAccuracy)) # Define hyperparameters and their values to search and evaluate paramGrid = ParamGridBuilder() \ .addGrid(rf.numTrees, [10,20,50,100,200,500,1000,5000]) \ .addGrid(rf.minInstancesPerNode, [0,1,2,4,6,8,10]) \ .addGrid(rf.maxDepth, [2,5,10,20,50]).build() # Grid Search and Cross Validation crossVal = CrossValidator(estimator=rf, estimatorParamMaps=paramGrid, evaluator=evaluator) print('starting Hyperparameter Grid Search with cross-validation') rfCrosVal = crossVal.fit(trainData) print('Grid Search has finished') print(rfCrosVal.bestModel.rank) paramMap = list(zip(rfCrosVal.getEstimatorParamMaps(),rfCrosVal.avgMetrics)) paramMax = max(paramMap, key=lambda x: x[1]) print(paramMax) # Evaluate the model with test data cvtest_predictions = rfCrosVal.transform(testData) cvtest_accuracy = evaluator.evaluate(cvtest_predictions) print("Test Error = %g" % (1.0 - cvtest_accuracy)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 微分 Step2: 极限 Step3: 求和 Step4: 替换 Step5: expression.subs({x Step6: 方程 Step7: sy.solve(方程,未知数) # 方程求解 ,返回值为list 方程求解 Step8: sy.roots(expr) # 计算单变量方程expr=0的根 方程求解 Step9: 可以对微分方程进行符号求解,它的第一个参数是一个带未知函数的表达式,第二个参数是需要进行求解的未知函数。
<ASSISTANT_TASK:> Python Code: sy.integrate(6*x**5, x) sy.integrate(x**3, (x, 0, 10)) #定积分 sy.integrate(6*x**5+y, x,y) #双重不定积分 sy.integrate(x**3+y, (x, -1, 1),(y,1,3) ) #双重定积分 print f(x).diff(x) sy.diff(sy.sin(x), x) # 解析微分 sy.diff(sy.sin(2*x), x, 2) # 高阶微分 diff(func, var, n) sy.diff(sy.sin(x*y),x,2,y,3) # 对表达式进行x的2阶求导,对y进行3阶求导 sy.diff(sy.sin(2*x),x) sy.sin(2*x).diff(x,1) t=sy.Derivative(sy.sin(x),x) # Derivative是表示导函数的类,它的第一个参数是需要进行求导的数学函数,第二个参数是求导的自变量, # 注意:Derivative所得到的是一个导函数,它不会进行求导运算。 sy.limit(sy.sin(x)/x, x, 0) # 极限 sy.summation(2*x - 1, (x, 1, y)) # 连加求和 (1 + x*y).subs(x, sy.pi) (1 + x*y).subs([(x, sy.pi), (y, 2)]) # 用sy.Eq构建方程 u_max, rho_max, A, B = sy.symbols('u_max rho_max A B') # 符号对象, 可限定 real = True , positive = True, complex = True , integer = True ... eq1 = sy.Eq( 0, u_max*rho_max*(1 - A*rho_max-B*rho_max**2) ) # 一般方程 eq1 = sy.Eq(f(x).diff(x)+f(x)+f(x)**2,0) # 微分方程 print eq1 sy.solve(eq1,x) sy.solveset(sy.sin(x)+x,x) # 即对 sy.sin(x)+x=0 求解 sy.dsolve(eq1,f(x)) # 微分方程求解 微分方程求解 from sympy.utilities.lambdify import lambdify lambdify([x],f(x),modules="numpy") # 第一个参数为自变量列表 sy.N(sy.pi,20) sy.pi.evalf(n=50) i=sy.Symbol('i') f = sy.Sum(sy.Indexed('x',i)*sy.cos(i*sy.pi),(i,1,10)) f func = lambdify(x, f, 'numpy') # returns a numpy-ready function print func numpy_array_of_results = func(y) numpy_array_of_results <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Nomenclature Step2: The type of an enumeration member is the enumeration it belongs to Step3: Alternative way to create an Enum
<ASSISTANT_TASK:> Python Code: from enum import Enum class MyEnum(Enum): first = 1 second = 2 third = 3 print(MyEnum.first) print(repr(MyEnum.first)) type(MyEnum.first) SecondEnum = Enum('SecondEnum', 'first, second, third') print(SecondEnum.first) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The focus of this post is to expand on an extremely useful, vectorizable isomorphism between indices, that comes up all the time Step2: This brings us to our first numpy gem of this post, to check that our isomorphism is surjective, np.triu_indices. Step3: The advantage over indexing into np.triu_indices is of course the scenario where you don't want to fully materialize all edges in memory, such as in frontier expansions for graph search.
<ASSISTANT_TASK:> Python Code: import numpy as np np.random.seed(1234) x = np.random.choice(10, replace=False, size=10) s = np.argsort(x) inverse = np.empty_like(s) inverse[s] = np.arange(len(s), dtype=int) np.all(x == inverse) # an edge index is determined by the isomorphism from # ([n] choose 2) to [n choose 2] # drop (i, j) to (i, j - i - 1) first. then: # (0, 0) (0, 1) (0, 2) # (1, 0) (1, 1) # (2, 0) # isomorphism goes in downward diagonals # like valence electrons in chemistry def c2(n): return n * (n - 1) // 2 def fromtup(i, j): j = j - i - 1 diagonal = i + j return c2(diagonal + 1) + i def totup(x): # https://math.stackexchange.com/a/1417583 + some int/float rewriting diagonal = (1 + np.sqrt(8 * x + 1).astype(np.uint64)) // 2 - 1 i = x - c2(diagonal + 1) j = diagonal - i j = j + i + 1 return i, j nverts = 1343 edges = np.arange(c2(nverts), dtype=int) np.all(fromtup(*totup(edges)) == edges) left, right = totup(edges) expected_left, expected_right = np.triu_indices(nverts, k=1) from collections import Counter Counter(zip(left, right)) == Counter(zip(expected_left, expected_right)) x = 2**53 float(8 * x + 1) == float(8 * x) def totup_flexible(x): x = np.asarray(x) assert np.all(x <= 2 ** 63 - 2**32) if x > 2 ** 53: s = np.sqrt(2) * np.sqrt(x) s = s.astype(np.uint64) # in principle, the extra multiplication here could require correction # by at most 1 ulp; luckily (s+1)**2 is representable in u64 # because (sqrt(2)*sqrt(2**63 - 2**32)*(1+3*eps) + 1) is (just square it to see) s3 = np.stack([s - 1, s, s + 1]).reshape(-1, 3) s = 2 * s3[np.arange(len(s3)), np.argmin(s3 ** 2 - 2 * x, axis=-1)] else: s = np.sqrt(8 * x + 1).astype(np.uint64) add = 0 if x > 2 ** 53 else 1 diagonal = (1 + s) // 2 - 1 diagonal = diagonal.reshape(x.shape) i = x - c2(diagonal + 1) j = diagonal - i j = j + i + 1 return i, j x = 2 ** 63 - 2 ** 32 fromtup(*totup_flexible(x)) == x <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Define the vehicle class Step2: Define the Moment Method class Step3: Run simulation
<ASSISTANT_TASK:> Python Code: from opentire import OpenTire from opentire.Core import TireState import numpy as np import matplotlib.pyplot as plt class Vehicle(): def __init__(self): self._mass = 1000 self._wb = 1 self._wd = 0.5 self._ft = None self._rt = None @property def mass(self): return self._mass @mass.setter def mass(self, value): if value <= 0: raise ValueError('Mass must be greater than zero') self._mass = value @property def wheelbase(self): return self._wb @wheelbase.setter def wheelbase(self, value): if value <= 0: raise ValueError('Wheelbase must be greater than zero') self._wb = value @property def weight_dist(self): return self._wd @weight_dist.setter def weight_dist(self, value): if value >= 1 or value <= 0: raise ValueError('Weight distribution must be a ratio between 0 and 1') self._wd = value @property def front_tire(self): return self._ft @front_tire.setter def front_tire(self, value): if not isinstance(value, TireModelBase) and value is not None: raise TypeError('Front tire must be a OpenTire model') self._ft = value @property def rear_tire(self): return self._rt @front_tire.setter def rear_tire(self, value): if not isinstance(value, TireModelBase) and values is not None: raise TypeError('Rear tire must be a OpenTire model') self._rt = value @property def length_a(self): return self.wheelbase * (1 - self.weight_dist) @property def length_b(self): return self.wheelbase * self.weight_dist class MomentMethodSolver(): def __init__(self): self._vehicle = None self._beta = np.linspace(-12, 12, 25) * 3.14 / 180 self._delta = np.linspace(-12, 12, 25) * 3.14 / 180 self._velocity = 36 @property def vehicle(self): return self._vehicle @vehicle.setter def vehicle(self, value): if not isinstance(value, Vehicle) and value is not None: raise TypeError('Solver vehicle must be of Vehicle type') self._vehicle = value @property def beta_range(self): return self._beta @beta_range.setter def beta_range(self, value): self._beta = value @property def delta_range(self): return self._delta @delta_range.setter def delta_range(self, value): self._delta = value @property def velocity(self): return self._velocity @velocity.setter def velocity(self, value): self._velocity = value def solve(self): fy = np.empty([len(self.beta_range), len(self.delta_range)]) mz = np.empty([len(self.beta_range), len(self.delta_range)]) initial_guess = (0, 0) for i, beta in enumerate(self.beta_range): for j, delta in enumerate(self.delta_range): # Use previous solution as a guess if j > 0: initial_guess = self._invertSolution(fy[i][j-1], mz[i][j-1]) elif i > 0: initial_guess = self._invertSolution(fy[i-1][j], mz[i-1][j]) else: initial_guess = (0, 0) result = self._solve(beta, delta, initial_guess) fy[i][j] = result[0] mz[i][j] = result[1] return (fy, mz) def _solve(self, beta, delta, initial_guess = (0, 0)): state = TireState() state['FZ'] = 1500 state['IA'] = 0.0 state['SR'] = 0.0 state['SA'] = 0.0 state['FY'] = 0.0 state['V'] = 10.0 state['P'] = 260000 MAX_ITER = 100 n = 0 error = 9999 tolerance = 0.1 yaw_velocity = 0 front_force = initial_guess[0] rear_force = initial_guess[1] while (n < MAX_ITER and abs(error) > tolerance): # Yaw rate yaw_velocity = (front_force + rear_force) / (self.vehicle.mass * self.velocity) error = front_force + rear_force # Slip Angles sa_front = beta - delta + yaw_velocity * self.vehicle.length_a / self.velocity sa_rear = beta - yaw_velocity * self.vehicle.length_b / self.velocity # Front Tire state['SA'] = sa_front state['FZ'] = 0.5 * 9.81 * self.vehicle.mass * self.vehicle.weight_dist self.vehicle.front_tire.solve(state) front_force = state['FY'] state['SA'] = -sa_front self.vehicle.front_tire.solve(state) front_force -= state['FY'] # Rear Tire state['SA'] = sa_rear state['FZ'] = 0.5 * 9.81 * self.vehicle.mass * (1 - self.vehicle.weight_dist) self.vehicle.rear_tire.solve(state) rear_force = state['FY'] state['SA'] = -sa_rear self.vehicle.rear_tire.solve(state) rear_force -= state['FY'] error -= front_force + rear_force n += 1 return (front_force + rear_force, front_force * self.vehicle.length_a - rear_force * self.vehicle.length_b) def _invertSolution(self, lateral_force, yaw_moment): front_force = (1 / (self.vehicle.length_a + self.vehicle.length_b)) * (self.vehicle.length_b * lateral_force + yaw_moment) rear_force = (1 / (self.vehicle.length_a + self.vehicle.length_b)) * (self.vehicle.length_a * lateral_force - yaw_moment) return (front_force, rear_force) openTire = OpenTire() myVehicle = Vehicle() myVehicle.mass = 1250 # kg myVehicle.wheelbase = 2.4 # m myVehicle.weight_dist = 0.47 # ratio myVehicle.front_tire = openTire.createmodel('PAC2002') myVehicle.rear_tire = openTire.createmodel('PAC2002') solver = MomentMethodSolver() solver.vehicle = myVehicle solver.beta = np.linspace(-15, 16, 31) * 3.14 / 180 solver.delta = np.linspace(-15, 16, 31) * 3.14 / 180 solver.velocity = 70 / 3.6 force_moments = solver.solve() lateral_accel = force_moments[0] / myVehicle.mass / 9.81 yaw_moment = force_moments[1] plt.plot(lateral_accel[:][:], yaw_moment[:][:], color='black') plt.plot(np.transpose(lateral_accel[:][:]), np.transpose(yaw_moment[:][:]), color='red') plt.grid() plt.xlabel("Lateral Acceleration [g]") plt.ylabel("Yaw Moment [Nm]") plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Liblinear, a library for large- scale linear learning focusing on SVM, is used to do the classification. It supports different solver types. Step2: We solve ${\bf w}\cdot{\bf x} + \text{b} = 0$ to visualise the separating hyperplane. The methods get_w() and get_bias() are used to get the necessary values. Step3: The classifier is now applied on a X-Y grid of points to get predictions. Step4: SVMs using kernels Step5: Just for fun we compute the kernel matrix and display it. There are clusters visible that are smooth for the gaussian and polynomial kernel and block-wise for the linear one. The gaussian one also smoothly decays from some cluster centre while the polynomial one oscillates within the clusters. Step6: Prediction using kernel based SVM Step7: We could now check a number of properties like what the value of the objective function returned by the particular SVM learning algorithm or the explictly computed primal and dual objective function is Step8: and based on the objectives we can compute the duality gap (have a look at reference [2]), a measure of convergence quality of the svm training algorithm . In theory it is 0 at the optimum and in reality at least close to 0. Step9: Let's now apply on the X-Y grid data and plot the results. Step10: Probabilistic Outputs Step11: Soft margins and slack variables Step12: You can see that lower value of C causes classifier to sacrifice linear separability in order to gain stability, in a sense that influence of any single datapoint is now bounded by C. For hard margin SVM, support vectors are the points which are "on the margin". In the picture above, C=1000 is pretty close to hard-margin SVM, and you can see the highlighted points are the ones that will touch the margin. In high dimensions this might lead to overfitting. For soft-margin SVM, with a lower value of C, it's easier to explain them in terms of dual (equation $(2)$) variables. Support vectors are datapoints from training set which are are included in the predictor, ie, the ones with non-zero $\alpha_i$ parameter. This includes margin errors and points on the margin of the hyperplane. Step13: Now lets plot the contour output on a $-5...+5$ grid for Step14: And voila! The SVM decision rule reasonably distinguishes the red from the blue points. Despite being optimized for learning the discriminative function maximizing the margin, the SVM output quality wise remotely resembles the original distribution of the gaussian mixture model. Step15: Kernel Normalizers Step16: Multiclass classification Step17: Let us try the multiclass classification for different kernels.
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt %matplotlib inline import os SHOGUN_DATA_DIR=os.getenv('SHOGUN_DATA_DIR', '../../../data') import matplotlib.patches as patches #To import all shogun classes import modshogun as sg import numpy as np #Generate some random data X = 2 * np.random.randn(10,2) traindata=np.r_[X + 3, X + 7].T feats_train=sg.RealFeatures(traindata) trainlab=np.concatenate((np.ones(10),-np.ones(10))) labels=sg.BinaryLabels(trainlab) # Plot the training data plt.figure(figsize=(6,6)) plt.gray() _=plt.scatter(traindata[0, :], traindata[1,:], c=labels, s=50) plt.title("Training Data") plt.xlabel('attribute1') plt.ylabel('attribute2') p1 = patches.Rectangle((0, 0), 1, 1, fc="k") p2 = patches.Rectangle((0, 0), 1, 1, fc="w") plt.legend((p1, p2), ["Class 1", "Class 2"], loc=2) plt.gray() #prameters to svm #parameter C is described in a later section. C=1 epsilon=1e-3 svm=sg.LibLinear(C, feats_train, labels) svm.set_liblinear_solver_type(sg.L2R_L2LOSS_SVC) svm.set_epsilon(epsilon) #train svm.train() w=svm.get_w() b=svm.get_bias() #solve for w.x+b=0 x1=np.linspace(-1.0, 11.0, 100) def solve (x1): return -( ( (w[0])*x1 + b )/w[1] ) x2=map(solve, x1) #plot plt.figure(figsize=(6,6)) plt.gray() plt.scatter(traindata[0, :], traindata[1,:], c=labels, s=50) plt.plot(x1,x2, linewidth=2) plt.title("Separating hyperplane") plt.xlabel('attribute1') plt.ylabel('attribute2') plt.gray() size=100 x1_=np.linspace(-5, 15, size) x2_=np.linspace(-5, 15, size) x, y=np.meshgrid(x1_, x2_) #Generate X-Y grid test data grid=sg.RealFeatures(np.array((np.ravel(x), np.ravel(y)))) #apply on test grid predictions = svm.apply(grid) #Distance from hyperplane z=predictions.get_values().reshape((size, size)) #plot plt.jet() plt.figure(figsize=(16,6)) plt.subplot(121) plt.title("Classification") c=plt.pcolor(x, y, z) plt.contour(x, y, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.gray() plt.scatter(traindata[0, :], traindata[1,:], c=labels, s=50) plt.xlabel('attribute1') plt.ylabel('attribute2') plt.jet() #Class predictions z=predictions.get_labels().reshape((size, size)) #plot plt.subplot(122) plt.title("Separating hyperplane") c=plt.pcolor(x, y, z) plt.contour(x, y, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.gray() plt.scatter(traindata[0, :], traindata[1,:], c=labels, s=50) plt.xlabel('attribute1') plt.ylabel('attribute2') plt.gray() gaussian_kernel=sg.GaussianKernel(feats_train, feats_train, 100) #Polynomial kernel of degree 2 poly_kernel=sg.PolyKernel(feats_train, feats_train, 2, True) linear_kernel=sg.LinearKernel(feats_train, feats_train) kernels=[linear_kernel, poly_kernel, gaussian_kernel] plt.jet() def display_km(kernels, svm): plt.figure(figsize=(20,6)) plt.suptitle('Kernel matrices for different kernels', fontsize=12) for i, kernel in enumerate(kernels): plt.subplot(1, len(kernels), i+1) plt.title(kernel.get_name()) km=kernel.get_kernel_matrix() plt.imshow(km, interpolation="nearest") plt.colorbar() display_km(kernels, svm) C=1 epsilon=1e-3 svm=sg.LibSVM(C, gaussian_kernel, labels) _=svm.train() libsvm_obj=svm.get_objective() primal_obj, dual_obj=svm.compute_svm_primal_objective(), svm.compute_svm_dual_objective() print libsvm_obj, primal_obj, dual_obj print "duality_gap", dual_obj-primal_obj out=svm.apply(sg.RealFeatures(grid)) z=out.get_values().reshape((size, size)) #plot plt.jet() plt.figure(figsize=(16,6)) plt.subplot(121) plt.title("Classification") c=plt.pcolor(x1_, x2_, z) plt.contour(x1_ , x2_, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.gray() plt.scatter(traindata[0, :], traindata[1,:], c=labels, s=50) plt.xlabel('attribute1') plt.ylabel('attribute2') plt.jet() z=out.get_labels().reshape((size, size)) plt.subplot(122) plt.title("Decision boundary") c=plt.pcolor(x1_, x2_, z) plt.contour(x1_ , x2_, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.scatter(traindata[0, :], traindata[1,:], c=labels, s=50) plt.xlabel('attribute1') plt.ylabel('attribute2') plt.gray() n=10 x1t_=np.linspace(-5, 15, n) x2t_=np.linspace(-5, 15, n) xt, yt=np.meshgrid(x1t_, x2t_) #Generate X-Y grid test data test_grid=sg.RealFeatures(np.array((np.ravel(xt), np.ravel(yt)))) labels_out=svm.apply(sg.RealFeatures(test_grid)) #Get values (Distance from hyperplane) values=labels_out.get_values() #Get probabilities labels_out.scores_to_probabilities() prob=labels_out.get_values() #plot plt.gray() plt.figure(figsize=(10,6)) p1=plt.scatter(values, prob) plt.title('Probabilistic outputs') plt.xlabel('Distance from hyperplane') plt.ylabel('Probability') plt.legend([p1], ["Test samples"], loc=2) def plot_sv(C_values): plt.figure(figsize=(20,6)) plt.suptitle('Soft and hard margins with varying C', fontsize=12) for i in range(len(C_values)): plt.subplot(1, len(C_values), i+1) linear_kernel=sg.LinearKernel(feats_train, feats_train) svm1=sg.LibSVM(C_values[i], linear_kernel, labels) svm1.train() vec1=svm1.get_support_vectors() X_=[] Y_=[] new_labels=[] for j in vec1: X_.append(traindata[0][j]) Y_.append(traindata[1][j]) new_labels.append(trainlab[j]) out1=svm1.apply(sg.RealFeatures(grid)) z1=out1.get_labels().reshape((size, size)) plt.jet() c=plt.pcolor(x1_, x2_, z1) plt.contour(x1_ , x2_, z1, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.gray() plt.scatter(X_, Y_, c=new_labels, s=150) plt.scatter(traindata[0, :], traindata[1,:], c=labels, s=20) plt.title('Support vectors for C=%.2f'%C_values[i]) plt.xlabel('attribute1') plt.ylabel('attribute2') C_values=[0.1, 1000] plot_sv(C_values) num=50; dist=1.0; gmm=sg.GMM(2) gmm.set_nth_mean(np.array([-dist,-dist]),0) gmm.set_nth_mean(np.array([dist,dist]),1) gmm.set_nth_cov(np.array([[1.0,0.0],[0.0,1.0]]),0) gmm.set_nth_cov(np.array([[1.0,0.0],[0.0,1.0]]),1) gmm.set_coef(np.array([1.0,0.0])) xntr=np.array([gmm.sample() for i in xrange(num)]).T gmm.set_coef(np.array([0.0,1.0])) xptr=np.array([gmm.sample() for i in xrange(num)]).T traindata=np.concatenate((xntr,xptr), axis=1) trainlab=np.concatenate((-np.ones(num), np.ones(num))) #shogun format features feats_train=sg.RealFeatures(traindata) labels=sg.BinaryLabels(trainlab) gaussian_kernel=sg.GaussianKernel(feats_train, feats_train, 10) #Polynomial kernel of degree 2 poly_kernel=sg.PolyKernel(feats_train, feats_train, 2, True) linear_kernel=sg.LinearKernel(feats_train, feats_train) kernels=[gaussian_kernel, poly_kernel, linear_kernel] #train machine C=1 svm=sg.LibSVM(C, gaussian_kernel, labels) _=svm.train() size=100 x1=np.linspace(-5, 5, size) x2=np.linspace(-5, 5, size) x, y=np.meshgrid(x1, x2) grid=sg.RealFeatures(np.array((np.ravel(x), np.ravel(y)))) grid_out=svm.apply(grid) z=grid_out.get_labels().reshape((size, size)) plt.jet() plt.figure(figsize=(16,5)) z=grid_out.get_values().reshape((size, size)) plt.subplot(121) plt.title('Classification') c=plt.pcolor(x, y, z) plt.contour(x, y, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.subplot(122) plt.title('Original distribution') gmm.set_coef(np.array([1.0,0.0])) gmm.set_features(grid) grid_out=gmm.get_likelihood_for_all_examples() zn=grid_out.reshape((size, size)) gmm.set_coef(np.array([0.0,1.0])) grid_out=gmm.get_likelihood_for_all_examples() zp=grid_out.reshape((size, size)) z=zp-zn c=plt.pcolor(x, y, z) plt.contour(x, y, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) def plot_outputs(kernels): plt.figure(figsize=(20,5)) plt.suptitle('Binary Classification using different kernels', fontsize=12) for i in range(len(kernels)): plt.subplot(1,len(kernels),i+1) plt.title(kernels[i].get_name()) svm.set_kernel(kernels[i]) svm.train() grid_out=svm.apply(grid) z=grid_out.get_values().reshape((size, size)) c=plt.pcolor(x, y, z) plt.contour(x, y, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.scatter(traindata[0,:], traindata[1,:], c=trainlab, s=35) plot_outputs(kernels) f = open(os.path.join(SHOGUN_DATA_DIR, 'uci/ionosphere/ionosphere.data')) mat = [] labels = [] # read data from file for line in f: words = line.rstrip().split(',') mat.append([float(i) for i in words[0:-1]]) if str(words[-1])=='g': labels.append(1) else: labels.append(-1) f.close() mat_train=mat[:30] mat_test=mat[30:110] lab_train=sg.BinaryLabels(np.array(labels[:30]).reshape((30,))) lab_test=sg.BinaryLabels(np.array(labels[30:110]).reshape((len(labels[30:110]),))) feats_train = sg.RealFeatures(np.array(mat_train).T) feats_test = sg.RealFeatures(np.array(mat_test).T) #without normalization gaussian_kernel=sg.GaussianKernel() gaussian_kernel.init(feats_train, feats_train) gaussian_kernel.set_width(0.1) C=1 svm=sg.LibSVM(C, gaussian_kernel, lab_train) _=svm.train() output=svm.apply(feats_test) Err=sg.ErrorRateMeasure() error=Err.evaluate(output, lab_test) print 'Error:', error #set normalization gaussian_kernel=sg.GaussianKernel() # TODO: currently there is a bug that makes it impossible to use Gaussian kernels and kernel normalisers # See github issue #3504 #gaussian_kernel.set_normalizer(sg.SqrtDiagKernelNormalizer()) gaussian_kernel.init(feats_train, feats_train) gaussian_kernel.set_width(0.1) svm.set_kernel(gaussian_kernel) svm.train() output=svm.apply(feats_test) Err=sg.ErrorRateMeasure() error=Err.evaluate(output, lab_test) print 'Error with normalization:', error num=30; num_components=4 means=np.zeros((num_components, 2)) means[0]=[-1.5,1.5] means[1]=[1.5,-1.5] means[2]=[-1.5,-1.5] means[3]=[1.5,1.5] covs=np.array([[1.0,0.0],[0.0,1.0]]) gmm=sg.GMM(num_components) [gmm.set_nth_mean(means[i], i) for i in range(num_components)] [gmm.set_nth_cov(covs,i) for i in range(num_components)] gmm.set_coef(np.array([1.0,0.0,0.0,0.0])) xntr=np.array([gmm.sample() for i in xrange(num)]).T xnte=np.array([gmm.sample() for i in xrange(5000)]).T gmm.set_coef(np.array([0.0,1.0,0.0,0.0])) xntr1=np.array([gmm.sample() for i in xrange(num)]).T xnte1=np.array([gmm.sample() for i in xrange(5000)]).T gmm.set_coef(np.array([0.0,0.0,1.0,0.0])) xptr=np.array([gmm.sample() for i in xrange(num)]).T xpte=np.array([gmm.sample() for i in xrange(5000)]).T gmm.set_coef(np.array([0.0,0.0,0.0,1.0])) xptr1=np.array([gmm.sample() for i in xrange(num)]).T xpte1=np.array([gmm.sample() for i in xrange(5000)]).T traindata=np.concatenate((xntr,xntr1,xptr,xptr1), axis=1) testdata=np.concatenate((xnte,xnte1,xpte,xpte1), axis=1) l0 = np.array([0.0 for i in xrange(num)]) l1 = np.array([1.0 for i in xrange(num)]) l2 = np.array([2.0 for i in xrange(num)]) l3 = np.array([3.0 for i in xrange(num)]) trainlab=np.concatenate((l0,l1,l2,l3)) testlab=np.concatenate((l0,l1,l2,l3)) plt.title('Toy data for multiclass classification') plt.jet() plt.scatter(traindata[0,:], traindata[1,:], c=trainlab, s=75) feats_train=sg.RealFeatures(traindata) labels=sg.MulticlassLabels(trainlab) gaussian_kernel=sg.GaussianKernel(feats_train, feats_train, 2) poly_kernel=sg.PolyKernel(feats_train, feats_train, 4, True) linear_kernel=sg.LinearKernel(feats_train, feats_train) kernels=[gaussian_kernel, poly_kernel, linear_kernel] svm=sg.GMNPSVM(1, gaussian_kernel, labels) _=svm.train(feats_train) size=100 x1=np.linspace(-6, 6, size) x2=np.linspace(-6, 6, size) x, y=np.meshgrid(x1, x2) grid=sg.RealFeatures(np.array((np.ravel(x), np.ravel(y)))) def plot_outputs(kernels): plt.figure(figsize=(20,5)) plt.suptitle('Multiclass Classification using different kernels', fontsize=12) for i in range(len(kernels)): plt.subplot(1,len(kernels),i+1) plt.title(kernels[i].get_name()) svm.set_kernel(kernels[i]) svm.train(feats_train) grid_out=svm.apply(grid) z=grid_out.get_labels().reshape((size, size)) plt.pcolor(x, y, z) plt.contour(x, y, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.scatter(traindata[0,:], traindata[1,:], c=trainlab, s=35) plot_outputs(kernels) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Data Exploration Step2: Question 1 - Feature Observation Step4: Answer Step5: Question 2 - Goodness of Fit Step6: Answer Step7: Question 3 - Training and Testing Step8: Question 4 - Learning the Data Step10: Question 5 - Bias-Variance Tradeoff Step11: Making Predictions Step12: Answer Step13: Answer
<ASSISTANT_TASK:> Python Code: # Import libraries necessary for this project import numpy as np import pandas as pd from sklearn.cross_validation import ShuffleSplit # Import supplementary visualizations code visuals.py import visuals as vs # Pretty display for notebooks %matplotlib inline # Load the Boston housing dataset data = pd.read_csv('housing.csv') prices = data['MEDV'] features = data.drop('MEDV', axis = 1) # Success print "Boston housing dataset has {} data points with {} variables each.".format(*data.shape) # TODO: Minimum price of the data minimum_price = np.min(data['MEDV']) # TODO: Maximum price of the data maximum_price = np.max(data['MEDV']) # TODO: Mean price of the data mean_price = np.mean(data['MEDV']) # TODO: Median price of the data median_price = np.median(data['MEDV']) # TODO: Standard deviation of prices of the data std_price = np.std(data['MEDV']) # Show the calculated statistics print "Statistics for Boston housing dataset:\n" print "Minimum price: ${:,.2f}".format(minimum_price) print "Maximum price: ${:,.2f}".format(maximum_price) print "Mean price: ${:,.2f}".format(mean_price) print "Median price ${:,.2f}".format(median_price) print "Standard deviation of prices: ${:,.2f}".format(std_price) import matplotlib.pyplot as plt import numpy as np for col in features.columns: fig, ax = plt.subplots() fit = np.polyfit(features[col],prices,deg=1) plt.plot(features[col], prices,'o',color='black') plt.plot(features[col], fit[0]*features[col]+fit[1], color ='red', linewidth = 3) plt.title("Prices vs %s"%(col)) plt.xlabel(col) plt.ylabel("prices") # TODO: Import 'r2_score' from sklearn.metrics import r2_score as r2 def performance_metric(y_true, y_predict): Calculates and returns the performance score between true and predicted values based on the metric chosen. # TODO: Calculate the performance score between 'y_true' and 'y_predict' score = r2(y_true,y_predict) # Return the score return score # Calculate the performance of this model score = performance_metric([3, -0.5, 2, 7, 4.2], [2.5, 0.0, 2.1, 7.8, 5.3]) print "Model has a coefficient of determination, R^2, of {:.3f}.".format(score) # TODO: Import 'train_test_split' from sklearn import cross_validation # TODO: Shuffle and split the data into training and testing subsets X_train, X_test, y_train, y_test = cross_validation.train_test_split(features,prices,test_size=0.2,random_state=0) # Success print "Training and testing split was successful." # Produce learning curves for varying training set sizes and maximum depths vs.ModelLearning(features, prices) vs.ModelComplexity(X_train, y_train) # TODO: Import 'make_scorer', 'DecisionTreeRegressor', and 'GridSearchCV' from sklearn.metrics import make_scorer from sklearn import grid_search from sklearn.tree import DecisionTreeRegressor from sklearn import cross_validation def fit_model(X, y): Performs grid search over the 'max_depth' parameter for a decision tree regressor trained on the input data [X, y]. # Create cross-validation sets from the training data cv_sets = ShuffleSplit(X.shape[0], n_iter = 10, test_size = 0.20, random_state = 0) # TODO: Create a decision tree regressor object regressor = DecisionTreeRegressor(random_state=0) # TODO: Create a dictionary for the parameter 'max_depth' with a range from 1 to 10 params = {'max_depth':range(1,11)} # TODO: Transform 'performance_metric' into a scoring function using 'make_scorer' scoring_fnc = make_scorer(performance_metric) # TODO: Create the grid search object grid = grid_search.GridSearchCV(regressor, params, cv= cv_sets, scoring=scoring_fnc) # Fit the grid search object to the data to compute the optimal model grid = grid.fit(X, y) # Return the optimal model after fitting the data return grid.best_estimator_ # Fit the training data to the model using grid search reg = fit_model(X_train, y_train) # Produce the value for 'max_depth' print "Parameter 'max_depth' is {} for the optimal model.".format(reg.get_params()['max_depth']) # Produce a matrix for client data client_data = [[5, 17, 15], # Client 1 [4, 32, 22], # Client 2 [8, 3, 12]] # Client 3 # Show predictions for i, price in enumerate(reg.predict(client_data)): print "Predicted selling price for Client {}'s home: ${:,.2f}".format(i+1, price) vs.PredictTrials(features, prices, fit_model, client_data) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: TFRecord and tf.train.Example Step5: tf.train.Example Step6: Note Step7: All proto messages can be serialized to a binary-string using the .SerializeToString method Step8: Creating a tf.train.Example message Step10: Each of these features can be coerced into a tf.train.Example-compatible type using one of _bytes_feature, _float_feature, _int64_feature. You can then create a tf.train.Example message from these encoded features Step11: For example, suppose you have a single observation from the dataset, [False, 4, bytes('goat'), 0.9876]. You can create and print the tf.train.Example message for this observation using create_message(). Each single observation will be written as a Features message as per the above. Note that the tf.train.Example message is just a wrapper around the Features message Step12: To decode the message use the tf.train.Example.FromString method. Step13: TFRecords format details Step14: Applied to a tuple of arrays, it returns a dataset of tuples Step15: Use the tf.data.Dataset.map method to apply a function to each element of a Dataset. Step16: Apply this function to each element in the dataset Step17: And write them to a TFRecord file Step18: Reading a TFRecord file Step19: At this point the dataset contains serialized tf.train.Example messages. When iterated over it returns these as scalar string tensors. Step20: These tensors can be parsed using the function below. Note that the feature_description is necessary here because tf.data.Datasets use graph-execution, and need this description to build their shape and type signature Step21: Alternatively, use tf.parse example to parse the whole batch at once. Apply this function to each item in the dataset using the tf.data.Dataset.map method Step22: Use eager execution to display the observations in the dataset. There are 10,000 observations in this dataset, but you will only display the first 10. The data is displayed as a dictionary of features. Each item is a tf.Tensor, and the numpy element of this tensor displays the value of the feature Step23: Here, the tf.parse_example function unpacks the tf.train.Example fields into standard tensors. Step24: Reading a TFRecord file Step25: That returns a tf.train.Example proto which is dificult to use as is, but it's fundamentally a representation of a Step26: Walkthrough Step27: Write the TFRecord file Step28: Notice that all of the features are now stored in the tf.train.Example message. Next, functionalize the code above and write the example messages to a file named images.tfrecords Step29: Read the TFRecord file Step30: Recover the images from the TFRecord file
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf import numpy as np import IPython.display as display # The following functions can be used to convert a value to a type compatible # with tf.train.Example. def _bytes_feature(value): Returns a bytes_list from a string / byte. if isinstance(value, type(tf.constant(0))): value = value.numpy() # BytesList won't unpack a string from an EagerTensor. return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _float_feature(value): Returns a float_list from a float / double. return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) def _int64_feature(value): Returns an int64_list from a bool / enum / int / uint. return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) print(_bytes_feature(b'test_string')) print(_bytes_feature(u'test_bytes'.encode('utf-8'))) print(_float_feature(np.exp(1))) print(_int64_feature(True)) print(_int64_feature(1)) feature = _float_feature(np.exp(1)) feature.SerializeToString() # The number of observations in the dataset. n_observations = int(1e4) # Boolean feature, encoded as False or True. feature0 = np.random.choice([False, True], n_observations) # Integer feature, random from 0 to 4. feature1 = np.random.randint(0, 5, n_observations) # String feature. strings = np.array([b'cat', b'dog', b'chicken', b'horse', b'goat']) feature2 = strings[feature1] # Float feature, from a standard normal distribution. feature3 = np.random.randn(n_observations) def serialize_example(feature0, feature1, feature2, feature3): Creates a tf.train.Example message ready to be written to a file. # Create a dictionary mapping the feature name to the tf.train.Example-compatible # data type. feature = { 'feature0': _int64_feature(feature0), 'feature1': _int64_feature(feature1), 'feature2': _bytes_feature(feature2), 'feature3': _float_feature(feature3), } # Create a Features message using tf.train.Example. example_proto = tf.train.Example(features=tf.train.Features(feature=feature)) return example_proto.SerializeToString() # This is an example observation from the dataset. example_observation = [] serialized_example = serialize_example(False, 4, b'goat', 0.9876) serialized_example example_proto = tf.train.Example.FromString(serialized_example) example_proto tf.data.Dataset.from_tensor_slices(feature1) features_dataset = tf.data.Dataset.from_tensor_slices((feature0, feature1, feature2, feature3)) features_dataset # Use `take(1)` to only pull one example from the dataset. for f0,f1,f2,f3 in features_dataset.take(1): print(f0) print(f1) print(f2) print(f3) def tf_serialize_example(f0,f1,f2,f3): tf_string = tf.py_function( serialize_example, (f0, f1, f2, f3), # Pass these args to the above function. tf.string) # The return type is `tf.string`. return tf.reshape(tf_string, ()) # The result is a scalar. tf_serialize_example(f0, f1, f2, f3) serialized_features_dataset = features_dataset.map(tf_serialize_example) serialized_features_dataset def generator(): for features in features_dataset: yield serialize_example(*features) serialized_features_dataset = tf.data.Dataset.from_generator( generator, output_types=tf.string, output_shapes=()) serialized_features_dataset filename = 'test.tfrecord' writer = tf.data.experimental.TFRecordWriter(filename) writer.write(serialized_features_dataset) filenames = [filename] raw_dataset = tf.data.TFRecordDataset(filenames) raw_dataset for raw_record in raw_dataset.take(10): print(repr(raw_record)) # Create a description of the features. feature_description = { 'feature0': tf.io.FixedLenFeature([], tf.int64, default_value=0), 'feature1': tf.io.FixedLenFeature([], tf.int64, default_value=0), 'feature2': tf.io.FixedLenFeature([], tf.string, default_value=''), 'feature3': tf.io.FixedLenFeature([], tf.float32, default_value=0.0), } def _parse_function(example_proto): # Parse the input `tf.train.Example` proto using the dictionary above. return tf.io.parse_single_example(example_proto, feature_description) parsed_dataset = raw_dataset.map(_parse_function) parsed_dataset for parsed_record in parsed_dataset.take(10): print(repr(parsed_record)) # Write the `tf.train.Example` observations to the file. with tf.io.TFRecordWriter(filename) as writer: for i in range(n_observations): example = serialize_example(feature0[i], feature1[i], feature2[i], feature3[i]) writer.write(example) !du -sh {filename} filenames = [filename] raw_dataset = tf.data.TFRecordDataset(filenames) raw_dataset for raw_record in raw_dataset.take(1): example = tf.train.Example() example.ParseFromString(raw_record.numpy()) print(example) result = {} # example.features.feature is the dictionary for key, feature in example.features.feature.items(): # The values are the Feature objects which contain a `kind` which contains: # one of three fields: bytes_list, float_list, int64_list kind = feature.WhichOneof('kind') result[key] = np.array(getattr(feature, kind).value) result cat_in_snow = tf.keras.utils.get_file( '320px-Felis_catus-cat_on_snow.jpg', 'https://storage.googleapis.com/download.tensorflow.org/example_images/320px-Felis_catus-cat_on_snow.jpg') williamsburg_bridge = tf.keras.utils.get_file( '194px-New_East_River_Bridge_from_Brooklyn_det.4a09796u.jpg', 'https://storage.googleapis.com/download.tensorflow.org/example_images/194px-New_East_River_Bridge_from_Brooklyn_det.4a09796u.jpg') display.display(display.Image(filename=cat_in_snow)) display.display(display.HTML('Image cc-by: <a "href=https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg">Von.grzanka</a>')) display.display(display.Image(filename=williamsburg_bridge)) display.display(display.HTML('<a "href=https://commons.wikimedia.org/wiki/File:New_East_River_Bridge_from_Brooklyn_det.4a09796u.jpg">From Wikimedia</a>')) image_labels = { cat_in_snow : 0, williamsburg_bridge : 1, } # This is an example, just using the cat image. image_string = open(cat_in_snow, 'rb').read() label = image_labels[cat_in_snow] # Create a dictionary with features that may be relevant. def image_example(image_string, label): image_shape = tf.io.decode_jpeg(image_string).shape feature = { 'height': _int64_feature(image_shape[0]), 'width': _int64_feature(image_shape[1]), 'depth': _int64_feature(image_shape[2]), 'label': _int64_feature(label), 'image_raw': _bytes_feature(image_string), } return tf.train.Example(features=tf.train.Features(feature=feature)) for line in str(image_example(image_string, label)).split('\n')[:15]: print(line) print('...') # Write the raw image files to `images.tfrecords`. # First, process the two images into `tf.train.Example` messages. # Then, write to a `.tfrecords` file. record_file = 'images.tfrecords' with tf.io.TFRecordWriter(record_file) as writer: for filename, label in image_labels.items(): image_string = open(filename, 'rb').read() tf_example = image_example(image_string, label) writer.write(tf_example.SerializeToString()) !du -sh {record_file} raw_image_dataset = tf.data.TFRecordDataset('images.tfrecords') # Create a dictionary describing the features. image_feature_description = { 'height': tf.io.FixedLenFeature([], tf.int64), 'width': tf.io.FixedLenFeature([], tf.int64), 'depth': tf.io.FixedLenFeature([], tf.int64), 'label': tf.io.FixedLenFeature([], tf.int64), 'image_raw': tf.io.FixedLenFeature([], tf.string), } def _parse_image_function(example_proto): # Parse the input tf.train.Example proto using the dictionary above. return tf.io.parse_single_example(example_proto, image_feature_description) parsed_image_dataset = raw_image_dataset.map(_parse_image_function) parsed_image_dataset for image_features in parsed_image_dataset: image_raw = image_features['image_raw'].numpy() display.display(display.Image(data=image_raw)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We follow the state-action pairs formulation approach. Step2: The backward induction algorithm for finite horizon dynamic programs is offered Step3: In the returns, vs is an $(N+1) \times n$ array that contains the optimal value functions,
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np from scipy import sparse import matplotlib.pyplot as plt import quantecon as qe from quantecon.markov import DiscreteDP, backward_induction, sa_indices T = 0.5 # Time expiration (years) vol = 0.2 # Annual volatility r = 0.05 # Annual interest rate strike = 2.1 # Strike price p0 = 2 # Current price N = 100 # Number of periods to expiration # Time length of a period tau = T/N # Discount factor beta = np.exp(-r*tau) # Up-jump factor u = np.exp(vol*np.sqrt(tau)) # Up-jump probability q = 1/2 + np.sqrt(tau)*(r - (vol**2)/2)/(2*vol) # Possible price values ps = u**np.arange(-N, N+1) * p0 # Number of states n = len(ps) + 1 # State n-1: "the option has been exercised" # Number of actions m = 2 # 0: hold, 1: exercise # Number of feasible state-action pairs L = n*m - 1 # At state n-1, there is only one action "do nothing" # Arrays of state and action indices s_indices, a_indices = sa_indices(n, m) s_indices, a_indices = s_indices[:-1], a_indices[:-1] # Reward vector R = np.empty((n, m)) R[:, 0] = 0 R[:-1, 1] = strike - ps R = R.ravel()[:-1] # Transition probability array Q = sparse.lil_matrix((L, n)) for i in range(L-1): if a_indices[i] == 0: Q[i, min(s_indices[i]+1, len(ps)-1)] = q Q[i, max(s_indices[i]-1, 0)] = 1 - q else: Q[i, n-1] = 1 Q[L-1, n-1] = 1 # Create a DiscreteDP ddp = DiscreteDP(R, Q, beta, s_indices, a_indices) vs, sigmas = backward_induction(ddp, N) v = vs[0] max_exercise_price = ps[sigmas[::-1].sum(-1)-1] fig, axes = plt.subplots(1, 2, figsize=(12, 4)) axes[0].plot([0, strike], [strike, 0], 'k--') axes[0].plot(ps, v[:-1]) axes[0].set_xlim(0, strike*2) axes[0].set_xticks(np.linspace(0, 4, 5, endpoint=True)) axes[0].set_ylim(0, strike) axes[0].set_yticks(np.linspace(0, 2, 5, endpoint=True)) axes[0].set_xlabel('Asset Price') axes[0].set_ylabel('Premium') axes[0].set_title('Put Option Value') axes[1].plot(np.linspace(0, T, N), max_exercise_price) axes[1].set_xlim(0, T) axes[1].set_ylim(1.6, strike) axes[1].set_xlabel('Time to Maturity') axes[1].set_ylabel('Asset Price') axes[1].set_title('Put Option Optimal Exercise Boundary') axes[1].tick_params(right='on') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: DCP на примере CVXPy Step2: CVXPy Step3: Проверим решение Step4: Проверим DCP правила Step5: Autodiff на примере PyTorch'a
<ASSISTANT_TASK:> Python Code: import cvxpy as cvx import numpy as np import matplotlib.pyplot as plt %matplotlib inline print(cvx.installed_solvers()) USE_COLAB = False if USE_COLAB == False: plt.rc("text", usetex=True) n = 1000 m = 10 x_true = np.random.randn(n) x_true[np.abs(x_true) > 0.05] = 0 print("Num of nnz in x = {}".format(np.sum(x_true != 0))) A = np.random.randn(m, n) b = A.dot(x_true) x = cvx.Variable(n) objective = cvx.norm1(x) constr = [A*x == b] problem = cvx.Problem(cvx.Minimize(objective), constr) problem.solve(verbose=True, max_iter=3000) tol= 1e-4 print(np.linalg.norm(A.dot(x.value) - b)) print(np.linalg.norm(A[:, np.abs(x.value) > tol].dot(x.value[np.abs(x.value) > tol]) - b)) print(np.linalg.norm(x_true - x.value)) print("Num nnz = {}".format(np.sum(np.abs(x.value) > tol))) plt.figure(figsize=(10, 8)) plt.plot(x.value, label=r"$x^*$") plt.plot(x_true, label=r"True $x$") plt.legend(fontsize=26) plt.yticks(fontsize=26) plt.figure(figsize=(9, 7)) plt.semilogy(np.sort(np.abs(x.value))[::-1]) plt.ylabel("$|x_i|$", fontsize=24) plt.yticks(fontsize=24) plt.xlabel(r"Sorted index of $x^*$", fontsize=24) plt.xticks(fontsize=24) # Non-affine equality constraint y = cvx.Variable(1) obj = cvx.Minimize(cvx.power(y, 3)) problem = cvx.Problem(obj, [cvx.power(y - 3, 2) == 0]) problem.solve(verbose=True) # Non-convex objective function y = cvx.Variable(2) obj = cvx.Minimize(y[0]**2 - y[1]**2) problem = cvx.Problem(obj) problem.solve(verbose=True) import torch n = 5 A = torch.randn((n, n), requires_grad=True) b = torch.randn((n,)) x = torch.randn((n,), requires_grad=True) f = 0.5 * x @ A @ x - b @ x f.backward() print(f) print(f.item()) manual_grad_x = 0.5 * (A + A.t()) @ x - b print(manual_grad_x.data) print(x.grad.data) manual_grad_A = 0.5 * torch.ger(x, x) print(manual_grad_A.data) print(A.grad.data) print(torch.norm(manual_grad_A.data - A.grad.data).item()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Contour plots of 2d wavefunctions Step3: The contour, contourf, pcolor and pcolormesh functions of Matplotlib can be used for effective visualizations of 2d scalar fields. Use the Matplotlib documentation to learn how to use these functions along with the numpy.meshgrid function to visualize the above wavefunction Step4: Next make a visualization using one of the pcolor functions
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np def well2d(x, y, nx, ny, L=1.0): Compute the 2d quantum well wave function. psi = 2*np.sin(nx*np.pi*x/L)*np.sin(ny*np.pi*y/L)/L return psi psi = well2d(np.linspace(0,1,10), np.linspace(0,1,10), 1, 1) psi psi = well2d(np.linspace(0,1,10), np.linspace(0,1,10), 1, 1) assert len(psi)==10 assert psi.shape==(10,) x = np.linspace(0,1,100) y = np.linspace(0,1,100) fld = np.meshgrid(x, y) # Sets up coordinates psi = well2d(fld[0],fld[1],3,2) # Creates 2-d array with well2d's values f = plt.figure(figsize=(5,5)) plt.contourf(x,y,psi) plt.tick_params(which='both',direction='out', top=False,right=False) plt.set_cmap('copper') plt.colorbar() assert True # use this cell for grading the contour plot plt.figure(figsize=(5,5)) plt.pcolormesh(x,y,psi) plt.tick_params(which='both',direction='out', top=False, right=False) plt.set_cmap('winter') plt.colorbar() assert True # use this cell for grading the pcolor plot <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Quick Look at the Data Step2: Calibration Data Step3: Perspective Transform Step4: Color Thresholding Step5: Coordinate Transformations Step6: Read in saved data and ground truth map of the world Step7: Write a function to process stored images Step9: Make a video from processed image data
<ASSISTANT_TASK:> Python Code: %%HTML <style> code {background-color : orange !important;} </style> %matplotlib inline #%matplotlib qt # Choose %matplotlib qt to plot to an interactive window (note it may show up behind your browser) # Make some of the relevant imports import cv2 # OpenCV for perspective transform import numpy as np import matplotlib.image as mpimg import matplotlib.pyplot as plt import scipy.misc # For saving images as needed import glob # For reading in a list of images from a folder path = '../test_dataset/IMG/*' img_list = glob.glob(path) # Grab a random image and display it idx = np.random.randint(0, len(img_list)-1) image = mpimg.imread(img_list[idx]) plt.imshow(image) # In the simulator you can toggle on a grid on the ground for calibration # You can also toggle on the rock samples with the 0 (zero) key. # Here's an example of the grid and one of the rocks example_grid = '../calibration_images/example_grid1.jpg' example_rock = '../calibration_images/example_rock1.jpg' grid_img = mpimg.imread(example_grid) rock_img = mpimg.imread(example_rock) fig = plt.figure(figsize=(12,3)) plt.subplot(121) plt.imshow(grid_img) plt.subplot(122) plt.imshow(rock_img) # Define a function to perform a perspective transform # I've used the example grid image above to choose source points for the # grid cell in front of the rover (each grid cell is 1 square meter in the sim) # Define a function to perform a perspective transform def perspect_transform(img, src, dst): M = cv2.getPerspectiveTransform(src, dst) warped = cv2.warpPerspective(img, M, (img.shape[1], img.shape[0]))# keep same size as input image return warped # Define calibration box in source (actual) and destination (desired) coordinates # These source and destination points are defined to warp the image # to a grid where each 10x10 pixel square represents 1 square meter # The destination box will be 2*dst_size on each side dst_size = 5 # Set a bottom offset to account for the fact that the bottom of the image # is not the position of the rover but a bit in front of it # this is just a rough guess, feel free to change it! bottom_offset = 6 source = np.float32([[14, 140], [301 ,140],[200, 96], [118, 96]]) destination = np.float32([[image.shape[1]/2 - dst_size, image.shape[0] - bottom_offset], [image.shape[1]/2 + dst_size, image.shape[0] - bottom_offset], [image.shape[1]/2 + dst_size, image.shape[0] - 2*dst_size - bottom_offset], [image.shape[1]/2 - dst_size, image.shape[0] - 2*dst_size - bottom_offset], ]) warped = perspect_transform(grid_img, source, destination) plt.imshow(warped) #scipy.misc.imsave('../output/warped_example.jpg', warped) # Identify pixels above the threshold # Threshold of RGB > 160 does a nice job of identifying ground pixels only def color_thresh(img, rgb_thresh=(160, 160, 160)): # Create an array of zeros same xy size as img, but single channel color_select = np.zeros_like(img[:,:,0]) # Require that each pixel be above all three threshold values in RGB # above_thresh will now contain a boolean array with "True" # where threshold was met above_thresh = (img[:,:,0] > rgb_thresh[0]) \ & (img[:,:,1] > rgb_thresh[1]) \ & (img[:,:,2] > rgb_thresh[2]) # Index the array of zeros with the boolean array and set to 1 color_select[above_thresh] = 1 # Return the binary image return color_select threshed = color_thresh(warped) plt.imshow(threshed, cmap='gray') #scipy.misc.imsave('../output/warped_threshed.jpg', threshed*255) def rover_coords(binary_img): # Identify nonzero pixels ypos, xpos = binary_img.nonzero() # Calculate pixel positions with reference to the rover position being at the # center bottom of the image. x_pixel = np.absolute(ypos - binary_img.shape[0]).astype(np.float) y_pixel = -(xpos - binary_img.shape[0]).astype(np.float) return x_pixel, y_pixel # Define a function to convert to radial coords in rover space def to_polar_coords(x_pixel, y_pixel): # Convert (x_pixel, y_pixel) to (distance, angle) # in polar coordinates in rover space # Calculate distance to each pixel dist = np.sqrt(x_pixel**2 + y_pixel**2) # Calculate angle away from vertical for each pixel angles = np.arctan2(y_pixel, x_pixel) return dist, angles # Define a function to map rover space pixels to world space def pix_to_world(xpix, ypix, x_rover, y_rover, yaw_rover, world_size, scale): # Map pixels from rover space to world coords yaw = yaw_rover * np.pi / 180 # Perform rotation, translation and clipping all at once x_pix_world = np.clip(np.int_((((xpix * np.cos(yaw)) - (ypix * np.sin(yaw)))/scale) + x_rover), 0, world_size - 1) y_pix_world = np.clip(np.int_((((xpix * np.sin(yaw)) + (ypix * np.cos(yaw)))/scale) + y_rover), 0, world_size - 1) return x_pix_world, y_pix_world # Grab another random image idx = np.random.randint(0, len(img_list)-1) image = mpimg.imread(img_list[idx]) warped = perspect_transform(image, source, destination) threshed = color_thresh(warped) # Calculate pixel values in rover-centric coords and distance/angle to all pixels xpix, ypix = rover_coords(threshed) dist, angles = to_polar_coords(xpix, ypix) mean_dir = np.mean(angles) # Do some plotting fig = plt.figure(figsize=(12,9)) plt.subplot(221) plt.imshow(image) plt.subplot(222) plt.imshow(warped) plt.subplot(223) plt.imshow(threshed, cmap='gray') plt.subplot(224) plt.plot(xpix, ypix, '.') plt.ylim(-160, 160) plt.xlim(0, 160) arrow_length = 100 x_arrow = arrow_length * np.cos(mean_dir) y_arrow = arrow_length * np.sin(mean_dir) plt.arrow(0, 0, x_arrow, y_arrow, color='red', zorder=2, head_width=10, width=2) # Import pandas and read in csv file as a dataframe import pandas as pd # Change this path to your data directory df = pd.read_csv('../test_dataset/robot_log.csv') img_list_sorted = df["Path"].tolist() # Create list of image pathnames # Read in ground truth map and create a 3-channel image with it ground_truth = mpimg.imread('../calibration_images/map_bw.png') ground_truth_3d = np.dstack((ground_truth*0, ground_truth, ground_truth*0)).astype(np.float) # Creating a class to be the data container # Will read in saved data from csv file and populate this object # Worldmap is instantiated as 200 x 200 grids corresponding # to a 200m x 200m space (same size as the ground truth map: 200 x 200 pixels) # This encompasses the full range of output position values in x and y from the sim class Databucket(): def __init__(self): self.images = img_list_sorted self.xpos = df["X_Position"].values self.ypos = df["Y_Position"].values self.yaw = df["Yaw"].values self.count = 0 self.worldmap = np.zeros((200, 200, 3)).astype(np.float) self.ground_truth = ground_truth_3d # Ground truth worldmap # Instantiate a Databucket().. this will be a global variable/object # that you can refer to in the process_image() function below data = Databucket() # Define a function to pass stored images to # reading rover position and yaw angle from csv file # This function will be used by moviepy to create an output video def process_image(img): # Example of how to use the Databucket() object defined in the previous cell # print(data.xpos[0], data.ypos[0], data.yaw[0]) warp = perspect_transform(img, source, destination) output_image = np.zeros((img.shape[0] + data.worldmap.shape[0], img.shape[1]*2, 3)) # Example output_image[0:img.shape[0], 0:img.shape[1]] = img output_image[0:img.shape[0], img.shape[1]:] = warp cv2.putText(output_image,"Populate this image with your analyses to make a video!", (20, 20), cv2.FONT_HERSHEY_COMPLEX, 0.4, (255, 255, 255), 1) data.count += 1 # Keep track of the index in the Databucket() return output_image # Import everything needed to edit/save/watch video clips from moviepy.editor import VideoFileClip from moviepy.editor import ImageSequenceClip # Define pathname to save the output video output = '../output/test_mapping.mp4' clip = ImageSequenceClip(data.images, fps=60) new_clip = clip.fl_image(process_image) #NOTE: this function expects color images!! %time new_clip.write_videofile(output, audio=False) # This last cell should function as an inline video player # If it fails to render the video, you can simply have a look # at the saved mp4 in your `/output` folder from IPython.display import HTML HTML( <video width="960" height="540" controls> <source src="{0}"> </video> .format(output)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Examples Step2: Example 1 Step3: Example 2 Step4: Example 3 Step5: Equation
<ASSISTANT_TASK:> Python Code: import numpy as np def dftmatrix(N): x = np.arange(N).reshape(N,1) u = x Wn = np.exp(-1j*2*np.pi/N) A = (1./np.sqrt(N)) * (Wn ** u.dot(x.T)) return A testing = (__name__ == "__main__") if testing: ! jupyter nbconvert --to python dftmatrix.ipynb import numpy as np import sys,os import matplotlib.image as mpimg ia898path = os.path.abspath('../../') if ia898path not in sys.path: sys.path.append(ia898path) import ia898.src as ia if testing: A = ia.dftmatrix(128) ia.adshow(ia.normalize(A.real),'A.real') ia.adshow(ia.normalize(A.imag),'A.imag') if testing: A = ia.dftmatrix(4) print('A=\n', A.round(1)) print('A-A.T=\n', A - A.T) print((np.abs(np.linalg.inv(A)-np.conjugate(A))).max() < 10E-15) if testing: u = x = np.arange(10).reshape(10,1) print('u xT=\n', u.dot(x.T)) if testing: print('testing dftmatrix') print(repr(np.floor(0.5 + 10E4*ia.dftmatrix(4).real) / 10E4) == repr(np.array( [[ 0.5, 0.5, 0.5, 0.5], [ 0.5, 0. , -0.5, 0. ], [ 0.5, -0.5, 0.5, -0.5], [ 0.5, 0. , -0.5, 0. ]]))) print(repr(np.floor(0.5 + 10E4*ia.dftmatrix(4).imag) / 10E4) == repr(np.array( [[ 0. , 0. , 0. , 0. ], [ 0. , -0.5, 0. , 0.5], [ 0. , 0. , 0. , 0. ], [ 0. , 0.5, 0. , -0.5]]))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Filter logs for public items Step2: Make the data set manageably smaller by filtering out users with short/long review histories Step3: Load the filtered logs and compute basic stats summarizing the data set Step5: Apply more filters and format the log data into an InteractionHistory that can be understood by lentil Step7: Perform analagous preprocessing steps for the MTurk data set Step9: Pre-process the dutch_big dataset Step11: Apply additional data filters Step14: Explore basic stats about filtered, formatted interaction history
<ASSISTANT_TASK:> Python Code: public_itemids = defaultdict(set) fs = [x for x in os.listdir(os.path.join('data', 'shared_decks')) if '.xml' in x] for f in fs: try: e = xml.etree.ElementTree.parse(os.path.join('data', 'shared_decks', f)).getroot() for x in e.findall('log'): public_itemids[x.get('o_id')].add(f) except: continue len(public_itemids) num_logs_of_file = defaultdict(int) num_logs_of_item = defaultdict(int) logged_itemids = set() num_public_logs = 0 with open(os.path.join('data', 'mnemosynelogs_itemids_full.csv'), 'rb') as f: f.readline() for line in f: line = line.replace('\r\n', '') if line != '': if line in public_itemids: num_public_logs += 1 num_logs_of_item[line] += 1 for f in public_itemids[line]: num_logs_of_file[f] += 1 logged_itemids.add(line) num_public_logs len(logged_itemids) sum(1 for x in public_itemids if x in logged_itemids) sorted(num_logs_of_item.items(), key=lambda (k,v): v, reverse=True)[:500] sorted(num_logs_of_file.items(), key=lambda (k,v): v, reverse=True)[:50] def contents_of_items_in_file(f): e = xml.etree.ElementTree.parse(os.path.join('data', 'shared_decks', f)).getroot() D = {} M = {} for x in e.findall('log'): if x.get('type') == '16': b = x.find('b') if b is None: b = x.find('m_1') f = x.find('f') if b is not None or f is not None: D[x.get('o_id')] = (b.text if b is not None else None, f.text if f is not None else None) elif x.get('type') == '6': M[x.get('o_id')] = x.get('fact') return {k: D[v] for k, v in M.iteritems()} contents_of_item_id = {} for f in os.listdir(os.path.join('data', 'shared_decks')): if '.xml' in f: try: contents_of_item_id.update(contents_of_items_in_file(f)) except: pass len(contents_of_item_id) contents_of_item_id with open(os.path.join('data', 'content_features.pkl'), 'wb') as f: pickle.dump(contents_of_item_id, f, pickle.HIGHEST_PROTOCOL) with open(os.path.join('data', 'mnemosynelogs_full.csv'), 'rb') as f: with open(os.path.join('data', 'mnemosynelogs_full_filtered.csv'), 'wb') as g: g.write(f.readline()) for line in f: fields = line.split(',') if fields[4] != '' and fields[3] in contents_of_item_id: g.write(line) unfiltered_logs = pd.read_table(os.path.join('data', 'mnemosynelogs_full_filtered.csv'), delimiter=',') num_ixns_of_user = unfiltered_logs['user_id'].value_counts() user_ids = unfiltered_logs['user_id'].unique() mn = 10 mx = 50000 len(user_ids), sum(1 for x in user_ids if num_ixns_of_user[x] > mn and num_ixns_of_user[x] < mx), sum(num_ixns_of_user[x] for x in user_ids if num_ixns_of_user[x] > mn and num_ixns_of_user[x] < mx) user_ids = {x for x in user_ids if num_ixns_of_user[x] > mn and num_ixns_of_user[x] < mx} filtered_logs = unfiltered_logs[unfiltered_logs['user_id'].isin(user_ids)] filtered_logs.to_csv(os.path.join('data', 'mnemosynelogs_full_filtered_pruned.csv'), index=False) df = pd.read_csv(os.path.join('data', 'mnemosynelogs_full_filtered_pruned.csv'), delimiter=',') print '\n'.join(df.columns) len(df[~np.isnan(df['grade'])]) print "Number of interactions = %d" % len(df) print "Number of unique students = %d" % len(df['user_id'].unique()) print "Number of unique modules = %d" % len(df['object_id'].unique()) av = np.array(df['actual_interval'].values) sv = np.array(df['scheduled_interval'].values) av, sv = zip(*[(x, y) for x, y in zip(av, sv) if x>0 and y>0 and not np.isnan(x) and not np.isnan(y)]) av = np.array(av) sv = np.array(sv) plt.xlabel('log10(Scheduled interval) (log10-milliseconds)') plt.ylabel('Frequency (number of interactions)') plt.hist(np.log10(sv+1), bins=20) plt.show() plt.xlabel('log10(Scheduled interval) (log10-milliseconds)') plt.ylabel('log10(Actual interval) (log10-milliseconds)') plt.scatter(np.log10(sv+1), np.log10(av+1), alpha=0.005) #plt.savefig(os.path.join('figures', 'mnemosyne', 'scheduled-vs-actual-intervals.pdf')) plt.show() v = np.array(df['user_id'].value_counts().values) plt.xlabel('log10(Number of interactions per student)') plt.ylabel('Frequency (number of students)') plt.hist(np.log10(v)) plt.show() v = np.array(df['object_id'].value_counts().values) plt.xlabel('log10(Number of interactions per problem)') plt.ylabel('Frequency (number of problems)') plt.hist(np.log10(v)) plt.show() grades = np.array(df['grade'].values) plt.xlabel('Grade') plt.ylabel('Frequency (number of interactions)') plt.hist(grades[~np.isnan(grades)]) plt.show() def interaction_history_from_mnemosyne_data_set(data): Parse Mnemosyne data set into an interaction history :param pd.DataFrame data: A dataframe of raw log data :rtype: datatools.InteractionHistory :return: An interaction history object data = data[data['grade'].apply(lambda x: not np.isnan(x))] data = data[['user_id', 'student_id', 'object_id', 'grade', 'timestamp', 'thinking_time', 'actual_interval', 'scheduled_interval']] data.columns = ['user_id', 'student_id', 'module_id', 'outcome', 'timestamp', 'duration', 'actual_interval', 'scheduled_interval'] data['outcome'] = data['outcome'].apply(lambda x: x > 1) student_timesteps = defaultdict(int) timesteps = [None] * len(data) for i, (_, ixn) in enumerate(data.iterrows()): student_timesteps[ixn['student_id']] += 1 timesteps[i] = student_timesteps[ixn['student_id']] data['timestep'] = timesteps data['module_type'] = [datatools.AssessmentInteraction.MODULETYPE] * len(data) return datatools.InteractionHistory(data, sort_by_timestep=True) df.sort('timestamp', inplace=True) # this is helpful for splitting histories by user-item pair (instead of by user) in lentil.evaluate df['student_id'] = [str(x['user_id'])+'-'+str(x['object_id']) for _, x in df.iterrows()] unfiltered_history = interaction_history_from_mnemosyne_data_set(df) unfiltered_history.data['outcome'].value_counts() data = [] with open(os.path.join('data', 'first_mturk_experiment.dataset'), 'rb') as f: for line in f: data.append(json.loads(line)) df = pd.DataFrame(data) df['delta_t'] = df['delta_t'] * 4 * 60 * 60 # seconds num_ixns_per_user_item = {k: defaultdict(list) for k in df['user'].unique()} for _, ixn in df.iterrows(): num_ixns_per_user_item[ixn['user']][ixn['item']].append(ixn['delta_t']) start_time_of_user_item = {} for user, num_ixns_per_item in num_ixns_per_user_item.iteritems(): start_time = 0 for item, delta_ts in num_ixns_per_item.iteritems(): start_time_of_user_item[(user, item)] = start_time start_time += sum(delta_ts) df.sort('n_reps', inplace=True) timestamps = [] for _, ixn in df.iterrows(): user_item = (ixn['user'], ixn['item']) start_time_of_user_item[user_item] += ixn['delta_t'] timestamps.append(start_time_of_user_item[user_item]) df['timestamp'] = timestamps df.sort('timestamp', inplace=True) def interaction_history_from_mturk_data_set(data): Parse MTurk data set into an interaction history :param pd.DataFrame data: A dataframe of raw log data :rtype: datatools.InteractionHistory :return: An interaction history object data = data[['user', 'user', 'item', 'bin_score', 'timestamp']] data.columns = ['user_id', 'student_id', 'module_id', 'outcome', 'timestamp'] data['outcome'] = data['outcome'].apply(lambda x: x == 1) student_timesteps = defaultdict(int) timesteps = [None] * len(data) for i, (_, ixn) in enumerate(data.iterrows()): student_timesteps[ixn['student_id']] += 1 timesteps[i] = student_timesteps[ixn['student_id']] data['timestep'] = timesteps data['module_type'] = [datatools.AssessmentInteraction.MODULETYPE] * len(data) return datatools.InteractionHistory(data, sort_by_timestep=True) unfiltered_history = interaction_history_from_mturk_data_set(df) data = [] with open(os.path.join('data', 'dutch_big.dump'), 'rb') as f: for line in f: data.append((line.split('\t')[0], json.loads(line.split('\t')[1]))) original_of_module_id = {} for _, h in data: for x in h: original_of_module_id[x['foreign']] = x['original'] with open(os.path.join('data', 'original_of_module_id.pkl'), 'wb') as f: pickle.dump(original_of_module_id, f, pickle.HIGHEST_PROTOCOL) ixns = [] timestamp_of_student = defaultdict(int) for student_id, h in data: for ixn in h: timestamp_of_student[student_id] += 1 ixns.append( {'student_id' : student_id, 'module_id' : ixn['foreign'], 'outcome' : ixn['score'] > 2, 'timestamp' : timestamp_of_student[student_id]}) df = pd.DataFrame(ixns) df['user_id'] = df['student_id'] df['student_id'] = df['user_id'] + '-' + df['module_id'] len(df) df.sort('timestamp', inplace=True) def interaction_history_from_dutch_big_data_set(data): Parse MTurk data set into an interaction history :param pd.DataFrame data: A dataframe of raw log data :rtype: datatools.InteractionHistory :return: An interaction history object data = data[['user_id', 'student_id', 'module_id', 'outcome', 'timestamp']] data.columns = ['user_id', 'student_id', 'module_id', 'outcome', 'timestamp'] student_timesteps = defaultdict(int) timesteps = [None] * len(data) for i, (_, ixn) in enumerate(data.iterrows()): student_timesteps[ixn['student_id']] += 1 timesteps[i] = student_timesteps[ixn['student_id']] data['timestep'] = timesteps data['module_type'] = [datatools.AssessmentInteraction.MODULETYPE] * len(data) return datatools.InteractionHistory(data, sort_by_timestep=True) unfiltered_history = interaction_history_from_dutch_big_data_set(df) def filter_history(history, min_num_ixns=5, max_num_ixns=sys.maxint): Filter history for students with histories of bounded length, and modules with enough interactions :param datatools.InteractionHistory history: An interaction history :param int min_num_ixns: Minimum number of timesteps in student history, and minimum number of interactions for module :param int max_num_ixns: Maximum number of timesteps in student history :rtype: datatools.InteractionHistory :return: A filtered interaction history students = set(history.data['student_id'][( history.data['timestep'] > min_num_ixns) & ( history.data['module_type']==datatools.AssessmentInteraction.MODULETYPE)]) students -= set(history.data['student_id'][history.data['timestep'] >= max_num_ixns]) modules = {module_id for module_id, group in history.data.groupby('module_id') if len(group) > min_num_ixns} return datatools.InteractionHistory( history.data[(history.data['student_id'].isin(students)) & ( history.data['module_id'].isin(modules))], reindex_timesteps=True, size_of_test_set=0.2) # apply the filter a couple of times, since removing student histories # may cause certain modules to drop below the min_num_ixns threshold, # and removing modules may cause student histories to drop below # the min_num_ixns threshold REPEATED_FILTER = 3 # number of times to repeat filtering history = reduce( lambda acc, _: filter_history(acc, min_num_ixns=2, max_num_ixns=10000), range(REPEATED_FILTER), unfiltered_history) history.data.sort('timestamp', inplace=True) deck_of_student_item = {} tlast_of_student_item = {} nreps_of_student_item = {} deck = [] tlast = [] nreps = [] for _, ixn in history.data.iterrows(): student_item = (ixn['user_id'], ixn['module_id']) d = deck_of_student_item.get(student_item, 1) deck.append(d) if ixn['outcome']: deck_of_student_item[student_item] = d + 1 else: deck_of_student_item[student_item] = max(1, d-1) n = nreps_of_student_item.get(student_item, 1) nreps.append(n) nreps_of_student_item[student_item] = n + 1 tlast.append(tlast_of_student_item.get(student_item, np.nan)) tlast_of_student_item[student_item] = ixn['timestamp'] history.data['deck'] = deck history.data['nreps'] = nreps history.data['tlast'] = tlast # path to pickled interaction history file history_path = os.path.join('data', 'mnemosyne_history_v2.pkl') # serialize history with open(history_path, 'wb') as f: pickle.dump(history, f, pickle.HIGHEST_PROTOCOL) # load history from file with open(history_path, 'rb') as f: history = pickle.load(f) df = history.data print "Number of interactions = %d" % len(df) print "Number of unique students: %d" % len(df['user_id'].unique()) print "Number of unique assessments: %d" % history.num_assessments() value_counts = df['outcome'].value_counts() num_passes = value_counts.get(True, 0) num_fails = value_counts.get(False, 0) print "Overall pass rate: %f" % (num_passes / (num_passes + num_fails)) df.sort('timestamp', inplace=True) v = [] for _, g in df.groupby(['user_id', 'module_id']): ts = g['timestamp'].values v.extend([nt-t for t, nt in zip(ts[:-1], ts[1:])]) v = np.array(v) plt.xlabel('Time between reviews (log10-seconds)') plt.ylabel('Frequency (number of reviews)') plt.hist(np.log10(v+1), bins=20) #plt.savefig(os.path.join('figures', 'mnemosyne', 'time-between-reviews.pdf')) plt.show() grouped = df.groupby(['user_id', 'module_id']) pairs = [x for x, g in grouped if len(g) > 20] len(pairs) g = grouped.get_group(random.choice(pairs)) ts = g['timestamp'].values intervals = [y-x for x, y in zip(ts[:-1], ts[1:])] plt.xlabel('Number of reviews') plt.ylabel('Time until next review (seconds)') plt.title('Review intervals for a single user-item pair') outcomes = g['outcome'].values outcomes = outcomes[:-1] plt.bar(range(len(outcomes)), [max(intervals)] * len(outcomes), width=1, color=['green' if x else 'red' for x in outcomes], alpha=0.25, linewidth=0.) plt.step(range(len(intervals)+1), intervals+[intervals[-1]], where='post') plt.yscale('log') plt.xlim([0, len(intervals)]) plt.ylim([0, max(intervals)]) #plt.savefig(os.path.join('figures', 'mnemosyne', 'review-history-example.pdf')) plt.show() counts = df['user_id'].value_counts().values plt.xlabel('Number of interactions per student') plt.ylabel('Frequency (number of students)') plt.hist(counts) plt.yscale('log') #plt.savefig(os.path.join('figures', 'mnemosyne', 'num_ixns_per_student.pdf')) plt.show() counts = df['module_id'][df['module_type'] == datatools.AssessmentInteraction.MODULETYPE].value_counts().values plt.xlabel('Number of interactions per item') plt.ylabel('Frequency (number of items)') plt.hist(counts) plt.yscale('log') #plt.savefig(os.path.join('figures', 'mnemosyne', 'num_ixns_per_item.pdf')) plt.show() counts = df.groupby(['user_id', 'module_id']).size().values plt.xlabel('Number of interactions per student per item') plt.ylabel('Frequency (number of student-item pairs)') plt.hist(counts) plt.yscale('log') #plt.savefig(os.path.join('figures', 'mnemosyne', 'num_ixns_per_student_per_item.pdf')) plt.show() num_students_per_module = [len(group['user_id'].unique()) for _, group in df.groupby('module_id')] plt.xlabel('Number of students per item') plt.ylabel('Frequency (number of items)') plt.hist(num_students_per_module) plt.yscale('log') #plt.savefig(os.path.join('figures', 'mnemosyne', 'num-students-per-item.pdf')) plt.show() def get_pass_rates(grouped): Get pass rate for each group :param pd.GroupBy grouped: A grouped dataframe :rtype: dict[str, float] :return: A dictionary mapping group name to pass rate pass_rates = {} for name, group in grouped: vc = group['outcome'].value_counts() if True not in vc: pass_rates[name] = 0 else: pass_rates[name] = vc[True] / len(group) return pass_rates grouped = df[df['module_type']==datatools.AssessmentInteraction.MODULETYPE].groupby('user_id') plt.xlabel('Student pass rate') plt.ylabel('Frequency (number of students)') plt.hist(get_pass_rates(grouped).values()) plt.yscale('log') #plt.savefig(os.path.join('figures', 'mnemosyne', 'student-pass-rates.pdf')) plt.show() grouped = df[df['module_type']==datatools.AssessmentInteraction.MODULETYPE].groupby('module_id') plt.xlabel('Assessment pass rate') plt.ylabel('Frequency (number of assessments)') plt.hist(get_pass_rates(grouped).values()) plt.yscale('log') #plt.savefig(os.path.join('figures', 'mnemosyne', 'assessment-pass-rates.pdf')) plt.show() def make_flow_graph(interaction_logs): Create a graphviz object for the graph of module transitions across all student paths :param pd.DataFrame interaction_logs: An interaction history :rtype pgv.AGraph :return Graph of module transitions in student paths G = pgv.AGraph(directed=True) for module_id in interaction_logs['module_id'].unique(): G.add_node(module_id) E = defaultdict(set) grouped = interaction_logs.groupby('user_id') for student_id, group in grouped: module_ids_in_student_path = group['module_id'] for source_node, target_node in zip(module_ids_in_student_path[:-1], module_ids_in_student_path[1:]): if source_node != target_node: # stationary E[(source_node, target_node)] |= {student_id} for (source_node, target_node), students_that_made_transition in E.iteritems(): G.add_edge( source_node, target_node, weight=len(students_that_made_transition)) return G G = make_flow_graph(df) G.write(os.path.join('figures', 'mnemosyne', 'mnemosyne_flow_graph.dot')) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Bayesian optimization or sequential model-based optimization uses a surrogate model Step2: This shows the value of the two-dimensional branin function and the three minima. Step3: Note that this can take a few minutes.
<ASSISTANT_TASK:> Python Code: import numpy as np np.random.seed(123) %matplotlib inline import matplotlib.pyplot as plt plt.set_cmap("viridis") from skopt.benchmarks import branin as _branin def branin(x, noise_level=0.): return _branin(x) + noise_level * np.random.randn() from matplotlib.colors import LogNorm def plot_branin(): fig, ax = plt.subplots() x1_values = np.linspace(-5, 10, 100) x2_values = np.linspace(0, 15, 100) x_ax, y_ax = np.meshgrid(x1_values, x2_values) vals = np.c_[x_ax.ravel(), y_ax.ravel()] fx = np.reshape([branin(val) for val in vals], (100, 100)) cm = ax.pcolormesh(x_ax, y_ax, fx, norm=LogNorm(vmin=fx.min(), vmax=fx.max())) minima = np.array([[-np.pi, 12.275], [+np.pi, 2.275], [9.42478, 2.475]]) ax.plot(minima[:, 0], minima[:, 1], "r.", markersize=14, lw=0, label="Minima") cb = fig.colorbar(cm) cb.set_label("f(x)") ax.legend(loc="best", numpoints=1) ax.set_xlabel("X1") ax.set_xlim([-5, 10]) ax.set_ylabel("X2") ax.set_ylim([0, 15]) plot_branin() from functools import partial from skopt import gp_minimize, forest_minimize, dummy_minimize func = partial(branin, noise_level=2.0) bounds = [(-5.0, 10.0), (0.0, 15.0)] n_calls = 80 def run(minimizer, n_iter=20): return [minimizer(func, bounds, n_calls=n_calls, random_state=n) for n in range(n_iter)] # Random search dummy_res = run(dummy_minimize) # Gaussian processes gp_res = run(gp_minimize) # Random forest rf_res = run(partial(forest_minimize, base_estimator="RF")) # Extra trees et_res = run(partial(forest_minimize, base_estimator="ET")) from skopt.plots import plot_convergence plot = plot_convergence(("dummy_minimize", dummy_res), ("gp_minimize", gp_res), ("forest_minimize('rf')", rf_res), ("forest_minimize('et)", et_res), true_minimum=0.397887, yscale="log") plot.legend(loc="best", prop={'size': 6}, numpoints=1); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set model run-time parameters Step2: Investigate a couple of model variables Step3: Run for a number of timesteps
<ASSISTANT_TASK:> Python Code: # First import the model. Here we use the HBV version %pylab inline from wflow.wflow_hbv import * import IPython from IPython.display import display, clear_output #clear_output = IPython.core.display.clear_output # define start and stop time of the run startTime = 1 stopTime = 200 currentTime = 1 # set runid, cl;onemap and casename. Also define the ini file runId = "memtest" #configfile="wflow_hbv_mem.ini" configfile="wflow_hbv.ini" wflow_cloneMap = 'wflow_subcatch.map' # the casename points to the complete model setup with both static and dynamic input caseName="../examples/wflow_rhine_hbv" #make a usermodel object myModel = WflowModel(wflow_cloneMap, caseName,runId,configfile) # initialise the framework dynModelFw = wf_DynamicFramework(myModel, stopTime,startTime) dynModelFw.createRunId(NoOverWrite=False,level=logging.ERROR) dynModelFw.setQuiet(1) # Run the initial part of the model (reads parameters and sets initial values) dynModelFw._runInitial() # Runs initial part dynModelFw._runResume() # gets the state variables from disk # Get list of variables supplied by the model print dynModelFw.wf_supplyVariableNamesAndRoles() # sm = dynModelFw.wf_supplyMapAsNumpy("SoilMoisture") sm[sm == -999] = np.nan uz = dynModelFw.wf_supplyMapAsNumpy("UpperZoneStorage") uz[uz == -999] = np.nan lz = dynModelFw.wf_supplyMapAsNumpy("LowerZoneStorage") lz[lz == -999] = np.nan imshow(sm) title("Soilmoisture") colorbar() imshow(uz) title("UpperZoneStorage") colorbar() imshow(lz) title("LowerZoneStorage") colorbar() dynModelFw.wf_setValueLdd("TopoLdd",5.0,6.46823,51.6821) npmap0 = dynModelFw.wf_supplyMapAsNumpy("TopoLdd") ltt = dynModelFw.wf_supplyMapAsList("SurfaceRunoff") f, ax = plt.subplots(1,3,figsize=(16, 6)) plotar = [] for ts in range(20,80): # Get value at pit inflowQ = dynModelFw.wf_supplyScalar("SurfaceRunoff",6.46823,51.6821) plotar.append(inflowQ) dynModelFw.wf_setValues("PET",scalar(2.0)) dynModelFw._runDynamic(ts,ts) # runs for all timesteps npmap1 = dynModelFw.wf_supplyMapAsNumpy("P") run = dynModelFw.wf_supplyMapAsNumpy("SurfaceRunoff") uz = dynModelFw.wf_supplyMapAsNumpy("UpperZoneStorage") sm = dynModelFw.wf_supplyMapAsNumpy("SoilMoisture") sm[sm == -999] = np.nan #dynModelFw.wf_setValues("UpperZoneStorage",uz * 10.1) uz[uz == -999] = np.nan run[run == -999] = np.nan ax[0].imshow(uz) ax[1].imshow(sm) #ax[2].imshow(log(run)) ax[2].plot(plotar,'b') ax[2].set_title(str(ts)) clear_output() display(f) plt.close() dynModelFw._runSuspend() # saves the state variables dynModelFw._wf_shutdown() run = dynModelFw.wf_supplyMapAsNumpy("SurfaceRunoff") run[run == -999] = np.nan imshow(log(run)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Steppermotor ST4118S0206-A settings Step2: Max Frequency calulation Step3: Max Speed calculations Step4: Max Acceleration calculations Step5: Speed intended calculations Step6: Max Step Frequency
<ASSISTANT_TASK:> Python Code: # Function to calculate the Bits needed fo a given number def unsigned_num_bits(num): _nbits = 1 _n = num while(_n > 1): _nbits = _nbits + 1 _n = _n / 2 return _nbits rev_distance = 0.5 # mm step_angle = 1.8 # ° # Calculation one Step step_distance = rev_distance/360*step_angle print("Step Distance = {} mm".format(step_distance)) print("Step Distance = {} um".format(step_distance*1000)) # Calculation max and min register position RegBitNb = 32 regval_max = 2**(RegBitNb-1)-1 regval_min = -2**(RegBitNb-1) step_distance_max = regval_max*step_distance step_distance_min = regval_min*step_distance print("Register Position Values = {} ... {}".format(regval_max, regval_min)) print("Position Register distances = {} m ... {} m".format(step_distance_max/1000, step_distance_min/1000)) speed_max = 60# rev/min step_angle = 1.8 # ° steps_per_rev = 360/step_angle speed_max_sec = speed_max/60 # rev/sec f_max = speed_max_sec * steps_per_rev print("Max Frequency of Steppermotor is {} Hz".format(f_max)) speed_resolution = 2**8 # different speed values clk_freq = 100e6 # Hz speed_max = 120*1/60 # rev/min * min/s = rev/s steps_per_rev = 200 # steps per revolution g_max_speed = ((speed_resolution-1)*clk_freq)/(speed_max*steps_per_rev) print("g_MAX_SPEED = {} needs {} Bits".format(int(g_max_speed), unsigned_num_bits(int(g_max_speed)))) speed_resolution = 2**8 # different speed values clk_freq = 100e6 # Hz speed_max = 60*1/60 # rev/min * min/s = rev/s max_acceleration_time = 2.0 # seconds from 0 to max speed max_acceleration_rev = speed_max/max_acceleration_time # rev/s^2 max_decceleration_time = 1.0 # seconds from max to 0 speed max_decceleration_rev = speed_max/max_decceleration_time # rev/s^2 g_max_acceleration = (speed_max*clk_freq)/((speed_resolution-1)*max_acceleration_rev) g_max_decceleration = (speed_max*clk_freq)/((speed_resolution-1)*max_decceleration_rev) print("g_MAX_ACCELERATION = {} needs {} Bits".format(int(g_max_acceleration),unsigned_num_bits(int(g_max_acceleration)))) print("g_MAX_DECCELERATION = {} needs {} Bits".format(int(g_max_decceleration),unsigned_num_bits(int(g_max_decceleration)))) import math speed_resolution = 2**8 # different speed values speed_max = 120*1/60 # rev/min * min/s = rev/s max_acceleration_time = 2.0 # seconds from 0 to max speed max_acceleration_rev = speed_max/max_acceleration_time # rev/s^2 def calc_speed_intended(max_acceleration_rev, position_difference): # return round(math.sqrt(2*64*max_acceleration_rev*position_difference)) return round(41*math.log(max_acceleration_rev*position_difference+1)) for position_difference in [0,1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536]: speed_intended = calc_speed_intended(max_acceleration_rev, position_difference) if speed_intended > speed_resolution-1: speed_intended = speed_resolution-1 print("speed_intended: {:3} @ position_difference: {:5}".format(int(speed_intended),position_difference)) # Draw Plot import numpy as np import pylab as pl pl.clf() nbrOfPoints = 600 position_difference = np.linspace(0,nbrOfPoints,nbrOfPoints) speed_intended = np.empty(shape=[len(position_difference)], dtype=np.float64) for i in range(len(position_difference)): speed_intended[i] = calc_speed_intended(max_acceleration_rev, position_difference[i]) if speed_intended[i] > speed_resolution-1: speed_intended[i] = speed_resolution-1 # Plot graph pl.plot(position_difference,speed_intended, label="Acceleration") speed_intended = np.empty(shape=[len(position_difference)], dtype=np.float64) for i in range(len(position_difference)): speed_intended[i] = 255-calc_speed_intended(max_acceleration_rev, position_difference[i]) if speed_intended[i] <= 0: speed_intended[i] = 0 # Plot graph pl.plot(position_difference,speed_intended, label="Decceleration") # Place legend, Axis and Title pl.legend(loc='best') pl.xlabel("PositionDifference [Steps]") pl.ylabel("Speed [0-255]") pl.title("Acceleration & Deccleration") f_clk = 100e6 # Hz f_step_max = 100e3 # Hz g_step_freq = f_clk/f_step_max print("Number of steps for max step frequency: {} needs {} Bits".format(int(g_step_freq), unsigned_num_bits(g_step_freq))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Initialize Oorb Step2: Read in some orbits. Step3: Generate ephemerides Step4: Transform orbital elements Step5: There can be larger differences in the tPeri, as this is degenerate (previous or next orbit?).
<ASSISTANT_TASK:> Python Code: import os import numpy as np import pyoorb as oo # Initialize oorb oo.pyoorb.oorb_init() timeScales = {'UTC': 1, 'UT1': 2, 'TT': 3, 'TAI': 4} elemType = {'CART': 1, 'COM': 2, 'KEP': 3, 'DEL': 4, 'EQX': 5} # Set up some orbits # orb is id, 6 elements, epoch_mjd, H, G, element type index # keplerian appears to be element type index 3 # orbits = numpy.array([0.,1.,2.,3.,4.,5.,6.,5373.,1.,1.,3.]) o = np.loadtxt('test.des', dtype=([('objid', np.str_, 20), ('format', np.str_, 3), ('q', float), ('e', float), ('inc', float), ('Omega', float), ('argperi', float), ('tperi', float), ('H', float), ('epoch', float), ('index', int), ('npar', int), ('moid', float), ('compcode', np.str_, 10)]), skiprows=1) orbits = np.zeros([len(o), 12], dtype=np.double, order='F') orbits[:, 0] = np.arange(0, len(o), 1, dtype=float) orbits[:, 1] = o['q'] orbits[:, 2] = o['e'] orbits[:, 3] = o['inc'] orbits[:, 4] = o['Omega'] orbits[:, 5] = o['argperi'] orbits[:, 6] = o['tperi'] orbits[:, 7] = np.zeros(len(o), float) + elemType['COM'] orbits[:, 8] = o['epoch'] orbits[:, 9] = np.zeros(len(o), float) + timeScales['TT'] orbits[:, 10] = o['H'] orbits[:, 11] = np.zeros(len(o)) + 0.15 for i in range(3, 6): orbits[:, i] = np.radians(orbits[:, i]) orbits offset = 30. times = [orbits[0][8], orbits[0][8] + offset] timescale = [timeScales['UTC']] * len(times) ephem_dates = np.array(list(zip(times, timescale)), dtype=np.double, order='F') ephs, err = oo.pyoorb.oorb_ephemeris_full(in_orbits=orbits, in_obscode='I11', in_date_ephems=ephem_dates, in_dynmodel='N') if err != 0: print(err) i = 0 start = ephs[i][0] end = ephs[i][1] print("@ %f" % (ephem_dates[0][0]), start) print("@ %f" % (ephem_dates[1][0]), end) type2 = 'CART' print("Transforming from COM to %s" % (type2)) newElems, err = oo.pyoorb.oorb_element_transformation(in_orbits=orbits, in_element_type=elemType[type2]) if err != 0: print("error", err) print("Input and output orbital elements (COM / CART)") print("in ", orbits[i]) print("out", newElems[i]) print("Transforming back from %s to COM" % (type2)) newElems2, err = oo.pyoorb.oorb_element_transformation(in_orbits=newElems, in_element_type=elemType['COM']) if err != 0: print("error", err) print("Input and output orbital elements (CART / COM)") print("in ", newElems[i]) print("out", newElems2[i]) print('Differences in the initial/final COM orb elements') diffs = newElems2 - orbits print(diffs) print(newElems2[1,3]) print(orbits[1,3]) print(diffs[1,3]) print("Propagating orbits by %d days" % (offset)) epoch_orig = orbits[i][8] epoch_new = epoch_orig + offset newEpoch = np.array([epoch_new, timeScales['TT']], dtype='double', order='F') # Note that currently you have to use CART format elements. elems = newElems newOorbElems, err = oo.pyoorb.oorb_propagation(in_orbits=elems, in_epoch=newEpoch, in_dynmodel='N') if err != 0: print("error", err) print("Input and output orbital elements (0 and %d days)" % (offset)) print("in ", orbits[i]) print("out", newOorbElems[i]) print("Transforming new orbital elements to COM") newElems3, err = oo.pyoorb.oorb_element_transformation(in_orbits=newOorbElems, in_element_type=elemType['COM']) if err != 0: print("error", err) print("Input and output orbital elements (CART/COM)") print("in ", orbits[i]) print("out", newElems3[i]) print('epoch', epoch_new, newElems3[i][8]) # Generate ephemerides with these new elements, to compare. ephs2, err = oo.pyoorb.oorb_ephemeris_full(in_orbits=newElems3, in_obscode='I11', in_date_ephems=ephem_dates, in_dynmodel='N') for i in range(len(newElems3)): print('Object %d' % i) print(' Orbit: ', orbits[i] ) diffs = ephs[i] - ephs2[i] #print("Difference in ephemerides from ephemeris generation vs propagation + ephemeris generation") #print(diffs) print("Just difference in mas in RA and then Dec") deltaRA = diffs[:,1] * 3600. * 1000. deltaDec = diffs[:,2] * 3600. * 1000. print(' ', deltaRA, deltaDec) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. Using Bio.Entrez to list available databases Step2: The variable record contains a list of the available databases at NCBI, which you can see by executing the cell below Step3: You may recognise some of the database names, such as pubmed, nuccore, assembly, sra, and taxonomy. Step4: The returned information can be viewed by running the cell below. Step5: For now, we are interested in the list of database identifiers, in record['IdList']. We will use these to get information from the assembly database. Step6: Linking across databases Step8: The links variable may contain links to more than one version of the genome (NCBI keep third-party managed genome data in GenBank/INSDC records, and NCBI-'owned' data in RefSeq records). Step9: You will use the extract_insdc() function to get the accession IDs for the sequences in this Ralstonia solanacearum genome, in the cell below. Step10: Fetching sequence records from NCBI Step11: By running the cell below, you can see that each sequence in the Ralstonia solanacearum assembly has been downloaded into a SeqRecord, and that it contains useful metadata, describing the sequence assembly and properties of the annotation. Step12: Writing sequence data with Biopython Step13: If you inspect the newly-created ralstonia.gbk file, you should see that it contains complete GenBank records, describing this genome.
<ASSISTANT_TASK:> Python Code: # This line imports the Bio.Entrez module, and makes it available # as 'Entrez'. from Bio import Entrez # The line below imports the Bio.SeqIO module, which allows reading # and writing of common bioinformatics sequence formats. from Bio import SeqIO # This line sets the variable 'Entrez.email' to the specified # email address. You should substitute your own address for the # example address provided below. Please do not provide a # fake name. Entrez.email = "[email protected]" # This line sets the name of the tool that is making the queries Entrez.tool = "01-genome_data.ipynb" # The line below uses the Entrez.einfo() function to # ask NCBI what databases are available. The result is # 'stored' in a variable called 'handle' handle = Entrez.einfo() # In the line below, the response from NCBI is read # into a record, that organises NCBI's response into # something you can work with. record = Entrez.read(handle) print(record["DbList"]) # The line below carries out a search of the `assembly` database at NCBI, # using the phrase `Ralstonia solanacearum` as the search query, # and asks NCBI to return up to the first 100 results handle = Entrez.esearch(db="assembly", term="Ralstonia solanacearum", retmax=100) # This line converts the returned information from NCBI into a form we # can use, as before. record = Entrez.read(handle) # This line prints the downloaded information from NCBI, so # we can read it. print(record) # The line below takes the first value in the list of # database accessions record["IdList"], and places it in # the variable 'accession' accession = record["IdList"][0] # Show the contents of the variable 'accession' print(accession) # The line below requests the identifiers (UIDs) for all # records in the `nucleotide` database that correspond to the # assembly UID that is stored in the variable 'accession' handle = Entrez.elink(dbfrom="assembly", db="nucleotide", from_uid=accession) # We place the downloaded information in the variable 'links' links = Entrez.read(handle) # The code below provides a function that extracts nucleotide # database accessions for INSDC data from the result of an # Entrez.elink() query. def extract_insdc(links): Returns the link UIDs for RefSeq entries, from the passed Elink search results # Work only with INSDC accession UIDs linkset = [ls for ls in links[0]['LinkSetDb'] if ls['LinkName'] == 'assembly_nuccore_insdc'] if 0 == len(linkset): # There are no INSDC UIDs raise ValueError("Elink() output has no assembly_nuccore_insdc data") # Make a list of the INSDC UIDs uids = [i['Id'] for i in linkset[0]['Link']] return uids # The line below uses the extract_insdc() function to get INSDC/GenBank # accession UIDs for the components of the genome/assembly referred to # in the 'links' variable. These will be stored in the variable # 'nuc_uids' nuc_uids = extract_insdc(links) # Show the contents of 'nuc_uids' print(nuc_uids) # The lines below retrieve (fetch) the GenBank records for # each database entry specified in `nuc_uids`, in plain text # format. These are parsed with Biopython's SeqIO module into # SeqRecords, which structure the data into a usable format. # The SeqRecords are placed in the variable 'records'. records = [] for nuc_uid in nuc_uids: handle = Entrez.efetch(db="nucleotide", rettype="gbwithparts", retmode="text", id=nuc_uid) records.append(SeqIO.read(handle, 'genbank')) # Show the contents of each downloaded `SeqRecord`. for record in records: print(record, "\n") # The line below writes the sequence data in 'seqdata' to # the local file "data/ralstonia.gbk", in GenBank format. # The function returns the number of sequences that were written to file SeqIO.write(records, "data/ralstonia.gbk", "genbank") # The line below writes the sequence data in 'seqdata' to # the local file "data/ralstonia.fasta", in FASTA format. SeqIO.write(records, "data/ralstonia.fasta", "fasta") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <a id='svr_poly'></a> Step2: <a id='svr_rbf'></a> Step3: <a id='svr_sigmoid'></a> Step4: SVR defaults<a id='svr_defaults'></a> Step5: SVR generator<a id='svr_gen'></a>
<ASSISTANT_TASK:> Python Code: def svr_linear_config(): return { 'kernel': ('linear',), 'tol': (0.001,), # TODO add relevant range 'C': (1.0,), # ditto 'epsilon': (0.1,), # ditto 'shrinking': (True, False), 'max_iter': (-1,), # TODO add relevant range } def svr_poly_config(): return { 'kernel': ('poly',), 'degree': (3,), # TODO add relevant range 'gamma': ('auto',), # ditto 'coef0': (0.0,), # ditto 'tol': (0.001,), # ditto 'C': (1.0,), 'epsilon': (0.1,), 'shrinking': (True, False), 'max_iter': (-1,), # TODO add relevant range } def svr_rbf_config(): return { 'kernel': ('rbf',), 'gamma': ('auto',), # TODO add relevant range 'tol': (0.001,), # ditto 'C': (1.0,), 'epsilon': (0.1,), 'shrinking': (True, False), 'max_iter': (-1,), # TODO add relevant range } def svr_sigmoid_config(): return { 'kernel': ('sigmoid',), 'gamma': ('auto',), # TODO add relevant range 'coef0': (0.0,), # ditto 'tol': (0.001,), # ditto 'C': (1.0,), 'epsilon': (0.1,), 'shrinking': (True, False), 'max_iter': (-1,), # TODO add relevant range } import modules.utils as utils svr_defaults = [('kernel', 'S10', 'rbf'), ('degree', 'i4', 3), ('gamma', 'S5', 'auto'), # TODO auto or float ('coef0', 'f4', 0.0), ('tol', 'f4', 0.001), ('C', 'f4', 1.0), ('epsilon', 'f4', 0.1), ('shrinking', '?', True), ('cache_size', 'f4', 200), ('verbose', '?', False), ('max_iter', 'i4', -1)] svr_configs = (svr_linear_config(), svr_poly_config(), svr_rbf_config(), svr_sigmoid_config()) import modules.utils as utils import modules.values as values utils.generate_parameters(values.parameters_path + 'svr', svr_configs, svr_defaults) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. Simple Math in the Jupyter Notebook Step2: uncomment this to download the data Step3: Loading Data with Pandas Step4: Now we can use the read_csv command to read the comma-separated-value data Step5: The shape attribute shows us the number of elements Step6: The columns attribute gives us the column names Step7: 4. Manipulating data with pandas Step8: Mathematical operations on columns happen element-wise Step9: Columns can be created (or overwritten) with the assignment operator. Step10: The simplest version of a groupby looks like this, and you can use almost any aggregation function you wish (mean, median, sum, minimum, maximum, standard deviation, count, etc.) Step11: Now we can simply call the plot() method of any series or dataframe to get a reasonable view of the data Step12: Adjusting the Plot Style
<ASSISTANT_TASK:> Python Code: a = 1 a_list = [1, 'a', [1,2]] a_list.append(2) a_list dir(a_list) a_list.count(1) a = 2 !ls #!curl -o pronto.csv https://data.seattle.gov/api/views/tw7j-dfaw/rows.csv?accessType=DOWNLOAD import pandas as pd df = pd.read_csv('pronto.csv') df.head() df.columns df.shape df.dtypes df_small = df[ 'stoptime'] type(df_small) trip_duration_hours = df['tripduration']/3600 trip_duration_hours[:3] df['trip_duration_hours'] = df['tripduration']/3600 del df['trip_duration_hours'] df.head() df.loc[[0,1],:] df_long_trips = df[df['tripduration'] >10000] sel = df['tripduration'] >10000 df_long_trips = df[sel] len(df) # Make a copy of a slice df_subset = df[['starttime', 'stoptime']].copy() df_subset['trip_hours'] = df['tripduration']/3600 df.head() df_count = df.groupby(['from_station_id']).count() df_count.head() df_count1 = df_count[['trip_id']] df_count2 = df_count1.rename(columns={'trip_id': 'count'}) df_count2['new'] = 1 df_count2.head() df_mean = df.groupby(['from_station_id']).mean() df_mean.head() dfgroup = df.groupby(['from_station_id']) dfgroup.groups %matplotlib inline import matplotlib.pyplot as plt df['tripduration'].hist() # A script for creating a dataframe with counts of the occurrence of a columns' values df_count = df.groupby('from_station_id').count() df_count1 = df_count[['trip_id']] df_count2 = df_count1.rename(columns={'trip_id': 'count'}) df_count2.head() def make_table_count(df_arg, groupby_column): df_count = df_arg.groupby(groupby_column).count() column_name = df.columns[0] df_count1 = df_count[[column_name]] df_count2 = df_count1.rename(columns={column_name: 'count'}) return df_count2 dff = make_table_count(df, 'from_station_id') dff.head() import table_modifiers as tm dir(tm) tm.table_counter(df, 'from_station_id') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Lorenz system Step4: Write a function solve_lorenz that solves the Lorenz system above for a particular initial condition $[x(0),y(0),z(0)]$. Your function should return a tuple of the solution array and time array. Step6: Write a function plot_lorentz that Step7: Use interact to explore your plot_lorenz function with
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np from scipy.integrate import odeint from IPython.html.widgets import interact, fixed def lorentz_derivs(yvec, t, sigma, rho, beta): Compute the the derivatives for the Lorentz system at yvec(t). x = yvec[0] y = yvec[1] z = yvec[2] dx = sigma*(y-x) dy = x*(rho-z)-y dz = x*y - beta*z return np.array([dx,dy,dz]) assert np.allclose(lorentz_derivs((1,1,1),0, 1.0, 1.0, 2.0),[0.0,-1.0,-1.0]) def solve_lorentz(ic, max_time=4.0, sigma=10.0, rho=28.0, beta=8.0/3.0): Solve the Lorenz system for a single initial condition. Parameters ---------- ic : array, list, tuple Initial conditions [x,y,z]. max_time: float The max time to use. Integrate with 250 points per time unit. sigma, rho, beta: float Parameters of the differential equation. Returns ------- soln : np.ndarray The array of the solution. Each row will be the solution vector at that time. t : np.ndarray The array of time points used. t = np.linspace(0,max_time,int(max_time*250)) soln = odeint(lorentz_derivs,ic,t,args=(sigma,rho,beta)) return soln,t assert True # leave this to grade solve_lorenz N = 5 colors = plt.cm.hot(np.linspace(0,1,N)) for i in range(N): # To use these colors with plt.plot, pass them as the color argument print(colors[i]) def plot_lorentz(N=10, max_time=4.0, sigma=10.0, rho=28.0, beta=8.0/3.0): Plot [x(t),z(t)] for the Lorenz system. Parameters ---------- N : int Number of initial conditions and trajectories to plot. max_time: float Maximum time to use. sigma, rho, beta: float Parameters of the differential equation. np.random.seed(1) ic = np.random.rand(N,3)*30-15 plt.figure(figsize=(10,7)) for n in ic: plt.plot(solve_lorentz(n,max_time,sigma,rho,beta)[0][:,0],solve_lorentz(n,max_time,sigma,rho,beta)[0][:,2]) plt.xlabel('x(t)') plt.ylabel('z(t)') plt.title('x(t) vs. z(t)') plt.tick_params(top=False,right=False) plt.ylim(-20,65) plt.xlim(-30,30) plot_lorentz() assert True # leave this to grade the plot_lorenz function interact(plot_lorentz,N=(1,50),max_time=(1,10),sigma=(0.0,50.0),rho=(0.0,50.0),beta=fixed(8.0/3.0)); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Correlation analysis Step2: P-value非常小,而ks statistic数值较大,认为FRI/FRII有一定的可分性。即原假设FRI/FRII的射电光学和光度服从统一分布是错误的。
<ASSISTANT_TASK:> Python Code: lumo_fr1_typical = lumo[idx2_same] * 10**-22 lumo_fr2_typical = lumo[idx3_same] * 10**-22 mag_fr1_typical = mag_abs[idx2_same] mag_fr2_typical = mag_abs[idx3_same] lumo_fr1_like = lumo[idx_fr1] * 10**-22 lumo_fr2_like = lumo[idx_fr2] * 10**-22 mag_fr1_like = mag_abs[idx_fr1] mag_fr2_like = mag_abs[idx_fr2] mag_fr1 = np.hstack([mag_abs[idx_fr1], mag_abs[idx2_same]]) mag_fr2 = np.hstack([mag_abs[idx_fr2], mag_abs[idx3_same]]) lumo_fr1 = np.hstack([lumo[idx_fr1], lumo[idx2_same]]) * 10 ** -22 lumo_fr2 = np.hstack([lumo[idx_fr2], lumo[idx3_same]]) * 10 ** -22 import scipy.stats.stats as stats from sklearn.feature_selection import chi2 # ks test # https://docs.scipy.org/doc/scipy-0.7.x/reference/generated/scipy.stats.ks_2samp.html#scipy.stats.ks_2sam lumo_ks_D_t,lumo_ks_p_t = stats.ks_2samp(lumo_fr1_typical,lumo_fr2_typical) print("KS statistic of lumo: typical %.5f" % lumo_ks_D_t) print("P-value of lumo: typical %.5e" % lumo_ks_p_t) mag_ks_D_t,mag_ks_p_t = stats.ks_2samp(mag_fr1_typical,mag_fr2_typical) print("KS statistic of Mr: typical %.5f" % mag_ks_D_t) print("P-value of Mr: typical %.5e" % mag_ks_p_t) # FR like lumo_ks_D_l,lumo_ks_p_l = stats.ks_2samp(lumo_fr1_like,lumo_fr2_like) print("KS statistic of lumo: like %.5f" % lumo_ks_D_l) print("P-value of lumo: like %.5e" % lumo_ks_p_l) mag_ks_D_l,mag_ks_p_l = stats.ks_2samp(mag_fr1_like,mag_fr2_like) print("KS statistic of Mr: like %.5f" % mag_ks_D_l) print("P-value of Mr: like %.5e" % mag_ks_p_l) # FR lumo_ks_D,lumo_ks_p = stats.ks_2samp(lumo_fr1,lumo_fr2) print("KS statistic of lumo: %.5f" % lumo_ks_D) print("P-value of lumo: %.5e" % lumo_ks_p) mag_ks_D,mag_ks_p = stats.ks_2samp(mag_fr1,mag_fr2) print("KS statistic of Mr: %.5f" % mag_ks_D) print("P-value of Mr: %.5e" % mag_ks_p) x_lumo = np.hstack((lumo_fr1,lumo_fr2)) x_lumo.shape x_lumo = np.log10(np.hstack((lumo_fr1,lumo_fr2))) x_mag = np.hstack((mag_fr1,mag_fr2)) x_lumo_norm = (x_lumo - x_lumo.min()) / (x_lumo.max() - x_lumo.min()) x_mag_norm = (x_mag - x_mag.min()) / (x_mag.max() - x_mag.min()) x = np.vstack([x_lumo_norm,x_mag_norm]) x = x.transpose() y = np.zeros(len(mag_abs)) y[idx2_same] = 1 y[idx_fr1] = 1 y[idx3_same] = 2 y[idx_fr2] = 2 y = y[np.where(y > 0)] scores, pvalues = chi2(x, y) pvalues from scipy.stats import chisquare chisquare(x_lumo_norm, y) np.random.seed(12222222) x = np.random.normal(0,1,size=(20000,)) y = np.random.normal(0,1,size=(20000,)) stats.ks_2samp(x,y) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: train_test split Step2: QDA Step3: LDA Step4: solver Step5: NB Step6: BernoulliNB 쓸수 없음 => 타겟변수뿐만아니라 독립변수도 0또는 1값을 가져야 하기때문 Step7: Decision Tree Step8: Percetron Step9: SVM Step10: model comparing
<ASSISTANT_TASK:> Python Code: df1 = df.ix[:,0:8] df1.tail() # 박사님께서 설명을 위해 뒷부분에 컬럼을 채워놓은 것같아서 who 부터 끝까지 잘랐습니다 from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df1['sex']= le.fit_transform(df1['sex']) df1['embarked'] = le.fit_transform(df1['embarked']) from sklearn.preprocessing import Imputer imp = Imputer(missing_values='NaN', strategy = 'median', axis = 0) df2 = imp.fit_transform(df1) df2 df3 = pd.DataFrame(df2, columns = ['survived', 'pclass','sex','age','sibsp','parch','fare','embarked']) df3.tail() df3.info() y = df3.ix[:,0] x = df3.ix[:,1:] from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.33, random_state= 42 ) from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis qda = QuadraticDiscriminantAnalysis(store_covariances = True).fit(x,y) qda.priors_ 549.0/(549 + 342) qda.means_ qda.covariances_ qda_score_train = qda.score(x_train,y_train) print "Train Score :", qda_score_train print "=" * 40 qda_score_test = qda.score(x_test, y_test) print "Test Score :", qda_score_test from sklearn.discriminant_analysis import LinearDiscriminantAnalysis LDA = LinearDiscriminantAnalysis(n_components = 2, solver = 'svd', store_covariance = True).fit(x,y) LDA.coef_ LDA.intercept_ LDA.covariance_ LDA.means_ LDA.n_components LDA.explained_variance_ratio_ LDA_score_train = LDA.score(x_train,y_train) print "Train Score :", LDA_score_train print "=" * 40 LDA_score_test = LDA.score(x_test, y_test) print "Test Score :", LDA_score_test from sklearn.naive_bayes import GaussianNB NB = GaussianNB().fit(x,y) NB.classes_ NB.class_count_ NB.class_prior_ NB.theta_ NB_score_train = NB.score(x_train,y_train) print "Train Score :", NB_score_train print "=" * 40 NB_score_test = NB.score(x_test, y_test) print "Test Score :", NB_score_test from sklearn.naive_bayes import MultinomialNB MNB = MultinomialNB().fit(x,y) MNB.classes_ MNB.class_count_ MNB_score_train = MNB.score(x_train,y_train) print "Train Score :", MNB_score_train print "=" * 40 MNB_score_test = MNB.score(x_test, y_test) print "Test Score :", MNB_score_test from sklearn.pipeline import Pipeline from sklearn.metrics import classification_report clf_1 = Pipeline([ ('clf', MultinomialNB()) ]) clf_1.fit(x_train, y_train) print(classification_report(y_test, clf_1.predict(x_test), digits = 4)) from sklearn.tree import DecisionTreeClassifier tree1 = DecisionTreeClassifier(criterion = 'entropy', max_depth = 1, random_state = 0).fit(x,y) from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier(criterion='entropy', max_depth=3, min_samples_leaf=5).fit(x_train, y_train) from sklearn import tree decision = tree.DecisionTreeClassifier() decision.fit(x_train, y_train) decision_score_train = decision.score(x_train, y_train) print "Train score : ",decision_score_train decision_score_test = decision.score(x_test, y_test) print "-" * 40 print "Test score : ",decision_score_test from sklearn.linear_model import Perceptron perceptron = Perceptron(n_iter = 1, eta0 = 0.3, random_state= 1).fit(x,y) perceptron_score_train = perceptron.score(x_train, y_train) print "Train score : ", perceptron_score_train print "=" *40 perceptron_score_test = perceptron.score(x_test, y_test) print "Test score : ", perceptron_score_test perceptron = Perceptron(n_iter = 5, eta0 = 0.3, random_state= 1).fit(x,y) perceptron_score_train = perceptron.score(x_train, y_train) print "Train score : ", perceptron_score_train print "=" *40 perceptron_score_test = perceptron.score(x_test, y_test) print "Test score : ", perceptron_score_test perceptron = Perceptron(n_iter = 10, eta0 = 0.3, random_state= 1).fit(x,y) perceptron_score_train = perceptron.score(x_train, y_train) print "Train score : ", perceptron_score_train print "=" *40 perceptron_score_test = perceptron.score(x_test, y_test) print "Test score : ", perceptron_score_test perceptron = Perceptron(n_iter = 20, eta0 = 0.3, random_state= 1).fit(x,y) perceptron_score_train = perceptron.score(x_train, y_train) print "Train score : ", perceptron_score_train print "=" *40 perceptron_score_test = perceptron.score(x_test, y_test) print "Test score : ", perceptron_score_test perceptron = Perceptron(n_iter = 100, eta0 = 0.3, random_state= 1).fit(x,y) perceptron_score_train = perceptron.score(x_train, y_train) print "Train score : ", perceptron_score_train print "=" *40 perceptron_score_test = perceptron.score(x_test, y_test) print "Test score : ", perceptron_score_test perceptron = Perceptron(n_iter = 150, eta0 = 0.3, random_state= 1).fit(x,y) perceptron_score_train = perceptron.score(x_train, y_train) print "Train score : ", perceptron_score_train print "=" *40 perceptron_score_test = perceptron.score(x_test, y_test) print "Test score : ", perceptron_score_test from sklearn.svm import SVC svm = SVC() # defalt 값은 rbf 이다 svm.fit(x_train, y_train) svm_score_train = svm.score(x_train, y_train) print "Train Score : ", svm_score_train svm_score_test = svm.score(x_test, y_test) print "-" * 40 print "Test Score : ", svm_score_test from sklearn.svm import SVC svm = SVC(kernel = 'linear') svm.fit(x_train, y_train) svm_score_train = svm.score(x_train, y_train) print "Train Score : ", svm_score_train svm_score_test = svm.score(x_test, y_test) print "-" * 40 print "Test Score : ", svm_score_test from sklearn.svm import SVC svm = SVC(kernel = 'sigmoid') svm.fit(x_train, y_train) svm_score_train = svm.score(x_train, y_train) print "Train Score : ", svm_score_train svm_score_test = svm.score(x_test, y_test) print "-" * 40 print "Test Score : ", svm_score_test from sklearn.svm import SVC svm = SVC(kernel = 'poly') svm.fit(x_train, y_train) svm_score_train = svm.score(x_train, y_train) print "Train Score : ", svm_score_train svm_score_test = svm.score(x_test, y_test) print "-" * 40 print "Test Score : ", svm_score_test models = pd.DataFrame({ 'Model' : ['QDA', 'LDA', 'GausianNB','MultinomialNB', 'DecisionTree','SVM'], 'Train_Score' : [qda_score_train, LDA_score_train, NB_score_train, MNB_score_train, decision_score_train, svm_score_train], 'Test_Score' : [qda_score_test, LDA_score_test, NB_score_test, MNB_score_test, decision_score_test, svm_score_test] }) models.sort_values(by='Test_Score', ascending=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: All we need to do is
<ASSISTANT_TASK:> Python Code: # Update data # autoupdate.autoupdate() # Comment in if needed, and loop if needed # manip.get_5v5_player_log(2017, force_create) # Comment in if needed, and loop if needed log = pd.concat([manip.get_5v5_player_log(season).assign(Season=season) for season in range(2012, 2018)]) sch = pd.concat([schedules.get_season_schedule(season).assign(Season=season) for season in range(2012, 2018)]) log.head() # Teams teamtoi = log.assign(TOI=log.TOION + log.TOIOFF) \ [['Season', 'Game', 'TOI']] \ .groupby(['Season', 'Game'], as_index=False) \ .max() # take max to avoid floating point errors that may fell drop_duplicates teamtoi = sch[['Season', 'Game', 'Home', 'Road']] \ .melt(id_vars=['Season', 'Game'], var_name='HR', value_name='TeamID') \ .merge(teamtoi, how='inner', on=['Season', 'Game']) \ .drop_duplicates() # Make names into str, and convert TOI from hours to minutes teamtoi.loc[:, 'Team'] = teamtoi.TeamID.apply(lambda x: team_info.team_as_str(x)) teamtoi.loc[:, 'TOI(min)'] = teamtoi.TOI * 60 teamtoi = teamtoi.drop(['TeamID', 'TOI'], axis=1) teamtoi.head() # Individuals indivtoi = log[['Season', 'Game', 'PlayerID', 'TOION', 'TeamID']] # IDs to names and TOI from hours to minutes indivtoi.loc[:, 'Player'] = players.playerlst_as_str(indivtoi.PlayerID.values) indivtoi.loc[:, 'Team'] = indivtoi.TeamID.apply(lambda x: team_info.team_as_str(x)) indivtoi.loc[:, 'TOI(min)'] = indivtoi.TOION * 60 indivtoi = indivtoi.drop(['TeamID', 'TOION', 'PlayerID'], axis=1) indivtoi.head() # Write to file teamtoi.to_csv('/Users/muneebalam/Desktop/teamtoi.csv') indivtoi.to_csv('/Users/muneebalam/Desktop/indivtoi.csv') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Model Step2: check rates Step3: It slightly underestimates heterogeneity, but is close for max rate
<ASSISTANT_TASK:> Python Code: %matplotlib inline import ABCPRC as prc import numpy as np import scipy.stats as stats import matplotlib.pyplot as plt def ibm(*ps): m0,k = ps[0],ps[1] T0 = 0.5 #measurements in regular increments throughout the year ms,ts = np.zeros(100),np.linspace(0,1,100) ms = (m0/2)*(np.sin(np.pi/2 + (ts-T0)*2*np.pi)+1) ps = k/(k+ms) outs = np.array([stats.nbinom(n=k,p=p).rvs() if p>0 else 0 for m,p in zip(ms,ps)]) return outs m0,k = 50.0,1.0 xs = ibm(m0,k) plt.plot(xs,'ko') #measurements in regular increments throughout the year ms,ts = np.zeros(100),np.linspace(0,1,100) ms = (m0/2)*(np.sin(np.pi/2 + (ts-0.5)*2*np.pi)+1) plt.plot(ts,ms) plt.ylabel('rate') plt.xlabel('time (yrs)') m = prc.ABC() priors = [stats.expon(scale=100.0).rvs,stats.expon(scale=0.5).rvs] m.setup(modelFunc=ibm,xs=xs,priors=priors) m.fit(sample_size=100) m.run(1000) res = m.trace() plt.figure() print('Initial Distribution') m.trace(plot=True,tol=0) plt.figure() print('Middle Tolerance') m.trace(plot=True,tol=5) plt.figure() print('Final Distribution') m.trace(plot=True,tol=-1) ps = np.round(m.paramMAP(),decimals=2) print('MAP for max rate is : {}, MAP for heterogeneity is {}'.format(*ps)) res = m.fitSummary() m.save('ecology_model_example') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The sgrid object Step2: The object knows about sgrid conventions Step3: Being generic is nice! This is an improvement up on my first design ;-) ... Step4: (Don't be scared, you do not need the sgrid object to get the variables. This just shows that there is a one-to-one mapping from the sgrid object to the netCDF4 object.) Step5: ... but we need a better way to deal with the slice of the slice! Step6: Some thing for the angle information Step7: Average velocity vectors to cell centers Step8: Rotate vectors by angles Step9: Speed Step10: Lon, lat of the center grid Step11: Plotting
<ASSISTANT_TASK:> Python Code: from netCDF4 import Dataset url = ('http://geoport.whoi.edu/thredds/dodsC/clay/usgs/users/' 'jcwarner/Projects/Sandy/triple_nest/00_dir_NYB05.ncml') nc = Dataset(url) import pysgrid # The object creation is a little bit slow. Can we defer some of the loading/computations? sgrid = pysgrid.from_nc_dataset(nc) sgrid # We need a better __repr__ and __str__ !!! sgrid.edge1_coordinates, sgrid.edge1_dimensions, sgrid.edge1_padding u_var = sgrid.u u_var.center_axis, u_var.node_axis v_var = sgrid.v v_var.center_axis, v_var.node_axis u_var.center_slicing v_var.center_slicing u_velocity = nc.variables[u_var.variable] v_velocity = nc.variables[v_var.variable] from datetime import datetime, timedelta from netCDF4 import date2index t_var = nc.variables['ocean_time'] start = datetime(2012, 10, 30, 0, 0) time_idx = date2index(start, t_var, select='nearest') v_idx = 0 # Slice of the slice! u_data = u_velocity[time_idx, v_idx, u_var.center_slicing[-2], u_var.center_slicing[-1]] v_data = v_velocity[time_idx, v_idx, v_var.center_slicing[-2], v_var.center_slicing[-1]] angle = sgrid.angle angles = nc.variables[angle.variable][angle.center_slicing] from pysgrid.processing_2d import avg_to_cell_center u_avg = avg_to_cell_center(u_data, u_var.center_axis) v_avg = avg_to_cell_center(v_data, v_var.center_axis) from pysgrid.processing_2d import rotate_vectors u_rot, v_rot = rotate_vectors(u_avg, v_avg, angles) from pysgrid.processing_2d import vector_sum uv_vector_sum = vector_sum(u_rot, v_rot) grid_cell_centers = sgrid.centers # Array of lon, lat pairs. lon_var_name, lat_var_name = sgrid.face_coordinates sg_lon = getattr(sgrid, lon_var_name) sg_lat = getattr(sgrid, lat_var_name) lon_data = grid_cell_centers[..., 0][sg_lon.center_slicing] lat_data = grid_cell_centers[..., 1][sg_lat.center_slicing] %matplotlib inline import numpy as np import matplotlib.pyplot as plt import cartopy.crs as ccrs from cartopy.io import shapereader from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER def make_map(projection=ccrs.PlateCarree(), figsize=(9, 9)): fig, ax = plt.subplots(figsize=figsize, subplot_kw=dict(projection=projection)) gl = ax.gridlines(draw_labels=True) gl.xlabels_top = gl.ylabels_right = False gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER return fig, ax sub = 10 scale = 0.06 fig, ax = make_map() kw = dict(scale=1.0/scale, pivot='middle', width=0.003, color='black') q = plt.quiver(lon_data[::sub, ::sub], lat_data[::sub, ::sub], u_rot[::sub, ::sub], v_rot[::sub, ::sub], zorder=2, **kw) cs = plt.pcolormesh(lon_data[::sub, ::sub], lat_data[::sub, ::sub], uv_vector_sum[::sub, ::sub], zorder=1, cmap=plt.cm.rainbow) _ = ax.coastlines('10m') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: def findnum(s1 ) : v =[] a = 0 b = 0 sa = 0 sb = 0 i = 0 if(s1[0 ] == ' - ' ) : sa = 1 i = 1  while(s1[i ] . isdigit() ) : a = a * 10 +(int(s1[i ] ) ) i += 1  if(s1[i ] == ' + ' ) : sb = 0 i += 1  if(s1[i ] == ' - ' ) : sb = 1 i += 1  while(i < len(s1 ) and s1[i ] . isdigit() ) : b = b * 10 +(int(s1[i ] ) ) i += 1  if(sa ) : a *= - 1  if(sb ) : b *= - 1  v . append(a ) v . append(b ) return v  def complexNumberMultiply(v ) : while(len(v ) != 1 ) : v1 = findnum(v[0 ] ) v2 = findnum(v[1 ] ) del v[0 ] del v[0 ] r =(v1[0 ] * v2[0 ] - v1[1 ] * v2[1 ] ) img = v1[0 ] * v2[1 ] + v1[1 ] * v2[0 ] res = "" res += str(r ) res += ' + ' res += str(img ) + ' i ' v . insert(0 , res )  return v[0 ]  if __name__== ' __main __' : n = 3 v =["3 + 1i ", "2 + 1i ", "- 5 + - 7i "] print(complexNumberMultiply(v ) )  <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Creating the parameter file Step4: Let's describe the bands we will use. This must be a superset (ideally the union) of all the bands involved in the training and target sets, including cross-validation. Step6: Let's now describe the system of SED templates to use (needed for the mean fct of the GP, for simulating objects, and for the template fitting routines). Step8: The next section if for simulating a photometric catalogue from the templates. Step10: We now describe the training file. Step12: The section of the target catalog has very similar structure and parameters. The catFile, bandOrder, referenceBand, and extraFracFluxError have the same meaning as for the training, but of course don't have to be the same. Step14: Finally, there are various other parameters related to the method itself. Step15: Let's write this to a file. Step16: Running Delight Step17: Second, we will process the library of SEDs and project them onto the filters, Step18: Third, we will make some mock data with those filters and SEDs Step19: Train and apply Step20: Analyze the outputs
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt import scipy.stats import sys sys.path.append('../') from delight.io import * from delight.utils import * from delight.photoz_gp import PhotozGP %cd .. paramfile_txt = # DELIGHT parameter file # Syntactic rules: # - You can set parameters with : or = # - Lines starting with # or ; will be ignored # - Multiple values (band names, band orders, confidence levels) # must beb separated by spaces # - The input files should contain numbers separated with spaces. # - underscores mean unused column paramfile_txt += [Bands] names: U_SDSS G_SDSS R_SDSS I_SDSS Z_SDSS directory: data/FILTERS paramfile_txt += [Templates] directory: ./data/CWW_SEDs names: El_B2004a Sbc_B2004a Scd_B2004a SB3_B2004a SB2_B2004a Im_B2004a ssp_25Myr_z008 ssp_5Myr_z008 p_t: 0.27 0.26 0.25 0.069 0.021 0.11 0.0061 0.0079 p_z_t:0.23 0.39 0.33 0.31 1.1 0.34 1.2 0.14 lambdaRef: 4.5e3 paramfile_txt += [Simulation] numObjects: 1000 noiseLevel: 0.03 trainingFile: data/galaxies-fluxredshifts.txt targetFile: data/galaxies-fluxredshifts2.txt paramfile_txt += [Training] catFile: data/galaxies-fluxredshifts.txt bandOrder: U_SDSS U_SDSS_var G_SDSS G_SDSS_var _ _ I_SDSS I_SDSS_var Z_SDSS Z_SDSS_var redshift referenceBand: I_SDSS extraFracFluxError: 1e-4 paramFile: data/galaxies-gpparams.txt crossValidate: False CVfile: data/galaxies-gpCV.txt crossValidationBandOrder: _ _ _ _ R_SDSS R_SDSS_var _ _ _ _ _ numChunks: 1 paramfile_txt += [Target] catFile: data/galaxies-fluxredshifts2.txt bandOrder: U_SDSS U_SDSS_var G_SDSS G_SDSS_var _ _ I_SDSS I_SDSS_var Z_SDSS Z_SDSS_var redshift referenceBand: I_SDSS extraFracFluxError: 1e-4 redshiftpdfFile: data/galaxies-redshiftpdfs.txt redshiftpdfFileTemp: data/galaxies-redshiftpdfs-cww.txt metricsFile: data/galaxies-redshiftmetrics.txt metricsFileTemp: data/galaxies-redshiftmetrics-cww.txt useCompression: False Ncompress: 10 compressIndicesFile: data/galaxies-compressionIndices.txt compressMargLikFile: data/galaxies-compressionMargLikes.txt redshiftpdfFileComp: data/galaxies-redshiftpdfs-comp.txt paramfile_txt += [Other] rootDir: ./ zPriorSigma: 0.2 ellPriorSigma: 0.5 fluxLuminosityNorm: 1.0 alpha_C: 1.0e3 V_C: 0.1 alpha_L: 1.0e2 V_L: 0.1 lines_pos: 6500 5002.26 3732.22 lines_width: 20.0 20.0 20.0 redshiftMin: 0.1 redshiftMax: 1.101 redshiftNumBinsGPpred: 100 redshiftBinSize: 0.001 redshiftDisBinSize: 0.2 confidenceLevels: 0.1 0.50 0.68 0.95 with open('tests/parametersTest.cfg','w') as out: out.write(paramfile_txt) %run ./scripts/processFilters.py tests/parametersTest.cfg %run ./scripts/processSEDs.py tests/parametersTest.cfg %run ./scripts/simulateWithSEDs.py tests/parametersTest.cfg %run ./scripts/templateFitting.py tests/parametersTest.cfg %run ./scripts/delight-learn.py tests/parametersTest.cfg %run ./scripts/delight-apply.py tests/parametersTest.cfg # First read a bunch of useful stuff from the parameter file. params = parseParamFile('tests/parametersTest.cfg', verbose=False) bandCoefAmplitudes, bandCoefPositions, bandCoefWidths, norms\ = readBandCoefficients(params) bandNames = params['bandNames'] numBands, numCoefs = bandCoefAmplitudes.shape fluxredshifts = np.loadtxt(params['target_catFile']) fluxredshifts_train = np.loadtxt(params['training_catFile']) bandIndices, bandNames, bandColumns, bandVarColumns, redshiftColumn,\ refBandColumn = readColumnPositions(params, prefix='target_') redshiftDistGrid, redshiftGrid, redshiftGridGP = createGrids(params) dir_seds = params['templates_directory'] dir_filters = params['bands_directory'] lambdaRef = params['lambdaRef'] sed_names = params['templates_names'] nt = len(sed_names) f_mod = np.zeros((redshiftGrid.size, nt, len(params['bandNames']))) for t, sed_name in enumerate(sed_names): f_mod[:, t, :] = np.loadtxt(dir_seds + '/' + sed_name + '_fluxredshiftmod.txt') # Load the PDF files metricscww = np.loadtxt(params['metricsFile']) metrics = np.loadtxt(params['metricsFileTemp']) # Those of the indices of the true, mean, stdev, map, and map_std redshifts. i_zt, i_zm, i_std_zm, i_zmap, i_std_zmap = 0, 1, 2, 3, 4 i_ze = i_zm i_std_ze = i_std_zm pdfs = np.loadtxt(params['redshiftpdfFile']) pdfs_cww = np.loadtxt(params['redshiftpdfFileTemp']) pdfatZ_cww = metricscww[:, 5] / pdfs_cww.max(axis=1) pdfatZ = metrics[:, 5] / pdfs.max(axis=1) nobj = pdfatZ.size #pdfs /= pdfs.max(axis=1)[:, None] #pdfs_cww /= pdfs_cww.max(axis=1)[:, None] pdfs /= np.trapz(pdfs, x=redshiftGrid, axis=1)[:, None] pdfs_cww /= np.trapz(pdfs_cww, x=redshiftGrid, axis=1)[:, None] ncol = 4 fig, axs = plt.subplots(5, ncol, figsize=(7, 6), sharex=True, sharey=False) axs = axs.ravel() z = fluxredshifts[:, redshiftColumn] sel = np.random.choice(nobj, axs.size, replace=False) lw = 2 for ik in range(axs.size): k = sel[ik] print(k, end=" ") axs[ik].plot(redshiftGrid, pdfs_cww[k, :],lw=lw, label='Standard template fitting')# c="#2ecc71", axs[ik].plot(redshiftGrid, pdfs[k, :], lw=lw, label='New method') #, c="#3498db" axs[ik].axvline(fluxredshifts[k, redshiftColumn], c="k", lw=1, label=r'Spec-$z$') ymax = np.max(np.concatenate((pdfs[k, :], pdfs_cww[k, :]))) axs[ik].set_ylim([0, ymax*1.2]) axs[ik].set_xlim([0, 1.1]) axs[ik].set_yticks([]) axs[ik].set_xticks([0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4]) for i in range(ncol): axs[-i-1].set_xlabel('Redshift', fontsize=10) axs[0].legend(ncol=3, frameon=False, loc='upper left', bbox_to_anchor=(0.0, 1.4)) fig.tight_layout() fig.subplots_adjust(wspace=0.1, hspace=0.1, top=0.96) fig, axs = plt.subplots(2, 2, figsize=(7, 7)) zmax = 1.5 rr = [[0, zmax], [0, zmax]] nbins = 30 h = axs[0, 0].hist2d(metricscww[:, i_zt], metricscww[:, i_zm], nbins, cmap='Greys', range=rr) hmin, hmax = np.min(h[0]), np.max(h[0]) axs[0, 0].set_title('CWW z mean') axs[0, 1].hist2d(metricscww[:, i_zt], metricscww[:, i_zmap], nbins, cmap='Greys', range=rr, vmax=hmax) axs[0, 1].set_title('CWW z map') axs[1, 0].hist2d(metrics[:, i_zt], metrics[:, i_zm], nbins, cmap='Greys', range=rr, vmax=hmax) axs[1, 0].set_title('GP z mean') axs[1, 1].hist2d(metrics[:, i_zt], metrics[:, i_zmap], nbins, cmap='Greys', range=rr, vmax=hmax) axs[1, 1].set_title('GP z map') axs[0, 0].plot([0, zmax], [0, zmax], c='k') axs[0, 1].plot([0, zmax], [0, zmax], c='k') axs[1, 0].plot([0, zmax], [0, zmax], c='k') axs[1, 1].plot([0, zmax], [0, zmax], c='k') fig.tight_layout() fig, axs = plt.subplots(1, 2, figsize=(7, 3.5)) chi2s = ((metrics[:, i_zt] - metrics[:, i_ze])/metrics[:, i_std_ze])**2 axs[0].errorbar(metrics[:, i_zt], metrics[:, i_ze], yerr=metrics[:, i_std_ze], fmt='o', markersize=5, capsize=0) axs[1].errorbar(metricscww[:, i_zt], metricscww[:, i_ze], yerr=metricscww[:, i_std_ze], fmt='o', markersize=5, capsize=0) axs[0].plot([0, zmax], [0, zmax], 'k') axs[1].plot([0, zmax], [0, zmax], 'k') axs[0].set_xlim([0, zmax]) axs[1].set_xlim([0, zmax]) axs[0].set_ylim([0, zmax]) axs[1].set_ylim([0, zmax]) axs[0].set_title('New method') axs[1].set_title('Standard template fitting') fig.tight_layout() cmap = "coolwarm_r" vmin = 0.0 alpha = 0.9 s = 5 fig, axs = plt.subplots(1, 2, figsize=(10, 3.5)) vs = axs[0].scatter(metricscww[:, i_zt], metricscww[:, i_zmap], s=s, c=pdfatZ_cww, cmap=cmap, linewidth=0, vmin=vmin, alpha=alpha) vs = axs[1].scatter(metrics[:, i_zt], metrics[:, i_zmap], s=s, c=pdfatZ, cmap=cmap, linewidth=0, vmin=vmin, alpha=alpha) clb = plt.colorbar(vs, ax=axs.ravel().tolist()) clb.set_label('Normalized probability at spec-$z$') for i in range(2): axs[i].plot([0, zmax], [0, zmax], c='k', lw=1, zorder=0, alpha=1) axs[i].set_ylim([0, zmax]) axs[i].set_xlim([0, zmax]) axs[i].set_xlabel('Spec-$z$') axs[0].set_ylabel('MAP photo-$z$') axs[0].set_title('Standard template fitting') axs[1].set_title('New method') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Improving Reading Ability Step3: Exercise Step9: Paintball Step10: Exercise Step11: Exercise
<ASSISTANT_TASK:> Python Code: from __future__ import print_function, division % matplotlib inline import warnings warnings.filterwarnings('ignore') import math import numpy as np from thinkbayes2 import Pmf, Cdf, Suite, Joint import thinkplot import pandas as pd df = pd.read_csv('drp_scores.csv', skiprows=21, delimiter='\t') df.head() grouped = df.groupby('Treatment') for name, group in grouped: print(name, group.Response.mean()) from scipy.stats import norm class Normal(Suite, Joint): def Likelihood(self, data, hypo): data: sequence of test scores hypo: mu, sigma mu, sigma = hypo likes = norm.pdf(data, mu, sigma) return np.prod(likes) from itertools import product mus = np.linspace(20, 80, 101) sigmas = np.linspace(5, 30, 101) control = Normal(product(mus, sigmas)) data = df[df.Treatment=='Control'].Response control.Update(data) thinkplot.Contour(control, pcolor=True) pmf_mu0 = control.Marginal(0) thinkplot.Pdf(pmf_mu0) pmf_sigma0 = control.Marginal(1) thinkplot.Pdf(pmf_sigma0) # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here class Paintball(Suite, Joint): Represents hypotheses about the location of an opponent. def __init__(self, alphas, betas, locations): Makes a joint suite of parameters alpha and beta. Enumerates all pairs of alpha and beta. Stores locations for use in Likelihood. alphas: possible values for alpha betas: possible values for beta locations: possible locations along the wall self.locations = locations pairs = [(alpha, beta) for alpha in alphas for beta in betas] Suite.__init__(self, pairs) def Likelihood(self, data, hypo): Computes the likelihood of the data under the hypothesis. hypo: pair of alpha, beta data: location of a hit Returns: float likelihood alpha, beta = hypo x = data pmf = MakeLocationPmf(alpha, beta, self.locations) like = pmf.Prob(x) return like def MakeLocationPmf(alpha, beta, locations): Computes the Pmf of the locations, given alpha and beta. Given that the shooter is at coordinates (alpha, beta), the probability of hitting any spot is inversely proportionate to the strafe speed. alpha: x position beta: y position locations: x locations where the pmf is evaluated Returns: Pmf object pmf = Pmf() for x in locations: prob = 1.0 / StrafingSpeed(alpha, beta, x) pmf.Set(x, prob) pmf.Normalize() return pmf def StrafingSpeed(alpha, beta, x): Computes strafing speed, given location of shooter and impact. alpha: x location of shooter beta: y location of shooter x: location of impact Returns: derivative of x with respect to theta theta = math.atan2(x - alpha, beta) speed = beta / math.cos(theta)**2 return speed alphas = range(0, 31) betas = range(1, 51) locations = range(0, 31) suite = Paintball(alphas, betas, locations) suite.UpdateSet([15, 16, 18, 21]) locations = range(0, 31) alpha = 10 betas = [10, 20, 40] thinkplot.PrePlot(num=len(betas)) for beta in betas: pmf = MakeLocationPmf(alpha, beta, locations) pmf.label = 'beta = %d' % beta thinkplot.Pdf(pmf) thinkplot.Config(xlabel='Distance', ylabel='Prob') marginal_alpha = suite.Marginal(0, label='alpha') marginal_beta = suite.Marginal(1, label='beta') print('alpha CI', marginal_alpha.CredibleInterval(50)) print('beta CI', marginal_beta.CredibleInterval(50)) thinkplot.PrePlot(num=2) thinkplot.Cdf(Cdf(marginal_alpha)) thinkplot.Cdf(Cdf(marginal_beta)) thinkplot.Config(xlabel='Distance', ylabel='Prob') betas = [10, 20, 40] thinkplot.PrePlot(num=len(betas)) for beta in betas: cond = suite.Conditional(0, 1, beta) cond.label = 'beta = %d' % beta thinkplot.Pdf(cond) thinkplot.Config(xlabel='Distance', ylabel='Prob') thinkplot.Contour(suite.GetDict(), contour=False, pcolor=True) thinkplot.Config(xlabel='alpha', ylabel='beta', axis=[0, 30, 0, 20]) d = dict((pair, 0) for pair in suite.Values()) percentages = [75, 50, 25] for p in percentages: interval = suite.MaxLikeInterval(p) for pair in interval: d[pair] += 1 thinkplot.Contour(d, contour=False, pcolor=True) thinkplot.Text(17, 4, '25', color='white') thinkplot.Text(17, 15, '50', color='white') thinkplot.Text(17, 30, '75') thinkplot.Config(xlabel='alpha', ylabel='beta', legend=False) # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Modo correcto de definir una función Step2: Ejemplo de uso de funciónes Step3: y se desa calcular el promedio para cada uno, una forma de hacerlo seria la siguiente, calculando individualmente el promedio para cada uno e imprimiendo los resultados por pantalla Step4: Pero como se puede apreciar eso complica el código haciendolo repetitivo y largo, la manera mas optima para hacer esto seria creando una función que calculara el promedio, para eso se utiliza la sintaxis Step5: Ahora con la función promedio definida el código se puede simplificar de la siguiente manera Step6: Parametros opcionales Step7: Parametros predefinidos
<ASSISTANT_TASK:> Python Code: printfunc(3) def func(num): return(num**num+num) def func(num): return(num**num+num) func(3) alex=[90,70,80,60,90] kate=[60,70,90,70,90] david=[90,60,80,90,80] #Promedio para Alex i=0 sumatoria = 0 while i < len(alex): sumatoria += alex[i] i += 1 promedio=sumatoria/len(alex) print(promedio) #Promedio para Kate i=0 sumatoria = 0 while i < len(kate): sumatoria += kate[i] i += 1 promedio=sumatoria/len(kate) print(promedio) #Promedio para David i=0 sumatoria = 0 while i < len(david): sumatoria += david[i] i += 1 promedio=sumatoria/len(david) print(promedio) def promedio(alumno): n = len(alumno) i = 0 sumatoria = 0 while i < n: sumatoria += alumno[i] i += 1 resultado= sumatoria/n print(resultado) promedio(alex) promedio(kate) promedio(david) def saludo(): print("Hola!!!") saludo() # Definicion de la función con el parámetro hora predeterminado como True def saludo(hora=True): if hora==True: print("Hola, buen día!") else: print("Hola, buenas noches") # Se ejecuta la función sin asignación de párametro saludo() # Se ejecuta la funcion con asignación de parámetro t=False saludo(t) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Saving and loading fields Step2: Running the simulation Step3: (Optional) Plotting
<ASSISTANT_TASK:> Python Code: from crpropa import * randomSeed = 42 turbSpectrum = SimpleTurbulenceSpectrum(Brms=8*nG, lMin = 60*kpc, lMax=800*kpc, sIndex=5./3.) gridprops = GridProperties(Vector3d(0), 256, 30*kpc) BField = SimpleGridTurbulence(turbSpectrum, gridprops, randomSeed) # print some properties of our field print('Lc = {:.1f} kpc'.format(BField.getCorrelationLength() / kpc)) # correlation length print('sqrt(<B^2>) = {:.1f} nG'.format(BField.getBrms() / nG)) # RMS print('<|B|> = {:.1f} nG'.format(BField.getMeanFieldStrength() / nG)) # mean print('B(10 Mpc, 0, 0) =', BField.getField(Vector3d(10,0,0) * Mpc) / nG, 'nG') # save the field # format: (Bx, By, Bz)(x, y, z) with z changing the quickest. #dumpGrid(BField.getGrid(), 'myfield.dat') # binary, single precision #dumpGridToTxt(Bfield.getGrid(), 'myfield.txt') # ASCII # load your own field #vgrid=Grid3f(gridprops) #loadGrid(vgrid, 'myfield.dat') #loadGridFromTxt(vgrid, 'myfield.txt') sim = ModuleList() sim.add(PropagationCK(BField)) sim.add(PhotoPionProduction(CMB())) sim.add(PhotoPionProduction(IRB_Kneiske04())) sim.add(PhotoDisintegration(CMB())) sim.add(PhotoDisintegration(IRB_Kneiske04())) sim.add(ElectronPairProduction(CMB())) sim.add(ElectronPairProduction(IRB_Kneiske04())) sim.add(NuclearDecay()) sim.add(MaximumTrajectoryLength(25 * Mpc)) output = TextOutput('trajectory.txt', Output.Trajectory3D) sim.add(output) x = Vector3d(0,0,0) # position p = Vector3d(1,1,0) # direction c = Candidate(nucleusId(16, 8), 100 * EeV, x, p) sim.run(c, True) %matplotlib inline from pylab import * from mpl_toolkits.mplot3d import axes3d output.close() data = genfromtxt('trajectory.txt', names=True) # trajectory points x, y, z = data['X'], data['Y'], data['Z'] # translate particle ID to charge number Z = [chargeNumber(int(Id)) for Id in data['ID'].astype(int)] # translate the charge number to color and size # --> protons are blue, Helium is green, everthing else is red colorDict = {0:'k', 1:'b', 2:'g', 3:'r', 4:'r', 5:'r', 6:'r', 7:'r', 8:'r'} sizeDict = {0:4, 1:4, 2:8, 3:10, 4:10, 5:10, 6:10, 7:10, 8:10} colors = [colorDict[z] for z in Z] sizes = [sizeDict[z] for z in Z] fig = plt.figure(figsize=(12, 5))#plt.figaspect(0.5)) ax = fig.gca(projection='3d')# , aspect='equal' ax.scatter(x,y,z+6, 'o', s=sizes, color=colors) ax.set_xlabel('x / Mpc', fontsize=18) ax.set_ylabel('y / Mpc', fontsize=18) ax.set_zlabel('z / Mpc', fontsize=18) ax.set_xlim((-1, 16)) ax.set_ylim((-1, 16)) ax.set_zlim((-1, 16)) ax.xaxis.set_ticks((0, 5, 10, 15)) ax.yaxis.set_ticks((0, 5, 10, 15)) ax.zaxis.set_ticks((0, 5, 10, 15)) show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import required modules Step2: Target Configuration Step3: Workload Execution and Functions Profiling Data Collection Step4: Parse Trace and Profiling Data Step5: Report Functions Profiling Data Step6: Plot Functions Profiling Data
<ASSISTANT_TASK:> Python Code: import logging from conf import LisaLogging LisaLogging.setup() # Generate plots inline %matplotlib inline import json import os # Support to access the remote target import devlib from env import TestEnv from executor import Executor # RTApp configurator for generation of PERIODIC tasks from wlgen import RTA, Ramp # Support for trace events analysis from trace import Trace # Setup target configuration my_conf = { # Target platform and board "platform" : 'linux', "board" : 'juno', "host" : '192.168.0.1', "password" : 'juno', # Folder where all the results will be collected "results_dir" : "TraceAnalysis_FunctionsProfiling", # Define devlib modules to load "exclude_modules" : [ 'hwmon' ], # FTrace events to collect for all the tests configuration which have # the "ftrace" flag enabled "ftrace" : { "functions" : [ "pick_next_task_fair", "select_task_rq_fair", "enqueue_task_fair", "update_curr_fair", "dequeue_task_fair", ], "buffsize" : 100 * 1024, }, # Tools required by the experiments "tools" : [ 'trace-cmd', 'rt-app' ], # Comment this line to calibrate RTApp in your own platform "rtapp-calib" : {"0": 360, "1": 142, "2": 138, "3": 352, "4": 352, "5": 353}, } # Initialize a test environment using: te = TestEnv(my_conf, wipe=False, force_new=True) target = te.target def experiment(te): # Create and RTApp RAMP task rtapp = RTA(te.target, 'ramp', calibration=te.calibration()) rtapp.conf(kind='profile', params={ 'ramp' : Ramp( start_pct = 60, end_pct = 20, delta_pct = 5, time_s = 0.5).get() }) # FTrace the execution of this workload te.ftrace.start() rtapp.run(out_dir=te.res_dir) te.ftrace.stop() # Collect and keep track of the trace trace_file = os.path.join(te.res_dir, 'trace.dat') te.ftrace.get_trace(trace_file) # Collect and keep track of the Kernel Functions performance data stats_file = os.path.join(te.res_dir, 'trace.stats') te.ftrace.get_stats(stats_file) # Dump platform descriptor te.platform_dump(te.res_dir) experiment(te) # Base folder where tests folder are located res_dir = te.res_dir logging.info('Content of the output folder %s', res_dir) !tree {res_dir} with open(os.path.join(res_dir, 'platform.json'), 'r') as fh: platform = json.load(fh) print json.dumps(platform, indent=4) logging.info('LITTLE cluster max capacity: %d', platform['nrg_model']['little']['cpu']['cap_max']) trace = Trace(platform, res_dir, events=[]) # Get the DataFrame for the specified list of kernel functions df = trace.data_frame.functions_stats(['enqueue_task_fair', 'dequeue_task_fair']) df # Get the DataFrame for the single specified kernel function df = trace.data_frame.functions_stats('select_task_rq_fair') df # Plot Average and Total execution time for the specified # list of kernel functions trace.analysis.functions.plotProfilingStats( functions = [ 'select_task_rq_fair', 'enqueue_task_fair', 'dequeue_task_fair' ], metrics = [ # Average completion time per CPU 'avg', # Total execution time per CPU 'time', ] ) # Plot Average execution time for the single specified kernel function trace.analysis.functions.plotProfilingStats( functions = 'update_curr_fair', ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <table align="left"> Step2: Selection Bias Step3: The treated group has a lower outcome mean than that of the control group, but the difference is not necessarily attributed to the causal effect of the treatment. Step4: The distributions of covariates or transformed covariates don't completely overlap between the treated and control groups. Step5: Correctly Specified Model Step6: With correctly specified covariates to match ($Z1, \dots, Z4$), Step7: Misspecified Model Step8: Adding transformations of covariates Step9: Adding extra covariates Step10: Benchmark Execution Time
<ASSISTANT_TASK:> Python Code: #@title Copyright 2019 The Empirical Calibration Authors. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from matplotlib import pyplot as plt import numpy as np import pandas as pd import patsy import seaborn as sns sns.set_style('whitegrid') %config InlineBackend.figure_format='retina' from google.colab import widgets # install and import ec !pip install -q git+https://github.com/google/empirical_calibration import empirical_calibration as ec np.random.seed(123) simulation = ec.data.kang_schafer.Simulation(size=2000) df = pd.DataFrame( np.column_stack([ simulation.treatment, simulation.covariates, simulation.transformed_covariates, simulation.outcome ])) df.columns = [ "treatment", "z1", "z2", "z3", "z4", "x1", "x2", "x3", "x4", "outcome" ] print(df.groupby("treatment").mean().T) def show_hist(name): plt.figure(figsize=(6, 2)) plt.hist( df.loc[df['treatment'] == 1, name], bins=20, alpha=0.4, color='#00BFC4', label='treated', edgecolor='none') plt.hist( df.loc[df['treatment'] == 0, name], bins=20, alpha=0.4, color='#F8766D', label='control', edgecolor='none') plt.xlabel(name) plt.legend(loc='upper left', prop={'size': 12}) plt.show() tb = widgets.TabBar(['covariates', 'transformed_covariates', 'outcome']) with tb.output_to('covariates'): for name in ["z1", "z2", "z3", "z4"]: show_hist(name) with tb.output_to('transformed_covariates'): for name in ["x1", "x2", "x3", "x4"]: show_hist(name) with tb.output_to('outcome'): show_hist("outcome") def estimate_mean(formula): simulation = ec.data.kang_schafer.Simulation(size=1000) t = simulation.treatment y = simulation.outcome df = pd.DataFrame( np.column_stack( [simulation.covariates, simulation.transformed_covariates])) df.columns = ["z1", "z2", "z3", "z4", "x1", "x2", "x3", "x4"] x = patsy.dmatrix(formula, df, return_type="dataframe").values weights = ec.from_formula(formula=formula, df=df.loc[t==1], target_df=df)[0] return np.mean(np.sum(y[t == 1] * weights)) def show_estimates(estimates): estimates = pd.Series(estimates) ax = estimates.hist(bins=20, alpha=0.8, edgecolor='none') plt.axvline(estimates.mean(), linestyle='dashed', color='red') # True population mean is 210. print('bias is {}'.format(estimates.mean() - 210.)) print('rmse is {}'.format(np.sqrt(np.mean((estimates - 210.) ** 2)))) estimates_correct = [estimate_mean("-1 + z1 + z2 + z3 + z4") for i in xrange(1000)] show_estimates(estimates_correct) estimates_miss = [estimate_mean("-1 + x1 + x2 + x3 + x4") for i in xrange(1000)] show_estimates(estimates_miss) formula = ("-1 + (x1 + x2 + x3 + x4)**2 + I(np.log(x1)) + I(np.log(x2)) + " "I(np.log(x3)) + I(np.log(x4))") estimates_expanded = [estimate_mean(formula) for i in xrange(1000)] show_estimates(estimates_expanded) formula = "-1 + z1 + z2 + z3 + z4 + x1 + x2 + x3 + x4" estimates_redundant = [estimate_mean(formula) for i in xrange(1000)] show_estimates(estimates_redundant) np.random.seed(123) simulation = ec.data.kang_schafer.Simulation(size=2000) x1 = simulation.covariates[simulation.treatment == 1] x0 = simulation.covariates[simulation.treatment == 0] %timeit weights = ec.maybe_exact_calibrate(x0, x1)[0] np.random.seed(123) simulation = ec.data.kang_schafer.Simulation(size=20000) x1 = simulation.covariates[simulation.treatment == 1] x0 = simulation.covariates[simulation.treatment == 0] %timeit weights = ec.maybe_exact_calibrate(x0, x1)[0] np.random.seed(123) simulation = ec.data.kang_schafer.Simulation(size=200000) x1 = simulation.covariates[simulation.treatment == 1] x0 = simulation.covariates[simulation.treatment == 0] %timeit weights = ec.maybe_exact_calibrate(x0, x1)[0] np.random.seed(123) simulation = ec.data.kang_schafer.Simulation(size=2000000) x1 = simulation.covariates[simulation.treatment == 1] x0 = simulation.covariates[simulation.treatment == 0] %timeit weights = ec.maybe_exact_calibrate(x0, x1)[0] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Model Creation Step2: The model is set up by default with a meridional diffusion term. Step3: Create new subprocess Step4: Note that the model's whole state dictionary is given as input to the subprocess. In case only the temperature field ebm_budyko.state['Ts'] is given, a new state dictionary would be created which holds the surface temperature with the key 'default'. That raises an error as the budyko transport process refers the temperature with key 'Ts'. Step5: Model integration & Plotting Step6: The following code plots the current surface temperature, albedo and energy budget Step7: The two right sided plots show that the model is not in equilibrium. The net radiation reveals that the model currently gains heat and therefore warms up at the poles and loses heat at the equator. From the Energy plot we can see that latitudinal energy balance is not met. Step8: Now we can see that the latitudinal energy balance is statisfied. Each latitude gains as much heat (net radiation) as is transported out of it (diffusion transport). There is a net radiation surplus in the equator region, so more shortwave radiation is absorbed there than is emitted through longwave radiation. At the poles there is a net radiation deficit. That imbalance is compensated by the diffusive energy transport term.
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt import climlab from climlab import constants as const # model creation ebm_budyko = climlab.EBM() # print model states and suprocesses print(ebm_budyko) # create Budyko subprocess budyko_transp = climlab.dynamics.BudykoTransport(b=3.81, state=ebm_budyko.state, **ebm_budyko.param) # add the new transport subprocess ebm_budyko.add_subprocess('budyko_transport',budyko_transp) # remove the old diffusion subprocess ebm_budyko.remove_subprocess('diffusion') print(ebm_budyko) # integrate model for a single timestep ebm_budyko.step_forward() # creating plot figure fig = plt.figure(figsize=(15,10)) # Temperature plot ax1 = fig.add_subplot(221) ax1.plot(ebm_budyko.lat,ebm_budyko.Ts) ax1.set_xticks([-90,-60,-30,0,30,60,90]) ax1.set_xlim([-90,90]) ax1.set_title('Surface Temperature', fontsize=14) ax1.set_ylabel('(degC)', fontsize=12) ax1.grid() # Albedo plot ax2 = fig.add_subplot(223, sharex = ax1) ax2.plot(ebm_budyko.lat,ebm_budyko.albedo) ax2.set_title('Albedo', fontsize=14) ax2.set_xlabel('latitude', fontsize=10) ax2.set_ylim([0,1]) ax2.grid() # Net Radiation plot ax3 = fig.add_subplot(222, sharex = ax1) ax3.plot(ebm_budyko.lat, ebm_budyko.OLR, label='OLR', color='cyan') ax3.plot(ebm_budyko.lat, ebm_budyko.ASR, label='ASR', color='magenta') ax3.plot(ebm_budyko.lat, ebm_budyko.ASR-ebm_budyko.OLR, label='net radiation', color='red') ax3.set_title('Net Radiation', fontsize=14) ax3.set_ylabel('(W/m$^2$)', fontsize=12) ax3.legend(loc='best') ax3.grid() # Energy Balance plot net_rad = ebm_budyko.net_radiation transport = ebm_budyko.subprocess['budyko_transport'].heating_rate['Ts'] ax4 = fig.add_subplot(224, sharex = ax1) ax4.plot(ebm_budyko.lat, net_rad, label='net radiation', color='red') ax4.plot(ebm_budyko.lat, transport, label='heat transport', color='blue') ax4.plot(ebm_budyko.lat, net_rad+transport, label='balance', color='black') ax4.set_title('Energy', fontsize=14) ax4.set_xlabel('latitude', fontsize=10) ax4.set_ylabel('(W/m$^2$)', fontsize=12) ax4.legend(loc='best') ax4.grid() plt.show() # integrate model until solution converges ebm_budyko.integrate_converge() # creating plot figure fig = plt.figure(figsize=(15,10)) # Temperature plot ax1 = fig.add_subplot(221) ax1.plot(ebm_budyko.lat,ebm_budyko.Ts) ax1.set_xticks([-90,-60,-30,0,30,60,90]) ax1.set_xlim([-90,90]) ax1.set_title('Surface Temperature', fontsize=14) ax1.set_ylabel('(degC)', fontsize=12) ax1.grid() # Albedo plot ax2 = fig.add_subplot(223, sharex = ax1) ax2.plot(ebm_budyko.lat,ebm_budyko.albedo) ax2.set_title('Albedo', fontsize=14) ax2.set_xlabel('latitude', fontsize=10) ax2.set_ylim([0,1]) ax2.grid() # Net Radiation plot ax3 = fig.add_subplot(222, sharex = ax1) ax3.plot(ebm_budyko.lat, ebm_budyko.OLR, label='OLR', color='cyan') ax3.plot(ebm_budyko.lat, ebm_budyko.ASR, label='ASR', color='magenta') ax3.plot(ebm_budyko.lat, ebm_budyko.ASR-ebm_budyko.OLR, label='net radiation', color='red') ax3.set_title('Net Radiation', fontsize=14) ax3.set_ylabel('(W/m$^2$)', fontsize=12) ax3.legend(loc='best') ax3.grid() # Energy Balance plot net_rad = ebm_budyko.net_radiation transport = ebm_budyko.subprocess['budyko_transport'].heating_rate['Ts'] ax4 = fig.add_subplot(224, sharex = ax1) ax4.plot(ebm_budyko.lat, net_rad, label='net radiation', color='red') ax4.plot(ebm_budyko.lat, transport, label='heat transport', color='blue') ax4.plot(ebm_budyko.lat, net_rad+transport, label='balance', color='black') ax4.set_title('Energy', fontsize=14) ax4.set_xlabel('latitude', fontsize=10) ax4.set_ylabel('(W/m$^2$)', fontsize=12) ax4.legend(loc='best') ax4.grid() plt.show() print('The global mean temperature is %.2f deg C.' %climlab.global_mean(ebm_budyko.Ts)) print('The modeled ice edge is at %.2f deg latitude.' %np.max(ebm_budyko.icelat)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's evaluate how much the membrane potential depends on Input resistance and
<ASSISTANT_TASK:> Python Code: %pylab inline import pandas as pd #mypath = '/fs3/group/jonasgrp/MachineLearning/Cell_types.xlsx' mypath = './Cell_types.xlsx' df = pd.read_excel(io=mypath, sheetname='PFC', skiprows=1) df.head() df.columns df['CellID'] for key in df.columns: if df[key].dtype != object: print"%-10s = %2.4f + %2.4f" %(key ,df[key].mean(), df[key].std()) means = df[ df.columns ].mean() means df_means = pd.DataFrame(means).T df_means.head() df.InputR df['Vrest'].mean() df['Vrest'].unique() # get NumPy array df['Sag'].plot(marker='o', color='red'); # plots plt.scatter(df['InputR'], df['rheobase'], color='black') plt.xlabel('Input Resistance (M$\Omega$)'), plt.ylabel('Rheobase (pA)') plt.xlim(0,400), plt.ylim(0,400); x = df[['InputR', 'Sag','Tau_mb']] y = df[['Vrest']] # import standard regression models (sm) import statsmodels.api as sm K = sm.add_constant(x) # k0, k1, k2 and k3... # get estimation est = sm.OLS(y, K).fit() # ordinary least square regression est.summary() # need more data for kurtosis :) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Damped, driven nonlinear pendulum Step4: Write a function derivs for usage with scipy.integrate.odeint that computes the derivatives for the damped, driven harmonic oscillator. The solution vector at each time will be $\vec{y}(t) = (\theta(t),\omega(t))$. Step5: Simple pendulum Step7: Damped pendulum Step8: Here is an example of the output of your plot_pendulum function that should show a decaying spiral. Step9: Use interact to explore the plot_pendulum function with
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np import seaborn as sns from scipy.integrate import odeint from IPython.html.widgets import interact, fixed g = 9.81 # m/s^2 l = 0.5 # length of pendulum, in meters tmax = 50. # seconds t = np.linspace(0, tmax, int(100*tmax)) odeint. def derivs(y, t, a, b, omega0): Compute the derivatives of the damped, driven pendulum. Parameters ---------- y : ndarray The solution vector at the current time t[i]: [theta[i],omega[i]]. t : float The current time t[i]. a, b, omega0: float The parameters in the differential equation. Returns ------- dy : ndarray The vector of derviatives at t[i]: [dtheta[i],domega[i]]. theta,omega=y dtheta=omega domega=[(-g/l)*np.sin(theta)-a*omega-b*np.sin(omega0*t)] dy=[dtheta,domega] return dy assert np.allclose(derivs(np.array([np.pi,1.0]), 0, 1.0, 1.0, 1.0), [1.,-1.]) def energy(y): Compute the energy for the state array y. The state array y can have two forms: 1. It could be an ndim=1 array of np.array([theta,omega]) at a single time. 2. It could be an ndim=2 array where each row is the [theta,omega] at single time. Parameters ---------- y : ndarray, list, tuple A solution vector Returns ------- E/m : float (ndim=1) or ndarray (ndim=2) The energy per mass. theta=y[0,::1] omega=y[1,::1] Em=g*l*(1-np.cos(theta))+.5*l**2*omega**2 return Em a=np.ones((10,2)) print(a[::1,0]) #assert np.allclose(energy(np.array([np.pi,0])),g) assert np.allclose(energy(np.ones((10,2))), np.ones(10)*energy(np.array([1,1]))) # YOUR CODE HERE raise NotImplementedError() # YOUR CODE HERE raise NotImplementedError() # YOUR CODE HERE raise NotImplementedError() assert True # leave this to grade the two plots and their tuning of atol, rtol. def plot_pendulum(a=0.0, b=0.0, omega0=0.0): Integrate the damped, driven pendulum and make a phase plot of the solution. # YOUR CODE HERE raise NotImplementedError() plot_pendulum(0.5, 0.0, 0.0) # YOUR CODE HERE raise NotImplementedError() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Genome version Step2: Products
<ASSISTANT_TASK:> Python Code: bsmaploc="/Applications/bioinfo/BSMAP/bsmap-2.74/" !curl \ ftp://ftp.ensemblgenomes.org/pub/release-32/metazoa/fasta/crassostrea_gigas/dna/Crassostrea_gigas.GCA_000297895.1.dna_sm.toplevel.fa.gz \ > /Volumes/caviar/wd/data/Crassostrea_gigas.GCAz_000297895.1.dna_sm.toplevel.fa.gz !curl ftp://ftp.ensemblgenomes.org/pub/release-32/metazoa/fasta/crassostrea_gigas/dna/CHECKSUMS !ls /Volumes/caviar/wd/data/ !md5 /Volumes/caviar/wd/data/Crassostrea_gigas.GCAz_000297895.1.dna_sm.toplevel.fa.gz cd /Volumes/caviar/wd/ mkdir $(date +%F) ls ls /Volumes/web/nightingales/C !curl \ http://owl.fish.washington.edu/nightingales/C_gigas/9_GATCAG_L001_R1_001.fastq.gz \ > /Volumes/caviar/wd/2016-10-11/9_GATCAG_L001_R1_001.fastq.gz !curl \ http://owl.fish.washington.edu/nightingales/C_gigas/10_TAGCTT_L001_R1_001.fastq.gz \ > /Volumes/caviar/wd/2016-10-11/10_TAGCTT_L001_R1_001.fastq.gz cd 2016-10-11/ !cp 9_GATCAG_L001_R1_001.fastq.gz M2.fastq.gz !cp 10_TAGCTT_L001_R1_001.fastq.gz M3.fastq.gz for i in ("M2","M3"): !{bsmaploc}bsmap \ -a {i}.fastq.gz \ -d ../data/Crassostrea_gigas.GCAz_000297895.1.dna_sm.toplevel.fa \ -o bsmap_out_{i}.sam \ -p 6 for i in ("M2","M3"): !python {bsmaploc}methratio.py \ -d ../data/Crassostrea_gigas.GCAz_000297895.1.dna_sm.toplevel.fa \ -u -z -g \ -o methratio_out_{i}.txt \ -s {bsmaploc}samtools \ bsmap_out_{i}.sam \ !head /Volumes/caviar/wd/2016-10-11/methratio_out_M2.txt !curl https://raw.githubusercontent.com/che625/olson-ms-nb/master/scripts/mr3x.awk \ > /Users/sr320/git-repos/sr320.github.io/jupyter/scripts/mr3x.awk !curl https://raw.githubusercontent.com/che625/olson-ms-nb/master/scripts/mr_gg.awk.sh \ > /Users/sr320/git-repos/sr320.github.io/jupyter/scripts/mr_gg.awk.sh #first methratio files are converted to filter for CG context, 3x coverage (mr3x.awk), and reformatting (mr_gg.awk.sh). #due to issue passing variable to awk, simple scripts were used (included in repository) for i in ("M2","M3"): !echo {i} !grep "[A-Z][A-Z]CG[A-Z]" <methratio_out_{i}.txt> methratio_out_{i}CG.txt !awk -f /Users/sr320/git-repos/sr320.github.io/jupyter/scripts/mr3x.awk methratio_out_{i}CG.txt \ > mr3x.{i}.txt !awk -f /Users/sr320/git-repos/sr320.github.io/jupyter/scripts/mr_gg.awk.sh \ mr3x.{i}.txt > mkfmt_{i}.txt #first methratio files are converted to filter for CG context, 3x coverage (mr3x.awk), and reformatting (mr_gg.awk.sh). #due to issue passing variable to awk, simple scripts were used (included in repository) for i in ("M2","M3"): !echo {i} !grep -i "[A-Z][A-Z]CG[A-Z]" <methratio_out_{i}.txt> methratio_out_{i}CGi.txt !awk -f /Users/sr320/git-repos/sr320.github.io/jupyter/scripts/mr3x.awk methratio_out_{i}CGi.txt \ > mr3xi.{i}.txt !awk -f /Users/sr320/git-repos/sr320.github.io/jupyter/scripts/mr_gg.awk.sh \ mr3xi.{i}.txt > mkfmti_{i}.txt #maybe we need to ignore case !md5 mkfmt_M2.txt mkfmti_M2.txt | head #nope !head -100 mkfmt_M2.txt cd /Users/sr320/git-repos/sr320.github.io/jupyter mkdir analyses mkdir analyses/$(date +%F) for i in ("M2","M3"): !cp /Volumes/caviar/wd/2016-10-11/mkfmt_{i}.txt analyses/$(date +%F)/mkfmt_{i}.txt !head analyses/$(date +%F)/* <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Where in your code does this error come from? Step2: Stack trace Step3: Printing during execution Step4: Printing attributes of a variable Step5: Most Frequent NaN Causes Step6: Test Value
<ASSISTANT_TASK:> Python Code: import numpy as np import theano import theano.tensor as T x = T.vector() y = T.vector() z = x + x z = z * y f = theano.function([x, y], z) f(np.ones((2,)), np.ones((3,))) # TODO: finish to define the mode below mode=... import numpy as np import theano import theano.tensor as T x = T.vector() y = T.vector() z = x + x z.name = "z1" z = z * y z.name = "z2" f = theano.function([x, y], z, mode=mode) f(np.ones((2,)), np.ones((3,))) import theano import theano.tensor as T from theano.tests.breakpoint import PdbBreakpoint input, target = T.fvectors(['x', 'y']) mse = (input - target) ** 2 # Conditional breakpoint to be activated if the total # MSE > 100. The breakpoint will monitor the inputs, # targets as well as the individual error values breakpointOp = PdbBreakpoint("MSE too high") condition = T.gt(mse.sum(), 100) mse, monitored_input, monitored_target = breakpointOp( condition, mse, input, target) # Compile the theano function fct = theano.function([input, target], mse) # Use the function print fct([10, 0], [10, 5]) # Will NOT activate the breakpoint print fct([0, 0], [10, 5]) # Will activate the breakpoint import theano x = theano.tensor.vector() o = theano.printing.Print("a message")(x) f = theano.function([x], o) d = f([3, 4]) o = theano.printing.Print("Attributes of x:", attrs=('min', 'mean', 'max'))(x) f = theano.function([x], o) d = f([3, 1, 4, 9]) import numpy import theano import theano.compile.nanguardmode from theano import tensor as T x = T.matrix() w = theano.shared(numpy.random.randn(5, 7).astype(theano.config.floatX)) y = T.dot(x, w) mode=theano.compile.nanguardmode.NanGuardMode(nan_is_error=True, inf_is_error=True, big_is_error=True) fun = theano.function( [x], y, mode=mode) infa = numpy.tile( (numpy.asarray(100.) ** 1000000), (3, 5)) fun(infa) # Can also be 'off', 'ignore', 'raise', 'pdb' theano.config.compute_test_value = 'warn' # input which will be of shape (5, 10) x, y = T.matrices('xy') # provide Theano with a default test-value x.tag.test_value = numpy.random.rand(5, 10) y.tag.test_value = numpy.random.rand(4, 10) x + y # warn about the shape error <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Run a pre-trained Transformer Step2: 2. Features and resources Step3: Gradients can be calculated using trax.fastmath.grad. Step4: Layers Step9: Models Step10: Data Step11: Using the trax.data module you can create input processing pipelines, e.g., to tokenize and shuffle your data. You create data pipelines using trax.data.Serial and they are functions that you apply to streams to create processed streams. Step12: Supervised training Step13: After training the model, run it like any layer to get results.
<ASSISTANT_TASK:> Python Code: #@title # Copyright 2020 Google LLC. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np #@title # Import Trax !pip install -q -U trax import trax # Create a Transformer model. # Pre-trained model config in gs://trax-ml/models/translation/ende_wmt32k.gin model = trax.models.Transformer( input_vocab_size=33300, d_model=512, d_ff=2048, n_heads=8, n_encoder_layers=6, n_decoder_layers=6, max_len=2048, mode='predict') # Initialize using pre-trained weights. model.init_from_file('gs://trax-ml/models/translation/ende_wmt32k.pkl.gz', weights_only=True) # Tokenize a sentence. sentence = 'It is nice to learn new things today!' tokenized = list(trax.data.tokenize(iter([sentence]), # Operates on streams. vocab_dir='gs://trax-ml/vocabs/', vocab_file='ende_32k.subword'))[0] # Decode from the Transformer. tokenized = tokenized[None, :] # Add batch dimension. tokenized_translation = trax.supervised.decoding.autoregressive_sample( model, tokenized, temperature=0.0) # Higher temperature: more diverse results. # De-tokenize, tokenized_translation = tokenized_translation[0][:-1] # Remove batch and EOS. translation = trax.data.detokenize(tokenized_translation, vocab_dir='gs://trax-ml/vocabs/', vocab_file='ende_32k.subword') print(translation) from trax.fastmath import numpy as fastnp trax.fastmath.use_backend('jax') # Can be 'jax' or 'tensorflow-numpy'. matrix = fastnp.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(f'matrix =\n{matrix}') vector = fastnp.ones(3) print(f'vector = {vector}') product = fastnp.dot(vector, matrix) print(f'product = {product}') tanh = fastnp.tanh(product) print(f'tanh(product) = {tanh}') def f(x): return 2.0 * x * x grad_f = trax.fastmath.grad(f) print(f'grad(2x^2) at 1 = {grad_f(1.0)}') print(f'grad(2x^2) at -2 = {grad_f(-2.0)}') from trax import layers as tl # Create an input tensor x. x = np.arange(15) print(f'x = {x}') # Create the embedding layer. embedding = tl.Embedding(vocab_size=20, d_feature=32) embedding.init(trax.shapes.signature(x)) # Run the layer -- y = embedding(x). y = embedding(x) print(f'shape of y = {y.shape}') model = tl.Serial( tl.Embedding(vocab_size=8192, d_feature=256), tl.Mean(axis=1), # Average on axis 1 (length of sentence). tl.Dense(2), # Classify 2 classes. ) # You can print model structure. print(model) train_stream = trax.data.TFDS('imdb_reviews', keys=('text', 'label'), train=True)() eval_stream = trax.data.TFDS('imdb_reviews', keys=('text', 'label'), train=False)() print(next(train_stream)) # See one example. data_pipeline = trax.data.Serial( trax.data.Tokenize(vocab_file='en_8k.subword', keys=[0]), trax.data.Shuffle(), trax.data.FilterByLength(max_length=2048, length_keys=[0]), trax.data.BucketByLength(boundaries=[ 32, 128, 512, 2048], batch_sizes=[512, 128, 32, 8, 1], length_keys=[0]), trax.data.AddLossWeights() ) train_batches_stream = data_pipeline(train_stream) eval_batches_stream = data_pipeline(eval_stream) example_batch = next(train_batches_stream) print(f'shapes = {[x.shape for x in example_batch]}') # Check the shapes. from trax.supervised import training # Training task. train_task = training.TrainTask( labeled_data=train_batches_stream, loss_layer=tl.WeightedCategoryCrossEntropy(), optimizer=trax.optimizers.Adam(0.01), n_steps_per_checkpoint=500, ) # Evaluaton task. eval_task = training.EvalTask( labeled_data=eval_batches_stream, metrics=[tl.WeightedCategoryCrossEntropy(), tl.WeightedCategoryAccuracy()], n_eval_batches=20 # For less variance in eval numbers. ) # Training loop saves checkpoints to output_dir. output_dir = os.path.expanduser('~/output_dir/') !rm -rf {output_dir} training_loop = training.Loop(model, train_task, eval_tasks=[eval_task], output_dir=output_dir) # Run 2000 steps (batches). training_loop.run(2000) example_input = next(eval_batches_stream)[0][0] example_input_str = trax.data.detokenize(example_input, vocab_file='en_8k.subword') print(f'example input_str: {example_input_str}') sentiment_log_probs = model(example_input[None, :]) # Add batch dimension. print(f'Model returned sentiment probabilities: {np.exp(sentiment_log_probs)}') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1) create a vector of $d$ parameters Step2: 2) Create an array of covariates Step3: 3) Construct the conditional intensity $\lambda(t)$ Step4: Generate the random variables Step5: Given events at times $t_1,...,t_N$ the conditional likelihood is Step6: The gradient is Step7: Set an initial guess Step8: Maximize the likelihood Step9: Calculate a prediction of the response.
<ASSISTANT_TASK:> Python Code: N = 10000# number of observations d = 5 # number of covariates theta = np.random.normal(size = (d,)) X = 0.1*np.random.normal(size = (d,N)) # X = linalg.orth(X.T).T # X = np.eye((d)) l = np.exp(np.dot(X.T,theta)) dt = 0.001 # discretization step u = np.random.uniform(size = len(l)) y = 1*(l*dt>u) fig, ax = plt.subplots(figsize=(12, 2)) fig = ax.matshow(np.reshape(y,(1,len(y))),cmap = 'Greys',aspect = 3) def negLogL(theta,X,y,dt): # calculate the intensity of the Poisson process intensity = np.exp(np.dot(X.T,theta)) # bins with spikes vs no spikes l = sum(intensity)*dt - sum(y*np.log(intensity)) return(l) def grad(theta,X,y,dt): intensity = np.exp(np.dot(X.T,theta)) g = np.dot(X,intensity)*dt - np.dot(X,y) return(g) theta_0 = np.random.normal(size = (d,)) opts = {'disp':True,'maxiter': 1000} theta_MLE = optimize.minimize(negLogL, theta_0,jac = grad, args = (X,y,dt),options = opts).x print ('Error: ' + str(np.sqrt(sum((theta_MLE - theta)**2)))) theta_MLE = optimize.minimize(negLogL, theta_0, args = (X,y,dt),options = opts).x print ('Error: ' + str(np.sqrt(sum((theta_MLE - theta)**2)))) plt.hold(False) plt1, = plt.plot(theta,'ro',label = 'theta true') plt.hold(True) plt2, = plt.plot(theta_MLE,'o',label = 'theta MLE') plt.legend(handles = [plt1,plt2]) l_MLE = np.exp(np.dot(X.T,theta_MLE)) u = np.random.uniform(size = len(l_MLE)) y_predicted = 1*(l_MLE*dt>u) fig, ax = plt.subplots(figsize=(12, 2)) fig = ax.matshow(np.reshape(y,(1,len(y))),cmap = 'Greys',aspect = 3) fig, ax = plt.subplots(figsize=(12, 2)) fig = ax.matshow(np.reshape(y_predicted,(1,len(y))),cmap = 'Greys',aspect = 3) mismatch_error = sum(np.abs(y-y_predicted))/sum(y+y_predicted) print(mismatch_error) fig = plt.figure(figsize = (12,2)) fig = plt.plot(l) plt.title('True Intensity') fig = plt.figure(figsize = (12,2)) fig = plt.plot(l_MLE) plt.title('Estimated Intensity') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: ScrollZoomToggler Step2: MarkerCluster Step3: Terminator Step4: Leaflet.boatmarker Step5: Leaflet.TextPath
<ASSISTANT_TASK:> Python Code: # This is to import the repository's version of folium ; not the installed one. import sys, os sys.path.insert(0,'..') import folium from folium import plugins import numpy as np import json %load_ext autoreload %autoreload 2 m = folium.Map([45.,3.], zoom_start=4) plugins.ScrollZoomToggler().add_to(m) m N = 100 data = np.array([ np.random.uniform(low=35,high=60, size=N), # random latitudes in Europe np.random.uniform(low=-12,high=30, size=N), # random longitudes in Europe range(N), # popups are simple numbers ]).T m = folium.Map([45.,3.], zoom_start=4) plugins.MarkerCluster(data).add_to(m) m m = folium.Map([45.,3.], zoom_start=1) plugins.Terminator().add_to(m) plugins.ScrollZoomToggler().add_to(m) m m = folium.Map([30.,0.], zoom_start=3) plugins.BoatMarker((34,-43), heading=45, wind_heading=150, wind_speed=45, color="#8f8").add_to(m) plugins.BoatMarker((46,-30), heading=-20, wind_heading=46, wind_speed=25, color="#88f").add_to(m) m m = folium.Map([20.,0.], zoom_start=3) wind_locations = [[59.3556, -31.99219], [55.17887, -42.89062], [47.7541, -43.94531], [38.27269, -37.96875], [27.05913, -41.13281], [16.29905, -36.5625], [8.40717, -30.23437], [1.05463, -22.5], [-8.75479, -18.28125], [-21.61658, -20.03906], [-31.35364, -24.25781], [-39.90974, -30.9375], [-43.83453, -41.13281], [-47.7541, -49.92187], [-50.95843, -54.14062], [-55.9738, -56.60156]] wind_line = folium.PolyLine(wind_locations, weight=15, color='#8EE9FF').add_to(m) attr = {'fill': '#007DEF', 'font-weight': 'bold', 'font-size': '24'} plugins.PolyLineTextPath(wind_line, ") ", repeat=True, offset=7, attributes=attr).add_to(m) danger_line = folium.PolyLine([[-40.311, -31.952], [-12.086, -18.727]], weight=10, color='orange', opacity=0.8).add_to(m) attr = {'fill': 'red'} plugins.PolyLineTextPath(danger_line, "\u25BA", repeat=True, offset=6, attributes=attr).add_to(m) plane_line = folium.PolyLine([[-49.38237, -37.26562], [-1.75754, -14.41406], [51.61802, -23.20312]], weight=1, color='black').add_to(m) attr = {'font-weight':'bold', 'font-size':'24'} plugins.PolyLineTextPath(plane_line, "\u2708 ", repeat=True, offset=8, attributes=attr).add_to(m) line_to_new_dehli = folium.PolyLine([[46.67959447, 3.33984375], [46.5588603, 29.53125], [42.29356419, 51.328125], [35.74651226, 68.5546875], [28.65203063, 76.81640625]]).add_to(m) line_to_hanoi = folium.PolyLine([[28.76765911, 77.60742188], [27.83907609, 88.72558594], [25.68113734, 97.3828125], [21.24842224, 105.77636719]]).add_to(m) plugins.PolyLineTextPath(line_to_new_dehli, "To New Delhi", offset=-5).add_to(m) plugins.PolyLineTextPath(line_to_hanoi, "To Hanoi", offset=-5).add_to(m) m <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Считаем данные по росту и весу (weights_heights.csv, приложенный в задании) в объект Pandas DataFrame Step2: Чаще всего первое, что надо надо сделать после считывания данных - это посмотреть на первые несколько записей. Так можно отловить ошибки чтения данных (например, если вместо 10 столбцов получился один, в названии которого 9 точек с запятой). Также это позволяет познакомиться с данными, как минимум, посмотреть на признаки и их природу (количественный, категориальный и т.д.). Step3: Аргументы Step4: Один из эффективных методов первичного анализа данных - отображение попарных зависимостей признаков. Создается $m \times m$ графиков (m - число признаков), где по диагонали рисуются гистограммы распределения признаков, а вне диагонали - scatter plots зависимости двух признаков. Это можно делать с помощью метода $scatter_matrix$ Pandas Data Frame или pairplot библиотеки Seaborn. Step5: [3]. Постройте картинку, на которой будут отображены попарные зависимости признаков , 'Height', 'Weight' и 'BMI' друг от друга. Используйте метод pairplot библиотеки Seaborn. Step6: Часто при первичном анализе данных надо исследовать зависимость какого-то количественного признака от категориального (скажем, зарплаты от пола сотрудника). В этом помогут "ящики с усами" - boxplots библиотеки Seaborn. Box plot - это компактный способ показать статистики вещественного признака (среднее и квартили) по разным значениям категориального признака. Также помогает отслеживать "выбросы" - наблюдения, в которых значение данного вещественного признака сильно отличается от других. Step7: [5]. Постройте scatter plot зависимости роста от веса, используя метод plot для Pandas DataFrame с аргументом kind='scatter'. Подпишите картинку. Step8: Задание 2. Минимизация квадратичной ошибки Step9: Итак, мы решаем задачу Step10: Минимизация квадратичной функции ошибки - относительная простая задача, поскольку функция выпуклая. Для такой задачи существует много методов оптимизации. Посмотрим, как функция ошибки зависит от одного параметра (наклон прямой), если второй параметр (свободный член) зафиксировать. Step11: Теперь методом оптимизации найдем "оптимальный" наклон прямой, приближающей зависимость роста от веса, при фиксированном коэффициенте $w_0 = 50$. Step12: При анализе многомерных данных человек часто хочет получить интуитивное представление о природе данных с помощью визуализации. Увы, при числе признаков больше 3 такие картинки нарисовать невозможно. На практике для визуализации данных в 2D и 3D в данных выделаяют 2 или, соответственно, 3 главные компоненты (как именно это делается - мы увидим далее в курсе) и отображают данные на плоскости или в объеме. Step13: Создаем объекты типа matplotlib.figure.Figure (рисунок) и matplotlib.axes._subplots.Axes3DSubplot (ось). Step14: [10]. Постройте 3D-график зависимости функции ошибки, посчитанной в п.6 от параметров $w_0$ и $w_1$. Подпишите ось $x$ меткой «Intercept», ось $y$ – меткой «Slope», a ось $z$ – меткой «Error». Step15: [11]. С помощью метода minimize из scipy.optimize найдите минимум функции, определенной в п. 6, для значений параметра $w_0$ в диапазоне [-100,100] и $w_1$ - в диапазоне [-5, 5]. Начальная точка – ($w_0$, $w_1$) = (0, 0). Используйте метод оптимизации L-BFGS-B (аргумент method метода minimize). Проведите на графике из п. 5 Задания 1 прямую, соответствующую найденным оптимальным значениям параметров $w_0$ и $w_1$. Подпишите оси и график.
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline data = pd.read_csv('weights_heights.csv', index_col='Index') data.plot(y='Height', kind='hist', color='red', title='Height (inch.) distribution') data.head(n=5) data.plot(y='Weight', kind='hist', color='green', title='Weight distribution') def make_bmi(height_inch, weight_pound): METER_TO_INCH, KILO_TO_POUND = 39.37, 2.20462 return (weight_pound / KILO_TO_POUND) / \ (height_inch / METER_TO_INCH) ** 2 data['BMI'] = data.apply(lambda row: make_bmi(row['Height'], row['Weight']), axis=1) sns.pairplot(data) def weight_category(weight): if weight < 120: return 1 elif weight >= 150: return 3 else: return 2 data['weight_cat'] = data['Weight'].apply(weight_category) ax = sns.boxplot(x='weight_cat', y='Height', data=data, ) ax.set_xlabel('Весовая категория') ax.set_ylabel('Рост') plt.plot() data.plot(x='Weight', y='Height', kind='scatter', title='Зависимость роста от веса') def error(w0, w1): return np.sum(np.square((w1 * data['Weight'] + w0) - data['Height'])) def func(w0, w1, x): return w1 * x + w0 plt.scatter(x=data['Weight'], y=data['Height']) x_points = np.linspace(75, 175) y1 = [func(60, 0.05, x) for x in x_points] y2 = [func(50, 0.16, x) for x in x_points] plt.plot(x_points, y1, color='red') plt.plot(x_points, y2, color='green') plt.xlim((75, 175)) plt.ylim((55, 80)) plt.xlabel('Вес') plt.ylabel('Рост') plt.title('Зависимость роста от веса') W1 = np.linspace(-10, 10) y = np.array([error(50, w1) for w1 in W1]) plt.plot(W1, y) plt.xlabel('$w_1$') plt.ylabel('Value of error') plt.title('Зависимость ошибки от значения $w_1$') plt.show() import scipy.optimize as opt error_wrap = lambda x: error(50, x) result = opt.minimize_scalar(error_wrap, bounds=[-5, 5]) result plt.scatter(x=data['Weight'], y=data['Height']) x_points = np.linspace(75, 175) y1 = [func(50, result.x, x) for x in x_points] plt.plot(x_points, y1, color='red') plt.xlim((75, 175)) plt.ylim((55, 80)) plt.xlabel('Вес') plt.ylabel('Рост') plt.title('Зависимость роста от веса') from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.gca(projection='3d') # get current axis # Создаем массивы NumPy с координатами точек по осям X и У. # Используем метод meshgrid, при котором по векторам координат # создается матрица координат. Задаем нужную функцию Z(x, y). X = np.arange(-5, 5, 0.25) Y = np.arange(-5, 5, 0.25) X, Y = np.meshgrid(X, Y) Z = np.sin(np.sqrt(X**2 + Y**2)) # Наконец, используем метод *plot_surface* объекта # типа Axes3DSubplot. Также подписываем оси. surf = ax.plot_surface(X, Y, Z) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') plt.show() fig = plt.figure() ax = fig.gca(projection='3d') # get current axis W0 = np.arange(-5, 5, 0.25) W1 = np.arange(-5, 5, 0.25) ERROR = np.array([[error(w0, w1) for w0 in W0] for w1 in W1]) W0, W1 = np.meshgrid(W0, W1) surf = ax.plot_surface(W0, W1, ERROR) ax.set_xlabel('Intercept') ax.set_ylabel('Slope') ax.set_zlabel('Error') plt.show() def error(w): return np.sum(np.square((w[1] * data['Weight'] + w[0]) - data['Height'])) result = opt.minimize(error, [0, 0], method='L-BFGS-B') result plt.scatter(x=data['Weight'], y=data['Height']) x_points = np.linspace(75, 175) y1 = [func(result.x[0], result.x[1], x) for x in x_points] plt.plot(x_points, y1, color='red') plt.xlim((75, 175)) plt.ylim((55, 80)) plt.xlabel('Вес') plt.ylabel('Рост') plt.title('Зависимость роста от веса') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: So far the systems we have studied have been physical in the sense that they exist in the world, but they have not been physics, in the sense of what physics classes are usually about. In the next few chapters, we'll do some physics, starting with thermal systems, that is, systems where the temperature of objects changes as heat transfers from one to another. Step2: The values of T_init, volume, and t_end come from the statement of the problem Step3: I chose the value of r arbitrarily for now; we will figure out how to estimate it soon. Step4: We can test it with the initial temperature of the coffee, like this Step5: With dt=1 minute, the temperature drops by about 0.7 °C/min, at least for this value of r. Step6: This function is similar to previous versions of run_simulation. Step7: The result is a TimeSeries with one row per time step. Step8: Here's what the results look like. Step9: The temperature after 30 minutes is 72.3 °C, which is a little higher than what's stated in the problem, 70 °C. Step10: By trial and error, we could find the value of r where the final temperature is precisely 70 °C. Step11: Now we call root_scalar like this Step12: The first argument is the function whose roots we want. The second Step13: If we provide a different interval, we find a different root. Step14: If the interval doesn't contain a root, you'll get a ValueError and a message like "f(a) and f(b) must have different signs". Step15: This is called an "error function" because it returns the Step16: The result is an error of 2.3 °C, because the final temperature with Step17: With r=0.02, the error is  about -11°C, which means that the final temperature is too low. So we know that the correct value must be in between. Step18: The first argument is the error function. Step19: In this example, r_coffee turns out to be about 0.0115, in units of min$^{-1}$ (inverse minutes). Step20: The final temperature is very close to 70 °C. Step21: Exercise
<ASSISTANT_TASK:> Python Code: # install Pint if necessary try: import pint except ImportError: !pip install pint # download modsim.py if necessary from os.path import exists filename = 'modsim.py' if not exists(filename): from urllib.request import urlretrieve url = 'https://raw.githubusercontent.com/AllenDowney/ModSim/main/' local, _ = urlretrieve(url+filename, filename) print('Downloaded ' + local) # import functions from modsim from modsim import * def make_system(T_init, volume, r, t_end): return System(T_init=T_init, T_final=T_init, volume=volume, r=r, t_end=t_end, T_env=22, t_0=0, dt=1) coffee = make_system(T_init=90, volume=300, r=0.01, t_end=30) def change_func(T, t, system): r, T_env, dt = system.r, system.T_env, system.dt return -r * (T - T_env) * dt change_func(coffee.T_init, 0, coffee) def run_simulation(system, change_func): t_array = linrange(system.t_0, system.t_end, system.dt) n = len(t_array) series = TimeSeries(index=t_array) series.iloc[0] = system.T_init for i in range(n-1): t = t_array[i] T = series.iloc[i] series.iloc[i+1] = T + change_func(T, t, system) system.t_end = t_array[-1] system.T_final = series.iloc[-1] return series results = run_simulation(coffee, change_func) results.head() results.plot(label='coffee') decorate(xlabel='Time (minute)', ylabel='Temperature (C)', title='Coffee Cooling') coffee.T_final def func(x): return (x-1) * (x-2) * (x-3) res = root_scalar(func, bracket=[1.5, 2.5]) res res.root res = root_scalar(func, bracket=[2.5, 3.5]) res.root def error_func(r, system): system.r = r results = run_simulation(system, change_func) return system.T_final - 70 coffee = make_system(T_init=90, volume=300, r=0.01, t_end=30) error_func(0.01, coffee) error_func(0.02, coffee) res = root_scalar(error_func, coffee, bracket=[0.01, 0.02]) res.flag r_coffee = res.root r_coffee coffee.r = res.root run_simulation(coffee, change_func) coffee.T_final # Solution milk = make_system(T_init=5, t_end=15, r=0.1, volume=50) results_milk = run_simulation(milk, change_func) milk.T_final # Solution results_milk.plot(color='C1', label='milk') decorate(xlabel='Time (minutes)', ylabel='Temperature (C)') # Solution def error_func2(r, system): system.r = r results = run_simulation(system, change_func) return system.T_final - 20 # Solution root_scalar(error_func2, milk, bracket=[0.1, 0.2]) res # Solution run_simulation(milk, change_func) milk.T_final <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Note Step2: Lesson Step3: Project 1 Step4: We'll create three Counter objects, one for words from postive reviews, one for words from negative reviews, and one for all the words. Step5: TODO Step6: Run the following two cells to list the words used in positive reviews and negative reviews, respectively, ordered from most to least commonly used. Step7: As you can see, common words like "the" appear very often in both positive and negative reviews. Instead of finding the most common words in positive or negative reviews, what you really want are the words found in positive reviews more often than in negative reviews, and vice versa. To accomplish this, you'll need to calculate the ratios of word usage between positive and negative reviews. Step8: Examine the ratios you've calculated for a few words Step9: Looking closely at the values you just calculated, we see the following Step10: Examine the new ratios you've calculated for the same words from before Step11: If everything worked, now you should see neutral words with values close to zero. In this case, "the" is near zero but slightly positive, so it was probably used in more positive reviews than negative reviews. But look at "amazing"'s ratio - it's above 1, showing it is clearly a word with positive sentiment. And "terrible" has a similar score, but in the opposite direction, so it's below -1. It's now clear that both of these words are associated with specific, opposing sentiments. Step12: End of Project 1. Step13: Project 2 Step14: Run the following cell to check your vocabulary size. If everything worked correctly, it should print 74074 Step15: Take a look at the following image. It represents the layers of the neural network you'll be building throughout this notebook. layer_0 is the input layer, layer_1 is a hidden layer, and layer_2 is the output layer. Step16: TODO Step17: Run the following cell. It should display (1, 74074) Step18: layer_0 contains one entry for every word in the vocabulary, as shown in the above image. We need to make sure we know the index of each word, so run the following cell to create a lookup table that stores the index of every word. Step20: TODO Step21: Run the following cell to test updating the input layer with the first review. The indices assigned may not be the same as in the solution, but hopefully you'll see some non-zero values in layer_0. Step23: TODO Step24: Run the following two cells. They should print out'POSITIVE' and 1, respectively. Step25: Run the following two cells. They should print out 'NEGATIVE' and 0, respectively. Step30: End of Project 2. Step31: Run the following cell to create a SentimentNetwork that will train on all but the last 1000 reviews (we're saving those for testing). Here we use a learning rate of 0.1. Step32: Run the following cell to test the network's performance against the last 1000 reviews (the ones we held out from our training set). Step33: Run the following cell to actually train the network. During training, it will display the model's accuracy repeatedly as it trains so you can see how well it's doing. Step34: That most likely didn't train very well. Part of the reason may be because the learning rate is too high. Run the following cell to recreate the network with a smaller learning rate, 0.01, and then train the new network. Step35: That probably wasn't much different. Run the following cell to recreate the network one more time with an even smaller learning rate, 0.001, and then train the new network. Step36: With a learning rate of 0.001, the network should finall have started to improve during training. It's still not very good, but it shows that this solution has potential. We will improve it in the next lesson. Step41: Project 4 Step42: Run the following cell to recreate the network and train it. Notice we've gone back to the higher learning rate of 0.1. Step43: That should have trained much better than the earlier attempts. It's still not wonderful, but it should have improved dramatically. Run the following cell to test your model with 1000 predictions. Step44: End of Project 4. Step48: Project 5 Step49: Run the following cell to recreate the network and train it once again. Step50: That should have trained much better than the earlier attempts. Run the following cell to test your model with 1000 predictions. Step51: End of Project 5. Step55: Project 6 Step56: Run the following cell to train your network with a small polarity cutoff. Step57: And run the following cell to test it's performance. It should be Step58: Run the following cell to train your network with a much larger polarity cutoff. Step59: And run the following cell to test it's performance. Step60: End of Project 6.
<ASSISTANT_TASK:> Python Code: def pretty_print_review_and_label(i): print(labels[i] + "\t:\t" + reviews[i][:80] + "...") g = open('reviews.txt','r') # What we know! reviews = list(map(lambda x:x[:-1],g.readlines())) g.close() g = open('labels.txt','r') # What we WANT to know! labels = list(map(lambda x:x[:-1].upper(),g.readlines())) g.close() len(reviews) reviews[0] labels[0] print("labels.txt \t : \t reviews.txt\n") pretty_print_review_and_label(2137) pretty_print_review_and_label(12816) pretty_print_review_and_label(6267) pretty_print_review_and_label(21934) pretty_print_review_and_label(5297) pretty_print_review_and_label(4998) from collections import Counter import numpy as np # Create three Counter objects to store positive, negative and total counts positive_counts = Counter() negative_counts = Counter() total_counts = Counter() for review, label in zip(reviews, labels): words = review.split(' ') if label == 'POSITIVE': positive_counts.update(words) else: negative_counts.update(words) total_counts.update(words) # Examine the counts of the most common words in positive reviews positive_counts.most_common() # Examine the counts of the most common words in negative reviews negative_counts.most_common() # Create Counter object to store positive/negative ratios pos_neg_ratios = Counter() pos_neg_ratios.update({ word: positive_counts[word] / float(negative_counts[word]+1) for word, val in positive_counts.items() if val > 100 }) print("Pos-to-neg ratio for 'the' = {}".format(pos_neg_ratios["the"])) print("Pos-to-neg ratio for 'amazing' = {}".format(pos_neg_ratios["amazing"])) print("Pos-to-neg ratio for 'terrible' = {}".format(pos_neg_ratios["terrible"])) for x, val in pos_neg_ratios.items(): pos_neg_ratios[x] = np.log(val) print("Pos-to-neg ratio for 'the' = {}".format(pos_neg_ratios["the"])) print("Pos-to-neg ratio for 'amazing' = {}".format(pos_neg_ratios["amazing"])) print("Pos-to-neg ratio for 'terrible' = {}".format(pos_neg_ratios["terrible"])) # words most frequently seen in a review with a "POSITIVE" label pos_neg_ratios.most_common() # words most frequently seen in a review with a "NEGATIVE" label list(reversed(pos_neg_ratios.most_common()))[0:30] # Note: Above is the code Andrew uses in his solution video, # so we've included it here to avoid confusion. # If you explore the documentation for the Counter class, # you will see you could also find the 30 least common # words like this: pos_neg_ratios.most_common()[:-31:-1] from IPython.display import Image review = "This was a horrible, terrible movie." Image(filename='sentiment_network.png') review = "The movie was excellent" Image(filename='sentiment_network_pos.png') # TODO: Create set named "vocab" containing all of the words from all of the reviews vocab = set(total_counts.keys()) vocab_size = len(vocab) print(vocab_size) from IPython.display import Image Image(filename='sentiment_network_2.png') # TODO: Create layer_0 matrix with dimensions 1 by vocab_size, initially filled with zeros layer_0 = np.array([np.zeros(vocab_size, dtype=int)]) layer_0.shape from IPython.display import Image Image(filename='sentiment_network.png') # Create a dictionary of words in the vocabulary mapped to index positions # (to be used in layer_0) word2index = {x: i for i, x in enumerate(vocab)} word2index def update_input_layer(review): Modify the global layer_0 to represent the vector form of review. The element at a given index of layer_0 should represent how many times the given word occurs in the review. Args: review(string) - the string of the review Returns: None global layer_0 # clear out previous state by resetting the layer to be all 0s layer_0 *= 0 for word in review.split(' '): layer_0[0,word2index[word]] += 1 update_input_layer(reviews[0]) layer_0 def get_target_for_label(label): Convert a label to `0` or `1`. Args: label(string) - Either "POSITIVE" or "NEGATIVE". Returns: `0` or `1`. return 0 if label == 'NEGATIVE' else 1 labels[0] get_target_for_label(labels[0]) labels[1] get_target_for_label(labels[1]) import time import sys import numpy as np # Encapsulate our neural network in a class class SentimentNetwork: def __init__(self, reviews, labels, hidden_nodes = 10, learning_rate = 0.1): Create a SentimenNetwork with the given settings Args: reviews(list) - List of reviews used for training labels(list) - List of POSITIVE/NEGATIVE labels associated with the given reviews hidden_nodes(int) - Number of nodes to create in the hidden layer learning_rate(float) - Learning rate to use while training # Assign a seed to our random number generator to ensure we get # reproducable results during development np.random.seed(1) # process the reviews and their associated labels so that everything # is ready for training self.pre_process_data(reviews, labels) # Build the network to have the number of hidden nodes and the learning rate that # were passed into this initializer. Make the same number of input nodes as # there are vocabulary words and create a single output node. self.init_network(len(self.review_vocab), hidden_nodes, 1, learning_rate) def pre_process_data(self, reviews, labels): review_vocab = set(' '.join(reviews).split(' ')) # Convert the vocabulary set to a list so we can access words via indices self.review_vocab = list(review_vocab) label_vocab = set(labels) # Convert the label vocabulary set to a list so we can access labels via indices self.label_vocab = list(label_vocab) # Store the sizes of the review and label vocabularies. self.review_vocab_size = len(self.review_vocab) self.label_vocab_size = len(self.label_vocab) # Create a dictionary of words in the vocabulary mapped to index positions self.word2index = {x: i for i, x in enumerate(self.review_vocab)} # Create a dictionary of labels mapped to index positions self.label2index = {x: i for i, x in enumerate(self.label_vocab)} def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Store the number of nodes in input, hidden, and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Store the learning rate self.learning_rate = learning_rate # Initialize weights # TODO: initialize self.weights_0_1 as a matrix of zeros. These are the weights between # the input layer and the hidden layer. self.weights_0_1 = np.zeros((self.input_nodes, self.hidden_nodes)) # TODO: initialize self.weights_1_2 as a matrix of random values. # These are the weights between the hidden layer and the output layer. self.weights_1_2 = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) # TODO: Create the input layer, a two-dimensional matrix with shape # 1 x input_nodes, with all values initialized to zero self.layer_0 = np.zeros((1, input_nodes)) def update_input_layer(self, review): Update input layer with word counts self.layer_0 *= 0 for word in review.split(' '): if word in self.word2index: self.layer_0[0, self.word2index[word]] += 1 def get_target_for_label(self,label): return self.label2index[label] def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def sigmoid_output_2_derivative(self, output): return output * (1 - output) def train(self, training_reviews, training_labels): # make sure out we have a matching number of reviews and labels assert(len(training_reviews) == len(training_labels)) # Keep track of correct predictions to display accuracy during training correct_so_far = 0 # Remember when we started for printing time statistics start = time.time() n_records = len(training_reviews) # loop through all the given reviews and run a forward and backward pass, # updating weights for every item for i, (review, label) in enumerate(zip(training_reviews, training_labels)): # TODO: Implement the forward pass through the network. # That means use the given review to update the input layer, # then calculate values for the hidden layer, # and finally calculate the output layer. # # Do not use an activation function for the hidden layer, # but use the sigmoid activation function for the output layer. self.update_input_layer(review) label = self.label2index[label] layer_0 = self.layer_0 # (1, n_i) layer_1 = self.layer_0 @ self.weights_0_1 # (1, n_i)@(n_i, n_h) = (1, n_h) # the hidden layer doesn't change the input hidden_output = layer_1 output = self.sigmoid(hidden_output @ self.weights_1_2) # TODO: Implement the back propagation pass here. # That means calculate the error for the forward pass's prediction # and update the weights in the network according to their # contributions toward the error, as calculated via the # gradient descent and back propagation algorithms you # learned in class. error = label - output # output error output_error_term = error * self.sigmoid_output_2_derivative(output) hidden_error_term = self.weights_1_2 @ output_error_term # * 1 self.weights_0_1 += self.learning_rate * (layer_0.T @ hidden_error_term.T) self.weights_1_2 += self.learning_rate * (layer_1.T @ output_error_term.T) # TODO: Keep track of correct predictions. To determine if the prediction was # correct, check that the absolute value of the output error # is less than 0.5. If so, add one to the correct_so_far count. if abs(error[0,0]) < 0.5: correct_so_far += 1 # For debug purposes, print out our prediction accuracy and speed # throughout the training process. elapsed_time = float(time.time() - start) reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0 print("Progress: %.4f%% Speed(reviews/sec): %.1f " "Correct: %s #Trained: %s " "Training Accuracy: %s" % ( 100 * i/n_records, reviews_per_second, correct_so_far, i+1, 100 * correct_so_far/(i+1) ), end="\r") if(i and i % 2500 == 0): print("") def test(self, testing_reviews, testing_labels): Attempts to predict the labels for the given testing_reviews, and uses the test_labels to calculate the accuracy of those predictions. # keep track of how many correct predictions we make correct = 0 # we'll time how many predictions per second we make start = time.time() # Loop through each of the given reviews and call run to predict # its label. for i in range(len(testing_reviews)): pred = self.run(testing_reviews[i]) if(pred == testing_labels[i]): correct += 1 # For debug purposes, print out our prediction accuracy and speed # throughout the prediction process. elapsed_time = float(time.time() - start) reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0 sys.stdout.write("\rProgress:" + str(100 * i/float(len(testing_reviews)))[:4] \ + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \ + " #Correct:" + str(correct) + " #Tested:" + str(i+1) \ + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%") def run(self, review): Returns a POSITIVE or NEGATIVE prediction for the given review. # TODO: Run a forward pass through the network, like you did in the # "train" function. That means use the given review to # update the input layer, then calculate values for the hidden layer, # and finally calculate the output layer. # # Note: The review passed into this function for prediction # might come from anywhere, so you should convert it # to lower case prior to using it. self.update_input_layer(review.lower()) # input to (and output from) the hidden layer hidden_output = self.layer_0 @ self.weights_0_1 # final output output = self.sigmoid(hidden_output @ self.weights_1_2) return 'POSITIVE' if output[0] > 0.5 else 'NEGATIVE' mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1) mlp.test(reviews[-1000:],labels[-1000:]) mlp.train(reviews[:-1000],labels[:-1000]) mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.01) mlp.train(reviews[:-1000],labels[:-1000]) mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.001) mlp.train(reviews[:-1000],labels[:-1000]) from IPython.display import Image Image(filename='sentiment_network.png') def update_input_layer(review): global layer_0 # clear out previous state, reset the layer to be all 0s layer_0 *= 0 for word in review.split(" "): layer_0[0][word2index[word]] += 1 update_input_layer(reviews[0]) layer_0 review_counter = Counter() for word in reviews[0].split(" "): review_counter[word] += 1 review_counter.most_common() import time import sys import numpy as np # Encapsulate our neural network in a class class SentimentNetwork: def __init__(self, reviews, labels, hidden_nodes = 10, learning_rate = 0.1): Create a SentimenNetwork with the given settings Args: reviews(list) - List of reviews used for training labels(list) - List of POSITIVE/NEGATIVE labels associated with the given reviews hidden_nodes(int) - Number of nodes to create in the hidden layer learning_rate(float) - Learning rate to use while training # Assign a seed to our random number generator to ensure we get # reproducable results during development np.random.seed(1) # process the reviews and their associated labels so that everything # is ready for training self.pre_process_data(reviews, labels) # Build the network to have the number of hidden nodes and the learning rate that # were passed into this initializer. Make the same number of input nodes as # there are vocabulary words and create a single output node. self.init_network(len(self.review_vocab), hidden_nodes, 1, learning_rate) def pre_process_data(self, reviews, labels): review_vocab = set(' '.join(reviews).split(' ')) # Convert the vocabulary set to a list so we can access words via indices self.review_vocab = list(review_vocab) label_vocab = set(labels) # Convert the label vocabulary set to a list so we can access labels via indices self.label_vocab = list(label_vocab) # Store the sizes of the review and label vocabularies. self.review_vocab_size = len(self.review_vocab) self.label_vocab_size = len(self.label_vocab) # Create a dictionary of words in the vocabulary mapped to index positions self.word2index = {x: i for i, x in enumerate(self.review_vocab)} # Create a dictionary of labels mapped to index positions self.label2index = {x: i for i, x in enumerate(self.label_vocab)} def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Store the number of nodes in input, hidden, and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Store the learning rate self.learning_rate = learning_rate # Initialize weights # TODO: initialize self.weights_0_1 as a matrix of zeros. These are the weights between # the input layer and the hidden layer. self.weights_0_1 = np.zeros((self.input_nodes, self.hidden_nodes)) # TODO: initialize self.weights_1_2 as a matrix of random values. # These are the weights between the hidden layer and the output layer. self.weights_1_2 = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) # TODO: Create the input layer, a two-dimensional matrix with shape # 1 x input_nodes, with all values initialized to zero self.layer_0 = np.zeros((1, input_nodes)) def update_input_layer(self, review): Update input layer with word counts self.layer_0 *= 0 for word in set(review.split(' ')): if word in self.word2index: self.layer_0[0, self.word2index[word]] = 1 def get_target_for_label(self,label): return self.label2index[label] def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def sigmoid_output_2_derivative(self, output): return output * (1 - output) def train(self, training_reviews, training_labels): # make sure out we have a matching number of reviews and labels assert(len(training_reviews) == len(training_labels)) # Keep track of correct predictions to display accuracy during training correct_so_far = 0 # Remember when we started for printing time statistics start = time.time() n_records = len(training_reviews) # loop through all the given reviews and run a forward and backward pass, # updating weights for every item for i, (review, label) in enumerate(zip(training_reviews, training_labels)): # TODO: Implement the forward pass through the network. # That means use the given review to update the input layer, # then calculate values for the hidden layer, # and finally calculate the output layer. # # Do not use an activation function for the hidden layer, # but use the sigmoid activation function for the output layer. self.update_input_layer(review) label = self.label2index[label] layer_0 = self.layer_0 # (1, n_i) layer_1 = self.layer_0 @ self.weights_0_1 # (1, n_i)@(n_i, n_h) = (1, n_h) # the hidden layer doesn't change the input hidden_output = layer_1 output = self.sigmoid(hidden_output @ self.weights_1_2) # TODO: Implement the back propagation pass here. # That means calculate the error for the forward pass's prediction # and update the weights in the network according to their # contributions toward the error, as calculated via the # gradient descent and back propagation algorithms you # learned in class. error = label - output # output error output_error_term = error * self.sigmoid_output_2_derivative(output) hidden_error_term = self.weights_1_2 @ output_error_term # * 1 self.weights_0_1 += self.learning_rate * (layer_0.T @ hidden_error_term.T) self.weights_1_2 += self.learning_rate * (layer_1.T @ output_error_term.T) # TODO: Keep track of correct predictions. To determine if the prediction was # correct, check that the absolute value of the output error # is less than 0.5. If so, add one to the correct_so_far count. if abs(error[0,0]) < 0.5: correct_so_far += 1 # For debug purposes, print out our prediction accuracy and speed # throughout the training process. elapsed_time = float(time.time() - start) reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0 print("Progress: %.4f%% Speed(reviews/sec): %.1f " "Correct: %s #Trained: %s " "Training Accuracy: %.5f" % ( 100 * i/n_records, reviews_per_second, correct_so_far, i+1, 100 * correct_so_far/(i+1) ), end="\r") if(i and i % 2500 == 0): print("") def test(self, testing_reviews, testing_labels): Attempts to predict the labels for the given testing_reviews, and uses the test_labels to calculate the accuracy of those predictions. # keep track of how many correct predictions we make correct = 0 # we'll time how many predictions per second we make start = time.time() # Loop through each of the given reviews and call run to predict # its label. for i in range(len(testing_reviews)): pred = self.run(testing_reviews[i]) if(pred == testing_labels[i]): correct += 1 # For debug purposes, print out our prediction accuracy and speed # throughout the prediction process. elapsed_time = float(time.time() - start) reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0 sys.stdout.write("\rProgress:" + str(100 * i/float(len(testing_reviews)))[:4] \ + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \ + " #Correct:" + str(correct) + " #Tested:" + str(i+1) \ + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%") def run(self, review): Returns a POSITIVE or NEGATIVE prediction for the given review. # TODO: Run a forward pass through the network, like you did in the # "train" function. That means use the given review to # update the input layer, then calculate values for the hidden layer, # and finally calculate the output layer. # # Note: The review passed into this function for prediction # might come from anywhere, so you should convert it # to lower case prior to using it. self.update_input_layer(review.lower()) # input to (and output from) the hidden layer hidden_output = self.layer_0 @ self.weights_0_1 # final output output = self.sigmoid(hidden_output @ self.weights_1_2) return 'POSITIVE' if output[0] > 0.5 else 'NEGATIVE' mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1) mlp.train(reviews[:-1000],labels[:-1000]) mlp.test(reviews[-1000:],labels[-1000:]) Image(filename='sentiment_network_sparse.png') layer_0 = np.zeros(10) layer_0 layer_0[4] = 1 layer_0[9] = 1 layer_0 weights_0_1 = np.random.randn(10,5) layer_0.dot(weights_0_1) indices = [4,9] layer_1 = np.zeros(5) for index in indices: layer_1 += (1 * weights_0_1[index]) layer_1 Image(filename='sentiment_network_sparse_2.png') layer_1 = np.zeros(5) for index in indices: layer_1 += (weights_0_1[index]) layer_1 import time import sys import numpy as np # Encapsulate our neural network in a class class SentimentNetwork: def __init__(self, reviews, labels, hidden_nodes = 10, learning_rate = 0.1): Create a SentimenNetwork with the given settings Args: reviews(list) - List of reviews used for training labels(list) - List of POSITIVE/NEGATIVE labels associated with the given reviews hidden_nodes(int) - Number of nodes to create in the hidden layer learning_rate(float) - Learning rate to use while training # Assign a seed to our random number generator to ensure we get # reproducable results during development np.random.seed(1) # process the reviews and their associated labels so that everything # is ready for training self.pre_process_data(reviews, labels) # Build the network to have the number of hidden nodes and the learning rate that # were passed into this initializer. Make the same number of input nodes as # there are vocabulary words and create a single output node. self.init_network(len(self.review_vocab), hidden_nodes, 1, learning_rate) def pre_process_data(self, reviews, labels): review_vocab = set(' '.join(reviews).split(' ')) # Convert the vocabulary set to a list so we can access words via indices self.review_vocab = list(review_vocab) label_vocab = set(labels) # Convert the label vocabulary set to a list so we can access labels via indices self.label_vocab = list(label_vocab) # Store the sizes of the review and label vocabularies. self.review_vocab_size = len(self.review_vocab) self.label_vocab_size = len(self.label_vocab) # Create a dictionary of words in the vocabulary mapped to index positions self.word2index = {x: i for i, x in enumerate(self.review_vocab)} # Create a dictionary of labels mapped to index positions self.label2index = {x: i for i, x in enumerate(self.label_vocab)} def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Store the number of nodes in input, hidden, and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Store the learning rate self.learning_rate = learning_rate # Generate weights self.weights_0_1 = np.zeros((self.input_nodes, self.hidden_nodes)) self.weights_1_2 = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) self.layer_1 = np.zeros((1, self.hidden_nodes)) def get_target_for_label(self,label): return self.label2index[label] def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def sigmoid_output_2_derivative(self, output): return output * (1 - output) def train(self, training_reviews_raw, training_labels): training_reviews = [[self.word2index[x] for x in set(review.split(' '))] for review in training_reviews_raw] # make sure out we have a matching number of reviews and labels assert(len(training_reviews) == len(training_labels)) # Keep track of correct predictions to display accuracy during training correct = 0 n_records = len(training_reviews) # Remember when we started for printing time statistics start = time.time() layer_1 = self.layer_1 # loop through all the given reviews and run a forward and backward pass, # updating weights for every item for i, (words, label) in enumerate(zip(training_reviews, training_labels)): label = self.label2index[label] layer_1 *= 0 for index in words: # 1 is the input value # shape of weights_0_1: (vocab_size, n_hidden_nodes) # .[index] get the weights for this specific word layer_1 += self.weights_0_1[index] # the hidden layer doesn't change the input hidden_output = layer_1 output = self.sigmoid(hidden_output @ self.weights_1_2) error = label - output # output error output_error_term = error * self.sigmoid_output_2_derivative(output) hidden_error_term = (self.weights_1_2 @ output_error_term).T # * 1 for index in words: self.weights_0_1[index] += self.learning_rate * hidden_error_term[0] self.weights_1_2 += self.learning_rate * (layer_1.T @ output_error_term) # TODO: Keep track of correct predictions. To determine if the prediction was # correct, check that the absolute value of the output error # is less than 0.5. If so, add one to the correct_so_far count. if abs(error[0,0]) < 0.5: correct += 1 self.print_progress(n_records, start, correct, i) def print_progress(self, n_records, start, correct, i): # For debug purposes, print out our prediction accuracy and speed # throughout the process. elapsed_time = float(time.time() - start) reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0 print("\rProgress:%2.2f%% Speed:%4.2f/s Correct:%5d #Trained:%5s Accuracy:%2.4f" % (100 * i/n_records, reviews_per_second, correct, i+1, 100 * correct/(i+1)), end='') if i != 0 and i % 2500 == 0: print('\n', end='') def test(self, testing_reviews, testing_labels): Attempts to predict the labels for the given testing_reviews, and uses the test_labels to calculate the accuracy of those predictions. # keep track of how many correct predictions we make correct = 0 # we'll time how many predictions per second we make start = time.time() n_records = len(testing_reviews) # Loop through each of the given reviews and call run to predict # its label. for i in range(n_records): pred = self.run(testing_reviews[i]) if(pred == testing_labels[i]): correct += 1 self.print_progress(n_records, start, correct, i) def run(self, review): Returns a POSITIVE or NEGATIVE prediction for the given review. layer_1 = self.layer_1 layer_1 *= 0 for word in set(review.lower().split(' ')): if word in self.word2index: layer_1 += self.weights_0_1[self.word2index[word]] # final output output = self.sigmoid(layer_1 @ self.weights_1_2) # round to the nearest label label_index = 0 if output[0,0] < 0.5 else 1 return self.label_vocab[label_index] mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1) print('') mlp.train(reviews[:-1000],labels[:-1000]) mlp.test(reviews[-1000:], labels[-1000:]) Image(filename='sentiment_network_sparse_2.png') # words most frequently seen in a review with a "POSITIVE" label pos_neg_ratios.most_common() # words most frequently seen in a review with a "NEGATIVE" label list(reversed(pos_neg_ratios.most_common()))[0:30] from bokeh.models import ColumnDataSource, LabelSet from bokeh.plotting import figure, show, output_file from bokeh.io import output_notebook output_notebook() hist, edges = np.histogram(list(map(lambda x:x[1],pos_neg_ratios.most_common())), density=True, bins=100, normed=True) p = figure(tools="pan,wheel_zoom,reset,save", toolbar_location="above", title="Word Positive/Negative Affinity Distribution") p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:], line_color="#555555") show(p) frequency_frequency = Counter() for word, cnt in total_counts.most_common(): frequency_frequency[cnt] += 1 hist, edges = np.histogram(list(map(lambda x:x[1],frequency_frequency.most_common())), density=True, bins=100, normed=True) p = figure(tools="pan,wheel_zoom,reset,save", toolbar_location="above", title="The frequency distribution of the words in our corpus") p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:], line_color="#555555") show(p) # TODO: -Copy the SentimentNetwork class from Project 5 lesson # -Modify it according to the above instructions import time import sys import numpy as np # Encapsulate our neural network in a class class SentimentNetwork: def __init__(self, reviews, labels, hidden_nodes=10, learning_rate=0.1, min_count=10, polarity_cutoff=1): Create a SentimenNetwork with the given settings Args: reviews(list) - List of reviews used for training labels(list) - List of POSITIVE/NEGATIVE labels associated with the given reviews hidden_nodes(int) - Number of nodes to create in the hidden layer learning_rate(float) - Learning rate to use while training # Assign a seed to our random number generator to ensure we get # reproducable results during development np.random.seed(1) # process the reviews and their associated labels so that everything # is ready for training self.pre_process_data(reviews, labels, min_count, polarity_cutoff) # Build the network to have the number of hidden nodes and the learning rate that # were passed into this initializer. Make the same number of input nodes as # there are vocabulary words and create a single output node. self.init_network(len(self.review_vocab), hidden_nodes, 1, learning_rate) # def pre_process_data(self, reviews, labels, min_count, polarity_cutoff): # ## ---------------------------------------- # ## New for Project 6: Calculate positive-to-negative ratios for words before # # building vocabulary # # # positive_counts = Counter() # negative_counts = Counter() # total_counts = Counter() # for i in range(len(reviews)): # if(labels[i] == 'POSITIVE'): # for word in reviews[i].split(" "): # positive_counts[word] += 1 # total_counts[word] += 1 # else: # for word in reviews[i].split(" "): # negative_counts[word] += 1 # total_counts[word] += 1 # pos_neg_ratios = Counter() # for term,cnt in list(total_counts.most_common()): # if(cnt >= 50): # pos_neg_ratio = positive_counts[term] / float(negative_counts[term]+1) # pos_neg_ratios[term] = pos_neg_ratio # for word,ratio in pos_neg_ratios.most_common(): # if(ratio > 1): # pos_neg_ratios[word] = np.log(ratio) # else: # pos_neg_ratios[word] = -np.log((1 / (ratio + 0.01))) # # # ## end New for Project 6 # ## ---------------------------------------- # # populate review_vocab with all of the words in the given reviews # review_vocab = set() # for review in reviews: # for word in review.split(" "): # ## New for Project 6: only add words that occur at least min_count times # # and for words with pos/neg ratios, only add words # # that meet the polarity_cutoff # if(total_counts[word] > min_count): # if(word in pos_neg_ratios.keys()): # if((pos_neg_ratios[word] >= polarity_cutoff) or (pos_neg_ratios[word] <= -polarity_cutoff)): # review_vocab.add(word) # else: # review_vocab.add(word) # # Convert the vocabulary set to a list so we can access words via indices # self.review_vocab = list(review_vocab) # # populate label_vocab with all of the words in the given labels. # label_vocab = set() # for label in labels: # label_vocab.add(label) # # Convert the label vocabulary set to a list so we can access labels via indices # self.label_vocab = list(label_vocab) # # Store the sizes of the review and label vocabularies. # self.review_vocab_size = len(self.review_vocab) # self.label_vocab_size = len(self.label_vocab) # # Create a dictionary of words in the vocabulary mapped to index positions # self.word2index = {} # for i, word in enumerate(self.review_vocab): # self.word2index[word] = i # # Create a dictionary of labels mapped to index positions # self.label2index = {} # for i, label in enumerate(self.label_vocab): # self.label2index[label] = i def pre_process_data(self, reviews, labels, min_count, polarity_cutoff): # Convert the label vocabulary set to a list so we can access labels via indices label_vocab = set(labels) self.label_vocab = list(label_vocab) self.label_vocab_size = len(self.label_vocab) pos_count, neg_count, total_count = Counter(), Counter(), Counter() n_pos, n_neg = 0, 0 for review, label in zip(reviews, labels): if label == 'POSITIVE': c = pos_count n_pos += 1 else: c = neg_count n_neg += 1 for word in review.split(' '): c[word] += 1 total_count[word] += 1 # Convert the vocabulary set to a list so we can access words via indices self.review_vocab = [ x for x, count in total_count.items() if (count > min_count and abs(np.log( ((pos_count[x] + 0.5) / n_pos) / ((neg_count[x] + 0.5) / n_neg) )) > polarity_cutoff) ] # Store the sizes of the review and label vocabularies. self.review_vocab_size = len(self.review_vocab) # Create a dictionary of words in the vocabulary mapped to index positions self.word2index = {x: i for i, x in enumerate(self.review_vocab)} # Create a dictionary of labels mapped to index positions self.label2index = {x: i for i, x in enumerate(self.label_vocab)} def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Store the number of nodes in input, hidden, and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Store the learning rate self.learning_rate = learning_rate # Generate weights self.weights_0_1 = np.zeros((self.input_nodes, self.hidden_nodes)) self.weights_1_2 = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) self.layer_1 = np.zeros((1, self.hidden_nodes)) def get_target_for_label(self,label): return self.label2index[label] def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def sigmoid_output_2_derivative(self, output): return output * (1 - output) def train(self, training_reviews_raw, training_labels): # make sure out we have a matching number of reviews and labels assert(len(training_reviews_raw) == len(training_labels)) training_reviews = [ [self.word2index[x] for x in set(review.split(' ')) if x in self.word2index] for review in training_reviews_raw ] # Keep track of correct predictions to display accuracy during training correct = 0 n_records = len(training_reviews) # Remember when we started for printing time statistics start = time.time() layer_1 = self.layer_1 # loop through all the given reviews and run a forward and backward pass, # updating weights for every item for i, (words, label) in enumerate(zip(training_reviews, training_labels)): label = self.label2index[label] layer_1 *= 0 for index in words: # 1 is the input value # shape of weights_0_1: (vocab_size, n_hidden_nodes) # .[index] get the weights for this specific word layer_1 += self.weights_0_1[index] # the hidden layer doesn't change the input hidden_output = layer_1 output = self.sigmoid(hidden_output @ self.weights_1_2) error = label - output # output error output_error_term = error * self.sigmoid_output_2_derivative(output) hidden_error_term = (self.weights_1_2 @ output_error_term).T # * 1 for index in words: self.weights_0_1[index] += self.learning_rate * hidden_error_term[0] self.weights_1_2 += self.learning_rate * (layer_1.T @ output_error_term) # TODO: Keep track of correct predictions. To determine if the prediction was # correct, check that the absolute value of the output error # is less than 0.5. If so, add one to the correct_so_far count. if abs(error[0,0]) < 0.5: correct += 1 self.print_progress(n_records, start, correct, i) def print_progress(self, n_records, start, correct, i): # For debug purposes, print out our prediction accuracy and speed # throughout the process. elapsed_time = float(time.time() - start) reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0 if i % 100 == 0 or i + 1 == n_records: print("Progress:%2.2f%% Speed:%4.2f/s Correct:%5d #Trained:%5s Accuracy:%2.4f" % (100 * i/n_records, reviews_per_second, correct, i+1, 100 * correct/(i+1)), end='\r') def test(self, testing_reviews, testing_labels): Attempts to predict the labels for the given testing_reviews, and uses the test_labels to calculate the accuracy of those predictions. # keep track of how many correct predictions we make correct = 0 # we'll time how many predictions per second we make start = time.time() n_records = len(testing_reviews) # Loop through each of the given reviews and call run to predict # its label. for i in range(n_records): pred = self.run(testing_reviews[i]) if(pred == testing_labels[i]): correct += 1 self.print_progress(n_records, start, correct, i) def run(self, review): Returns a POSITIVE or NEGATIVE prediction for the given review. layer_1 = self.layer_1 layer_1 *= 0 for word in set(review.lower().split(' ')): if word in self.word2index: layer_1 += self.weights_0_1[self.word2index[word]] # final output output = self.sigmoid(layer_1 @ self.weights_1_2) # round to the nearest label label_index = 0 if output[0,0] < 0.5 else 1 return self.label_vocab[label_index] mlp = SentimentNetwork(reviews[:-1000],labels[:-1000],min_count=20,polarity_cutoff=0.05,learning_rate=0.01) mlp.train(reviews[:-1000],labels[:-1000]) mlp.test(reviews[-1000:],labels[-1000:]) mlp = SentimentNetwork(reviews[:-1000],labels[:-1000],min_count=20,polarity_cutoff=0.8,learning_rate=0.01) mlp.train(reviews[:-1000],labels[:-1000]) mlp.test(reviews[-1000:],labels[-1000:]) mlp_full = SentimentNetwork(reviews[:-1000],labels[:-1000],min_count=0,polarity_cutoff=0,learning_rate=0.01) mlp_full.train(reviews[:-1000],labels[:-1000]) Image(filename='sentiment_network_sparse.png') def get_most_similar_words(focus = "horrible"): most_similar = Counter() for word in mlp_full.word2index.keys(): most_similar[word] = np.dot(mlp_full.weights_0_1[mlp_full.word2index[word]], mlp_full.weights_0_1[mlp_full.word2index[focus]]) return most_similar.most_common() get_most_similar_words("excellent") get_most_similar_words("terrible") import matplotlib.colors as colors words_to_visualize = list() for word, ratio in pos_neg_ratios.most_common(500): if(word in mlp_full.word2index.keys()): words_to_visualize.append(word) for word, ratio in list(reversed(pos_neg_ratios.most_common()))[0:500]: if(word in mlp_full.word2index.keys()): words_to_visualize.append(word) pos = 0 neg = 0 colors_list = list() vectors_list = list() for word in words_to_visualize: if word in pos_neg_ratios.keys(): vectors_list.append(mlp_full.weights_0_1[mlp_full.word2index[word]]) if(pos_neg_ratios[word] > 0): pos+=1 colors_list.append("#00ff00") else: neg+=1 colors_list.append("#000000") from sklearn.manifold import TSNE tsne = TSNE(n_components=2, random_state=0) words_top_ted_tsne = tsne.fit_transform(vectors_list) p = figure(tools="pan,wheel_zoom,reset,save", toolbar_location="above", title="vector T-SNE for most polarized words") source = ColumnDataSource(data=dict(x1=words_top_ted_tsne[:,0], x2=words_top_ted_tsne[:,1], names=words_to_visualize, color=colors_list)) p.scatter(x="x1", y="x2", size=8, source=source, fill_color="color") word_labels = LabelSet(x="x1", y="x2", text="names", y_offset=6, text_font_size="8pt", text_color="#555555", source=source, text_align='center') p.add_layout(word_labels) show(p) # green indicates positive words, black indicates negative words <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Are we dealing with form or metric information here? Step2: Revise and edit to best convey the scientific result.
<ASSISTANT_TASK:> Python Code: import pickle data = pickle.load(open('data/correlation_map.pkl', 'rb')) data.keys() type(data['excitation energy']) data['excitation energy'].shape data['correlation'].shape import matplotlib %matplotlib inline matplotlib.style.use('ggplot') import matplotlib.pyplot as plt plt.imshow(data['correlation']) matplotlib.__version__ from matplotlib.cm import magma, inferno, plasma, viridis # from colormaps import magma, inferno, plasma, viridis correlation = data['correlation'] excitation = data['excitation energy'] emission = data['emission energy'] plt.imshow(correlation, origin='lower', cmap=magma) plt.imshow(correlation, origin='lower', extent=[excitation.min(), excitation.max(), emission.min(), emission.max()], cmap=magma) f, ax = plt.subplots(1, 1, figsize=(5, 5)) map0 = ax.imshow(correlation, origin='lower', extent=[excitation.min(), excitation.max(), emission.min(), emission.max()], cmap=magma) ax.plot(excitation, excitation) ax.set_xlabel('Excitation Energy (eV)') f.colorbar(map0, ax=ax) f, ax = plt.subplots(1, 1, figsize=(5, 5)) ax.imshow(correlation, origin='lower', extent=[excitation.min(), excitation.max(), emission.min(), emission.max()], cmap=viridis) ax.plot(excitation, excitation) ax.set_xlabel('Excitation Energy (eV)') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Training a multi-layer perceptron Step2: Neural networks tend to perform better when the inputs are scaled to have zero mean and unit variance. Use sklearn.preprocessing.StandardScaler to appropriately scale the training and test sets. Note
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt from scipy.special import expit from sklearn import datasets, mixture xs = np.linspace(-5, 5) fig = plt.figure(figsize=(20, 5)) ## Plot relu ax1 = fig.add_subplot(1, 3, 1) ax1.plot(xs, np.maximum(0, xs)) ## Plot sigmoid ax2 = fig.add_subplot(1, 3, 2) ax2.plot(xs, expit(xs)) ## Plot tanh ax3 = fig.add_subplot(1, 3, 3) ax3.plot(xs, np.tanh(xs)) plt.show() iris = datasets.load_iris() xs = iris.data[:, 0:2] ys = iris.target X, y = datasets.make_classification(n_samples=250, n_features=2, n_informative=2, n_redundant=0, n_classes=3, n_clusters_per_class=1) gmm = mixture.GaussianMixture(n_components=3).fit(X, y) xx, yy = np.meshgrid(np.arange(-5, 5, 0.2), np.arange(-5, 5, 0.2)) Z = gmm.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Accent, marker='.') plt.contourf(xx, yy, Z, cmap=plt.cm.Accent, alpha=.6) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Wykresy punktowe Step2: Histogramy
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt fig = plt.figure(figsize=(15,10)) ax = fig.add_subplot(111) ## the data N = 5 menMeans = [18, 35, 30, 35, 27] menStd = [2, 3, 4, 1, 2] womenMeans = [25, 32, 34, 20, 25] womenStd = [3, 5, 2, 3, 3] ## necessary variables ind = np.arange(N) # the x locations for the groups width = 0.35 # the width of the bars ## the bars rects1 = ax.bar(ind, menMeans, width, color='black', yerr=menStd, error_kw=dict(elinewidth=2,ecolor='red')) rects2 = ax.bar(ind+width, womenMeans, width, color='red', yerr=womenStd, error_kw=dict(elinewidth=2,ecolor='black')) # axes and labels ax.set_xlim(-width,len(ind)+width) ax.set_ylim(0,45) ax.set_ylabel('Scores') ax.set_title('Scores by group and gender') xTickMarks = ['Group'+str(i) for i in range(1,6)] ax.set_xticks(ind+width) xtickNames = ax.set_xticklabels(xTickMarks) plt.setp(xtickNames, rotation=45, fontsize=10) ## add a legend ax.legend( (rects1[0], rects2[0]), ('Men', 'Women') ) plt.show() import matplotlib.pyplot as plt import numpy as np fig = plt.figure(figsize=(15,7)) ax1 = fig.add_subplot(121) ## the data N=1000 x = np.random.randn(N) y = np.random.randn(N) ## left panel ax1.scatter(x,y,color='blue',s=5,edgecolor='none') ax1.set_aspect(1./ax1.get_data_ratio()) # make axes square ## right panel ax2 = fig.add_subplot(122) props = dict(alpha=0.5, edgecolors='none' ) handles = [] colors = ['blue', 'green', 'magenta', 'cyan'] for color in colors: x = np.random.randn(N) y = np.random.randn(N) s = np.random.randint(50,200) handles.append(ax2.scatter(x, y, c=color, s=s, **props)) ax2.set_ylim([-5,11]) ax2.set_xlim([-5,11]) ax2.legend(handles, colors) ax2.grid(True) ax2.set_aspect(1./ax2.get_data_ratio()) plt.show() import numpy as np import matplotlib.pyplot as plt fig = plt.figure(figsize=(15,10)) ax = fig.add_subplot(111) x = np.random.normal(0,1,1000) numBins = 50 ax.hist(x,numBins,color='green',alpha=0.8) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The Elves in accounting are thankful for your help; one of them even offers you a starfish coin they had left over from a past vacation. They offer you a second one if you can find three numbers in your expense report that meet the same criteria.
<ASSISTANT_TASK:> Python Code: for a,b in itertools.permutations(list(map(int, data)), 2): if a+b == 2020: print(a*b) break for a,b,c in itertools.permutations(list(map(int, data)), 3): if a+b+c == 2020: print(a*b*c) break <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import section specific modules Step2: 3.3 Horizontal Coordinates (ALT,AZ) Step3: Figure 3.3.3 Step4: Figure 3.3.4
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt %matplotlib inline from IPython.display import HTML HTML('../style/course.css') #apply general CSS from IPython.display import HTML HTML('../style/code_toggle.html') import ephem import matplotlib %pylab inline pylab.rcParams['figure.figsize'] = (15, 10) #Creating the observer: KAT-7 KAT7 = ephem.Observer() KAT7.lat = '-30:43:17' KAT7.lon = '21:25:40.08' KAT7.elevation = 0.0 KAT7.date = '2016/5/30 00:00:00' #UTC #Creating the celestial bodies star_names = np.array(["Rigel","Thuban","Mimosa","Procyon","Sirius","Achernar","Menkar","Zaurak","Aldebaran","Betelgeuse"]) star_objects = np.empty((len(star_names),),dtype=object) for k in xrange(len(star_names)): star_objects[k] = ephem.star(star_names[k],KAT7) #Creating the time-strings at which we observe hours = np.empty((96,),dtype=object) minutes = np.empty((96,),dtype=object) alt_az_mat = np.zeros((len(star_names),len(hours)+1,2),dtype=float) #(sources,hours,horz_coord) hours_c = 0 for k in xrange(len(hours)): if k % 4 == 0: if hours_c < 10: hours[k] = '0'+str(hours_c) else: hours[k] = str(hours_c) minutes[k] = "00" elif k % 4 == 1: if hours_c < 10: hours[k] = '0'+str(hours_c) else: hours[k] = str(hours_c) minutes[k] = "15" elif k % 4 == 2: if hours_c < 10: hours[k] = '0'+str(hours_c) else: hours[k] = str(hours_c) minutes[k] = "30" elif k % 4 == 3: if hours_c < 10: hours[k] = '0'+str(hours_c) else: hours[k] = str(hours_c) hours_c = hours_c + 1 minutes[k] = "45" #Compute the alt/az for different stars observed by KAT-7 at different times on 2016/5/30 for k in xrange(len(hours)): #Set new time n_date = '2016/5/30 ' + hours[k] + ':' + minutes[k] + ':00' KAT7.date = n_date #Calculate new alt/az for j in xrange(len(star_names)): star_objects[j].compute(KAT7) alt_az_mat[j,k,0] = float(star_objects[j].alt) alt_az_mat[j,k,1] = float(star_objects[j].az) #Copy first value to last value alt_az_mat[:,-1,:] = alt_az_mat[:,0,:] time_v = np.linspace(0,24,len(hours)+1,endpoint=True) #Plot alt matplotlib.rcParams.update({'font.size': 13.75}) fig, ax = plt.subplots() c = ["r","b","g","y","m","c","k"] l = ["-","--"] l_ind = 0 c_ind = 0 for k in xrange(len(star_names)): if c_ind == 7: c_ind = 0 l_ind = 1 mask = np.logical_not(np.logical_and(alt_az_mat[k,:,0]*(180/np.pi)>-5,alt_az_mat[k,:,0]*(180/np.pi)<5)) new_curve_y = alt_az_mat[k,mask,0]*(180/np.pi) new_curve_x = time_v[mask] ax.plot(new_curve_x,new_curve_y,c[c_ind]+l[l_ind],label=star_names[k],lw=2,zorder=k) c_ind = c_ind +1 ax.fill_between(time_v, -5, 5, facecolor='k',alpha=1,zorder=k+1) ax.annotate("HORIZON", xy = (11.5,5), xytext=(11.5, 15),arrowprops=dict(facecolor="b", shrink=1)) ax.legend() ax.set_xlim([0,24]) ax.set_ylim([-90,90]) ticks = np.array([-90,-80,-70,-60,-50,-40,-30,-20,-10,0,10,20,30,40,50,60,70,80,90]) plt.yticks(ticks) ticks = np.array([0,2,4,6,8,10,12,14,16,18,20,22,24]) plt.xticks(ticks) plt.xlabel("UTC [$h$]") plt.ylabel("Altitude [$^{\circ}$]") plt.title("KAT-7: 2016/5/30") labels = [item.get_text() for item in ax.get_yticklabels()] labels = np.array(["-90$^{\circ}$","-80$^{\circ}$","-70$^{\circ}$","-60$^{\circ}$","-50$^{\circ}$","-40$^{\circ}$","-30$^{\circ}$","-20$^{\circ}$","-10$^{\circ}$","0$^{\circ}$","10$^{\circ}$","20$^{\circ}$","30$^{\circ}$","40$^{\circ}$","50$^{\circ}$","60$^{\circ}$","70$^{\circ}$","80$^{\circ}$","90$^{\circ}$"]) ax.set_yticklabels(labels) ax.grid('on') #Plot az matplotlib.rcParams.update({'font.size': 13.75}) fig, ax = plt.subplots() c = ["r","b","g","y","m","c","k"] l = ["-","--"] l_ind = 0 c_ind = 0 for i in xrange(10): if c_ind == 7: c_ind = 0 l_ind = 1 plt.plot(time_v,alt_az_mat[i,:,1]*(180/np.pi),c[c_ind]+l[l_ind],lw=2,label=star_names[i]) c_ind = c_ind +1 ax.legend() ax.set_xlim([0,24]) ax.set_ylim([0,360]) ticks = np.array([0,60,120,180,240,300,360]) plt.yticks(ticks) ticks = np.array([0,2,4,6,8,10,12,14,16,18,20,22,24]) plt.xticks(ticks) plt.xlabel("UTC [$h$]") plt.ylabel("Azimuth [$^{\circ}$]") plt.title("KAT-7: 2016/5/30") labels = [item.get_text() for item in ax.get_yticklabels()] labels = np.array(["0$^{\circ}$","60$^{\circ}$","120$^{\circ}$","180$^{\circ}$","240$^{\circ}$","300$^{\circ}$","360$^{\circ}$"]) ax.set_yticklabels(labels) ax.grid('on') #Preliminaries matplotlib.rcParams.update({'font.size': 13.75}) observatories = ["LOFAR","KAT7","MWA","VLA","ALMA","GMRT"] lat_v = ["52:54:32","-30:43:17","-26:42:12","34:04:43","-23:01:09","19:05:47"] lon_v = ["06:52:08","21:25:40.08","116:40:16","-107:37:05","-67:45:12","74:02:59"] alt_az = np.zeros((len(observatories),2),dtype=float) #Loading different observatories and calculating alt/az of Betelgeuse for each of them for k in xrange(len(observatories)): obs = ephem.Observer() obs.lat = lat_v[k] obs.lon = lon_v[k] obs.elevation = 0.0 obs.date = '2016/5/30 00:00:00' #UTC betelgeuse = ephem.star("Betelgeuse",obs) alt_az[k,0] = float(betelgeuse.alt) alt_az[k,1] = float(betelgeuse.az) #Plotting cluster = ['o','^','>','s','*','v'] col = ['b','r','g','k','c','m'] fig, ax = plt.subplots() for xp, yp, m, n, col_v in zip(alt_az[:,0]*(180/np.pi), alt_az[:,1]*(180/np.pi), cluster, observatories,col): ax.plot([xp],[yp], marker=m, c = col_v, label = n, markersize = 20, linestyle='None') ax.legend(numpoints=1) ax.set_xlim([-90,90]) ax.set_ylim([0,360]) ticks = np.array([0,60,120,180,240,300,360]) plt.yticks(ticks) ticks = np.array([-90,-80,-70,-60,-50,-40,-30,-20,-10,0,10,20,30,40,50,60,70,80,90]) plt.xticks(ticks) labels = [item.get_text() for item in ax.get_yticklabels()] labels = np.array(["0$^{\circ}$","60$^{\circ}$","120$^{\circ}$","180$^{\circ}$","240$^{\circ}$","300$^{\circ}$","360$^{\circ}$"]) ax.set_yticklabels(labels) labels = [item.get_text() for item in ax.get_xticklabels()] labels = np.array(["-90$^{\circ}$","-80$^{\circ}$","-70$^{\circ}$","-60$^{\circ}$","-50$^{\circ}$","-40$^{\circ}$","-30$^{\circ}$","-20$^{\circ}$","-10$^{\circ}$","0$^{\circ}$","10$^{\circ}$","20$^{\circ}$","30$^{\circ}$","40$^{\circ}$","50$^{\circ}$","60$^{\circ}$","70$^{\circ}$","80$^{\circ}$","90$^{\circ}$"]) ax.set_xticklabels(labels) plt.xlabel("Altitude [$^{\circ}$]") plt.ylabel("Azimuth [$^{\circ}$]") plt.title("Betelgeuse: 2016/5/30 - 00:00:00 UTC") ax.grid('on') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Bonus Material - Softmax Regression Step2: First, we want to encode the class labels into a format that we can more easily work with; we apply one-hot encoding Step3: A sample that belongs to class 0 (the first row) has a 1 in the first cell, a sample that belongs to class 2 has a 1 in the second cell of its row, and so forth. Step4: To compute the net input, we multiply the 4x2 matrix feature matrix X with the 2x3 (n_features x n_classes) weight matrix W, which yields a 4x3 output matrix (n_samples x n_classes) to which we then add the bias unit Step5: Now, it's time to compute the softmax activation that we discussed earlier Step6: As we can see, the values for each sample (row) nicely sum up to 1 now. E.g., we can say that the first sample Step7: As we can see, our predictions are terribly wrong, since the correct class labels are [0, 1, 2, 2]. Now, in order to train our logistic model (e.g., via an optimization algorithm such as gradient descent), we need to define a cost function $J(\cdot)$ that we want to minimize Step15: In order to learn our softmax model -- determining the weight coefficients -- via gradient descent, we then need to compute the derivative Step16: Example 1 - Gradient Descent Step17: Continue training for another 800 epochs by calling the fit method with init_params=False. Step18: Predicting Class Labels Step19: Predicting Class Probabilities Step20: Example 2 - Stochastic Gradient Descent
<ASSISTANT_TASK:> Python Code: %load_ext watermark %watermark -a '' -u -d -v -p matplotlib,numpy,scipy # to install watermark just uncomment the following line: #%install_ext https://raw.githubusercontent.com/rasbt/watermark/master/watermark.py %matplotlib inline import numpy as np y = np.array([0, 1, 2, 2]) y_enc = (np.arange(np.max(y) + 1) == y[:, None]).astype(float) print('one-hot encoding:\n', y_enc) X = np.array([[0.1, 0.5], [1.1, 2.3], [-1.1, -2.3], [-1.5, -2.5]]) W = np.array([[0.1, 0.2, 0.3], [0.1, 0.2, 0.3]]) bias = np.array([0.01, 0.1, 0.1]) print('Inputs X:\n', X) print('\nWeights W:\n', W) print('\nbias:\n', bias) X = np.array([[0.1, 0.5], [1.1, 2.3], [-1.1, -2.3], [-1.5, -2.5]]) W = np.array([[0.1, 0.2, 0.3], [0.1, 0.2, 0.3]]) bias = np.array([0.01, 0.1, 0.1]) print('Inputs X:\n', X) print('\nWeights W:\n', W) print('\nbias:\n', bias) def net_input(X, W, b): return (X.dot(W) + b) net_in = net_input(X, W, bias) print('net input:\n', net_in) def softmax(z): return (np.exp(z.T) / np.sum(np.exp(z), axis=1)).T smax = softmax(net_in) print('softmax:\n', smax) def to_classlabel(z): return z.argmax(axis=1) print('predicted class labels: ', to_classlabel(smax)) def cross_entropy(output, y_target): return - np.sum(np.log(output) * (y_target), axis=1) xent = cross_entropy(smax, y_enc) print('Cross Entropy:', xent) def cost(output, y_target): return np.mean(cross_entropy(output, y_target)) J_cost = cost(smax, y_enc) print('Cost: ', J_cost) # Sebastian Raschka 2016 # Implementation of the mulitnomial logistic regression algorithm for # classification. # Author: Sebastian Raschka <sebastianraschka.com> # # License: BSD 3 clause import numpy as np from time import time #from .._base import _BaseClassifier #from .._base import _BaseMultiClass class SoftmaxRegression(object): Softmax regression classifier. Parameters ------------ eta : float (default: 0.01) Learning rate (between 0.0 and 1.0) epochs : int (default: 50) Passes over the training dataset. Prior to each epoch, the dataset is shuffled if `minibatches > 1` to prevent cycles in stochastic gradient descent. l2 : float Regularization parameter for L2 regularization. No regularization if l2=0.0. minibatches : int (default: 1) The number of minibatches for gradient-based optimization. If 1: Gradient Descent learning If len(y): Stochastic Gradient Descent (SGD) online learning If 1 < minibatches < len(y): SGD Minibatch learning n_classes : int (default: None) A positive integer to declare the number of class labels if not all class labels are present in a partial training set. Gets the number of class labels automatically if None. random_seed : int (default: None) Set random state for shuffling and initializing the weights. Attributes ----------- w_ : 2d-array, shape={n_features, 1} Model weights after fitting. b_ : 1d-array, shape={1,} Bias unit after fitting. cost_ : list List of floats, the average cross_entropy for each epoch. def __init__(self, eta=0.01, epochs=50, l2=0.0, minibatches=1, n_classes=None, random_seed=None): self.eta = eta self.epochs = epochs self.l2 = l2 self.minibatches = minibatches self.n_classes = n_classes self.random_seed = random_seed def _fit(self, X, y, init_params=True): if init_params: if self.n_classes is None: self.n_classes = np.max(y) + 1 self._n_features = X.shape[1] self.b_, self.w_ = self._init_params( weights_shape=(self._n_features, self.n_classes), bias_shape=(self.n_classes,), random_seed=self.random_seed) self.cost_ = [] y_enc = self._one_hot(y=y, n_labels=self.n_classes, dtype=np.float) for i in range(self.epochs): for idx in self._yield_minibatches_idx( n_batches=self.minibatches, data_ary=y, shuffle=True): # givens: # w_ -> n_feat x n_classes # b_ -> n_classes # net_input, softmax and diff -> n_samples x n_classes: net = self._net_input(X[idx], self.w_, self.b_) softm = self._softmax(net) diff = softm - y_enc[idx] mse = np.mean(diff, axis=0) # gradient -> n_features x n_classes grad = np.dot(X[idx].T, diff) # update in opp. direction of the cost gradient self.w_ -= (self.eta * grad + self.eta * self.l2 * self.w_) self.b_ -= (self.eta * np.sum(diff, axis=0)) # compute cost of the whole epoch net = self._net_input(X, self.w_, self.b_) softm = self._softmax(net) cross_ent = self._cross_entropy(output=softm, y_target=y_enc) cost = self._cost(cross_ent) self.cost_.append(cost) return self def fit(self, X, y, init_params=True): Learn model from training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. init_params : bool (default: True) Re-initializes model parametersprior to fitting. Set False to continue training with weights from a previous model fitting. Returns ------- self : object if self.random_seed is not None: np.random.seed(self.random_seed) self._fit(X=X, y=y, init_params=init_params) self._is_fitted = True return self def _predict(self, X): probas = self.predict_proba(X) return self._to_classlabels(probas) def predict(self, X): Predict targets from X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ---------- target_values : array-like, shape = [n_samples] Predicted target values. if not self._is_fitted: raise AttributeError('Model is not fitted, yet.') return self._predict(X) def predict_proba(self, X): Predict class probabilities of X from the net input. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. Returns ---------- Class probabilties : array-like, shape= [n_samples, n_classes] net = self._net_input(X, self.w_, self.b_) softm = self._softmax(net) return softm def _net_input(self, X, W, b): return (X.dot(W) + b) def _softmax(self, z): return (np.exp(z.T) / np.sum(np.exp(z), axis=1)).T def _cross_entropy(self, output, y_target): return - np.sum(np.log(output) * (y_target), axis=1) def _cost(self, cross_entropy): L2_term = self.l2 * np.sum(self.w_ ** 2) cross_entropy = cross_entropy + L2_term return 0.5 * np.mean(cross_entropy) def _to_classlabels(self, z): return z.argmax(axis=1) def _init_params(self, weights_shape, bias_shape=(1,), dtype='float64', scale=0.01, random_seed=None): Initialize weight coefficients. if random_seed: np.random.seed(random_seed) w = np.random.normal(loc=0.0, scale=scale, size=weights_shape) b = np.zeros(shape=bias_shape) return b.astype(dtype), w.astype(dtype) def _one_hot(self, y, n_labels, dtype): Returns a matrix where each sample in y is represented as a row, and each column represents the class label in the one-hot encoding scheme. Example: y = np.array([0, 1, 2, 3, 4, 2]) mc = _BaseMultiClass() mc._one_hot(y=y, n_labels=5, dtype='float') np.array([[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.], [0., 0., 1., 0., 0.]]) mat = np.zeros((len(y), n_labels)) for i, val in enumerate(y): mat[i, val] = 1 return mat.astype(dtype) def _yield_minibatches_idx(self, n_batches, data_ary, shuffle=True): indices = np.arange(data_ary.shape[0]) if shuffle: indices = np.random.permutation(indices) if n_batches > 1: remainder = data_ary.shape[0] % n_batches if remainder: minis = np.array_split(indices[:-remainder], n_batches) minis[-1] = np.concatenate((minis[-1], indices[-remainder:]), axis=0) else: minis = np.array_split(indices, n_batches) else: minis = (indices,) for idx_batch in minis: yield idx_batch def _shuffle_arrays(self, arrays): Shuffle arrays in unison. r = np.random.permutation(len(arrays[0])) return [ary[r] for ary in arrays] from mlxtend.data import iris_data from mlxtend.evaluate import plot_decision_regions import matplotlib.pyplot as plt # Loading Data X, y = iris_data() X = X[:, [0, 3]] # sepal length and petal width # standardize X[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std() X[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std() lr = SoftmaxRegression(eta=0.01, epochs=10, minibatches=1, random_seed=0) lr.fit(X, y) plot_decision_regions(X, y, clf=lr) plt.title('Softmax Regression - Gradient Descent') plt.show() plt.plot(range(len(lr.cost_)), lr.cost_) plt.xlabel('Iterations') plt.ylabel('Cost') plt.show() lr.epochs = 800 lr.fit(X, y, init_params=False) plot_decision_regions(X, y, clf=lr) plt.title('Softmax Regression - Stochastic Gradient Descent') plt.show() plt.plot(range(len(lr.cost_)), lr.cost_) plt.xlabel('Iterations') plt.ylabel('Cost') plt.show() y_pred = lr.predict(X) print('Last 3 Class Labels: %s' % y_pred[-3:]) y_pred = lr.predict_proba(X) print('Last 3 Class Labels:\n %s' % y_pred[-3:]) from mlxtend.data import iris_data from mlxtend.evaluate import plot_decision_regions from mlxtend.classifier import SoftmaxRegression import matplotlib.pyplot as plt # Loading Data X, y = iris_data() X = X[:, [0, 3]] # sepal length and petal width # standardize X[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std() X[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std() lr = SoftmaxRegression(eta=0.05, epochs=200, minibatches=len(y), random_seed=0) lr.fit(X, y) plot_decision_regions(X, y, clf=lr) plt.title('Softmax Regression - Stochastic Gradient Descent') plt.show() plt.plot(range(len(lr.cost_)), lr.cost_) plt.xlabel('Iterations') plt.ylabel('Cost') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create a Raster Model Grid Step2: Visualize Basin topography Step3: Create a Network Model Grid Step4: Let's plot our network Step5: As are the links, Step6: Reduce the numer of nodes in channel segments Step7: As an example, the following will retain only the downstream and upstream node of each segment. Step8: Reduce to a maximum number of nodes per segment (including end nodes), use AtMostNodes, Step9: Another option is to specify a spacing at each node. The spacing can be either a scalar, meaning the spacing is the same for every node, or can vary from node to node. An example of the latter is a spacing that depends on upstream area at each node.
<ASSISTANT_TASK:> Python Code: import matplotlib.pyplot as plt import numpy as np # landlab modules from landlab.plot.graph import plot_nodes, plot_links from landlab.io import read_esri_ascii # Package for plotting raster data from landlab.plot.imshow import imshow_grid from landlab.grid.create_network import network_grid_from_raster grid, z = read_esri_ascii("hugo_site.asc", name="topographic__elevation") grid.status_at_node[grid.nodes_at_right_edge] = grid.BC_NODE_IS_FIXED_VALUE grid.status_at_node[np.isclose(z, -9999.0)] = grid.BC_NODE_IS_CLOSED imshow_grid( grid, "topographic__elevation", plot_name="Basin topography", color_for_closed=None, colorbar_label="$z$ [m]", ) network_grid = network_grid_from_raster( grid, minimum_channel_threshold=12000.0, include=["drainage_area", "topographic__elevation"], ) plot_nodes(network_grid, markersize=4) plt.title("Nodes"); plot_nodes(network_grid, with_id=False, markersize=4) plot_links(network_grid) plt.title("Links"); imshow_grid( grid, "topographic__elevation", plot_name="Basin topography", color_for_closed=None, colorbar_label="$z$ [m]", ) plot_links(network_grid, with_id=False) if len(network_grid.nodes_at_link) > (len(network_grid.nodes) - 1): print("there are duplicate links") else: print("link count looks good!") from landlab.grid.create_network import ( AtMostNodes, JustEndNodes, SpacingAtLeast, spacing_from_drainage_area, ) network_grid = network_grid_from_raster( grid, reducer=JustEndNodes(), minimum_channel_threshold=12000.0, include=["drainage_area", "topographic__elevation"], ) plot_nodes(network_grid, markersize=4) plot_links(network_grid) plt.title("Nodes and Links"); network_grid = network_grid_from_raster( grid, reducer=AtMostNodes(count=4), minimum_channel_threshold=12000.0, include=["drainage_area", "topographic__elevation"], ) plot_nodes(network_grid, markersize=4) plot_links(network_grid) plt.title("Nodes and Links"); spacing = spacing_from_drainage_area(grid.at_node["drainage_area"]) network_grid = network_grid_from_raster( grid, reducer=SpacingAtLeast(grid.xy_of_node, spacing), minimum_channel_threshold=12000.0, include=["drainage_area", "topographic__elevation"], ) plot_nodes(network_grid, with_id=False, markersize=4) plot_links(network_grid, with_id=False) plt.title("Nodes and Links"); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Download weather data Step2: Cleaning the weather dataset Step3: Merge weather and NYPD MVC datasets Step4: Make some nice data analysis Step5: Now lets try to find out if there are any condition that causes more incidents than others. We do this by plotting out heatmaps to get an idea of the distributions in the NYC area Step6: Finding the ratio between conditions that resulted in an incident. Borough level Step7: Let's try to look at zip codes in Brooklyn only Step8: Looking at weather based causes Step9: There seems to be a lot of incidents caused by slippery pavement. Let's look at the weather conditions for those incidents. Step10: Okay, the overcast and clear weather still are the top 2. The assumption that the type of incidents are caused by weather conditions might still hold true. It could be that top 2 are caused by pavement conditions independent of the weather, such as water or oil on the roads. In any case, lets try to plot out where these incidents occur. Step11: Looking at the intersections we can find those most dangerous based on the number of incidents happening there which are in some way caused by slippery pavement. Step12: Ignoring incidents happening outside intersections the top 3 looks like this Step13: fin
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import datetime from datetime import date from dateutil.rrule import rrule, DAILY from __future__ import division import geoplotlib as glp from geoplotlib.utils import BoundingBox, DataAccessObject pd.set_option('display.max_columns', None) %matplotlib inline start_date = date(2012, 7, 1) end_date = date(2016, 2, 29) # data = pd.DataFrame() frames = [] url_template = 'https://www.wunderground.com/history/airport/KNYC/%s/%s/%s/DailyHistory.html?req_city=New+York&req_state=NY&req_statename=New+York&reqdb.zip=10001&reqdb.magic=4&reqdb.wmo=99999&format=1.csv' month = "" for dt in rrule(DAILY, dtstart=start_date, until=end_date): if (month != dt.strftime("%m")): month = dt.strftime("%m") print 'Downloading to memory: ' + dt.strftime("%Y-%m") frames.append(pd.read_csv(url_template % (dt.strftime("%Y"),dt.strftime("%m"), dt.strftime("%d")))) print "Saving data to csv..." data = pd.concat(frames) data.to_csv('weather_data_nyc.csv', sep=',') from datetime import datetime from dateutil import tz weather = pd.read_csv('datasets/weather_data_nyc_clean.csv') def UTCtoActual(utcDate): from_zone = tz.gettz('UTC') to_zone = tz.gettz('America/New_York') utc = datetime.strptime(utcDate.DateUTC, '%m/%d/%Y %H:%M:%S')\ .replace(tzinfo=from_zone)\ .astimezone(to_zone) s = pd.Series([utc.year, utc.month, utc.day, utc.hour]) s.columns = ['Year', 'Month', 'Day', 'Hour'] return s #weather['DateActual'] = weather.DateUTC.map() weather[['Year', 'Month', 'Day', 'Hour']] = weather.apply(UTCtoActual, axis=1) weather.to_csv('datasets/weather_data_nyc_clean2.csv') incidents = pd.read_csv('datasets/NYPD_Motor_Vehicle_Collisions.csv') weather = pd.read_csv('datasets/weather_data_nyc_clean2.csv') weather.head(1) weather[(weather.Year == 2015) & (weather.Month == 11) & (weather.Day == 27)] features0 = ['Conditions', 'TemperatureC'] features = ['Conditions', 'Precipitationmm',\ 'TemperatureC', 'VisibilityKm'] def lookup_weather2(year, month, day, hour): w = weather[(weather.Year == year) & (weather.Month == month) & (weather.Day == day) & (weather.Hour == hour)] return w def lookup_weather(date, time): month = int(date.split('/')[0]) day = int(date.split('/')[1]) year = int(date.split('/')[2]) hour = int(time.split(':')[0]) d = lookup_weather2(year, month, day, hour).head(1) if (d.empty): dt_back = datetime.datetime(year, month, day, hour) - datetime.timedelta(hours=1) dt_forward = datetime.datetime(year, month, day, hour) + datetime.timedelta(hours=1) d_back = lookup_weather2(dt_back.year, dt_back.month, dt_back.day, dt_back.hour) if (not d_back.empty): return d_back d_forward = lookup_weather2(dt_forward.year, dt_forward.month, dt_forward.day, dt_forward.hour) if (not d_forward.empty): return d_forward return d def merge_weather(incident): date = incident.DATE time = incident.TIME #print "0" w = lookup_weather(date, time) #[unnamed, condition, dateUTC, Dew, Events, Gust, Humidity,Precipitationmm,Sea_Level_PressurehPa, TemperatureC] = w.values[0] #print "1" try: #print "2" #print w con = "-" temp = "-" rainmm = "-" viskm = "-" #print "2.5" if (not pd.isnull(w['Conditions'].iloc[0])): con = w['Conditions'].iloc[0] if (not pd.isnull(w['TemperatureC'].iloc[0])): temp = w['TemperatureC'].iloc[0] if (not pd.isnull(w['Precipitationmm'].iloc[0])): rainmm = w['Precipitationmm'].iloc[0] if (not pd.isnull(w['VisibilityKm'].iloc[0])): viskm = w['VisibilityKm'].iloc[0] #print 'con %s, temp %s, rainmm %s, viskm %s' % (con, temp, rainmm, viskm) #print "2.75" s = pd.Series([con, rainmm, temp, viskm]) #print "3" #print str(len(w.values[0])) #s = pd.Series(w.values[0]) #s = pd.Series([w['Conditions'].iloc[0], w['Dew PointC'].iloc[0], w['Gust SpeedKm/h'].iloc[0]]) #s.columns = features return s except: #print "4" print date + "x" + time s = pd.Series([None,None,None,None]) #s = pd.Series(["1","2","3","4","5","6","7","8","9"]) #s = pd.Series([]) #s.columns = features return s #lookup_weather2(2016, 2, 14, 7) #lookup_weather('03/14/2016', '3:27').values[0] #[unnamed, condition, dateUTC, Dew, Events, Gust, Humidity,Precipitationmm,Sea_Level_PressurehPa, TemperatureC] = lookup_weather('01/27/2016', '3:27').values[0] print "Applying weather data to incidents..." incidents[features] = incidents[incidents.DATE.str.split('/').str.get(2) != '2016'].apply(merge_weather, axis=1) print "Saving weather in-riched incident data..." incidents.to_csv('datasets/NYPD_Motor_Vehicle_Collisions_weather3.csv', sep=',') incidents[incidents.DATE.str.split('/').str.get(2) == '2016'] # Read dataset incidents = pd.read_csv('datasets/NYPD_Motor_Vehicle_Collisions_weather3.csv') # Filter 2016 incidents incidents = incidents[(incidents.DATE.str.split('/').str.get(2) != '2016') & (pd.notnull(incidents.Conditions))] # Distribution of incidents by weather conditions ys = [] xs = [] for c in incidents.Conditions.unique(): mask = (incidents.Conditions == c) filtered_incidents = incidents[mask] ys.append(len(filtered_incidents.index)) xs.append(c) df = pd.DataFrame(pd.Series(ys, index=xs, name="Incidents by weather conditions").sort_values()) df.plot(kind='barh', figsize=(8,8)) df def plot_zip_weather(condition, data): ys = [] xs = [] for z in data['ZIP CODE'].unique(): mask = (data['ZIP CODE'] == z) filtered_incidents = data[mask] ys.append(len(filtered_incidents.index)) xs.append(z) df = pd.DataFrame(pd.Series(ys, index=xs, name="%s incidents by zip code" % condition).sort_values()) df.plot(kind='barh', figsize=(8,32)) def draw_kde(data): bbox = BoundingBox(north=data.LATITUDE.max()-0.055,\ west=data.LONGITUDE.min()+0.055,\ south=data.LATITUDE.min()-0.055,\ east=data.LONGITUDE.max()+0.055) coords = {'lat': data.LATITUDE.values.tolist(), 'lon': data.LONGITUDE.values.tolist()} glp.kde(coords, bw=5, cut_below=1e-4) glp.set_bbox(bbox) glp.inline() def plot_stuff(conditions, data): print "%s conditions" % conditions plot_zip_weather(conditions, data) draw_kde(data) snowy = incidents[incidents['Conditions'].str.contains('Snow')] rainy = incidents[incidents['Conditions'].str.contains('Rain')] clear = incidents[incidents['Conditions'].str.contains('Clear')] cloudy = incidents[(incidents['Conditions'].str.contains('Cloud')) | (incidents['Conditions'].str.contains('Overcast'))] haze = incidents[incidents['Conditions'].str.contains('Haze')] plot_stuff("Snowy", snowy) plot_stuff("Rainy", rainy) plot_stuff("Clear", clear) plot_stuff("Cloudy", cloudy) plot_stuff("Hazy", haze) # What is the probability of an incident based on the weather condition? # Normalize incidents based on the conditions. from collections import Counter ConditionIncidentCounter = Counter(incidents.Conditions.values) p_incident = {} for k,v in ConditionIncidentCounter.most_common(): p_incident[k] = v/len(incidents) p_incident # Do the same again but for individual areas of NYC p_incident_district = {} l = len(incidents) for district in incidents[pd.notnull(incidents.BOROUGH)].BOROUGH.unique(): filtered = incidents[incidents.BOROUGH == district] counter = Counter(filtered.Conditions.values) p_incident_district[district] = {} for k,v in counter.most_common(): p_incident_district[district][k] = v / len(list(counter.elements())); p_incident_district # Are there any areas in NYC that experience incidents based # on a condition unusually higher or lower compared to other areas? # Calculate the ratio of incidents based on the condition. def calcRatioForDistrict(districtCounter, overAllCounter, district): ys = [] xs = [] for con in incidents.Conditions.unique(): ys.append(districtCounter[con] / overAllCounter[con]) xs.append(con) return pd.Series(ys, index=xs) series = {} for b in incidents[pd.notnull(incidents.BOROUGH)].BOROUGH.unique(): series[b] = calcRatioForDistrict(p_incident_district[b], p_incident, b) df = pd.DataFrame(series) df.plot(kind="bar", subplots=True, figsize=(14,14),layout=(7,2), legend=False,sharey=True) # What is the probability of an incident based on the weather condition? # Normalize incidents based on the conditions. from collections import Counter borough = incidents[incidents.BOROUGH == 'MANHATTAN'] ConditionIncidentCounter = Counter(borough.Conditions.values) p_incident = {} for k,v in ConditionIncidentCounter.most_common(): p_incident[k] = v/len(borough) p_incident # Do the same again but for individual areas of NYC p_incident_borough_zip = {} l = len(borough) for z in borough[pd.notnull(incidents['ZIP CODE'])]['ZIP CODE'].unique(): filtered = borough[incidents['ZIP CODE'] == z] counter = Counter(filtered.Conditions.values) # z = str(z).split(".")[0] p_incident_borough_zip[z] = {} for k,v in counter.most_common(): p_incident_borough_zip[z][k] = v / len(list(counter.elements())); p_incident_borough_zip # Are there any areas in NYC that experience incidents based # on a condition unusually higher or lower compared to other areas? # Calculate the ratio of incidents based on the condition. def calcRatioForDistrict(districtCounter, overAllCounter, district): ys = [] xs = [] for con in incidents.Conditions.unique(): if (con in districtCounter): ys.append(districtCounter[con] / overAllCounter[con]) else: ys.append(0) xs.append(con) return pd.Series(ys, index=xs) series = {} for z in borough[pd.notnull(incidents['ZIP CODE'])]['ZIP CODE'].unique(): series[z] = calcRatioForDistrict(p_incident_borough_zip[z], p_incident, b) df = pd.DataFrame(series) df.plot(kind="bar", subplots=True, figsize=(14,100), layout=(50,2), legend=False, sharey=False) worst_day = incidents.DATE.value_counts().index[0] worst_day_count = incidents.DATE.value_counts()[0] incidents[incidents.DATE == worst_day] incidents.DATE.value_counts() incidents['CONTRIBUTING FACTOR VEHICLE 1'].unique() # Read dataset incidents = pd.read_csv('datasets/NYPD_Motor_Vehicle_Collisions_weather4.csv') # Filter 2016 incidents incidents = incidents[(incidents.DATE.str.split('/').str.get(2) != '2016') & (pd.notnull(incidents.Conditions))] def count_contributing(cont): temp = incidents[(incidents['CONTRIBUTING FACTOR VEHICLE 1'] == cont) | \ (incidents['CONTRIBUTING FACTOR VEHICLE 2'] == cont) | \ (incidents['CONTRIBUTING FACTOR VEHICLE 3'] == cont) | \ (incidents['CONTRIBUTING FACTOR VEHICLE 4'] == cont) | \ (incidents['CONTRIBUTING FACTOR VEHICLE 5'] == cont) ] return temp.shape[0] print "Accidents caused by Pavement Slippery: %s" % count_contributing('Pavement Slippery') print "Accidents caused by Glare: %s " % count_contributing('Glare') print "Accidents caused by Pavement Defective: %s " % count_contributing('Pavement Defective') weather_incidents = incidents[(incidents['CONTRIBUTING FACTOR VEHICLE 1'] == 'Pavement Slippery') | \ (incidents['CONTRIBUTING FACTOR VEHICLE 2'] == 'Pavement Slippery') | \ (incidents['CONTRIBUTING FACTOR VEHICLE 3'] == 'Pavement Slippery') | \ (incidents['CONTRIBUTING FACTOR VEHICLE 4'] == 'Pavement Slippery') | \ (incidents['CONTRIBUTING FACTOR VEHICLE 5'] == 'Pavement Slippery') ] # Distribution of incidents by weather conditions ys = [] xs = [] for c in weather_incidents.Conditions.unique(): mask = (weather_incidents.Conditions == c) filtered_incidents = weather_incidents[mask] ys.append(filtered_incidents.shape[0]) xs.append(c) df = pd.DataFrame(pd.Series(ys, index=xs, name="Weather conditions during 'slippery pavement' based incidents").sort_values()) df.plot(kind='barh', figsize=(8,8)) # Export to json for d3 viz from collections import OrderedDict import json with open('datasets/slippery_pavement.json', 'w') as fp: json.dump(OrderedDict(sorted(dict(zip(xs, ys)).items(), key=lambda x: x[1], reverse=True)), fp) def draw_dot(data, type_color): bbox = BoundingBox(north=incidents.LATITUDE.max()-0.055,\ west=incidents.LONGITUDE.min()+0.055,\ south=incidents.LATITUDE.min()-0.055,\ east=incidents.LONGITUDE.max()+0.055) gridDots = {'lat': data.LATITUDE.values.tolist(), 'lon': data.LONGITUDE.values.tolist()} glp.set_bbox(bbox) glp.dot(gridDots, color=type_color) def get_spaced_colors(n): max_value = 16581375 #255**3 interval = int(max_value / n) colors = [hex(I)[2:].zfill(6) for I in range(0, max_value, interval)] return [[int(i[:2], 16), int(i[2:4], 16), int(i[4:], 16), 255] for i in colors] colormap = get_spaced_colors(weather_incidents['Conditions'].unique().size) for idx, wi in enumerate(weather_incidents['Conditions'].unique().tolist()): filtered = weather_incidents[weather_incidents['Conditions'] == wi] print "%s %s" % (wi, str(len(filtered.index))) draw_dot(filtered, colormap[idx]) draw_dot(filtered, 'r') glp.inline() #glp.inline() bbox = BoundingBox(north=incidents.LATITUDE.max()-0.055,\ west=incidents.LONGITUDE.min()+0.055,\ south=incidents.LATITUDE.min()-0.055,\ east=incidents.LONGITUDE.max()+0.055) glp.set_bbox(bbox) glp.kde({'lat': weather_incidents.LATITUDE.values.astype('float'), 'lon': weather_incidents.LONGITUDE.values.astype('float')},bw=5, cut_below=1e-4) glp.inline() top10 = weather_incidents.LOCATION.value_counts()[:20] top10.to_csv('datasets/top20slippery') locations = weather_incidents[weather_incidents.LOCATION.isin(top10.index)].drop_duplicates('LOCATION','first')\ [['TIME','BOROUGH','ZIP CODE','LATITUDE','LONGITUDE','LOCATION','ON STREET NAME','CROSS STREET NAME']] loca = locations.copy() def m(r): return top10[top10.index == r.LOCATION].iloc[0] loca['COUNT'] = loca.apply(m, axis=1) loca.sort_values(by='COUNT', ascending=False).to_csv('../app/datasets/slippery.csv', sep=',') lightsnow = incidents[incidents['Conditions'] == 'Light Snow'] print "Accidents happening because of light snow: %s" % str(lightsnow.size) print "Injuries: %s" % lightsnow['NUMBER OF PERSONS INJURED'].sum() print "Killed: %s" % lightsnow['NUMBER OF PERSONS KILLED'].sum() print "Top intersections:" lightsnow.LOCATION.value_counts()[:3] lightrain = incidents[incidents['Conditions'] == 'Light Rain'] print "Accidents happening because of light rain: %s" % str(lightrain.size) print "Injuries: %s" % lightrain['NUMBER OF PERSONS INJURED'].sum() print "Killed: %s" % lightrain['NUMBER OF PERSONS KILLED'].sum() print "Top intersections:" lightrain.LOCATION.value_counts()[:3] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Setup and imports Step2: Define your indico API key Step4: Convenience function for making batches of examples Step5: Check that the requested paths exist Step6: Query indico API to make sure everything is plumbed up correctly Step7: Read data into a list of dictionary objects Step8: Quick sanity check on the data, is everything as expected? Step9: Strategy A Step10: Fit the classifier Step11: Get predictions Step12: Compute and plot ROC and AUC Step13: Put examples data into batches, for APIs Step14: Prepare batches of test examples Step15: Strategy B. Pre-trained sentiment HQ Step16: Strategy C. Custom model using general text features. Step17: Draw ROC plot and compute metrics for the custom collection Step18: Strategy D. Custom model using sentiment features from the pretrained deep neural network. Step19: Get predictions for custom collection with sentiment domain text features Step20: Compute metrics and plot Step21: Sanity check on results for all 4 strategies Step22: Compute overall metrics and plot Step23: Accuracy metrics
<ASSISTANT_TASK:> Python Code: seed = 3 # for reproducibility across experiments, just pick something train_num = 100 # number of training examples to use test_num = 100 # number of examples to use for testing base_model_name = "sentiment_train%s_test%s" % (train_num, test_num) lab2bin = {'pos': 1, 'neg': 0} # label -> binary class pos_path = "~DATASETS/aclImdb/train/pos/" # filepath to the positive examples neg_path = "~DATASETS/aclImdb/train/neg/" # file path to the negative examples output_path = "OUTPUT" # path where output file should go batchsize = 25 # send this many requests at once max_num_examples = 25000.0 # for making subsets below import os, io, glob, random, time # from itertools import islice, chain, izip_longest import numpy as np import pandas as pd from tqdm import tqdm import pprint pp = pprint.PrettyPrinter(indent=4) import indicoio from indicoio.custom import Collection from indicoio.custom import collections as check_status import sklearn from sklearn import metrics from sklearn import linear_model from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline import matplotlib.pyplot as plt # for plotting results %matplotlib inline import seaborn # just for the colors indicoio.config.api_key = "" # Add your API key here def batcher(seq, stride = 4): Generator strides across the input sequence, combining the elements between each stride. for pos in xrange(0, len(seq), stride): yield seq[pos : pos + stride] # for making subsets below train_subset = (train_num / 25000.0) test_subset = (test_num / 25000.0) random.seed(seed) np.random.seed(seed) # check that paths exist for p in [pos_path, neg_path]: abs_path = os.path.abspath(p) if not os.path.exists(abs_path): os.makedirs(abs_path) print(abs_path) for p in [output_path]: abs_path = os.path.abspath(p) if not os.path.exists(abs_path): # and make output path if necessary os.makedirs(abs_path) print(abs_path) # pre_status = check_status() # pp.pprint(pre_status) train_data = [] # these lists will contain a bunch of little dictionaries, one for each example test_data = [] # Positive examples (train) examples = glob.glob(os.path.join(pos_path, "*")) # find all the positive examples, and read them i = 0 for ex in examples: d = {} with open(ex, 'rb') as f: d['label'] = 'pos' # label as "pos" t = f.read().lower() # these files are already ascii text, so just lowercase them d['text'] = t d['pred_label'] = None # placeholder for predicted label d['prob_pos'] = None # placeholder for predicted probability of a positive label train_data.append(d) # add example to the list of training data i +=1 print("Read %d positive training examples, of %d available (%.2f%%)" % (i, len(examples), (100.0*i)/len(examples))) # Negative examples (train) examples = glob.glob(os.path.join(neg_path, "*")) # find all the negative examples and read them i = 0 for ex in examples: d = {} with open(ex, 'rb') as f: d['label'] = 'neg' t = f.read().lower() d['text'] = t d['pred_label'] = None d['prob_pos'] = None train_data.append(d) i +=1 print("Read %d negative training examples, of %d available (%.2f%%)" % (i, len(examples), (100.0*i)/len(examples))) # Positive examples (test) examples = glob.glob(os.path.join(pos_path, "*")) i = 0 for ex in examples: d = {} with open(ex, 'rb') as f: d['label'] = 'pos' t = f.read().lower() # these files are already ascii text d['text'] = t d['pred_label'] = None d['prob_pos'] = None test_data.append(d) i +=1 print("Read %d positive test examples, of %d available (%.2f%%)" % (i, len(examples), (100.0*i)/len(examples))) # Negative examples (test) examples = glob.glob(os.path.join(neg_path, "*")) i = 0 for ex in examples: d = {} with open(ex, 'rb') as f: d['label'] = 'neg' t = f.read().lower() # these files are already ascii text d['text'] = t d['pred_label'] = None d['prob_pos'] = None test_data.append(d) i +=1 print("Read %d negative examples, of %d available (%.2f%%)" % (i, len(examples), (100.0*i)/len(examples))) # Populate a dataframe, shuffle, and subset as required df_train = pd.DataFrame(train_data) df_train = df_train.sample(frac = train_subset) # shuffle (by sampling everything randomly) print("After resampling, down to %d training records" % len(df_train)) df_test = pd.DataFrame(test_data) df_test = df_test.sample(frac = test_subset) # shuffle (by sampling everything randomly) print("After resampling, down to %d test records" % len(df_test)) df_train.head(10) # sanity check df_train.tail(10) df_test.tail(10) vectorizer = sklearn.feature_extraction.text.TfidfVectorizer( max_features = int(1e5), # max vocab size (pretty large) max_df = 0.50, sublinear_tf = True, use_idf = True, encoding = 'ascii', decode_error = 'replace', analyzer = 'word', ngram_range = (1,3), stop_words = 'english', lowercase = True, norm = 'l2', smooth_idf = True, ) lr = linear_model.SGDClassifier( alpha = 1e-5, average = 10, class_weight = 'balanced', epsilon = 0.15, eta0 = 0.0, fit_intercept = True, l1_ratio = 0.15, learning_rate = 'optimal', loss = 'log', n_iter = 5, n_jobs = -1, penalty = 'l2', power_t = 0.5, random_state = seed, shuffle = True, verbose = 0, warm_start = False, ) classifier = Pipeline([('vectorizer', vectorizer), ('logistic_regression', lr) ]) _ = classifier.fit(df_train['text'], df_train['label']) pred_sk = classifier.predict(df_test['text']) y_true_sk = [lab2bin[ex] for ex in df_test['label']] proba_sk = classifier.predict_proba(df_test['text']) # also get probas cname = base_model_name + "_sklearn" plt.figure(figsize=(8,8)) probas_sk = [] y_pred_labels_sk = [] y_pred_sk = [] # get predictions for i, pred in enumerate(pred_sk): proba_pos = proba_sk[i][1] probas_sk.append(proba_pos) if float(proba_pos) >= 0.50: pred_label = "pos" elif float(proba_pos) < 0.50: pred_label = "neg" else: print("ERROR on example %d" % i) # if this happens, need to fix something y_pred_labels_sk.append(pred_label) y_pred_sk.append(lab2bin[pred_label]) # compute ROC fpr, tpr, thresholds = metrics.roc_curve(y_true_sk, probas_sk) roc_auc = metrics.auc(fpr, tpr) plt.plot(fpr, tpr, lw = 1, label = "ROC area = %0.3f" % (roc_auc)) plt.plot([0, 1], [0, 1], '--', color=(0.5, 0.5, 0.5), label='random') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title("%d training examples" % len(examples)) plt.legend(loc="lower right") plt.savefig(os.path.abspath(os.path.join(output_path, cname + "_ROC" + ".png"))) plt.show() acc = metrics.accuracy_score(y_true_sk, y_pred_sk) print("Accuracy: %.4f" % (acc)) examples = [list(ex) for ex in zip(df_train['text'], df_train['label'])] batches = [b for b in batcher(examples, batchsize)] # stores in memory, but the texts are small so no problem test_examples = [list(ex) for ex in zip(df_test['text'], df_test['label'])] # test data test_batches = [b for b in batcher(test_examples, batchsize)] # get predictions from sentiment-HQ API cname = base_model_name + "hq" predictions_hq = [] for batch in tqdm(test_batches): labels = [x[1] for x in batch] texts = [x[0] for x in batch] results = indicoio.sentiment_hq(texts) for i, result in enumerate(results): r = {} r['label'] = labels[i] r['text'] = texts[i] r['proba'] = result predictions_hq.append(r) cname = base_model_name + "_hq" plt.figure(figsize=(8,8)) # y_true = [df_test['label']] probas = [] y_true = [] y_pred_labels = [] y_pred = [] for i, pred in enumerate(predictions_hq): y_true.append(lab2bin[pred['label']]) proba = pred['proba'] probas.append(proba) if float(proba) >= 0.50: pl = 'pos' elif float(proba) < 0.50: pl= 'neg' else: print("Error. Check proba value and y_true logic") pred_label = pl # pick the most likely class by predicted proba y_pred_labels.append(pred_label) y_pred.append(lab2bin[pred_label]) fpr, tpr, thresholds = metrics.roc_curve(y_true, probas) roc_auc = metrics.auc(fpr, tpr) plt.plot(fpr, tpr, lw = 1, label = "ROC area = %0.3f" % (roc_auc)) plt.plot([0, 1], [0, 1], '--', color=(0.5, 0.5, 0.5), label='random') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') # plt.title("ROC plot model: '%s'" % cname) plt.title("%d training examples" % len(examples)) plt.legend(loc="lower right") # plt.savefig(os.path.abspath(cname + "_hq_ROC" + ".png")) plt.savefig(os.path.abspath(os.path.join(output_path, cname + "_ROC" + ".png"))) plt.show() acc = metrics.accuracy_score(y_true, y_pred) print("Accuracy: %.4f" % (acc)) cname = base_model_name print("This model will be cached as an indico custom collection using the name: '%s'" % cname) collection = Collection(cname) try: collection.clear() # delete any previous data in this collection collection.info() collection = Collection(cname) except: print(" Error, probably because a collection with the given name didn't exist. Continuing...") print(" Submitting %d training examples in %d batches..." % (len(examples), len(batches))) for batch in tqdm(batches): try: collection.add_data(batch) except Exception as e: print("Exception: '%s' for batch:" % e) pp.pprint(batch) print(" training model: '%s'" % cname) collection.train() collection.wait() # blocks until the model is trained # get predictions from the trained API model predictions = [] cname = base_model_name collection = Collection(cname) for batch in tqdm(test_batches): labels = [x[1] for x in batch] texts = [x[0] for x in batch] results = collection.predict(texts) for i, result in enumerate(results): r = {} r['indico_result'] = result r['label'] = labels[i] r['text'] = texts[i] r['proba'] = result['pos'] predictions.append(r) pp.pprint(predictions[0]) # sanity check plt.figure(figsize=(8,8)) probas = [] y_true = [] y_pred_labels = [] y_pred = [] for i, pred in enumerate(predictions): y_true.append(lab2bin[pred['label']]) probas.append(pred['indico_result']['pos']) pred_label = max(pred['indico_result'].keys(), key = (lambda x: pred['indico_result'][x])) # pick the most likely class by predicted proba y_pred_labels.append(pred_label) y_pred.append(lab2bin[pred_label]) fpr, tpr, thresholds = metrics.roc_curve(y_true, probas) roc_auc = metrics.auc(fpr, tpr) plt.plot(fpr, tpr, lw = 1, label = "ROC area = %0.3f" % (roc_auc)) plt.plot([0, 1], [0, 1], '--', color=(0.5, 0.5, 0.5), label='random') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title("%d training examples" % len(examples)) plt.legend(loc="lower right") plt.savefig(os.path.abspath(os.path.join(output_path, cname + "_cc_ROC" + ".png"))) plt.show() acc = metrics.accuracy_score(y_true, y_pred) print("Accuracy: %.4f" % (acc)) cname = base_model_name + "_domain" print("This model will be cached as an indico custom collection using the name: '%s'" % cname) collection = Collection(cname, domain = "sentiment") try: collection.clear() # delete any previous data in this collection collection.info() collection = Collection(cname, domain = "sentiment") except: print(" Error, probably because a collection with the given name didn't exist. Continuing...") print(" Submitting %d training examples in %d batches..." % (len(examples), len(batches))) for batch in tqdm(batches): try: collection.add_data(batch, domain = "sentiment") except Exception as e: print("Exception: '%s' for batch:" % e) pp.pprint(batch) print(" training model: '%s'" % cname) collection.train() collection.wait() # get predictions from trained API predictions_domain = [] cname = base_model_name + "_domain" collection = Collection(cname, domain = "sentiment") for batch in tqdm(test_batches): labels = [x[1] for x in batch] texts = [x[0] for x in batch] results = collection.predict(texts, domain = "sentiment") # batchsize = len(batch) for i, result in enumerate(results): r = {} r['indico_result'] = result r['label'] = labels[i] r['text'] = texts[i] r['proba'] = result['pos'] predictions_domain.append(r) cname = base_model_name + "_domain" plt.figure(figsize=(8,8)) # y_true = [df_test['label']] probas = [] y_true = [] y_pred_labels = [] y_pred = [] for i, pred in enumerate(predictions_domain): y_true.append(lab2bin[pred['label']]) probas.append(pred['indico_result']['pos']) pred_label = max(pred['indico_result'].keys(), key = (lambda x: pred['indico_result'][x])) # pick the most likely class by predicted proba y_pred_labels.append(pred_label) y_pred.append(lab2bin[pred_label]) fpr, tpr, thresholds = metrics.roc_curve(y_true, probas) roc_auc = metrics.auc(fpr, tpr) plt.plot(fpr, tpr, lw = 1, label = "ROC area = %0.3f" % (roc_auc)) plt.plot([0, 1], [0, 1], '--', color=(0.5, 0.5, 0.5), label='random') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') # plt.title("ROC plot model: '%s'" % cname) plt.title("%d training examples" % len(examples)) plt.legend(loc="lower right") # plt.savefig(os.path.abspath(cname + "_cc_domain_ROC" + ".png")) plt.savefig(os.path.abspath(os.path.join(output_path, cname + "_ROC" + ".png"))) plt.show() acc = metrics.accuracy_score(y_true, y_pred) print("Accuracy: %.4f" % (acc)) print("Strategy A. Custom sklearn model using n-grams, TFIDF, LR:") print(y_true_sk[0]) print(pred_sk[0]) print(proba_sk[0]) print("") print("Strategy B. Sentiment HQ:") pp.pprint(predictions_hq[0]) print("Strategy C. Custom collection using general text features:") pp.pprint(predictions[0]) print("") print("Strategy D. Custom collection using sentiment features:") pp.pprint(predictions_domain[0]) print("") plt.figure(figsize=(10,10)) cname = base_model_name # compute and draw curve for sklearn LR built from scratch probas_sk = [] y_pred_labels_sk = [] y_pred_sk = [] for i, pred in enumerate(pred_sk): proba_pos = proba_sk[i][1] probas_sk.append(proba_pos) if float(proba_pos) >= 0.50: pred_label = "pos" elif float(proba_pos) < 0.50: pred_label = "neg" else: print("ERROR on example %d" % i) y_pred_labels_sk.append(pred_label) y_pred_sk.append(lab2bin[pred_label]) fpr_sk, tpr_sk, thresholds_sk = metrics.roc_curve(y_true_sk, probas_sk) roc_auc_sk = metrics.auc(fpr_sk, tpr_sk) plt.plot(fpr_sk, tpr_sk, lw = 2, color = "#a5acaf", label = "A. Custom sklearn ngram LR model; area = %0.3f" % roc_auc_sk) # compute and draw curve for sentimentHQ probas_s = [] y_true_s = [] y_pred_labels_s = [] y_pred_s = [] for i, pred in enumerate(predictions_hq): y_true_s.append(lab2bin[pred['label']]) probas_s.append(pred['proba']) if float(pred['proba']) >= 0.50: pred_label = "pos" elif float(pred['proba']) < 0.50: pred_label = "neg" else: print("ERROR on example %d" % i) y_pred_labels_s.append(pred_label) y_pred_s.append(lab2bin[pred_label]) fpr_s, tpr_s, thresholds_s = metrics.roc_curve(y_true_s, probas_s) roc_auc_s = metrics.auc(fpr_s, tpr_s) plt.plot(fpr_s, tpr_s, lw = 2, color = "#b05ecc", label = "B. Sentiment HQ model; area = %0.3f" % roc_auc_s) # Compute and draw curve for the custom collection using general text features probas = [] y_true = [] y_pred_labels = [] y_pred = [] lab2bin = {'pos': 1, 'neg': 0} for i, pred in enumerate(predictions): y_true.append(lab2bin[pred['label']]) probas.append(pred['indico_result']['pos']) pred_label = max(pred['indico_result'].keys(), key = (lambda x: pred['indico_result'][x])) # pick the most likely class by predicted proba y_pred_labels.append(pred_label) y_pred.append(lab2bin[pred_label]) fpr, tpr, thresholds = metrics.roc_curve(y_true, probas) roc_auc = metrics.auc(fpr, tpr) plt.plot(fpr, tpr, lw = 2, color = "#ffbb3b", label = "C. Custom IMDB model using general text features; area = %0.3f" % (roc_auc)) # now compute and draw curve for the CC using sentiment text features probas_d = [] y_true_d = [] y_pred_labels_d = [] y_pred_d = [] for i, pred in enumerate(predictions_domain): y_true_d.append(lab2bin[pred['label']]) probas_d.append(pred['indico_result']['pos']) pred_label = max(pred['indico_result'].keys(), key = (lambda x: pred['indico_result'][x])) y_pred_labels_d.append(pred_label) y_pred_d.append(lab2bin[pred_label]) fpr_d, tpr_d, thresholds_d = metrics.roc_curve(y_true_d, probas_d) roc_auc_d = metrics.auc(fpr_d, tpr_d) plt.plot(fpr_d, tpr_d, lw = 2, color = "#43b9af", label = "D. Custom IMDB model using sentiment text features; area = %0.3f" % roc_auc_d) # Add other stuff to figure plt.plot([0, 1], [0, 1], '--', color=(0.5, 0.5, 0.5), label='random') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') # plt.title("ROC: %d training examples" % len(examples)) plt.title("%d training examples" % len(examples)) plt.legend(loc="lower right") plt.savefig(os.path.abspath(os.path.join(output_path, cname + "_comparison_ROC" + ".png")), dpi = 300) plt.show() acc_sk = metrics.accuracy_score(y_true_sk, y_pred_sk) print("A. Sklearn model from scratch (sklearn) : %.4f" % (acc_sk)) acc_s = metrics.accuracy_score(y_true_s, y_pred_s) print("B. Sentiment HQ : %.4f" % (acc_s)) acc = metrics.accuracy_score(y_true, y_pred) print("C. Custom model using general text features : %.4f" % (acc)) acc_d = metrics.accuracy_score(y_true_d, y_pred_d) print("D. Custom model using sentiment text features : %.4f" % (acc_d)) # print("Using (%d, %d, %d, %d) examples" % (len(y_pred), len(y_pred_d), len(y_pred_s), len(y_pred_sk))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: retrieving the available fields as a reference Step2: build a field specific stop word list Step3: plotting the wordcloud for abstracts and titles from various years Step4: plotting the number publications per year Step5: this shows that the database is missing entries and judging from the total number of downloaded items, there must be around 30000 papers missing Step6: plotting the world map of author affiliations Step7: using LDA to map out the topics
<ASSISTANT_TASK:> Python Code: client = MongoClient('localhost:27017') db = client.arXivDB db.arXivfeeds.count() print(db.arXivfeeds.find_one().keys()) for item in db.arXivfeeds.find({'published_parsed': 2016}).sort('_id', pymongo.DESCENDING).limit(5): print(item['title']) #db.arXivfeeds.delete_many({}) def cleaner(doc, stem=False): '''Function to clean the text data and prep for further analysis''' doc = doc.lower() # turn text to lowercase stops = set(stopwords.words("english")) # Creating a set of Stopwords p_stemmer = PorterStemmer() # Creating the stemmer model doc = re.sub(r"quantum", '', doc) # removing the word quantum (duh) doc = re.sub(r"physics", '', doc) # removing the word physics (duh) doc = re.sub(r"state", '', doc) # removing the word state (duh) doc = re.sub(r'\$.*?\$', 'latexinlineformula', doc) # replacing latex inline formula doc = re.sub(r'\\n', ' ', doc) # removing new line character doc = re.sub(r'\\\\\"', '', doc) # removing german double dotted letters doc = re.sub(r"</?\w+[^>]*>", '', doc) # removing html tags doc = re.sub("[^a-zA-Z]", ' ', doc) # removing anythin other alpha-numerical char's and @ and ! doc = doc.split() # Splits the data into individual words doc = [w for w in doc if not w in stops and len(w) > 3] # Removes stopwords and short length words if stem: doc = [p_stemmer.stem(i) for i in doc] # Stemming (reducing words to their root) if not len(doc): # dealing with comments that are all emojis, stop words or other languages doc = ['emptystring'] # print('text cleaning done!') return ' '.join(doc) cleaner(db.arXivfeeds.find_one({'published_parsed': 2016})['summary']) def plot_abstract_and_title_wordcloud(arXivfeed_query_result): arXivfeed_2015_text = cleaner(' '.join([' '.join(list(d.values())) for d in arXivfeed_query_result])) # Generate a word cloud image wordcloud_arXivfeed_2015 = WordCloud().generate(arXivfeed_2015_text) # Display the generated image: plt.imshow(wordcloud_arXivfeed_2015) plt.axis("off") plot_abstract_and_title_wordcloud(list(db.arXivfeeds.find({'published_parsed': 1995}, {'_id':0,'title':1}))) plot_abstract_and_title_wordcloud(list(db.arXivfeeds.find({'published_parsed': 2002}, {'_id':0,'title':1}))) plot_abstract_and_title_wordcloud(list(db.arXivfeeds.find({'published_parsed': 2015}, {'_id':0,'title':1}))) years = range(1994,2016,1) num_publications_per_year = [db.arXivfeeds.find({'published_parsed': y}).count() for y in years] plt.plot(years, num_publications_per_year) pattern1 = r'[Pp]hoton\w*' pattern2 = r'[Oo]ptic\w*' set(re.findall(pattern2, ' '.join([' '.join(list(d.values())) for d in db.arXivfeeds.find({}, {'_id':0,'summary':1})]))) num_ph_papers = np.zeros(len(years)) for i, y in enumerate(years): num_ph_papers[i] = db.arXivfeeds.find({'$and':[{'published_parsed': y}, {'$or':[ {'summary': {'$regex': pattern1}}, {'title': {'$regex': pattern1}}, {'summary': {'$regex': pattern2}}, {'title': {'$regex': pattern2}} ]} ]}).count() plt.plot(years, num_ph_papers/num_publications_per_year) list(db.arXivfeeds.find({'published_parsed': 2016}).limit(1))[0] import nltk import gensim import pyLDAvis import pyLDAvis.gensim documents = [cleaner(d['summary']) for d in db.arXivfeeds.find({'published_parsed': 2010}, {'_id':0, 'summary':1})] # documents = [cleaner(d['summary']) for d in db.arXivfeeds.find({}, {'_id':0, 'summary':1})] train_set = [] for j in range(len(documents)): train_set.append(nltk.word_tokenize(documents[j])) dic = gensim.corpora.Dictionary(train_set) print(len(dic)) dic.filter_extremes(no_below=20, no_above=0.1) print(len(dic)) corpus = [dic.doc2bow(text) for text in train_set] # transform every token into BOW tfidf = gensim.models.TfidfModel(corpus) corpus_tfidf = tfidf[corpus] lda = gensim.models.LdaModel(corpus_tfidf, id2word = dic, num_topics = 10, iterations=20, passes = 10) corpus_lda = lda[corpus_tfidf] vis_data = pyLDAvis.gensim.prepare(lda, corpus, dic) pyLDAvis.display(vis_data) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Example with more savings, but slower to optimize Step2: Look at the recommendations
<ASSISTANT_TASK:> Python Code: def func(a, b, c): res = tf.einsum('ijk,ja,kb->iab', a, b, c) + 1 res = tf.einsum('iab,kb->iak', res, c) return res a = tf.random_normal((10, 11, 12)) b = tf.random_normal((11, 13)) c = tf.random_normal((12, 14)) # res = func(a, b, c) orders, optimized_func = tf_einsum_opt.optimizer(func, sess, a, b, c) res1 = func(a, b, c) %timeit sess.run(res1) res2 = optimized_func(a, b, c) %timeit sess.run(res2) # Check that the results of optimized and the original function are the same. np.testing.assert_allclose(*sess.run([res1, res2]), rtol=1e-5, atol=1e-5) def func(a, b, c, d): res = tf.einsum('si,sj,sk,ij->s', a, b, d, c) res += tf.einsum('s,si->s', res, a) return res a = tf.random_normal((100, 101)) b = tf.random_normal((100, 102)) c = tf.random_normal((101, 102)) d = tf.random_normal((100, 30)) orders, optimized_func = tf_einsum_opt.optimizer(func, sess, a, b, c, d) res1 = func(a, b, c, d) %timeit sess.run(res1) res2 = optimized_func(a, b, c, d) %timeit sess.run(res2) orders <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's start by creating some data that we can store. 2000 images with shape (254, 254, 3) along with 2000 targets are generated. Step2: The tenth image is set to be a completely red image. Step3: In the next step we instantiate a pyxis writer to write the data we created above to a directory called data. Step4: The map_size_limit is the size of the LMDB in MB. For file systems running ext4, there is no big cost associated with making this big. ram_size_limit is the limit on how many GB of data we can push per write operation. Step5: Data can be input in two different ways Step6: Reading data Step7: To read data from a LMDB we instantiate a pyxis reader using the directory of the database. Step8: All addressable keys can be found by calling the pyxis.get_data_keys function Step9: Python list indexing syntax is used to retrieve a whole sample from the LMDB. The pyxis.get_sample function can be used as well. The returned value is a Python dictionary, addressable by the keys used when writing the database. Step10: The code snippet above retrieves the tenth sample, i.e. the one with the red image. Step11: Slice objects are supported by the indexing method outlined above. For example Step12: Python 2.7 tend to favour __getslice__ over __getitem__ when slicing, however __getslice__ has been deprecated since Python 2.0. The functionality may vary when compared with Python 3. See Python 2 Data model documentation for more information. Step13: Use len() to return the number of samples in the LMDB. Step14: Just like when writing, we should make sure to close the LMDB environment after we are done reading.
<ASSISTANT_TASK:> Python Code: from __future__ import print_function import time import numpy as np import pyxis as px np.random.seed(1234) nb_samples = 2000 X = np.zeros((nb_samples, 254, 254, 3), dtype=np.uint8) y = np.arange(nb_samples, dtype=np.uint8) X[10, :, :, 0] = 255 db = px.Writer(dirpath='data', map_size_limit=500, ram_gb_limit=2) start = time.time() db.put_samples('X', X, 'y', y) print('Average time per image = {:.4f}s'.format((time.time() - start) / nb_samples)) db.close() try: %matplotlib inline import matplotlib.pyplot as plt except ImportError: raise ImportError('Could not import the matplotlib library required to ' 'plot images. Please refer to http://matplotlib.org/ ' 'for installation instructions.') db = px.Reader('data') db.get_data_keys() sample = db[10] print('X: ', sample['X'].shape, sample['X'].dtype) print('y: ', sample['y'].shape, sample['y'].dtype) plt.figure() plt.imshow(sample['X']) plt.axis('off') plt.show() samples = db[0:8:2] for sample in samples: print(sample['y']) db.get_data_value(100, 'y') len(db) db.close() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: For information on how to configure and tune the solver, please see the documentation for optlang project and note that model.solver is simply an object optlang of class Model.
<ASSISTANT_TASK:> Python Code: import cobra.test model = cobra.test.create_test_model('textbook') model.solver = 'glpk' # or if you have cplex installed model.solver = 'cplex' type(model.solver) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First we'll load the text file and convert it into integers for our network to use. Step3: Now I need to split up the data into batches, and into training and validation sets. I should be making a test set here, but I'm not going to worry about that. My test will be if the network can generate new text. Step4: I'll write another function to grab batches out of the arrays made by split data. Here each batch will be a sliding window on these arrays with size batch_size X num_steps. For example, if we want our network to train on a sequence of 100 characters, num_steps = 100. For the next batch, we'll shift this window the next sequence of num_steps characters. In this way we can feed batches to the network and the cell states will continue through on each batch. Step5: Hyperparameters Step6: Write out the graph for TensorBoard Step7: Training Step8: Sampling
<ASSISTANT_TASK:> Python Code: import time from collections import namedtuple import numpy as np import tensorflow as tf with open('anna.txt', 'r') as f: text=f.read() vocab = set(text) vocab_to_int = {c: i for i, c in enumerate(vocab)} int_to_vocab = dict(enumerate(vocab)) chars = np.array([vocab_to_int[c] for c in text], dtype=np.int32) text[:100] chars[:100] def split_data(chars, batch_size, num_steps, split_frac=0.9): Split character data into training and validation sets, inputs and targets for each set. Arguments --------- chars: character array batch_size: Size of examples in each of batch num_steps: Number of sequence steps to keep in the input and pass to the network split_frac: Fraction of batches to keep in the training set Returns train_x, train_y, val_x, val_y slice_size = batch_size * num_steps n_batches = int(len(chars) / slice_size) # Drop the last few characters to make only full batches x = chars[: n_batches*slice_size] y = chars[1: n_batches*slice_size + 1] # Split the data into batch_size slices, then stack them into a 2D matrix x = np.stack(np.split(x, batch_size)) y = np.stack(np.split(y, batch_size)) # Now x and y are arrays with dimensions batch_size x n_batches*num_steps # Split into training and validation sets, keep the virst split_frac batches for training split_idx = int(n_batches*split_frac) train_x, train_y= x[:, :split_idx*num_steps], y[:, :split_idx*num_steps] val_x, val_y = x[:, split_idx*num_steps:], y[:, split_idx*num_steps:] return train_x, train_y, val_x, val_y train_x, train_y, val_x, val_y = split_data(chars, 10, 200) train_x.shape train_x[:,:10] def get_batch(arrs, num_steps): batch_size, slice_size = arrs[0].shape n_batches = int(slice_size/num_steps) for b in range(n_batches): yield [x[:, b*num_steps: (b+1)*num_steps] for x in arrs] def build_rnn(num_classes, batch_size=50, num_steps=50, lstm_size=128, num_layers=2, learning_rate=0.001, grad_clip=5, sampling=False): if sampling == True: batch_size, num_steps = 1, 1 tf.reset_default_graph() # Declare placeholders we'll feed into the graph with tf.name_scope('inputs'): inputs = tf.placeholder(tf.int32, [batch_size, num_steps], name='inputs') x_one_hot = tf.one_hot(inputs, num_classes, name='x_one_hot') with tf.name_scope('targets'): targets = tf.placeholder(tf.int32, [batch_size, num_steps], name='targets') y_one_hot = tf.one_hot(targets, num_classes, name='y_one_hot') y_reshaped = tf.reshape(y_one_hot, [-1, num_classes]) keep_prob = tf.placeholder(tf.float32, name='keep_prob') # Build the RNN layers with tf.name_scope("RNN_layers"): #lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size) #drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob) #cell = tf.contrib.rnn.MultiRNNCell([drop] * num_layers) lstm = tf.nn.rnn_cell.BasicLSTMCell(lstm_size) drop = tf.nn.rnn_cell.DropoutWrapper(lstm, output_keep_prob=keep_prob) cell = tf.nn.rnn_cell.MultiRNNCell([drop] * num_layers) with tf.name_scope("RNN_init_state"): initial_state = cell.zero_state(batch_size, tf.float32) # Run the data through the RNN layers with tf.name_scope("RNN_forward"): rnn_inputs = [tf.squeeze(i, squeeze_dims=[1]) for i in tf.split(x_one_hot, num_steps, 1)] #outputs, state = tf.contrib.rnn.static_rnn(cell, rnn_inputs, initial_state=initial_state) outputs, state = tf.nn.rnn(cell, rnn_inputs, initial_state=initial_state) final_state = state # Reshape output so it's a bunch of rows, one row for each cell output with tf.name_scope('sequence_reshape'): #seq_output = tf.concat(outputs, axis=1,name='seq_output') seq_output = tf.concat(1,outputs,name='seq_output') output = tf.reshape(seq_output, [-1, lstm_size], name='graph_output') # Now connect the RNN putputs to a softmax layer and calculate the cost with tf.name_scope('logits'): softmax_w = tf.Variable(tf.truncated_normal((lstm_size, num_classes), stddev=0.1), name='softmax_w') softmax_b = tf.Variable(tf.zeros(num_classes), name='softmax_b') logits = tf.matmul(output, softmax_w) + softmax_b with tf.name_scope('predictions'): preds = tf.nn.softmax(logits, name='predictions') with tf.name_scope('cost'): loss = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_reshaped, name='loss') cost = tf.reduce_mean(loss, name='cost') # Optimizer for training, using gradient clipping to control exploding gradients with tf.name_scope('train'): tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), grad_clip) train_op = tf.train.AdamOptimizer(learning_rate) optimizer = train_op.apply_gradients(zip(grads, tvars)) # Export the nodes export_nodes = ['inputs', 'targets', 'initial_state', 'final_state', 'keep_prob', 'cost', 'preds', 'optimizer'] Graph = namedtuple('Graph', export_nodes) local_dict = locals() graph = Graph(*[local_dict[each] for each in export_nodes]) return graph batch_size = 100 num_steps = 100 lstm_size = 512 num_layers = 2 learning_rate = 0.001 model = build_rnn(len(vocab), batch_size=batch_size, num_steps=num_steps, learning_rate=learning_rate, lstm_size=lstm_size, num_layers=num_layers) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) file_writer = tf.summary.FileWriter('./logs/3', sess.graph) !mkdir -p checkpoints/anna epochs = 10 save_every_n = 200 train_x, train_y, val_x, val_y = split_data(chars, batch_size, num_steps) model = build_rnn(len(vocab), batch_size=batch_size, num_steps=num_steps, learning_rate=learning_rate, lstm_size=lstm_size, num_layers=num_layers) saver = tf.train.Saver(max_to_keep=100) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Use the line below to load a checkpoint and resume training #saver.restore(sess, 'checkpoints/anna20.ckpt') n_batches = int(train_x.shape[1]/num_steps) iterations = n_batches * epochs for e in range(epochs): # Train network new_state = sess.run(model.initial_state) loss = 0 for b, (x, y) in enumerate(get_batch([train_x, train_y], num_steps), 1): iteration = e*n_batches + b start = time.time() feed = {model.inputs: x, model.targets: y, model.keep_prob: 0.5, model.initial_state: new_state} batch_loss, new_state, _ = sess.run([model.cost, model.final_state, model.optimizer], feed_dict=feed) loss += batch_loss end = time.time() print('Epoch {}/{} '.format(e+1, epochs), 'Iteration {}/{}'.format(iteration, iterations), 'Training loss: {:.4f}'.format(loss/b), '{:.4f} sec/batch'.format((end-start))) if (iteration%save_every_n == 0) or (iteration == iterations): # Check performance, notice dropout has been set to 1 val_loss = [] new_state = sess.run(model.initial_state) for x, y in get_batch([val_x, val_y], num_steps): feed = {model.inputs: x, model.targets: y, model.keep_prob: 1., model.initial_state: new_state} batch_loss, new_state = sess.run([model.cost, model.final_state], feed_dict=feed) val_loss.append(batch_loss) print('Validation loss:', np.mean(val_loss), 'Saving checkpoint!') saver.save(sess, "checkpoints/anna/i{}_l{}_{:.3f}.ckpt".format(iteration, lstm_size, np.mean(val_loss))) tf.train.get_checkpoint_state('checkpoints/anna') def pick_top_n(preds, vocab_size, top_n=5): p = np.squeeze(preds) p[np.argsort(p)[:-top_n]] = 0 p = p / np.sum(p) c = np.random.choice(vocab_size, 1, p=p)[0] return c def sample(checkpoint, n_samples, lstm_size, vocab_size, prime="The "): prime = "Far" samples = [c for c in prime] model = build_rnn(vocab_size, lstm_size=lstm_size, sampling=True) saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, checkpoint) new_state = sess.run(model.initial_state) for c in prime: x = np.zeros((1, 1)) x[0,0] = vocab_to_int[c] feed = {model.inputs: x, model.keep_prob: 1., model.initial_state: new_state} preds, new_state = sess.run([model.preds, model.final_state], feed_dict=feed) c = pick_top_n(preds, len(vocab)) samples.append(int_to_vocab[c]) for i in range(n_samples): x[0,0] = c feed = {model.inputs: x, model.keep_prob: 1., model.initial_state: new_state} preds, new_state = sess.run([model.preds, model.final_state], feed_dict=feed) c = pick_top_n(preds, len(vocab)) samples.append(int_to_vocab[c]) return ''.join(samples) checkpoint = "checkpoints/anna/i3560_l512_1.122.ckpt" samp = sample(checkpoint, 2000, lstm_size, len(vocab), prime="Far") print(samp) checkpoint = "checkpoints/anna/i200_l512_2.432.ckpt" samp = sample(checkpoint, 1000, lstm_size, len(vocab), prime="Far") print(samp) checkpoint = "checkpoints/anna/i600_l512_1.750.ckpt" samp = sample(checkpoint, 1000, lstm_size, len(vocab), prime="Far") print(samp) checkpoint = "checkpoints/anna/i1000_l512_1.484.ckpt" samp = sample(checkpoint, 1000, lstm_size, len(vocab), prime="Far") print(samp) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. 입력DataLoader 설정 Step2: 2. 사전 설정 Step3: 3. Trainning loop Step4: 4. Predict & Evaluate Step5: 5. save model parameter Step6: 6. plot images which failed to predict
<ASSISTANT_TASK:> Python Code: %matplotlib inline import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import datasets, transforms from torch.autograd import Variable import matplotlib.pyplot as plt import numpy as np is_cuda = torch.cuda.is_available() # cuda사 사용가능시, True batch_size = 50 train_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=True, download=True, transform=transforms.ToTensor()), batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=True, transform=transforms.ToTensor()), batch_size=1000) class MnistModel(nn.Module): def __init__(self): super(MnistModel, self).__init__() # input is 28x28 # padding=2 for same padding self.conv1 = nn.Conv2d(1, 32, 5, padding=2) # feature map size is 14*14 by pooling # padding=2 for same padding self.conv2 = nn.Conv2d(32, 64, 5, padding=2) # feature map size is 7*7 by pooling self.fc1 = nn.Linear(64*7*7, 1024) self.fc2 = nn.Linear(1024, 10) def forward(self, x): x = F.max_pool2d(F.relu(self.conv1(x)), 2) x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, 64*7*7) # reshape Variable x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x) model = MnistModel() if is_cuda : model.cuda() loss_fn = nn.NLLLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.0001) # trainning model.train() train_loss = [] train_accu = [] for epoch in range(3): for i, (image, target) in enumerate(train_loader): if is_cuda : image, target = image.cuda(), target.cuda() image, target = Variable(image), Variable(target) # 입력image Target 설정 output = model(image) # model 생성 loss = loss_fn(output, target) #loss 생성 optimizer.zero_grad() # zero_grad loss.backward() # calc backward grad optimizer.step() # update parameter pred = output.data.max(1)[1] accuracy = pred.eq(target.data).sum()/batch_size train_loss.append(loss.data[0]) train_accu.append(accuracy) if i % 300 == 0: print(i, loss.data[0]) plt.plot(train_accu) plt.plot(train_loss) model.eval() correct = 0 for image, target in test_loader: if is_cuda : image, target = image.cuda(), target.cuda() image, target = Variable(image, volatile=True), Variable(target) output = model(image) prediction = output.data.max(1)[1] correct += prediction.eq(target.data).sum() print('\nTest set: Accuracy: {:.2f}%'.format(100. * correct / len(test_loader.dataset))) checkpoint_filename = 'minist.ckpt' torch.save(model.state_dict(), checkpoint_filename) model.eval() image, target = iter(test_loader).next() #test_loader로 부터 한번만 dataset을 호출 if is_cuda : image, target = image.cuda(), target.cuda() image, target = Variable(image, volatile=True), Variable(target) output = model(image) ## 이미지, 참값, 예측값을 numpy array로 변환 images = image.data.cpu().numpy() cls_true = target.data.cpu().numpy().squeeze() prediction = output.data.max(1)[1].cpu().numpy().squeeze() # 예측값이 참값과 틀린것을 확인 incorrect = (prediction != cls_true) # 예측이 틀린 것만을 추출 images = images[incorrect] cls_true = cls_true[incorrect] prediction = prediction[incorrect] # 에러율을 표지 print('error : {:.1%}, number ={:}'.format(incorrect.sum()/len(incorrect), incorrect.sum())) # 틀린 것들의 이미지를 표시 tensorImg = torch.Tensor(images) plt.imshow(torchvision.utils.make_grid(tensorImg).numpy().transpose((1,2,0))) plt.show() # 틀린 것들의 예측치를 표시 print('prediction :') pred_resized = np.pad(prediction, (0, 8 - len(prediction)%8), 'constant', constant_values=(0, 0)) print(pred_resized.reshape(-1,8)) print('\n') # 틀린 것들의 참값을 표시 print('True :') true_resized = np.pad(cls_true, (0, 8 - len(cls_true)%8), 'constant', constant_values=(0, 0)) print(true_resized.reshape(-1,8)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We can now import the deepchem package to play with. Step2: Anatomy of a Dataset Step3: We now have three Dataset objects Step4: There's a lot of information there, so let's start at the beginning. It begins with the label "DiskDataset". Dataset is an abstract class. It has a few subclasses that correspond to different ways of storing data. Step5: This is a very easy way to access data, but you should be very careful about using it. This requires the data for all samples to be loaded into memory at once. That's fine for small datasets like this one, but for large datasets it could easily take more memory than you have. Step6: Most deep learning models can process a batch of multiple samples all at once. You can use iterbatches() to iterate over batches of samples. Step7: iterbatches() has other features that are useful when training models. For example, iterbatches(batch_size=100, epochs=10, deterministic=False) will iterate over the complete dataset ten times, each time with the samples in a different random order. Step8: Creating Datasets Step9: Notice that we did not specify weights or IDs. These are optional, as is y for that matter. Only X is required. Since we left them out, it automatically built w and ids arrays for us, setting all weights to 1 and setting the IDs to integer indices. Step10: What about creating a DiskDataset? If you have the data in NumPy arrays, you can call DiskDataset.from_numpy() to save it to disk. Since this is just a tutorial, we will save it to a temporary directory.
<ASSISTANT_TASK:> Python Code: !pip install --pre deepchem import deepchem as dc dc.__version__ tasks, datasets, transformers = dc.molnet.load_delaney(featurizer='GraphConv') train_dataset, valid_dataset, test_dataset = datasets print(test_dataset) test_dataset.y for X, y, w, id in test_dataset.itersamples(): print(y, id) for X, y, w, ids in test_dataset.iterbatches(batch_size=50): print(y.shape) test_dataset.to_dataframe() import numpy as np X = np.random.random((10, 5)) y = np.random.random((10, 2)) dataset = dc.data.NumpyDataset(X=X, y=y) print(dataset) dataset.to_dataframe() import tempfile with tempfile.TemporaryDirectory() as data_dir: disk_dataset = dc.data.DiskDataset.from_numpy(X=X, y=y, data_dir=data_dir) print(disk_dataset) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Model Type Step7: 1.4. Elemental Stoichiometry Step8: 1.5. Elemental Stoichiometry Details Step9: 1.6. Prognostic Variables Step10: 1.7. Diagnostic Variables Step11: 1.8. Damping Step12: 2. Key Properties --&gt; Time Stepping Framework --&gt; Passive Tracers Transport Step13: 2.2. Timestep If Not From Ocean Step14: 3. Key Properties --&gt; Time Stepping Framework --&gt; Biology Sources Sinks Step15: 3.2. Timestep If Not From Ocean Step16: 4. Key Properties --&gt; Transport Scheme Step17: 4.2. Scheme Step18: 4.3. Use Different Scheme Step19: 5. Key Properties --&gt; Boundary Forcing Step20: 5.2. River Input Step21: 5.3. Sediments From Boundary Conditions Step22: 5.4. Sediments From Explicit Model Step23: 6. Key Properties --&gt; Gas Exchange Step24: 6.2. CO2 Exchange Type Step25: 6.3. O2 Exchange Present Step26: 6.4. O2 Exchange Type Step27: 6.5. DMS Exchange Present Step28: 6.6. DMS Exchange Type Step29: 6.7. N2 Exchange Present Step30: 6.8. N2 Exchange Type Step31: 6.9. N2O Exchange Present Step32: 6.10. N2O Exchange Type Step33: 6.11. CFC11 Exchange Present Step34: 6.12. CFC11 Exchange Type Step35: 6.13. CFC12 Exchange Present Step36: 6.14. CFC12 Exchange Type Step37: 6.15. SF6 Exchange Present Step38: 6.16. SF6 Exchange Type Step39: 6.17. 13CO2 Exchange Present Step40: 6.18. 13CO2 Exchange Type Step41: 6.19. 14CO2 Exchange Present Step42: 6.20. 14CO2 Exchange Type Step43: 6.21. Other Gases Step44: 7. Key Properties --&gt; Carbon Chemistry Step45: 7.2. PH Scale Step46: 7.3. Constants If Not OMIP Step47: 8. Tracers Step48: 8.2. Sulfur Cycle Present Step49: 8.3. Nutrients Present Step50: 8.4. Nitrous Species If N Step51: 8.5. Nitrous Processes If N Step52: 9. Tracers --&gt; Ecosystem Step53: 9.2. Upper Trophic Levels Treatment Step54: 10. Tracers --&gt; Ecosystem --&gt; Phytoplankton Step55: 10.2. Pft Step56: 10.3. Size Classes Step57: 11. Tracers --&gt; Ecosystem --&gt; Zooplankton Step58: 11.2. Size Classes Step59: 12. Tracers --&gt; Disolved Organic Matter Step60: 12.2. Lability Step61: 13. Tracers --&gt; Particules Step62: 13.2. Types If Prognostic Step63: 13.3. Size If Prognostic Step64: 13.4. Size If Discrete Step65: 13.5. Sinking Speed If Prognostic Step66: 14. Tracers --&gt; Dic Alkalinity Step67: 14.2. Abiotic Carbon Step68: 14.3. Alkalinity
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'bcc', 'sandbox-2', 'ocnbgchem') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.model_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Geochemical" # "NPZD" # "PFT" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.elemental_stoichiometry') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Fixed" # "Variable" # "Mix of both" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.elemental_stoichiometry_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.prognostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.diagnostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.damping') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.time_stepping_framework.passive_tracers_transport.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "use ocean model transport time step" # "use specific time step" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.time_stepping_framework.passive_tracers_transport.timestep_if_not_from_ocean') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.time_stepping_framework.biology_sources_sinks.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "use ocean model transport time step" # "use specific time step" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.time_stepping_framework.biology_sources_sinks.timestep_if_not_from_ocean') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.transport_scheme.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Offline" # "Online" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.transport_scheme.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Use that of ocean model" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.transport_scheme.use_different_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.boundary_forcing.atmospheric_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "from file (climatology)" # "from file (interannual variations)" # "from Atmospheric Chemistry model" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.boundary_forcing.river_input') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "from file (climatology)" # "from file (interannual variations)" # "from Land Surface model" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.boundary_forcing.sediments_from_boundary_conditions') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.boundary_forcing.sediments_from_explicit_model') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CO2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CO2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OMIP protocol" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.O2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.O2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OMIP protocol" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.DMS_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.DMS_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.N2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.N2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.N2O_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.N2O_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CFC11_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CFC11_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CFC12_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.CFC12_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.SF6_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.SF6_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.13CO2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.13CO2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.14CO2_exchange_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.14CO2_exchange_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.gas_exchange.other_gases') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.carbon_chemistry.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OMIP protocol" # "Other protocol" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.carbon_chemistry.pH_scale') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Sea water" # "Free" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.key_properties.carbon_chemistry.constants_if_not_OMIP') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.sulfur_cycle_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.nutrients_present') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Nitrogen (N)" # "Phosphorous (P)" # "Silicium (S)" # "Iron (Fe)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.nitrous_species_if_N') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Nitrates (NO3)" # "Amonium (NH4)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.nitrous_processes_if_N') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Dentrification" # "N fixation" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.upper_trophic_levels_definition') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.upper_trophic_levels_treatment') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.phytoplankton.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Generic" # "PFT including size based (specify both below)" # "Size based only (specify below)" # "PFT only (specify below)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.phytoplankton.pft') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Diatoms" # "Nfixers" # "Calcifiers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.phytoplankton.size_classes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Microphytoplankton" # "Nanophytoplankton" # "Picophytoplankton" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.zooplankton.type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Generic" # "Size based (specify below)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.ecosystem.zooplankton.size_classes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Microzooplankton" # "Mesozooplankton" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.disolved_organic_matter.bacteria_present') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.disolved_organic_matter.lability') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Labile" # "Semi-labile" # "Refractory" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Diagnostic" # "Diagnostic (Martin profile)" # "Diagnostic (Balast)" # "Prognostic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.types_if_prognostic') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "POC" # "PIC (calcite)" # "PIC (aragonite" # "BSi" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.size_if_prognostic') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "No size spectrum used" # "Full size spectrum" # "Discrete size classes (specify which below)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.size_if_discrete') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.particules.sinking_speed_if_prognostic') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Function of particule size" # "Function of particule type (balast)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.dic_alkalinity.carbon_isotopes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "C13" # "C14)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.dic_alkalinity.abiotic_carbon') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.ocnbgchem.tracers.dic_alkalinity.alkalinity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Prognostic" # "Diagnostic)" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load the weight matrices from the training Step2: Visualize the digit from one hot representation through the activity weight matrix to the image representation Step3: Visualize the rotation of the image using the weight matrix from activity to activity
<ASSISTANT_TASK:> Python Code: import nengo import numpy as np import cPickle import matplotlib.pyplot as plt from matplotlib import pylab import matplotlib.animation as animation #Weight matrices generated by the neural network after training #Maps the label vectors to the neuron activity of the ensemble label_weights = cPickle.load(open("label_weights1000.p", "rb")) #Maps the activity of the neurons to the visual representation of the image activity_to_img_weights = cPickle.load(open("activity_to_img_weights_scale1000.p", "rb")) #Maps the activity of the neurons of an image with the activity of the neurons of an image scaled scale_up_weights = cPickle.load(open("scale_up_weights1000.p", "rb")) scale_down_weights = cPickle.load(open("scale_down_weights1000.p", "rb")) #Create the pointers for the numbers temp = np.diag([1]*10) ZERO = temp[0] ONE = temp[1] TWO = temp[2] THREE= temp[3] FOUR = temp[4] FIVE = temp[5] SIX = temp[6] SEVEN =temp[7] EIGHT= temp[8] NINE = temp[9] labels =[ZERO,ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE] #Visualize the one hot representation print(ZERO) print(ONE) #Change this to imagine different digits imagine = ZERO #Can also imagine combitnations of numbers (ZERO + ONE) #Label to activity test_activity = np.dot(imagine,label_weights) #Image decoded test_output_img = np.dot(test_activity, activity_to_img_weights) plt.imshow(test_output_img.reshape(28,28),cmap='gray') plt.show() #Change this to visualize different digits imagine = ZERO #How long the animation should go for frames=5 #Make a list of the activation of rotated images and add first frame rot_seq = [] rot_seq.append(np.dot(imagine,label_weights)) #Map the label vector to the activity vector test_output_img = np.dot(rot_seq[0], activity_to_img_weights) #Map the activity to the visual representation #add the rest of the frames, using the previous frame to calculate the current frame for i in range(1,frames): rot_seq.append(np.dot(rot_seq[i-1],scale_down_weights)) #add the activity of the current image to the list test_output_img = np.dot(rot_seq[i], activity_to_img_weights) #map the new activity to the visual image for i in range(1,frames*2): rot_seq.append(np.dot(rot_seq[frames+i-2],scale_up_weights)) #add the activity of the current image to the list test_output_img = np.dot(rot_seq[i], activity_to_img_weights) #map the new activity to the visual image #Animation of rotation fig = plt.figure() def updatefig(i): image_vector = np.dot(rot_seq[i], activity_to_img_weights) #map the activity to the image representation im = pylab.imshow(np.reshape(image_vector,(28,28), 'F').T, cmap=plt.get_cmap('Greys_r'),animated=True) return im, ani = animation.FuncAnimation(fig, updatefig, interval=100, blit=True) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Notice that we have a lot of speeches that are relatively short. They probably aren't the best for clustering because of their brevity
<ASSISTANT_TASK:> Python Code: !curl -O http://www.cs.cornell.edu/home/llee/data/convote/convote_v1.1.tar.gz !tar -zxvf convote_v1.1.tar.gz paths = glob.glob("convote_v1.1/data_stage_one/development_set/*") speeches = [] for path in paths: speech = {} filename = path[-26:] speech['filename'] = filename speech['bill_no'] = filename[:3] speech['speaker_no'] = filename[4:10] speech['bill_vote'] = filename[-5] speech['party'] = filename[-7] # Open the file speech_file = open(path, 'r') # Read the stuff out of it speech['contents'] = speech_file.read() cleaned_contents = re.sub(r"[^ \w]",'', speech['contents']) cleaned_contents = re.sub(r" +",' ', cleaned_contents) cleaned_contents = cleaned_contents.strip() words = cleaned_contents.split(' ') speech['word_count'] = len(words) speeches.append(speech) speeches[:5] speeches_df = pd.DataFrame(speeches) speeches_df.head() speeches_df["word_count"].describe() from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(max_features=10000, stop_words='english') longer_speeches = speeches_df[speeches_df["word_count"] > 92] #filtering for word counts greater than 92 (our median length) X = vectorizer.fit_transform(longer_speeches['contents']) from sklearn.cluster import KMeans number_of_clusters = 7 km = KMeans(n_clusters=number_of_clusters) km.fit(X) print("Top terms per cluster:") order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(number_of_clusters): print("Cluster %d:" % i), for ind in order_centroids[i, :15]: print(' %s' % terms[ind]), print '' additional_stopwords = ['mr','congress','chairman','madam','amendment','legislation','speaker'] import nltk english_stopwords = nltk.corpus.stopwords.words('english') new_stopwords = additional_stopwords + english_stopwords vectorizer = TfidfVectorizer(max_features=10000, stop_words=new_stopwords) longer_speeches = speeches_df[speeches_df["word_count"] > 92] X = vectorizer.fit_transform(longer_speeches['contents']) number_of_clusters = 7 km = KMeans(n_clusters=number_of_clusters) km.fit(X) print("Top terms per cluster:") order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(number_of_clusters): print("Cluster %d:" % i), for ind in order_centroids[i, :15]: print(' %s' % terms[ind]), print '' longer_speeches["k-means label"] = km.labels_ longer_speeches.head() china_speeches = longer_speeches[longer_speeches["k-means label"] == 1] china_speeches.head() vectorizer = TfidfVectorizer(max_features=10000, stop_words=new_stopwords) X = vectorizer.fit_transform(china_speeches['contents']) number_of_clusters = 5 km = KMeans(n_clusters=number_of_clusters) km.fit(X) print("Top terms per cluster:") order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(number_of_clusters): print("Cluster %d:" % i), for ind in order_centroids[i, :10]: print(' %s' % terms[ind]), print '' km.get_params() km.score(X) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's load the actual data. We're going to use astropy to do that Step2: Since this is Chandra data, we know where all the relevant information is Step3: Let's plot the raw spectrum Step4: Ok, great! Now we can load the ARF and RMF Step5: There's also an XSPECTRUM class that makes all of this much easier Step6: spec now also contains the ARF and RMF and can be used for various things. Step7: Spectral Fitting Step8: Awesome! Let's make a LogPosterior object that we can now play around with Step9: Because this is a simulated spectrum, we know the "ground truth" values. The photon index is $\Gamma = 2$, and the normalization is $N = 1$. Step10: Ok, cool. Fitting can be performed using scipy.optimize. Step11: Awesome, that works, too. Let's now stick this into scipy.optimize and look for a solution Step12: Hooray, we can fit! That's the minimum result we were looking for! Step13: That looks vaguely right! Step14: Let's plot the spectra, so that we know what we're looking at Step15: Ok, cool. We'll need to define a new posterior class. We still only have two parameters, but now we have four spectra to fit at the same time! Step16: Awesome, now we can optimize this as well Step17: ... and let's to MCMC!
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt try: import seaborn as sns except ImportError: print("No seaborn installed. Oh well.") import numpy as np from scipy.special import gammaln as scipy_gammaln import scipy.stats import astropy.io.fits as fits import astropy.modeling.models as models from astropy.modeling.fitting import _fitter_to_model_params from clarsach import respond from clarsach.spectrum import XSpectrum from clarsach.models.powerlaw import Powerlaw phafile = "./fake_acis.pha" pha_list = fits.open(phafile) bin_lo = pha_list[1].data.field("BIN_LO") bin_hi = pha_list[1].data.field("BIN_HI") bin_mid = bin_lo + (bin_hi - bin_lo)/2. channels = pha_list[1].data.field("CHANNEL") counts = pha_list[1].data.field("COUNTS") respfile = pha_list[1].header["RESPFILE"] arffile = pha_list[1].header["ANCRFILE"] plt.figure() plt.figure(figsize=(10,7)) plt.plot(bin_mid, counts) arf = respond.ARF(arffile) rmf = respond.RMF(respfile) spec = XSpectrum(phafile) pl_model = Powerlaw(norm=1., phoindex=2.0) y_truth = pl_model.calculate(rmf.energ_lo, rmf.energ_hi) y_arf = y_truth * arf.specresp y_rmf = rmf.apply_rmf(y_arf) plt.figure() plt.loglog(bin_mid, y_truth) plt.figure() plt.figure(figsize=(10,7)) plt.plot(bin_mid, counts) plt.plot(bin_mid, y_rmf*1e5) class PoissonPosterior(object): def __init__(self, spec, model): self.x_low = spec.rmf.energ_lo self.x_high = spec.rmf.energ_hi self.y = spec.counts self.model = model self.arf = spec.arf self.rmf = spec.rmf self.exposure = spec.exposure def logprior(self, pars): phoind = pars[0] norm = pars[1] p_ph = scipy.stats.uniform(1.0, 4.0).logpdf(phoind) p_norm = scipy.stats.uniform(0, 10).logpdf(norm) return p_ph + p_norm def _calculate_model(self, pars): self.model.phoindex = pars[0] self.model.norm = pars[1] # evaluate the model at the positions x mean_model = self.model.calculate(self.x_low, self.x_high) # run the ARF and RMF calculations if self.arf is not None: m_arf = self.arf.apply_arf(mean_model) else: m_arf = mean_model if self.rmf is not None: ymodel = self.rmf.apply_rmf(m_arf) else: ymodel = mean_model ymodel *= self.exposure ymodel += 1e-20 return ymodel def loglikelihood(self, pars): ymodel = self._calculate_model(pars) # compute the log-likelihood loglike = np.sum(-ymodel + self.y*np.log(ymodel) \ - scipy_gammaln(self.y + 1.)) if np.isfinite(loglike): return loglike else: return -np.inf def logposterior(self, pars): return self.logprior(pars) + self.loglikelihood(pars) def __call__(self, pars): return self.logposterior(pars) lpost = PoissonPosterior(spec, pl_model) lpost([2,1]) lpost_neg = lambda pars : -lpost(pars) lpost_neg([2, 1]) lpost_neg([1.5, 3]) res = scipy.optimize.minimize(lpost_neg, [2, 1], method="L-BFGS-B") res.x res y_truth = lpost._calculate_model([2,1]) y_fit = lpost._calculate_model(res.x) plt.figure() plt.plot(spec.bin_lo, spec.counts, label="Data") #plt.plot(spec.bin_lo, y_truth, label="ground truth") plt.plot(spec.bin_lo, y_fit, label="best-fit model") plt.legend() import emcee res.x ndim = 2 nwalker = 500 burnin = 200 niter = 200 p0 = np.array([np.random.multivariate_normal(res.x, np.diag([0.05, 0.05])) for i in range(nwalker)]) sampler = emcee.EnsembleSampler(nwalker, ndim, lpost, threads=4) pos, prob, stat = sampler.run_mcmc(p0, burnin) sampler.reset() _, _, _ = sampler.run_mcmc(pos, niter, rstate0=stat) fl = sampler.flatchain for i in range(ndim): plt.figure() plt.plot(fl[:,i]) import corner _ = corner.corner(fl, truths=[2,1]) spec_heg_p1 = XSpectrum("./fake_heg_p1.pha") spec_heg_m1 = XSpectrum("./fake_heg_m1.pha") spec_meg_p1 = XSpectrum("./fake_meg_p1.pha") spec_meg_m1 = XSpectrum("./fake_meg_m1.pha") spec_meg_m1.rmf fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(10,10)) ax1.plot(spec_heg_p1.bin_lo, spec_heg_p1.counts) ax1.set_title("HEG P1") ax2.plot(spec_heg_m1.bin_lo, spec_heg_m1.counts) ax2.set_title("HEG M1") ax3.plot(spec_meg_p1.bin_lo, spec_meg_p1.counts) ax3.set_title("MEG P1") ax4.plot(spec_meg_m1.bin_lo, spec_meg_m1.counts) ax4.set_title("MEG M1") class PoissonPosterior(object): def __init__(self, spec_hp1, spec_hm1, spec_mp1, spec_mm1, model): self.spec_hp1 = spec_hp1 self.spec_hm1 = spec_hm1 self.spec_mp1 = spec_mp1 self.spec_mm1 = spec_mm1 self.model = model def logprior(self, pars): phoind = pars[0] norm = pars[1] inst_fac1 = pars[2] inst_fac2 = pars[3] inst_fac3 = pars[4] p_ph = scipy.stats.uniform(1.0, 4.0).logpdf(phoind) p_norm = scipy.stats.uniform(0, 10).logpdf(norm) p_inst_fac1 = scipy.stats.norm(1, 0.5).logpdf(inst_fac1) p_inst_fac2 = scipy.stats.norm(1, 0.5).logpdf(inst_fac2) p_inst_fac3 = scipy.stats.norm(1, 0.5).logpdf(inst_fac3) return p_ph + p_norm + p_inst_fac1 + p_inst_fac2 + p_inst_fac3 def _calculate_model(self, pars): self.model.phoindex = pars[0] self.model.norm = pars[1] inst_fac1 = pars[2] inst_fac2 = pars[3] inst_fac3 = pars[4] mean_model_hp1 = self.model.calculate(self.spec_hp1.rmf.energ_lo, self.spec_hp1.rmf.energ_hi) mean_model_hm1 = self.model.calculate(self.spec_hm1.rmf.energ_lo, self.spec_hm1.rmf.energ_hi) mean_model_mp1 = self.model.calculate(self.spec_mp1.rmf.energ_lo, self.spec_mp1.rmf.energ_hi) mean_model_mm1 = self.model.calculate(self.spec_mm1.rmf.energ_lo, self.spec_mm1.rmf.energ_hi) # run the ARF and RMF calculations if self.spec_hp1.arf is not None: m_arf_hp1 = self.spec_hp1.arf.apply_arf(mean_model_hp1) m_arf_hm1 = self.spec_hm1.arf.apply_arf(mean_model_hm1 * inst_fac1) m_arf_mp1 = self.spec_mp1.arf.apply_arf(mean_model_mp1 * inst_fac2) m_arf_mm1 = self.spec_mm1.arf.apply_arf(mean_model_mm1 * inst_fac3) else: m_arf_hp1 = mean_model_hp1 m_arf_hm1 = mean_model_hm1 m_arf_mp1 = mean_model_mp1 m_arf_mm1 = mean_model_hp1 if self.spec_hp1.rmf is not None: ymodel_hp1 = self.spec_hp1.rmf.apply_rmf(m_arf_hp1) ymodel_hm1 = self.spec_hm1.rmf.apply_rmf(m_arf_hm1) ymodel_mp1 = self.spec_mp1.rmf.apply_rmf(m_arf_mp1) ymodel_mm1 = self.spec_mm1.rmf.apply_rmf(m_arf_mm1) else: ymodel_hp1 = mean_model_hp1 ymodel_hm1 = mean_model_hm1 ymodel_mp1 = mean_model_mp1 ymodel_mm1 = mean_model_mm1 ymodel_hp1 *= self.spec_hp1.exposure ymodel_hm1 *= self.spec_hm1.exposure ymodel_mp1 *= self.spec_mp1.exposure ymodel_mm1 *= self.spec_mm1.exposure ymodel_hp1 += 1e-20 ymodel_hm1 += 1e-20 ymodel_mp1 += 1e-20 ymodel_mm1 += 1e-20 return ymodel_hp1, ymodel_hm1, ymodel_mp1, ymodel_mm1 def loglikelihood(self, pars): ymodel_hp1, ymodel_hm1, ymodel_mp1, ymodel_mm1 = self._calculate_model(pars) #ymodel_hp1, ymodel_hm1 = self._calculate_model(pars) # compute the log-likelihood loglike_hp1 = np.sum(-ymodel_hp1 + self.spec_hp1.counts*np.log(ymodel_hp1) \ - scipy_gammaln(self.spec_hp1.counts + 1.)) loglike_hm1 = np.sum(-ymodel_hm1 + self.spec_hm1.counts*np.log(ymodel_hm1) \ - scipy_gammaln(self.spec_hm1.counts + 1.)) loglike_mp1 = np.sum(-ymodel_mp1 + self.spec_mp1.counts*np.log(ymodel_mp1) \ - scipy_gammaln(self.spec_mp1.counts + 1.)) loglike_mm1 = np.sum(-ymodel_mm1 + self.spec_mm1.counts*np.log(ymodel_mm1) \ - scipy_gammaln(self.spec_mm1.counts + 1.)) if np.isfinite(loglike_hp1) and np.isfinite(loglike_hm1) and \ np.isfinite(loglike_mp1) and np.isfinite(loglike_mm1): return loglike_hp1 + loglike_hm1 #+ loglike_mp1 + loglike_mm1 else: return -np.inf def logposterior(self, pars): return self.logprior(pars) + self.loglikelihood(pars) def __call__(self, pars): return self.logposterior(pars) lpost = PoissonPosterior(spec_heg_p1, spec_heg_m1, spec_meg_p1, spec_meg_m1, pl_model) lpost([2,1, 1, 1, 1]) lpost_neg = lambda pars : -lpost(pars) %timeit lpost([2, 1, 1, 1, 1]) res = scipy.optimize.minimize(lpost_neg, [2, 1, 1, 1, 1], method="L-BFGS-B") res sampler = emcee.EnsembleSampler(200, 5, lpost, threads=4) p0 = np.array([np.random.multivariate_normal([2, 1, 1, 1, 1], np.diag([0.1, 0.05, 0.05, 0.05, 0.05])) for i in range(200)]) pos, prob, stat = sampler.run_mcmc(p0, 200) sampler.reset() _, _, _ = sampler.run_mcmc(pos, 100, rstate0=stat) fl[:,0] fl = sampler.flatchain for i in range(ndim): plt.figure() plt.plot(fl[fl[:,i] > 0,i]) a = np.random.uniform(size=6) b = np.random.uniform(size=6) np.cov(a, b) _ = corner.corner(fl, truths=[2,1]) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(10,10)) ax1.plot(spec_heg_p1.bin_lo, spec_heg_p1.counts) ax1.set_title("HEG P1") ax2.plot(spec_heg_m1.bin_lo, spec_heg_m1.counts) ax2.set_title("HEG M1") #ax3.plot(spec_meg_p1.bin_lo, spec_meg_p1.counts) #ax3.set_title("MEG P1") #ax4.plot(spec_meg_m1.bin_lo, spec_meg_m1.counts) #ax4.set_title("MEG M1") idx = np.random.choice(np.arange(len(fl)), size=100) for i in idx: p = fl[i] yfit_hp1, yfit_hm1 = lpost._calculate_model(p) ax1.plot(spec_heg_p1.bin_lo, yfit_hp1, color=sns.color_palette()[1], alpha=0.4) ax2.plot(spec_heg_m1.bin_lo, yfit_hm1, color=sns.color_palette()[1], alpha=0.4) #ax3.plot(spec_meg_p1.bin_lo, yfit_mp1, color=sns.color_palette()[1], alpha=0.4) #ax4.plot(spec_meg_m1.bin_lo, yfit_mm1, color=sns.color_palette()[1], alpha=0.4) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exploring the dataset Step2: Based on the above exploratory commands, I believe that the following questions can be answered using the dataset Step3: Now that we have a data frame of information about each genre and the corresponding mean rating, we will visualize the data using matplotlib Step4: Reporting findings/analyses Step5: Now that we have a move year column, let us list the data types of the columns in the movies data frame. Step6: movie_year is of float64 datat type. We must convert the data type of the movie_year column to int64. Before we go ahead and do that, we must replace all NULL and inifinite entries in the column with zero. If we do not perform this step, we will get the following errror message. Step7: In the above array, we see some incorrect year values. And the year values need to be sorted as well.
<ASSISTANT_TASK:> Python Code: # The first step is to import the dataset into a pandas dataframe. import pandas as pd #path = 'C:/Users/hrao/Documents/Personal/HK/Python/ml-20m/ml-20m/' path = '/Users/Harish/Documents/HK_Work/Python/ml-20m/' movies = pd.read_csv(path+'movies.csv') movies.shape tags = pd.read_csv(path+'tags.csv') tags.shape ratings = pd.read_csv(path+'ratings.csv') ratings.shape links = pd.read_csv(path+'links.csv') links.shape movies.head() tags.head() ratings.head() links.head() # List of genres as a Python list genres = ['Action','Adventure','Animation','Children','Comedy','Crime','Documentary','Drama','Fantasy','Film-Noir','Horror','Musical','Mystery','Romance','Sci-Fi','Thriller','War','Western'] genres_rating_list = [] # The loop reads each element of the above list # For each iteration, one genre is selected from the movies data frame # This selection of the data frame is then merged with the rating data frame to get the rating for that genre # Once the new merged data frame is created, we use the mean function to get the mean rating for the genre # The genre and the corresponding mean rating are then appended to the genres_rating Data Frame # The entire looping takes long - can certainly be optimized for performance for i in range(len(genres)): fil = genres[i]+'_filter' mov = genres[i]+'_movies' rat = genres[i]+'_ratings' rat_mean = rat+'_mean' fil = movies['genres'].str.contains(genres[i]) mov = movies[fil] rat = mov.merge(ratings, on='movieId', how='inner') rat_mean = round(rat['rating'].mean(), 2) #print(genres[i], round(rat_mean,2)) genres_rating_list.append(rat_mean) df = {'Genre':genres, 'Genres Mean Rating':genres_rating_list} genres_rating = pd.DataFrame(df) genres_rating genres_rating['Genres Standard Deviation'] = genres_rating['Genres Mean Rating'].std() genres_rating['Mean'] = genres_rating['Genres Mean Rating'].mean() genres_rating['Zero'] = 0 genres_rating overall_mean = round(genres_rating['Genres Mean Rating'].mean(), 2) overall_std = round(genres_rating['Genres Mean Rating'].std(),2) scifi_rating = genres_rating[genres_rating['Genre'] == 'Sci-Fi']['Genres Mean Rating'] print(overall_mean) print(overall_std) print(scifi_rating) genres_rating['Diff from Mean'] = genres_rating['Genres Mean Rating'] - overall_mean genres_rating genre_list = list(genres_rating['Genre']) genres_rating_list = list(genres_rating['Genres Mean Rating']) genres_diff_list = list(genres_rating['Diff from Mean']) %matplotlib inline import matplotlib.pyplot as plt plt.figure(figsize=(20, 10)) ax1 = plt.subplot(2,1,1) x = [x for x in range(0, 18)] xticks_genre_list = genre_list y = genres_rating_list plt.xticks(range(len(x)), xticks_genre_list) plt.scatter(x,y, color='g') plt.plot(x, genres_rating['Mean'], color="red") plt.autoscale(tight=True) #plt.rcParams["figure.figsize"] = (10,2) plt.title('Movie ratings by genre') plt.xlabel('Genre') plt.ylabel('Rating') plt.ylim(ymax = 4, ymin = 3) plt.grid(True) plt.savefig(r'movie-ratings-by-genre.png') plt.annotate("Sci-Fi Rating", xy=(14.25,3.5), xycoords='data', xytext=(14.20, 3.7), textcoords='data', arrowprops=dict(arrowstyle="->", connectionstyle="arc3"), ) for i,j in enumerate( y ): ax1.annotate( j, ( x[i] + 0.03, y[i] + 0.02)) ax2 = plt.subplot(2,1,2) x = [x for x in range(0, 18)] xticks_genre_list = genre_list y = genres_rating['Diff from Mean'] plt.xticks(range(len(x)), xticks_genre_list) plt.plot(x,y) plt.plot(x, genres_rating['Zero']) plt.autoscale(tight=True) #plt.rcParams["figure.figsize"] = (10,2) plt.title('Deviation of each genre\'s rating from the overall mean rating') plt.xlabel('Genre') plt.ylabel('Deviation from mean rating') plt.grid(True) plt.savefig(r'deviation-from-mean-rating.png') plt.annotate("Sci-Fi Rating", xy=(14,-0.13), xycoords='data', xytext=(14.00, 0.0), textcoords='data', arrowprops=dict(arrowstyle="->", connectionstyle="arc3"), ) plt.show() # extract year of release of each movie from the title column # convert the data type of the movie_year column to numeric (from str) import numpy as np import re #movies['rel_year'] = movies.title.str[-5:-1] #movies['rel_year'] = movies.title.apply(lambda x: x[-5:-1]) movies['movie_year'] = movies['title'] #movies['movie_year'] = movies['movie_year'].apply(lambda x: re.findall('\((.*?)\)',x)) movies['movie_year'] = movies['movie_year'].str.extract(r"\(([0-9]+)\)", expand=False) # creating a new column with just the movie titles movies['title_only'] = movies['title'] movies['title_only'] = movies['title_only'].str.extract('(.*?)\s*\(', expand=False) #Drop all rows containing incorrect year values - such as 0, 6, 69, 500 and -2147483648 movies.drop(movies[movies.movie_year == '0'].index, inplace=True) movies.drop(movies[movies.movie_year == '6'].index, inplace=True) movies.drop(movies[movies.movie_year == '06'].index, inplace=True) movies.drop(movies[movies.movie_year == '69'].index, inplace=True) movies.drop(movies[movies.movie_year == '500'].index, inplace=True) movies.drop(movies[movies.movie_year == '-2147483648'].index, inplace=True) movies['movie_year'].fillna(0, inplace=True) #convert the string values to numeric movies['movie_year'] = pd.to_datetime(movies['movie_year'], format='%Y') movies.dtypes #movies['movie_year'].astype(np.int64) #movies['movie_year'] = movies['movie_year'].astype(np.int64, inplace=True) movies.dtypes movies.describe() movies.head() movies_and_years = pd.DataFrame(movies['movie_year', 'title_only']) movies_and_years.tail() #a = pd.DataFrame(movies['title_only'].groupby(movies['movie_year']).count(), movies['movie_year'], movies['title_only']) #plt.plot(a['title_only'], a['movie_year']) #plt.show() #movies_and_years #movies_and_years['title_only'].groupby[movies_and_years['movie_year']] #create a unique array of years from the newly created data frame column #years_array_raw = movies['movie_year'].unique() #years_array_raw = years_array_raw.astype(int) #years_array_raw # We see some elements of the array that are not year values - such as -2147483648 and 6 #Let us create a new numpy array to clean up the data and sort the list of unique years # Numpy arrays are immutable. Delete operations on the array will create a new copy of the same array. So, #years_array_clean = np.array([]) #for i in range(len(years_array_raw)): # if years_array_raw[i] <= 2015 and years_array_raw[i] >= 1800: # years_array_clean = np.append(years_array_clean, years_array_raw[i]) # else: # print(years_array_raw[i], ' - Incorrect year value. Will not be appended to the new array') #the incorrect year values are not present in the array anymore #years_array_clean #sorting the years in ascending order #years_array_clean = np.sort(years_array_clean) #Now, we have a unique, clean and sorted year list #years_array_clean # years and their respective movie counts #movies_and_years = pd.DataFrame(movies['movie_year'],(movies['title_only'].groupby(movies['movie_year']).agg('count'))) #movies_and_years1 = pd.DataFrame(movies['movie_year'],(movies['title_only'].groupby(years_array_clean))) # Movies and their corresponding genre combinations # This is not the ideal grouping I want to arrive at - I want to analyze movies by individual genres, not groups of genres such as Comedy|Drama|Romance, for example. # That will be the next step, possibly by creating new columns with flags for each genre #movies_and_genres = pd.DataFrame(movies['genres'], (movies['title_only'].groupby(movies['genres']).agg('count'))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Webdriver Step2: 下载和设置Webdriver Step3: 访问页面 Step4: 查找元素 Step5: 这里我们通过三种不同的方式去获取响应的元素,第一种是通过id的方式,第二个中是CSS选择器,第三种是xpath选择器,结果都是相同的。 Step6: 多个元素查找 Step7: 当然上面的方式也是可以通过导入from selenium.webdriver.common.by import By 这种方式实现 Step8: 运行的结果可以看出程序会自动打开Chrome浏览器并打开淘宝输入ipad,然后删除,重新输入MacBook pro,并点击搜索 Step9: 一个例子
<ASSISTANT_TASK:> Python Code: !pip install selenium from selenium import webdriver help(webdriver) #browser = webdriver.Firefox() # 打开Firefox浏览器 browser = webdriver.Chrome() # 打开Chrome浏览器 from selenium import webdriver browser = webdriver.Chrome() browser.get("http://music.163.com") print(browser.page_source) #browser.close() from selenium import webdriver browser = webdriver.Chrome() browser.get("http://music.163.com") input_first = browser.find_element_by_id("g_search") input_second = browser.find_element_by_css_selector("#g_search") input_third = browser.find_element_by_xpath('//*[@id="g_search"]') print(input_first) print(input_second) print(input_third) # 下面这种方式是比较通用的一种方式:这里需要记住By模块所以需要导入 from selenium.webdriver.common.by import By browser = webdriver.Chrome() browser.get("http://music.163.com") input_first = browser.find_element(By.ID,"g_search") print(input_first) browser.close() browser = webdriver.Chrome() browser.get("http://music.163.com") lis = browser.find_elements_by_css_selector('body') print(lis) browser.close() from selenium import webdriver import time browser = webdriver.Chrome() browser.get("https://music.163.com/") input_str = browser.find_element_by_id('srch') input_str.send_keys("周杰伦") time.sleep(3) #休眠,模仿人工搜索 input_str.clear() input_str.send_keys("林俊杰") from selenium import webdriver browser = webdriver.Chrome() browser.get("https://www.zhihu.com/explore/") browser.execute_script('window.scrollTo(0, document.body.scrollHeight)') browser.execute_script('alert("To Bottom")') # url = "https://www.privco.com/private-company/329463" def download_excel(url): browser.get(url) name = url.split('/')[-1] title = browser.title source = browser.page_source with open(name+'.html', 'w') as f: f.write(source) try: soup = BeautifulSoup(source, 'html.parser') url_new = soup.find('span', {'class', 'profile-name'}).a['href'] url_excel = url_new + '/export' browser.get(url_excel) except Exception as e: print(url, 'no excel') pass urls = [ 'https://www.privco.com/private-company/1135789', 'https://www.privco.com/private-company/542756', 'https://www.privco.com/private-company/137908', 'https://www.privco.com/private-company/137138'] for k, url in enumerate(urls): print(k) try: download_excel(url) except Exception as e: print(url, e) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Flower power Step2: ConvNet Codes Step3: Below I'm running images through the VGG network in batches. Step4: Building the Classifier Step5: Data prep Step6: Now you'll want to create your training, validation, and test sets. An important thing to note here is that our labels and data aren't randomized yet. We'll want to shuffle our data so the validation and test sets contain data from all classes. Otherwise, you could end up with testing sets that are all one class. Typically, you'll also want to make sure that each smaller set has the same the distribution of classes as it is for the whole data set. The easiest way to accomplish both these goals is to use StratifiedShuffleSplit from scikit-learn. Step7: If you did it right, you should see these sizes for the training sets Step9: Batches! Step10: Training Step11: Testing Step12: Below, feel free to choose images and see how the trained classifier predicts the flowers in them.
<ASSISTANT_TASK:> Python Code: from urllib.request import urlretrieve from os.path import isfile, isdir from tqdm import tqdm vgg_dir = 'tensorflow_vgg/' # Make sure vgg exists if not isdir(vgg_dir): raise Exception("VGG directory doesn't exist!") class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num if not isfile(vgg_dir + "vgg16.npy"): with DLProgress(unit='B', unit_scale=True, miniters=1, desc='VGG16 Parameters') as pbar: urlretrieve( 'https://s3.amazonaws.com/content.udacity-data.com/nd101/vgg16.npy', vgg_dir + 'vgg16.npy', pbar.hook) else: print("Parameter file already exists!") import tarfile dataset_folder_path = 'flower_photos' class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num if not isfile('flower_photos.tar.gz'): with DLProgress(unit='B', unit_scale=True, miniters=1, desc='Flowers Dataset') as pbar: urlretrieve( 'http://download.tensorflow.org/example_images/flower_photos.tgz', 'flower_photos.tar.gz', pbar.hook) if not isdir(dataset_folder_path): with tarfile.open('flower_photos.tar.gz') as tar: tar.extractall() tar.close() import os import numpy as np import tensorflow as tf from tensorflow_vgg import vgg16 from tensorflow_vgg import utils data_dir = 'flower_photos/' contents = os.listdir(data_dir) classes = [each for each in contents if os.path.isdir(data_dir + each)] # Set the batch size higher if you can fit in in your GPU memory batch_size = 10 codes_list = [] labels = [] batch = [] codes = None with tf.Session() as sess: # TODO: Build the vgg network here vgg = vgg16.Vgg16() input_ = tf.placeholder(tf.float32, [None, 224, 224, 3]) with tf.name_scope("content_vgg"): vgg.build(input_) for each in classes: print("Starting {} images".format(each)) class_path = data_dir + each files = os.listdir(class_path) for ii, file in enumerate(files, 1): # Add images to the current batch # utils.load_image crops the input images for us, from the center img = utils.load_image(os.path.join(class_path, file)) batch.append(img.reshape((1, 224, 224, 3))) labels.append(each) # Running the batch through the network to get the codes if ii % batch_size == 0 or ii == len(files): # Image batch to pass to VGG network images = np.concatenate(batch) # TODO: Get the values from the relu6 layer of the VGG network feed_dict = {input_: images} codes_batch = sess.run(vgg.relu6, feed_dict=feed_dict) # Here I'm building an array of the codes if codes is None: codes = codes_batch else: codes = np.concatenate((codes, codes_batch)) # Reset to start building the next batch batch = [] print('{} images processed'.format(ii)) # write codes to file with open('codes', 'w') as f: codes.tofile(f) # write labels to file import csv with open('labels', 'w') as f: writer = csv.writer(f, delimiter='\n') writer.writerow(labels) # read codes and labels from file import csv with open('labels') as f: reader = csv.reader(f, delimiter='\n') labels = np.array([each for each in reader if len(each) > 0]).squeeze() with open('codes') as f: codes = np.fromfile(f, dtype=np.float32) codes = codes.reshape((len(labels), -1)) from sklearn.preprocessing import LabelBinarizer # Your one-hot encoded labels array here labels_vecs = LabelBinarizer().fit_transform(labels) from sklearn.model_selection import StratifiedShuffleSplit ss = StratifiedShuffleSplit(n_splits=1, test_size=0.2) train_idx, val_idx = next(ss.split(codes, labels)) half_val_len = int(len(val_idx) / 2) val_idx, test_idx = val_idx[:half_val_len, half_val_len:] train_x, train_y = codes[train_idx], labels_vecs[train_idx] val_x, val_y = codes[val_idx], labels_vecs[val_idx] test_x, test_y = codes[test_idx], labels_vecs[test_idx] print("Train shapes (x, y):", train_x.shape, train_y.shape) print("Validation shapes (x, y):", val_x.shape, val_y.shape) print("Test shapes (x, y):", test_x.shape, test_y.shape) inputs_ = tf.placeholder(tf.float32, shape=[None, codes.shape[1]]) labels_ = tf.placeholder(tf.int64, shape=[None, labels_vecs.shape[1]]) keep_prob = tf.placeholder(tf.float32) # TODO: Classifier layers and operations relu7 = tf.layers.dense(inputs_, codes.shape[1], activation=tf.nn.relu) drop7 = tf.nn.dropout(relu7, keep_prob) logits = tf.layers.dense(drop7, labels_vecs.shape[1]) # output layer logits cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels_)) # cross entropy loss optimizer = tf.train.AdamOptimizer().minimize(cost) # training optimizer # Operations for validation/test accuracy predicted = tf.nn.softmax(logits) correct_pred = tf.equal(tf.argmax(predicted, 1), tf.argmax(labels_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) def get_batches(x, y, n_batches=10): Return a generator that yields batches from arrays x and y. batch_size = len(x)//n_batches for ii in range(0, n_batches*batch_size, batch_size): # If we're not on the last batch, grab data with size batch_size if ii != (n_batches-1)*batch_size: X, Y = x[ii: ii+batch_size], y[ii: ii+batch_size] # On the last batch, grab the rest of the data else: X, Y = x[ii:], y[ii:] # I love generators yield X, Y epochs = 10 iteration = 0 saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # TODO: Your training code here for epoch in range(epochs): for x, y in get_batches(train_x, train_y): train_dict = {inputs_: x, labels_: y, keep_prob: 0.5} train_loss, train_acc, _ = sess.run([loss, accuracy, optimizer], keep_dict=train_dict) print('Epoch {:2d}/{:2d} |'.format(epoch, epochs), 'Train loss {:.3f} |'.format(train_loss), 'Train acc {:.3f}'.format(train_acc) ) if iteration % 5: val_dict = {inputs_: x, labels_: y, keep_prob: 1.0} val_loss, val_acc = sess.run([loss, accuracy], keep_dict=train_dict) print('*** Epoch {:2d}/{:2d} |'.format(epoch, epochs), 'Val loss {:.3f} |'.format(val_loss), 'Val acc {:.3f} ***'.format(val_acc) ) iteration += 1 saver.save(sess, "checkpoints/flowers.ckpt") with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('checkpoints')) feed = {inputs_: test_x, labels_: test_y} test_acc = sess.run(accuracy, feed_dict=feed) print("Test accuracy: {:.4f}".format(test_acc)) %matplotlib inline import matplotlib.pyplot as plt from scipy.ndimage import imread test_img_path = 'flower_photos/roses/10894627425_ec76bbc757_n.jpg' test_img = imread(test_img_path) plt.imshow(test_img) # Run this cell if you don't have a vgg graph built if 'vgg' in globals(): print('"vgg" object already exists. Will not create again.') else: #create vgg with tf.Session() as sess: input_ = tf.placeholder(tf.float32, [None, 224, 224, 3]) vgg = vgg16.Vgg16() vgg.build(input_) with tf.Session() as sess: img = utils.load_image(test_img_path) img = img.reshape((1, 224, 224, 3)) feed_dict = {input_: img} code = sess.run(vgg.relu6, feed_dict=feed_dict) saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('checkpoints')) feed = {inputs_: code} prediction = sess.run(predicted, feed_dict=feed).squeeze() plt.imshow(test_img) plt.barh(np.arange(5), prediction) _ = plt.yticks(np.arange(5), lb.classes_) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create sample data set Step2: Winsorize
<ASSISTANT_TASK:> Python Code: import pandas as pd # pandas for handling mixed data sets import numpy as np # numpy for basic math and matrix operations from scipy.stats.mstats import winsorize # scipy for stats and more advanced calculations scratch_df = pd.DataFrame({'x1': pd.Series(np.random.choice(1000, 20))}) scratch_df scratch_df['x1_winsor'] = winsorize(scratch_df['x1'], limits=[0.1, 0.1]) scratch_df <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load raw data Step2: Train and Evaluate input Functions Step3: Feature columns for Wide and Deep model Step4: We also add our engineered features that we used previously. Step5: Gather list of feature columns Step6: Serving Input Receiver function Step7: Train and Evaluate (500 train steps) Step8: Results
<ASSISTANT_TASK:> Python Code: import tensorflow as tf import numpy as np import shutil print(tf.__version__) !gsutil cp gs://cloud-training-demos/taxifare/small/*.csv . !ls -l *.csv CSV_COLUMN_NAMES = ["fare_amount","dayofweek","hourofday","pickuplon","pickuplat","dropofflon","dropofflat"] CSV_DEFAULTS = [[0.0],[1],[0],[-74.0],[40.0],[-74.0],[40.7]] def read_dataset(csv_path): def _parse_row(row): # Decode the CSV row into list of TF tensors fields = tf.decode_csv(records = row, record_defaults = CSV_DEFAULTS) # Pack the result into a dictionary features = dict(zip(CSV_COLUMN_NAMES, fields)) # NEW: Add engineered features features = add_engineered_features(features) # Separate the label from the features label = features.pop("fare_amount") # remove label from features and store return features, label # Create a dataset containing the text lines. dataset = tf.data.Dataset.list_files(file_pattern = csv_path) # (i.e. data_file_*.csv) dataset = dataset.flat_map(map_func = lambda filename:tf.data.TextLineDataset(filenames = filename).skip(count = 1)) # Parse each CSV row into correct (features,label) format for Estimator API dataset = dataset.map(map_func = _parse_row) return dataset def train_input_fn(csv_path, batch_size = 128): #1. Convert CSV into tf.data.Dataset with (features,label) format dataset = read_dataset(csv_path) #2. Shuffle, repeat, and batch the examples. dataset = dataset.shuffle(buffer_size = 1000).repeat(count = None).batch(batch_size = batch_size) return dataset def eval_input_fn(csv_path, batch_size = 128): #1. Convert CSV into tf.data.Dataset with (features,label) format dataset = read_dataset(csv_path) #2.Batch the examples. dataset = dataset.batch(batch_size = batch_size) return dataset # 1. One hot encode dayofweek and hourofday fc_dayofweek = tf.feature_column.categorical_column_with_identity(key = "dayofweek", num_buckets = 7) fc_hourofday = tf.feature_column.categorical_column_with_identity(key = "hourofday", num_buckets = 24) # 2. Bucketize latitudes and longitudes NBUCKETS = 16 latbuckets = np.linspace(start = 38.0, stop = 42.0, num = NBUCKETS).tolist() lonbuckets = np.linspace(start = -76.0, stop = -72.0, num = NBUCKETS).tolist() fc_bucketized_plat = tf.feature_column.bucketized_column(source_column = tf.feature_column.numeric_column(key = "pickuplon"), boundaries = lonbuckets) fc_bucketized_plon = tf.feature_column.bucketized_column(source_column = tf.feature_column.numeric_column(key = "pickuplat"), boundaries = latbuckets) fc_bucketized_dlat = tf.feature_column.bucketized_column(source_column = tf.feature_column.numeric_column(key = "dropofflon"), boundaries = lonbuckets) fc_bucketized_dlon = tf.feature_column.bucketized_column(source_column = tf.feature_column.numeric_column(key = "dropofflat"), boundaries = latbuckets) # 3. Cross features to get combination of day and hour fc_crossed_day_hr = tf.feature_column.crossed_column(keys = [fc_dayofweek, fc_hourofday], hash_bucket_size = 24 * 7) fc_crossed_dloc = tf.feature_column.crossed_column(keys = [fc_bucketized_dlat, fc_bucketized_dlon], hash_bucket_size = NBUCKETS * NBUCKETS) fc_crossed_ploc = tf.feature_column.crossed_column(keys = [fc_bucketized_plat, fc_bucketized_plon], hash_bucket_size = NBUCKETS * NBUCKETS) fc_crossed_pd_pair = tf.feature_column.crossed_column(keys = [fc_crossed_dloc, fc_crossed_ploc], hash_bucket_size = NBUCKETS**4) def add_engineered_features(features): features["dayofweek"] = features["dayofweek"] - 1 # subtract one since our days of week are 1-7 instead of 0-6 features["latdiff"] = features["pickuplat"] - features["dropofflat"] # East/West features["londiff"] = features["pickuplon"] - features["dropofflon"] # North/South features["euclidean_dist"] = tf.sqrt(x = features["latdiff"]**2 + features["londiff"]**2) return features def get_wide_deep(): # Wide columns are sparse, have linear relationship with the output wide_columns = [ # Feature crosses fc_crossed_day_hr, fc_crossed_dloc, fc_crossed_ploc, fc_crossed_pd_pair, # Sparse columns fc_dayofweek, fc_hourofday ] # Continuous columns are deep, have a complex relationship with the output deep_columns = [ # Embedding_column to "group" together ... tf.feature_column.embedding_column(categorical_column = fc_crossed_pd_pair, dimension = 10), tf.feature_column.embedding_column(categorical_column = fc_crossed_day_hr, dimension = 10), # Numeric columns tf.feature_column.numeric_column(key = "pickuplat"), tf.feature_column.numeric_column(key = "pickuplon"), tf.feature_column.numeric_column(key = "dropofflon"), tf.feature_column.numeric_column(key = "dropofflat"), tf.feature_column.numeric_column(key = "latdiff"), tf.feature_column.numeric_column(key = "londiff"), tf.feature_column.numeric_column(key = "euclidean_dist"), tf.feature_column.indicator_column(categorical_column = fc_crossed_day_hr), ] return wide_columns, deep_columns def serving_input_receiver_fn(): receiver_tensors = { 'dayofweek' : tf.placeholder(dtype = tf.int32, shape = [None]), # shape is vector to allow batch of requests 'hourofday' : tf.placeholder(dtype = tf.int32, shape = [None]), 'pickuplon' : tf.placeholder(dtype = tf.float32, shape = [None]), 'pickuplat' : tf.placeholder(dtype = tf.float32, shape = [None]), 'dropofflat' : tf.placeholder(dtype = tf.float32, shape = [None]), 'dropofflon' : tf.placeholder(dtype = tf.float32, shape = [None]), } features = add_engineered_features(receiver_tensors) # 'features' is what is passed on to the model return tf.estimator.export.ServingInputReceiver(features = features, receiver_tensors = receiver_tensors) %%time OUTDIR = "taxi_trained_wd/500" shutil.rmtree(path = OUTDIR, ignore_errors = True) # start fresh each time tf.summary.FileWriterCache.clear() # ensure filewriter cache is clear for TensorBoard events file tf.logging.set_verbosity(v = tf.logging.INFO) # so loss is printed during training # Collect the wide and deep columns from above wide_columns, deep_columns = get_wide_deep() model = tf.estimator.DNNLinearCombinedRegressor( model_dir = OUTDIR, linear_feature_columns = wide_columns, dnn_feature_columns = deep_columns, dnn_hidden_units = [10,10], # specify neural architecture config = tf.estimator.RunConfig( tf_random_seed = 1, # for reproducibility save_checkpoints_steps = 100 # checkpoint every N steps ) ) # Add custom evaluation metric def my_rmse(labels, predictions): pred_values = tf.squeeze(input = predictions["predictions"], axis = -1) return {"rmse": tf.metrics.root_mean_squared_error(labels = labels, predictions = pred_values)} model = tf.contrib.estimator.add_metrics(estimator = model, metric_fn = my_rmse) train_spec = tf.estimator.TrainSpec( input_fn = lambda: train_input_fn("./taxi-train.csv"), max_steps = 500) exporter = tf.estimator.FinalExporter(name = "exporter", serving_input_receiver_fn = serving_input_receiver_fn) # export SavedModel once at the end of training # Note: alternatively use tf.estimator.BestExporter to export at every checkpoint that has lower loss than the previous checkpoint eval_spec = tf.estimator.EvalSpec( input_fn = lambda: eval_input_fn("./taxi-valid.csv"), steps = None, start_delay_secs = 1, # wait at least N seconds before first evaluation (default 120) throttle_secs = 1, # wait at least N seconds before each subsequent evaluation (default 600) exporters = exporter) # export SavedModel once at the end of training tf.estimator.train_and_evaluate(estimator = model, train_spec = train_spec, eval_spec = eval_spec) %%time OUTDIR = "taxi_trained_wd/5000" shutil.rmtree(path = OUTDIR, ignore_errors = True) # start fresh each time tf.summary.FileWriterCache.clear() # ensure filewriter cache is clear for TensorBoard events file tf.logging.set_verbosity(v = tf.logging.INFO) # so loss is printed during training # Collect the wide and deep columns from above wide_columns, deep_columns = get_wide_deep() model = tf.estimator.DNNLinearCombinedRegressor( model_dir = OUTDIR, linear_feature_columns = wide_columns, dnn_feature_columns = deep_columns, dnn_hidden_units = [10,10], # specify neural architecture config = tf.estimator.RunConfig( tf_random_seed = 1, # for reproducibility save_checkpoints_steps = 100 # checkpoint every N steps ) ) # Add custom evaluation metric def my_rmse(labels, predictions): pred_values = tf.squeeze(input = predictions["predictions"], axis = -1) return {"rmse": tf.metrics.root_mean_squared_error(labels = labels, predictions = pred_values)} model = tf.contrib.estimator.add_metrics(estimator = model, metric_fn = my_rmse) train_spec = tf.estimator.TrainSpec( input_fn = lambda: train_input_fn("./taxi-train.csv"), max_steps = 5000) exporter = tf.estimator.FinalExporter(name = "exporter", serving_input_receiver_fn = serving_input_receiver_fn) # export SavedModel once at the end of training # Note: alternatively use tf.estimator.BestExporter to export at every checkpoint that has lower loss than the previous checkpoint eval_spec = tf.estimator.EvalSpec( input_fn = lambda: eval_input_fn("./taxi-valid.csv"), steps = None, start_delay_secs = 1, # wait at least N seconds before first evaluation (default 120) throttle_secs = 1, # wait at least N seconds before each subsequent evaluation (default 600) exporters = exporter) # export SavedModel once at the end of training tf.estimator.train_and_evaluate(estimator = model, train_spec = train_spec, eval_spec = eval_spec) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Cf. jp-quadratic.html Step2: Simplify Step3: Then quadratic becomes Step4: Define a "native" pm function. Step5: The resulting trace is short enough to fit on a page.
<ASSISTANT_TASK:> Python Code: from notebook_preamble import J, V, define define('quadratic == over [[[neg] dupdip sqr 4] dipd * * - sqrt [+] [-] cleave] dip 2 * [truediv] cons app2 roll< pop') J('3 1 1 quadratic') define('pm == [+] [-] cleave popdd') define('quadratic == over [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [truediv] cons app2') J('3 1 1 quadratic') from joy.library import SimpleFunctionWrapper from notebook_preamble import D @SimpleFunctionWrapper def pm(stack): a, (b, stack) = stack p, m, = b + a, b - a return m, (p, stack) D['pm'] = pm V('3 1 1 quadratic') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set some colors and linestyles. Step2: Hardcode the loop length. In this paper, we only use a single loop half-length of $L=40$ Mm. Step3: First, we'll load in the NEI results. Step4: Now, build the temperature profiles. Step5: Now, plot the emission measure distributions with their NEI counterparts.
<ASSISTANT_TASK:> Python Code: import os import sys import pickle import numpy as np import seaborn.apionly as sns import matplotlib.pyplot as plt from matplotlib import ticker sys.path.append(os.path.join(os.environ['EXP_DIR'],'EBTEL_analysis/src')) import em_binner as emb %matplotlib inline plt.rcParams.update({'figure.figsize' : [16,5]}) colors = {'20':sns.color_palette('deep')[0],'500':sns.color_palette('deep')[3]} linestyles = {'single':'solid','electron':'dashed','ion':'-.'} loop_length = 40.e+8 nei_results = {'single':{},'electron':{},'ion':{}} file_template = "../results/tau%d.%s.sol.txt" species = ['single','electron','ion'] tau = [20,500] for s in species: for t in tau: _tmp_ = np.loadtxt(file_template%(t,s)) nei_results[s]['tau%d'%t] = {'t':_tmp_[:,0],'T':_tmp_[:,1],'Teff':_tmp_[:,2],'n':_tmp_[:,3]} fig,ax = plt.subplots(1,2,sharey=True) plt.subplots_adjust(hspace=0.0,wspace=0.0) for t in tau: for s in species: ax[tau.index(t)].plot(nei_results[s]['tau%d'%t]['t'],nei_results[s]['tau%d'%t]['T']/1.e+6, color=colors[str(t)],linestyle=linestyles[s],label=r'$\mathrm{%s}$'%s) ax[tau.index(t)].plot(nei_results[s]['tau%d'%t]['t'],nei_results[s]['tau%d'%t]['Teff']/1.e+6, color=sns.color_palette('bright')[2],linestyle=linestyles[s]) #scale ax[0].set_xscale('log') ax[1].set_xscale('log') #limits ax[0].set_xlim([0.5,5000]) ax[1].set_xlim([0.5,5000]) ax[0].set_ylim([0,25]) ax[1].set_ylim([0,25]) #tick labels ax[0].yaxis.set_major_locator(ticker.MaxNLocator(nbins=6,prune='lower')) ax[1].yaxis.set_major_locator(ticker.MaxNLocator(nbins=6)) #axes labels ax[0].set_ylabel(r'$T$ $\mathrm{(MK)}$') global_xlab = fig.text(0.5, 0.015, r'$t$ $\mathrm{(s)}$', ha='center', va='center',fontsize=22) #legend ax[0].legend(loc='best') plt.savefig(__dest__[0],bbox_extra_artists=[global_xlab], bbox_inches='tight') plt.show() fig,ax = plt.subplots(1,2,sharey=True) plt.subplots_adjust(wspace=0.0) for t in tau: for s in species: #IEQ binner = emb.EM_Binner(2.*loop_length,time=nei_results[s]['tau%d'%t]['t'], temp=nei_results[s]['tau%d'%t]['T'],density=nei_results[s]['tau%d'%t]['n']) binner.build_em_dist() hist,bin_edges = np.histogram(binner.T_em_flat,bins=binner.T_em_histo_bins,weights=np.array(binner.em_flat)) ax[tau.index(t)].plot((bin_edges[:-1]+bin_edges[1:])/2,hist/10, color=colors[str(t)],linestyle=linestyles[s],label=r'$\mathrm{%s}$'%s) #NEI binner = emb.EM_Binner(2.*loop_length,time=nei_results[s]['tau%d'%t]['t'], temp=nei_results[s]['tau%d'%t]['Teff'],density=nei_results[s]['tau%d'%t]['n']) binner.build_em_dist() hist,bin_edges = np.histogram(binner.T_em_flat,bins=binner.T_em_histo_bins,weights=np.array(binner.em_flat)) ax[tau.index(t)].plot((bin_edges[:-1]+bin_edges[1:])/2,hist/10, color=sns.color_palette('bright')[2],linestyle=linestyles[s]) #scale ax[0].set_yscale('log') ax[1].set_yscale('log') ax[0].set_xscale('log') ax[1].set_xscale('log') #limits ax[0].set_xlim([10**6.5,10**7.5]) ax[0].set_ylim([1e+23,1e+28]) ax[1].set_xlim([10**6.5,10**7.5]) ax[1].set_ylim([1e+23,1e+28]) #labels global_xlab = fig.text(0.5, 0.015, r'${T}\,\,\mathrm{(K)}$', ha='center', va='center',fontsize=22) ax[0].set_ylabel(r'$\mathrm{EM}\,\,(\mathrm{cm}^{-5})$') #legend ax[0].legend(loc='best') #save plt.savefig(__dest__[1],bbox_extra_artists=[global_xlab], bbox_inches='tight') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. Training Step2: Model 2 Step3: Model 3 Step4: 3. Evaluate Step5: 4. Final Result(Ensemble)
<ASSISTANT_TASK:> Python Code: mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # test data test_images = mnist.test.images.reshape(10000, 28, 28, 1) test_labels = mnist.test.labels[:] augmentation_size = 440000 images = np.concatenate((mnist.train.images.reshape(55000, 28, 28, 1), mnist.validation.images.reshape(5000, 28, 28, 1)), axis=0) labels = np.concatenate((mnist.train.labels, mnist.validation.labels), axis=0) datagen_list = [ ImageDataGenerator(rotation_range=10), ImageDataGenerator(rotation_range=20), ImageDataGenerator(rotation_range=30), ImageDataGenerator(width_shift_range=0.1), ImageDataGenerator(width_shift_range=0.2), ImageDataGenerator(width_shift_range=0.3), ] for datagen in datagen_list: datagen.fit(images) for image, label in datagen.flow(images, labels, batch_size=augmentation_size, shuffle=True, seed=2017): images = np.concatenate((images, image), axis=0) labels = np.concatenate((labels, label), axis=0) break print('Train Data Set :', images.shape) print('Test Data Set :', test_images.shape) model1 = Sequential([Convolution2D(filters=64, kernel_size=(3, 3), padding='same', activation='elu', input_shape=(28, 28, 1)), Convolution2D(filters=128, kernel_size=(3, 3), padding='same', activation='elu'), MaxPooling2D(pool_size=(2, 2)), Dropout(0.5), Convolution2D(filters=128, kernel_size=(3, 3), padding='same', activation='elu'), Convolution2D(filters=128, kernel_size=(3, 3), padding='same', activation='elu'), MaxPooling2D(pool_size=(2, 2)), Dropout(0.5), Convolution2D(filters=128, kernel_size=(3, 3), padding='same', activation='elu'), MaxPooling2D(pool_size=(2, 2)), Dropout(0.5), Flatten(), Dense(1024, activation='elu'), Dropout(0.5), Dense(1024, activation='elu'), Dropout(0.5), Dense(10, activation='softmax'), ]) model1.compile(optimizer=Adam(lr=0.0001), loss='categorical_crossentropy', metrics=['accuracy']) model1.fit(images, labels, batch_size=256, epochs=20, shuffle=True, verbose=1, validation_data=(test_images, test_labels)) model_json = model1.to_json() with open("model1.json", "w") as json_file: json_file.write(model_json) model1.save_weights("model1.h5") print("Saved model to disk") model2 = Sequential([Convolution2D(filters=64, kernel_size=(5, 5), padding='same', activation='elu', input_shape=(28, 28, 1)), Convolution2D(filters=128, kernel_size=(5, 5), padding='same', activation='elu'), MaxPooling2D(pool_size=(2, 2)), Dropout(0.5), Convolution2D(filters=128, kernel_size=(5, 5), padding='same', activation='elu'), Convolution2D(filters=128, kernel_size=(5, 5), padding='same', activation='elu'), MaxPooling2D(pool_size=(2, 2)), Dropout(0.5), Convolution2D(filters=128, kernel_size=(5, 5), padding='same', activation='elu'), MaxPooling2D(pool_size=(2, 2)), Dropout(0.5), Flatten(), Dense(1024, activation='elu'), Dropout(0.5), Dense(1024, activation='elu'), Dropout(0.5), Dense(10, activation='softmax'), ]) model2.compile(optimizer=Adam(lr=0.0001), loss='categorical_crossentropy', metrics=['accuracy']) model2.fit(images, labels, batch_size=256, epochs=20, shuffle=True, verbose=1, validation_data=(test_images, test_labels)) model_json = model2.to_json() with open("model2.json", "w") as json_file: json_file.write(model_json) model2.save_weights("model2.h5") print("Saved model to disk") model3 = Sequential([Convolution2D(filters=64, kernel_size=(7, 7), padding='same', activation='elu', input_shape=(28, 28, 1)), Convolution2D(filters=128, kernel_size=(7, 7), padding='same', activation='elu'), MaxPooling2D(pool_size=(2, 2)), Dropout(0.5), Convolution2D(filters=128, kernel_size=(7, 7), padding='same', activation='elu'), Convolution2D(filters=128, kernel_size=(7, 7), padding='same', activation='elu'), MaxPooling2D(pool_size=(2, 2)), Dropout(0.5), Convolution2D(filters=128, kernel_size=(7, 7), padding='same', activation='elu'), MaxPooling2D(pool_size=(2, 2)), Dropout(0.5), Flatten(), Dense(1024, activation='elu'), Dropout(0.5), Dense(1024, activation='elu'), Dropout(0.5), Dense(10, activation='softmax'), ]) model3.compile(optimizer=Adam(lr=0.0001), loss='categorical_crossentropy', metrics=['accuracy']) model3.fit(images, labels, batch_size=256, epochs=20, shuffle=True, verbose=1, validation_data=(test_images, test_labels)) model_json = model3.to_json() with open("model3.json", "w") as json_file: json_file.write(model_json) model3.save_weights("model3.h5") print("Saved model to disk") from keras.models import model_from_json from tensorflow.examples.tutorials.mnist import input_data from keras.optimizers import Adam import numpy as np mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # test data test_images = mnist.test.images.reshape(10000, 28, 28, 1) test_labels = mnist.test.labels[:] # load json and create model def model_open(name, test_images, test_labels): json_file = open(name + '.json', 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) # load weights into new model loaded_model.load_weights(name + '.h5') print("Loaded model from disk") loaded_model.compile(optimizer=Adam(lr=0.0001), loss='categorical_crossentropy', metrics=['acc']) prob = loaded_model.predict_proba(test_images) acc = np.mean(np.equal(np.argmax(prob, axis=1), np.argmax(test_labels, axis=1))) print('\nmodel : %s, test accuracy : %.4f\n' % (name, acc)) return prob, acc model_1_prob, model_1_acc = model_open('model1', test_images, test_labels) model_2_prob, model_2_acc = model_open('model2', test_images, test_labels) model_3_prob, model_3_acc = model_open('model3', test_images, test_labels) def model_ensemble(prob1, acc1, prob2, acc2, prob3, acc3): prob_list = [prob1, prob2, prob3] acc_list = [acc1, acc2, acc3] idx_acc_list = {idx: acc for idx, acc in enumerate(acc_list)} sorted_acc_list = [idx for idx, _ in sorted(idx_acc_list.items(), key=lambda value: (value[1], value[0]), reverse=True)] final_prob = 0 for i in sorted_acc_list: final_prob += prob_list[i] * (i+1) final_score = np.mean(np.equal(np.argmax(final_prob, axis=1), np.argmax(test_labels, axis=1))) # Test print('Final test accuracy : %.4f' % final_score) model_ensemble(model_1_prob, model_1_acc, model_2_prob, model_2_acc, model_3_prob, model_3_acc) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Audio Data Preparation and Augmentation Step2: Usage Step3: In the above example, the Flac file brooklyn.flac is from a publicly accessible audio clip in google cloud. Step4: The audio can be played through Step5: It is more convinient to convert tensor into float numbers and show the audio clip in graph Step6: Trim the noise Step7: Fade In and Fade Out Step8: Spectrogram Step9: Additional transformation to different scales are also possible Step10: SpecAugment Step11: Time Masking
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. !pip install tensorflow-io import tensorflow as tf import tensorflow_io as tfio audio = tfio.audio.AudioIOTensor('gs://cloud-samples-tests/speech/brooklyn.flac') print(audio) audio_slice = audio[100:] # remove last dimension audio_tensor = tf.squeeze(audio_slice, axis=[-1]) print(audio_tensor) from IPython.display import Audio Audio(audio_tensor.numpy(), rate=audio.rate.numpy()) import matplotlib.pyplot as plt tensor = tf.cast(audio_tensor, tf.float32) / 32768.0 plt.figure() plt.plot(tensor.numpy()) position = tfio.audio.trim(tensor, axis=0, epsilon=0.1) print(position) start = position[0] stop = position[1] print(start, stop) processed = tensor[start:stop] plt.figure() plt.plot(processed.numpy()) fade = tfio.audio.fade( processed, fade_in=1000, fade_out=2000, mode="logarithmic") plt.figure() plt.plot(fade.numpy()) # Convert to spectrogram spectrogram = tfio.audio.spectrogram( fade, nfft=512, window=512, stride=256) plt.figure() plt.imshow(tf.math.log(spectrogram).numpy()) # Convert to mel-spectrogram mel_spectrogram = tfio.audio.melscale( spectrogram, rate=16000, mels=128, fmin=0, fmax=8000) plt.figure() plt.imshow(tf.math.log(mel_spectrogram).numpy()) # Convert to db scale mel-spectrogram dbscale_mel_spectrogram = tfio.audio.dbscale( mel_spectrogram, top_db=80) plt.figure() plt.imshow(dbscale_mel_spectrogram.numpy()) # Freq masking freq_mask = tfio.audio.freq_mask(dbscale_mel_spectrogram, param=10) plt.figure() plt.imshow(freq_mask.numpy()) # Time masking time_mask = tfio.audio.time_mask(dbscale_mel_spectrogram, param=10) plt.figure() plt.imshow(time_mask.numpy()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: 1. kNN Step3: 1. kNN Step4: 2. Aplicación al Iris Dataset Step5: 2. Aplicación al Iris Dataset Step6: 2. Aplicación al Iris Dataset Step7: 2. Aplicación al Iris Dataset Step8: 2. Aplicación al Iris Dataset Step9: 2. Aplicación al Iris Dataset Step10: 2. Aplicación al Iris Dataset
<ASSISTANT_TASK:> Python Code: def hamming(s1, s2): # Caso no comparable if len(s1)!=len(s2): print("No comparable") return None h = 0 # Caso comparable for ch1, ch2 in zip(s1,s2): if ch1!=ch2: h+= 1 # FIX ME return h print hamming("cara", "c") print hamming("cara", "casa") print hamming("cera", "cese") import numpy as np def knn_search(X, k, x): find K nearest neighbours of data among D # Distancia euclidiana d = np.sqrt(((X - x[:,:k])**2).sum(axis=0)) # Ordenar por cercania idx = np.argsort(d) # Regresar los k mas cercanos return idx[:k] def knn(X,Y,k,x): # Obtener los k mas cercanos k_closest = knn_search(X, k, x) # Obtener las etiquetas Y_closest = Y[k_closest] # Obtener la mas popular counts = np.bincount(Y_closest) print counts # Regresar la mas popular (cualquiera, si hay empate) return np.argmax(counts) import numpy as np from matplotlib import pyplot as plt X = np.random.rand(2,100) # random dataset Y = np.array(np.random.rand(100)<0.2, dtype=int) # random dataset x = np.random.rand(2,1) # query point # performing the search k = 20 neig_idx = knn_search(X, k, x) y = knn(X, Y, k, x) print "etiqueta=", y # plotting the data and the input point fig = plt.figure(figsize=(16,8)) plt.plot(X[0,:][Y==0],X[1,:][Y==0],'ob', ms=8) plt.plot(X[0,:][Y==1],X[1,:][Y==1],'sr', ms=8) plt.plot(x[0,0],x[1,0],'ok', ms=16) # highlighting the neighbours plt.plot(X[0,neig_idx], X[1,neig_idx], 'o', markerfacecolor='None', markersize=24, markeredgewidth=1) plt.show() import numpy as np from sklearn import datasets # Loading the data iris = datasets.load_iris() X = iris.data Y = iris.target print iris.target_names print X.shape[0] # Print data and labels for x, y in zip(X,Y): print x, y import numpy as np from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import confusion_matrix # Meta parameter k = 150 # Loading the data iris = datasets.load_iris() names = iris.target_names X = iris.data Y = iris.target # Fitting the model kNN = KNeighborsClassifier(k) kNN.fit(X,Y) # No coefficients to print! # Predicting values Y_pred = kNN.predict(X) # Count the errors template = "{0} errores de clasificación de un total de {1}" print template.format(sum(Y!=Y_pred), len(Y)) # Matriz de confusion print confusion_matrix(Y, Y_pred) import numpy as np from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier from sklearn.cross_validation import train_test_split from sklearn.metrics import confusion_matrix # Meta parameter k = 5 # Loading the data iris = datasets.load_iris() names = iris.target_names X = iris.data Y = np.array(iris.target, int) # Holdout Set X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.6) print X_train.shape, X_test.shape # Fitting the model kNN = KNeighborsClassifier(n_neighbors=k) kNN.fit(X_train, Y_train) # No coefficients to print! # Predicting values Y_test_pred = kNN.predict(X_test) # Count the errors n_errors = sum(Y_test!=Y_test_pred) template = "{0} errores de clasificación de un total de {1}" print template.format(n_errors, len(Y_test)) # Matriz de confusion print confusion_matrix(Y_test, Y_test_pred) from sklearn.cross_validation import train_test_split from sklearn import datasets import numpy as np # Loading the data iris = datasets.load_iris() names = iris.target_names X = iris.data Y = np.array(iris.target, int) # Splitting the data X_train, X_aux, Y_train, Y_aux = train_test_split(X, Y, train_size=0.6) X_valid, X_test, Y_valid, Y_test = train_test_split(X_aux, Y_aux, test_size=0.5) print X_train.shape print X_valid.shape print X_test.shape import numpy as np from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier # Loading the data iris = datasets.load_iris() names = iris.target_names X = iris.data Y = np.array(iris.target, int) # Holdout Set X_aux, X_aux, Y_train, Y_aux = train_test_split(X, Y, train_size=0.6) X_valid, X_test, Y_valid, Y_test = train_test_split(X_aux, Y_aux, test_size=0.5) template = "k={0}: {1} errores de clasificación de un total de {2}" # Fitting the model for k in range(1,21): kNN = KNeighborsClassifier(n_neighbors=k) kNN.fit(X_train, Y_train) # Predicting values Y_test_pred = kNN.predict(X_test) # Count the errors n_errors = sum(Y_test!=Y_test_pred) print template.format(k, n_errors, len(Y_test)) import numpy as np from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier # Loading the data iris = datasets.load_iris() names = iris.target_names X = iris.data Y = np.array(iris.target, int) # Holdout Set X_tv, X_test, Y_tv, Y_test = train_test_split(X, Y, train_size=0.8) template = "k={0}: {1} errores de clasificación de un total de {2}" # Fitting the model mean_error_for_k = [] for k in range(1,21): errors_k = [] for i in range(1000): kNN = KNeighborsClassifier(n_neighbors=k) X_train, X_valid, Y_train, Y_valid = train_test_split(X_tv, Y_tv, train_size=0.75) kNN.fit(X_train, Y_train) # Predicting values Y_valid_pred = kNN.predict(X_valid) # Count the errors n_errors = sum(Y_valid!=Y_valid_pred) # Add them to vector errors_k.append(n_errors) errors = np.array(errors_k).mean() print template.format(k, errors, len(Y_valid)) mean_error_for_k.append(errors) from matplotlib import pyplot as plt plt.figure(figsize=(16,8)) plt.plot(range(1,21), mean_error_for_k, '-ok') plt.xlabel("k") plt.ylabel("Errores de clasificacion") plt.show() import numpy as np from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import confusion_matrix # Meta parameter k = 5 # Loading the data iris = datasets.load_iris() names = iris.target_names X = iris.data Y = np.array(iris.target, int) # Holdout Set X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.6) print X_train.shape, X_test.shape # Fitting the model kNN = KNeighborsClassifier(n_neighbors=k) kNN.fit(X_train, Y_train) # No coefficients to print! # Predicting values Y_test_pred = kNN.predict(X_test) # Count the errors n_errors = sum(Y_test!=Y_test_pred) print "{0} errores de clasificación de un total de {1}".format(n_errors, len(Y_test)) print n_errors/float(len(Y_test)) # Matriz de confusion print confusion_matrix(Y_test, Y_test_pred) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Implement a basic sub-string counter Step2: Check if a string is ascii encoded Step3: Solution
<ASSISTANT_TASK:> Python Code: s = 'ABCD' for i in range(0, len(s)): print (s[i]) string = 'ABCABDEABCF' sub_string = 'ABC' string[5:7] def output_substring(string, sub_string): for i in range(0, len(string)-len(sub_string)+1): n = i print (string[n:(n+len(sub_string))]) output_substring(string, sub_string) def count_substring(string, sub_string): count = 0 for i in range(0, len(string)-len(sub_string)+1): if (string[i:(i+len(sub_string))]) == sub_string: count+=1 return count count_substring(string, sub_string) try: string.encode('ascii') print ('This string is ascii ...') except: print ('This string is not ascii encoded ...') def count_substring(string, sub_string, verbose = False, min_string_len =1, max_string_len=200): ascii_encoding = False try: string.encode('ascii') sub_string.encode('ascii') ascii_encoding = True if verbose: print ('This string is ascii ...') except: if verbose: print ('This string is not ascii encoded ...') if len(string)>= min_string_len and len(string)<=max_string_len and ascii_encoding: count = 0 for i in range(0, len(string)-len(sub_string)+1): if (string[i:(i+len(sub_string))]) == sub_string: count+=1 return count count_substring(string, sub_string) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Write a Jython function for IDV and export as IDV Formula in GUI Step2: Above function was created for use in this session, it will not be available for IDV in next session so let us save it to the IDV Jython library. Step3: Create a IDV formula, once created it will be in the list of formulas in IDV. The arguments to saveFormula are (formulaid,description,functionastring,formula categories). formula categories can be a list of categories or just a single category specified by a string. Step4: Check if the formula was created in IDV GUI . At anytime to show a IDV window from notebook use function showIdv(). Currently some displays cannot be made when using GUI from notebook, will be implemented in future.
<ASSISTANT_TASK:> Python Code: def moistStaticEnergy(T,Q,GZ): Calculates Moist Static Energy with Temperature, Specific Humidity and Geopotential Height. from ucar.visad.quantities import SpecificHeatCapacityOfDryAirAtConstantPressure,LatentHeatOfEvaporation cp=SpecificHeatCapacityOfDryAirAtConstantPressure.newReal() L=LatentHeatOfEvaporation.newReal() return cp*T+L*Q+Z saveJython(moistStaticEnergy) saveFormula("Moist Static Energy","Moist Static Energy from T, Q, GZ","moistStaticEnergy(T,Q,GZ)",["Grids","Grids-MapesCollection"]) showIdv() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Convert the monthly average flow rates to volumes using Step2: Convert monthly runoff to annual runoff
<ASSISTANT_TASK:> Python Code: from __future__ import print_function import calendar from charistools.hypsometry import Hypsometry from charistools.timeSeries import TimeSeries import datetime as dt import pandas as pd import numpy as np import os import re from time import strptime %cd /Users/brodzik/projects/CHARIS/streamflow/From_Alice_Naryn %ls file = "Kyrygzstan_Naryn_flow_monthly_average_1933-2015.xlsx" # Use sheetname if pandas < 0.21.0 # use sheet_name if later # Returns dict of sheets in file sheets = pd.read_excel(io=file, sheetname=None) for key in sheets: print("key=%s" % key) # Set the source name from the original file (controls which sheet is extracted) # and the CHARIS-format drainageID sheetName = "Naryn town gauge (Naryn Darya)" drainageID = "SY_Naryn_at_NarynTown" df = sheets[sheetName] df description = df.columns[0] description geolocation = df.iloc[0][0] geolocation units = df.iloc[1][0] units description, geolocation, units def dmsds_to_decdeg(deg, min, sec, decsec): return float(deg) + float(min)/60. + (float(sec) + float(decsec)/100.)/60./60. # Convert lat/lon positions to decimal degrees p = re.compile(r'latitude:(.*)longitude:(.*)\(') m = p.search(geolocation) if m : print(m.group(1)) print(m.group(2)) (deg, min, sec, decsec) = m.group(1).split() latitude = dmsds_to_decdeg(deg, min, sec, decsec) (deg, min, sec, decsec) = m.group(2).split() longitude = dmsds_to_decdeg(deg, min, sec, decsec) print("lat/lon: %s/%s" % (latitude, longitude)) else: print("no match") # Drop the first 2 data rows, they are just metadata we have already scraped df = df.drop([0,1]) #sheets['Naryn town gauge (Naryn Darya)'] df.loc[2].values # Move the contents of data row 2 into the column headers df.columns = df.loc[2].values df # Now drop the data row 2 df = df.drop([2]) df # Move the df index to the Year column df = df.set_index('Year') df df['Jan'][1933] # Write the result as a hypsometry for ti-melt modeling calibration steps, this needs to look like this: # # Station ID: 35749301 # # Basin: Hunza at Dainyor Bridge # # Latitude: 35.92778 # # Longitude: 74.37639 # # Elevation: 1370 m # # Area: 13157 km**2 # # Units: km**3 # # COLUMNS: year month runoff # 1966 1 0.15 # 1966 2 0.12 # 1966 3 0.10 outfile = "%s.month_runoff.dat" % drainageID outfile %pwd comments=["Description: Derived runoff volume from monthly flow rates", "Flow rate file: %s" % os.path.basename(file), "Basin: %s" % drainageID, "Latitude: %.6f" % latitude, "Longitude: %.6f" % longitude, "Elevation: unknown", "Area: unknown", "Units: km**3", "COLUMNS: year month runoff"] f = open(outfile, "w") for line in comments: f.write("# %s\n" % line) m_per_km = 1000. s_per_day = 60. * 60. * 24. conversion_factor = s_per_day / (m_per_km * m_per_km * m_per_km) for year in df.index: for mmm in df.columns[1:13]: month = strptime(mmm,'%b').tm_mon days_in_month = calendar.monthrange(year, int(month))[1] volume_km3 = df[mmm][year] * conversion_factor * days_in_month print("%4d %d %d %f %f" % (year, month, days_in_month, df[mmm][year], volume_km3)) print("%4d %2d %.6f" % (year, month, volume_km3), file=f) f.close() %ls *month_runoff* %pwd ts = TimeSeries("../SY_Naryn_at_NarynTown.month_runoff.dat") ts.comments def convert_monthly_to_annual_runoff(monthFile): monthTS = TimeSeries(monthFile) # Add new description to beginning monthTS.comments.insert(0, "# Monthly file: %s" % monthFile) monthTS.comments.insert(0, "# Description: Annual runoff volume, created %s" % str(dt.datetime.now())) # And replace Column descriptor line: monthTS.comments = monthTS.comments[:-1] monthTS.comments.extend(["# COLUMNS: year runoff"]) #print(monthTS.data) monthTS.data["year"] = monthTS.data.index.year annual = monthTS.data.groupby(["year"])["runoff"].sum() # Make the new outfile by replacing "monthly" in monthFile p = re.compile("month") annualFile = p.sub("annual", monthFile) f = open(annualFile, "w") for line in monthTS.comments: f.write("%s\n" % line) for key, value in annual.iteritems(): print("%4d %.6f" % (key, value), file=f) f.close() %cd /Users/brodzik/projects/CHARIS/streamflow/From_Alice_Naryn %ls monthFile = "SY_Naryn_at_NarynTown.month_runoff.dat" convert_monthly_to_annual_runoff(monthFile) %pwd annualFile = "SY_Naryn_at_NarynTown.annual_runoff.dat" new = TimeSeries(annualFile) print(new.data) print(new.comments) print(new.units) %cat $annualFile line = "# Units: km**3" line.strip().lstrip('# Units: ') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Chemistry Scheme Scope Step7: 1.4. Basic Approximations Step8: 1.5. Prognostic Variables Form Step9: 1.6. Number Of Tracers Step10: 1.7. Family Approach Step11: 1.8. Coupling With Chemical Reactivity Step12: 2. Key Properties --&gt; Software Properties Step13: 2.2. Code Version Step14: 2.3. Code Languages Step15: 3. Key Properties --&gt; Timestep Framework Step16: 3.2. Split Operator Advection Timestep Step17: 3.3. Split Operator Physical Timestep Step18: 3.4. Split Operator Chemistry Timestep Step19: 3.5. Split Operator Alternate Order Step20: 3.6. Integrated Timestep Step21: 3.7. Integrated Scheme Type Step22: 4. Key Properties --&gt; Timestep Framework --&gt; Split Operator Order Step23: 4.2. Convection Step24: 4.3. Precipitation Step25: 4.4. Emissions Step26: 4.5. Deposition Step27: 4.6. Gas Phase Chemistry Step28: 4.7. Tropospheric Heterogeneous Phase Chemistry Step29: 4.8. Stratospheric Heterogeneous Phase Chemistry Step30: 4.9. Photo Chemistry Step31: 4.10. Aerosols Step32: 5. Key Properties --&gt; Tuning Applied Step33: 5.2. Global Mean Metrics Used Step34: 5.3. Regional Metrics Used Step35: 5.4. Trend Metrics Used Step36: 6. Grid Step37: 6.2. Matches Atmosphere Grid Step38: 7. Grid --&gt; Resolution Step39: 7.2. Canonical Horizontal Resolution Step40: 7.3. Number Of Horizontal Gridpoints Step41: 7.4. Number Of Vertical Levels Step42: 7.5. Is Adaptive Grid Step43: 8. Transport Step44: 8.2. Use Atmospheric Transport Step45: 8.3. Transport Details Step46: 9. Emissions Concentrations Step47: 10. Emissions Concentrations --&gt; Surface Emissions Step48: 10.2. Method Step49: 10.3. Prescribed Climatology Emitted Species Step50: 10.4. Prescribed Spatially Uniform Emitted Species Step51: 10.5. Interactive Emitted Species Step52: 10.6. Other Emitted Species Step53: 11. Emissions Concentrations --&gt; Atmospheric Emissions Step54: 11.2. Method Step55: 11.3. Prescribed Climatology Emitted Species Step56: 11.4. Prescribed Spatially Uniform Emitted Species Step57: 11.5. Interactive Emitted Species Step58: 11.6. Other Emitted Species Step59: 12. Emissions Concentrations --&gt; Concentrations Step60: 12.2. Prescribed Upper Boundary Step61: 13. Gas Phase Chemistry Step62: 13.2. Species Step63: 13.3. Number Of Bimolecular Reactions Step64: 13.4. Number Of Termolecular Reactions Step65: 13.5. Number Of Tropospheric Heterogenous Reactions Step66: 13.6. Number Of Stratospheric Heterogenous Reactions Step67: 13.7. Number Of Advected Species Step68: 13.8. Number Of Steady State Species Step69: 13.9. Interactive Dry Deposition Step70: 13.10. Wet Deposition Step71: 13.11. Wet Oxidation Step72: 14. Stratospheric Heterogeneous Chemistry Step73: 14.2. Gas Phase Species Step74: 14.3. Aerosol Species Step75: 14.4. Number Of Steady State Species Step76: 14.5. Sedimentation Step77: 14.6. Coagulation Step78: 15. Tropospheric Heterogeneous Chemistry Step79: 15.2. Gas Phase Species Step80: 15.3. Aerosol Species Step81: 15.4. Number Of Steady State Species Step82: 15.5. Interactive Dry Deposition Step83: 15.6. Coagulation Step84: 16. Photo Chemistry Step85: 16.2. Number Of Reactions Step86: 17. Photo Chemistry --&gt; Photolysis Step87: 17.2. Environmental Conditions
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'mohc', 'sandbox-3', 'atmoschem') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.chemistry_scheme_scope') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "troposhere" # "stratosphere" # "mesosphere" # "mesosphere" # "whole atmosphere" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.basic_approximations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.prognostic_variables_form') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "3D mass/mixing ratio for gas" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.number_of_tracers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.family_approach') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.coupling_with_chemical_reactivity') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Operator splitting" # "Integrated" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_advection_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_physical_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_chemistry_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_alternate_order') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.integrated_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.integrated_scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Implicit" # "Semi-implicit" # "Semi-analytic" # "Impact solver" # "Back Euler" # "Newton Raphson" # "Rosenbrock" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.turbulence') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.convection') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.emissions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.gas_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.tropospheric_heterogeneous_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.stratospheric_heterogeneous_phase_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.photo_chemistry') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.timestep_framework.split_operator_order.aerosols') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.matches_atmosphere_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.grid.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.use_atmospheric_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.transport.transport_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Vegetation" # "Soil" # "Sea surface" # "Anthropogenic" # "Biomass burning" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Climatology" # "Spatially uniform mixing ratio" # "Spatially uniform concentration" # "Interactive" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.surface_emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Aircraft" # "Biomass burning" # "Lightning" # "Volcanos" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Climatology" # "Spatially uniform mixing ratio" # "Spatially uniform concentration" # "Interactive" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.atmospheric_emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.concentrations.prescribed_lower_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.emissions_concentrations.concentrations.prescribed_upper_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "HOx" # "NOy" # "Ox" # "Cly" # "HSOx" # "Bry" # "VOCs" # "isoprene" # "H2O" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_bimolecular_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_termolecular_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_tropospheric_heterogenous_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_stratospheric_heterogenous_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_advected_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.interactive_dry_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.wet_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.gas_phase_chemistry.wet_oxidation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.gas_phase_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Cly" # "Bry" # "NOy" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.aerosol_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Polar stratospheric ice" # "NAT (Nitric acid trihydrate)" # "NAD (Nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particule))" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.sedimentation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.stratospheric_heterogeneous_chemistry.coagulation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.gas_phase_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.aerosol_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Nitrate" # "Sea salt" # "Dust" # "Ice" # "Organic" # "Black carbon/soot" # "Polar stratospheric ice" # "Secondary organic aerosols" # "Particulate organic matter" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.number_of_steady_state_species') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.interactive_dry_deposition') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.tropospheric_heterogeneous_chemistry.coagulation') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.number_of_reactions') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.photolysis.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Offline (clear sky)" # "Offline (with clouds)" # "Online" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.atmoschem.photo_chemistry.photolysis.environmental_conditions') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: given the RFAM id of a family we retrieve it from the RFAM online database Step2: prepare a function that composes all desired pre-processing steps over the original data Step3: employ the vectorizer to transform the graph instances into sparse vectors and collect all the vectors in a data matrix Step4: Setup the Annotator
<ASSISTANT_TASK:> Python Code: %matplotlib inline from eden.util import configure_logging import logging configure_logging(logging.getLogger(),verbosity=2) def rfam_uri(family_id): return '%s.fa'%(family_id) def rfam_uri(family_id): return 'http://rfam.xfam.org/family/%s/alignment?acc=%s&format=fastau&download=0'%(family_id,family_id) rfam_id = 'RF00162' #SAM riboswitch (S box leader) rfam_id = 'RF01725' #SAM-I/IV variant riboswitch rfam_id = 'RF00005' #tRNA rfam_id = 'RF02276' #hammerhead def pre_process( data ): from eden.converter.rna.rnafold import rnafold_to_eden graphs = rnafold_to_eden( data ) return graphs def model(uri, pre_process, size=None): from eden.graph import Vectorizer vectorizer = Vectorizer( complexity=2 ) from eden.converter.fasta import fasta_to_sequence seqs = fasta_to_sequence(uri) from itertools import tee, islice if size is not None: seqs = islice(seqs,size) seqs, seqs_ = tee(seqs) pos_graphs = pre_process( seqs ) from eden.modifier.seq import seq_to_seq, shuffle_modifier seqs_neg = seq_to_seq( seqs_, modifier=shuffle_modifier, times=4, order=2 ) neg_graphs = pre_process( seqs_neg ) from eden.util import fit estimator = fit(pos_graphs, neg_graphs, vectorizer, n_jobs=-1, cv=10, n_iter_search=20) return estimator, vectorizer %%time estimator, vectorizer = model(rfam_uri( rfam_id ), pre_process, size=50) from eden.util.display import draw_graph import itertools from eden.converter.fasta import fasta_to_sequence seqs = fasta_to_sequence(rfam_uri( rfam_id )) graphs = itertools.islice(pre_process(seqs),7,8) graphs = vectorizer.annotate( graphs, estimator = estimator ) #parameters for visualization opts={'size':9, 'node_border':False, 'node_size':200, 'font_size':9, 'vertex_alpha':0.6, 'title_key':'id'} for i, graph in enumerate(graphs): print i #draw_graph(graph, vertex_color='importance', colormap='YlOrRd', **opts) draw_graph(graph, vertex_color='importance', colormap='YlOrRd', file_name='rna_%d.pdf'%(i), **opts) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Types Matter Step2: Switching Types Step3: Inputs type str Step4: We can use a built in Python function to convert the type from str to our desired type Step5: We typically combine the first two lines into one expression like this Step6: 1.1 You Code Step7: Format Codes Step8: Formatting with F-Strings Step9: 1.2 You Code Step10: 1.3 You Code Step11: Putting it all together Step12: Metacognition
<ASSISTANT_TASK:> Python Code: a = "4" type(a) # should be str a = 4 type(a) # should be int a = 4 b = 5 a + b # this plus in this case means add so 9 a = "4" b = "5" a + b # the plus + in this case means concatenation, so '45' x = "45" # x is a str y = int(x) # y is now an int z = float(x) # z is a float print(x,y,z) age = input("Enter your age: ") type(age) age = input("Enter your age: ") age = int(age) type(age) age = int(input("Enter your age: ")) type(age) # TODO: Debug this code age = input("Enter your age: ") nextage = age + 1 print("Today you are age next year you will be {nextage}") name = "Mike" age = 45 gpa = 3.4 print("%s is %d years old. His gpa is %.3f" % (name, age,gpa)) name ="Mike" wage = 15 print(f"{name} makes ${wage:.2f} per hour") # TODO: Write code here #TODO: Write Code Here # TODO: Write your code here # run this code to turn in your work! from coursetools.submission import Submission Submission().submit() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Ejecutar códigos con otros kernels Step2: Cargar datos Step3: Gráficos Step4: Widgets Step5: Para más informaciones sobre ipywidgets, consulte el manual de usuario [6].
<ASSISTANT_TASK:> Python Code: a = 1 b = 2.2 c = 3 d = 'a' %who def f1(n): for x in range(n): pass %%time f1(100) %%timeit f1(100) %%bash ls -lah import pandas as pd df = pd.read_csv('data/kaggle-titanic.csv') df.head() df.info() df.describe() from matplotlib import pyplot as plt df.Survived.value_counts().plot(kind='bar') plt.show() import pixiedust display(df) import numpy as np π = np.pi def show_wave(A, f, φ): ω = 2*π*f t = np.linspace(0, 1, 10000) f = A*np.sin(ω*t+φ) plt.grid(True) plt.plot(t, f) plt.show() show_wave(A=5, f=5, φ=2) import ipywidgets as widgets from IPython.display import display params = dict(value=1, min=1, max=100, step=1, continuous_update=False) wA = widgets.IntSlider(**params) wf = widgets.IntSlider(**params) wφ = widgets.IntSlider(value=0, min=0, max=10, step=1, continuous_update=False) widgets.interact(show_wave, A=wA, f=wf, φ=wφ); ?str.replace() help(str.replace) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exploring Your Data Step3: Two Dimensions Step5: Many Dimensions Step9: Cleaning And Munging Step10: Manipulating Data Step11: Rescaling Step12: If we use inches, B's closest neighbor is A Step13: But if we use centimeters, the closest neighbor is C Step16: When results are impacted by units of measure like in the above example, scaling can help. Rescaling projects values into a dimension with mean 0 and standard deviation 1. This effectively converts data into a common unit of "standard deviations from the mean." Step17: Rescale our weights so that they do not differ by units Step18: Now when we calculate distances, you can see that we end up with almost equivalent calculations for inches as we do centimeters Step20: Dimensionality Reduction Step21: With the de-meaned matrix, we can figure out which direction captures the most variance in the data Step25: Now we can compute the variance of the data in the direction, w Step26: The first principal component is the direction that maximizes the directional variance above. Step29: We can use stochastic gradient descent here Step30: Given a three-dimensional data set, it becomes effectively two-dimensional when we remove the first component. Step31: For higher-dimensional data sets, iterate to find as many components as you like Step32: Then transform the data into a lower-dimensional space
<ASSISTANT_TASK:> Python Code: def bucketize(point, bucket_size): floor the point to the next lower multiple of bucket size return bucket_size * math.floor(point / bucket_size) def make_histogram(points, bucket_size): return Counter(bucketize(point, bucket_size) for point in points) def plot_histogram(points, bucket_size, title=''): histogram = make_histogram(points, bucket_size) plt.bar(list(histogram.keys()), histogram.values(), width=bucket_size, edgecolor='white') plt.title(title) plt.show() import random random.seed(0) # uniform #'s will be between -100 and 100 uniform = [200 * random.random() - 100 for _ in range(10000)] # normal #'s will be from the normal distribution with mean of 0 and standard deviation of 57 normal = [57 * inverse_normal_cdf(random.random()) for _ in range(10000)] plot_histogram(uniform, 10, 'Uniform Histogram') plot_histogram(normal, 10, 'Normal Histogram') def random_normal(): retuns random #'s from standard normal distribution return inverse_normal_cdf(random.random()) xs = [random_normal() for _ in range(1000)] ys1 = [x + random_normal() / 2 for x in xs] ys2 = [-x + random_normal() / 2 for x in xs] ys3 = [0 if x < 0 else 6 for x in xs] plt.scatter(xs, ys1, marker='.', color='black', label='ys1'); plt.scatter(xs, ys2, marker='.', color='gray', label='ys2'); plt.xlabel('xs'); plt.ylabel('ys'); plt.legend(loc=5); plt.title('Very Different Joint Distributions'); correlation(xs, ys1), correlation(xs, ys2) def correlation_matrix(data): returns a matrix where x_ij is the correlation between col i and col j _, num_cols = shape(data) def matrix_entry(i, j): return correlation(get_column(data, i), get_column(data, j)) return make_matrix(num_cols, num_cols, matrix_entry) data = [[x, y2, y1, ys3] for (x, y1, y2, ys3) in zip(xs, ys1, ys2, ys3)] correlation_matrix(data) _, num_columns = shape(data) fig, ax = plt.subplots(num_columns, num_columns) for i in range(num_columns): for j in range(num_columns): # scatter column_j on the x-axis vs column_i on the y-axis if i != j: ax[i][j].scatter(get_column(data, j), get_column(data, i)) # unless i == j, in which case show the series name else: ax[i][j].annotate("series " + str(i), (0.5, 0.5), xycoords='axes fraction', ha="center", va="center") # then hide axis labels except left and bottom charts if i < num_columns - 1: ax[i][j].xaxis.set_visible(False) if j > 0: ax[i][j].yaxis.set_visible(False) # fix the bottom right and top left axis labels, which are wrong because # their charts only have text in them ax[-1][-1].set_xlim(ax[0][-1].get_xlim()) ax[0][0].set_ylim(ax[0][1].get_ylim()) def parse_row(input_row, parsers): given a list of parsers (some of which may be None) apply the appropriate one to each element of the input_row return [parser(value) if parser is not None else value for value, parser in zip(input_row, parsers)] def parse_rows_with(reader, parsers): wrap a reader to apply the parsers to each of its rows for row in reader: yield parse_row(row, parsers) def try_or_none(f): wraps f to return None if f raises an exception assumes f takes only one input def f_or_none(x): try: return f(x) except: return None return f_or_none def parse_row(input_row, parsers): return [try_or_none(parser)(value) if parser is not None else value for value, parser in zip(input_row, parsers)] import dateutil.parser import csv data = [] with open("stocks.csv", "r") as f: reader = csv.reader(f) for line in parse_rows_with(reader, [dateutil.parser.parse, None, float]): data.append(line) data max_aapl_price = max(row[2] for row in data if row[1] == "AAPL") max_aapl_price import pandas as pd pd.DataFrame({'Height (inches)': [63, 67, 70], 'Height (centimeters)': [160, 170.2, 177.8], 'Weight': [150, 160, 171]}, index=['A', 'B', 'C']) a_to_b = distance([63, 150], [67, 160]) a_to_c = distance([63, 150], [70, 171]) b_to_c = distance([67, 160], [70, 171]) a_to_b, a_to_c, b_to_c a_to_b = distance([160, 150], [170.2, 160]) a_to_c = distance([160, 150], [177.8, 171]) b_to_c = distance([170.2, 160], [177.8, 171]) a_to_b, a_to_c, b_to_c def scale(data_matrix): returns the means and standard deviations of each column num_rows, num_cols = shape(data_matrix) means = [mean(get_column(data_matrix,j)) for j in range(num_cols)] stdevs = [standard_deviation(get_column(data_matrix,j)) for j in range(num_cols)] return means, stdevs def rescale(data_matrix): rescales the input data so that each column has mean 0 and standard deviation 1 leaves alone columns with no deviation means, stdevs = scale(data_matrix) def rescaled(i, j): if stdevs[j] > 0: return (data_matrix[i][j] - means[j]) / stdevs[j] else: return data_matrix[i][j] num_rows, num_cols = shape(data_matrix) return make_matrix(num_rows, num_cols, rescaled) hts_in = [[63], [67], [70]] hts_cm = [[160], [170.2], [177.8]] wts = [[150], [160], [171]] hts_in_rescaled = rescale(hts_in) hts_cm_rescaled = rescale(hts_cm) wts_rescaled = rescale(wts) hts_in_rescaled, hts_cm_rescaled, wts_rescaled a_to_b_rescaled = distance([hts_in_rescaled[0][0], wts_rescaled[0][0]], [hts_in_rescaled[1][0], wts_rescaled[1][0]]) a_to_c_rescaled = distance([hts_in_rescaled[0][0], wts_rescaled[0][0]], [hts_in_rescaled[2][0], wts_rescaled[2][0]]) b_to_c_rescaled = distance([hts_in_rescaled[1][0], wts_rescaled[1][0]], [hts_in_rescaled[2][0], wts_rescaled[2][0]]) a_to_b_rescaled, a_to_c_rescaled, b_to_c_rescaled a_to_b_rescaled = distance([hts_cm_rescaled[0][0], wts_rescaled[0][0]], [hts_cm_rescaled[1][0], wts_rescaled[1][0]]) a_to_c_rescaled = distance([hts_cm_rescaled[0][0], wts_rescaled[0][0]], [hts_cm_rescaled[2][0], wts_rescaled[2][0]]) b_to_c_rescaled = distance([hts_cm_rescaled[1][0], wts_rescaled[1][0]], [hts_cm_rescaled[2][0], wts_rescaled[2][0]]) a_to_b_rescaled, a_to_c_rescaled, b_to_c_rescaled pca_data = [[7, 4, 3], [4, 1, 8], [6, 3, 5], [8, 6, 1], [8, 5, 7], [7, 2, 9], [5, 3, 3], [9, 5, 8], [7, 4, 5], [8, 2, 2]] pca_xs = [random_normal() for _ in range(100)] pca_ys1 = [x + random_normal() / 2 for x in pca_xs] pca_ys2 = [-x + random_normal() / 2 for x in pca_xs] pca_ys3 = [0 if x < 0 else 6 for x in pca_xs] pca_data = [[x, y1, y2, y3] for (x, y1, y2, y3) in zip(pca_xs, pca_ys1, pca_ys2, pca_ys3)] plt.scatter(pca_xs, pca_ys1); plt.scatter(pca_xs, pca_ys2); plt.scatter(pca_xs, pca_ys3); def de_mean_matrix(A): Returns each value in columns of A minus the mean of that column resulting in mean of 0 for all columns nr, nc = shape(A) column_means, _ = scale(A) return make_matrix(nr, nc, lambda i, j: A[i][j] - column_means[j]) pca_data_de_mean = de_mean_matrix(pca_data) pca_data_de_mean[:5] plt.scatter([x[0] for x in pca_data_de_mean], [0 for _ in pca_data_de_mean]); plt.scatter([x[1] for x in pca_data_de_mean], [0.1 for _ in pca_data_de_mean]); plt.scatter([x[2] for x in pca_data_de_mean], [0.2 for _ in pca_data_de_mean]); plt.scatter([x[3] for x in pca_data_de_mean], [0.3 for _ in pca_data_de_mean]); frame = plt.gca() frame.axes.yaxis.set_visible(False); plt.ylim((-0.1, 1)); plt.scatter([x[0] for x in pca_data_de_mean], [x[1] for x in pca_data_de_mean]); plt.scatter([x[0] for x in pca_data_de_mean], [x[2] for x in pca_data_de_mean]); plt.scatter([x[0] for x in pca_data_de_mean], [x[3] for x in pca_data_de_mean]); def direction(w): mag = magnitude(w) return [w_i / mag for w_i in w] pca_data_direction = [direction(w) for w in pca_data_de_mean] pca_data_direction[:5] plt.scatter([x[0] for x in pca_data_direction], [x[1] for x in pca_data_direction]); plt.scatter([x[0] for x in pca_data_direction], [x[2] for x in pca_data_direction]); plt.scatter([x[0] for x in pca_data_direction], [x[3] for x in pca_data_direction]); def directional_variance_i(x_i, w): the variance of the row x_i in the direction determined by w return dot(x_i, direction(w)) ** 2 def directional_variance(X, w): the variance of the data in the direction determined w return sum(directional_variance_i(x_i, w) for x_i in X) def directional_variance_gradient_i(x_i, w): the contribution of row x_i to the gradient of the direction-w variance projection_length = dot(x_i, direction(w)) return [2 * projection_length * x_ij for x_ij in x_i] def directional_variance_gradient(X, w): return vector_sum(directional_variance_gradient_i(x_i, w) for x_i in X) pca_data_variance = [directional_variance(pca_data_direction, w) for w in pca_data_direction] pca_data_variance[:5] def first_principal_component(X): guess = [1 for _ in X[0]] unscaled_maximizer = maximize_batch( partial(directional_variance, X), # is now a function of w partial(directional_variance_gradient, X), # is now a function of w guess) return direction(unscaled_maximizer) first_principal_component(pca_data) def first_principal_component_sgd(X): guess = [1 for _ in X[0]] unscaled_maximizer = maximize_stochastic( lambda x, _, w: directional_variance_i(x, w), lambda x, _, w: directional_variance_gradient_i(x, w), X, [None for _ in X], # the fake "y" guess) return direction(unscaled_maximizer) first_principal_component_sgd(pca_data) def project(v, w): returns the projection of v onto direction w projection_length = dot(v, w) return scalar_multiply(projection_length, w) def remove_projection_from_vector(v, w): projects v onto w and substracts the result from v return vector_subtract(v, project(v, w)) def remove_projection(X, w): return [remove_projection_from_vector(x_i, w) for x_i in X] pca_data_fc_removed = remove_projection(pca_data, first_principal_component_sgd(pca_data)) pca_data_fc_removed[:5] plt.scatter([x[0] for x in pca_data_fc_removed], [x[1] for x in pca_data_fc_removed]); plt.scatter([x[0] for x in pca_data_fc_removed], [x[2] for x in pca_data_fc_removed]); plt.scatter([x[0] for x in pca_data_fc_removed], [x[3] for x in pca_data_fc_removed]); def principal_component_analysis(X, num_components): components = [] for _ in range(num_components): component = first_principal_component(X) components.append(component) X = remove_projection(X, component) return components def transform_vector(v, components): return [dot(v, w) for w in components] def transform(X, components): return [transform_vector(x_i, components) for x_i in X] pca_components = principal_component_analysis(pca_data, 3) pca_transformed = transform(pca_data, pca_components) pca_transformed[:5] plt.scatter([x[0] for x in pca_transformed], [x[1] for x in pca_transformed]); plt.scatter([x[0] for x in pca_transformed], [x[2] for x in pca_transformed]); plt.title('3-dimensions n=' + str(len(pca_transformed))); pca_components = principal_component_analysis(pca_data, 2) pca_transformed = transform(pca_data, pca_components) pca_transformed[:5] plt.scatter([x[0] for x in pca_transformed], [x[1] for x in pca_transformed]); plt.title('2-dimensions n=' + str(len(pca_transformed))); pca_components = principal_component_analysis(pca_data, 1) pca_transformed = transform(pca_data, pca_components) pca_transformed[:5] plt.scatter([x[0] for x in pca_transformed], [0 for _ in pca_transformed]); plt.title('1-dimension n=' + str(len(pca_transformed))); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Make population dynamic model Step2: Population of haplotypes maps to counts and fitnesses Step3: Map haplotype string to fitness float. Step4: Add mutation Step5: Mutations have fitness effects Step6: If a mutation event creates a new haplotype, assign it a random fitness. Step7: Genetic drift and fitness affect which haplotypes make it to the next generation Step8: Combine and iterate Step9: Record Step10: Analyze trajectories Step11: Plot diversity Step12: Analyze and plot divergence Step13: Plot haplotype trajectories Step14: Plot SNP trajectories Step15: Find all variable sites. Step16: Scale up Step17: In this case there are $\mu$ = 0.01 mutations entering the population every generation. Step18: And the population genetic parameter $\theta$, which equals $2N\mu$, is 1.
<ASSISTANT_TASK:> Python Code: import numpy as np import itertools pop_size = 100 seq_length = 10 alphabet = ['A', 'T'] base_haplotype = "AAAAAAAAAA" fitness_effect = 1.1 # fitness effect if a functional mutation occurs fitness_chance = 0.1 # chance that a mutation has a fitness effect pop = {} pop["AAAAAAAAAA"] = 40 pop["AAATAAAAAA"] = 30 pop["AATTTAAAAA"] = 30 fitness = {} fitness["AAAAAAAAAA"] = 1.0 fitness["AAATAAAAAA"] = 1.05 fitness["AATTTAAAAA"] = 1.10 pop["AAATAAAAAA"] fitness["AAATAAAAAA"] mutation_rate = 0.005 # per gen per individual per site def get_mutation_count(): mean = mutation_rate * pop_size * seq_length return np.random.poisson(mean) def get_random_haplotype(): haplotypes = pop.keys() frequencies = [x/float(pop_size) for x in pop.values()] total = sum(frequencies) frequencies = [x / total for x in frequencies] return np.random.choice(haplotypes, p=frequencies) def get_mutant(haplotype): site = np.random.randint(seq_length) possible_mutations = list(alphabet) possible_mutations.remove(haplotype[site]) mutation = np.random.choice(possible_mutations) new_haplotype = haplotype[:site] + mutation + haplotype[site+1:] return new_haplotype def get_fitness(haplotype): old_fitness = fitness[haplotype] if (np.random.random() < fitness_chance): return old_fitness * fitness_effect else: return old_fitness get_fitness("AAAAAAAAAA") def mutation_event(): haplotype = get_random_haplotype() if pop[haplotype] > 1: pop[haplotype] -= 1 new_haplotype = get_mutant(haplotype) if new_haplotype in pop: pop[new_haplotype] += 1 else: pop[new_haplotype] = 1 if new_haplotype not in fitness: fitness[new_haplotype] = get_fitness(haplotype) mutation_event() pop fitness def mutation_step(): mutation_count = get_mutation_count() for i in range(mutation_count): mutation_event() def get_offspring_counts(): haplotypes = pop.keys() frequencies = [pop[haplotype]/float(pop_size) for haplotype in haplotypes] fitnesses = [fitness[haplotype] for haplotype in haplotypes] weights = [x * y for x,y in zip(frequencies, fitnesses)] total = sum(weights) weights = [x / total for x in weights] return list(np.random.multinomial(pop_size, weights)) get_offspring_counts() def offspring_step(): counts = get_offspring_counts() for (haplotype, count) in zip(pop.keys(), counts): if (count > 0): pop[haplotype] = count else: del pop[haplotype] def time_step(): mutation_step() offspring_step() generations = 5 def simulate(): for i in range(generations): time_step() history = [] def simulate(): clone_pop = dict(pop) history.append(clone_pop) for i in range(generations): time_step() clone_pop = dict(pop) history.append(clone_pop) simulate() def get_distance(seq_a, seq_b): diffs = 0 length = len(seq_a) assert len(seq_a) == len(seq_b) for chr_a, chr_b in zip(seq_a, seq_b): if chr_a != chr_b: diffs += 1 return diffs / float(length) def get_diversity(population): haplotypes = population.keys() haplotype_count = len(haplotypes) diversity = 0 for i in range(haplotype_count): for j in range(haplotype_count): haplotype_a = haplotypes[i] haplotype_b = haplotypes[j] frequency_a = population[haplotype_a] / float(pop_size) frequency_b = population[haplotype_b] / float(pop_size) frequency_pair = frequency_a * frequency_b diversity += frequency_pair * get_distance(haplotype_a, haplotype_b) return diversity def get_diversity_trajectory(): trajectory = [get_diversity(generation) for generation in history] return trajectory %matplotlib inline import matplotlib.pyplot as plt import matplotlib as mpl def diversity_plot(): mpl.rcParams['font.size']=14 trajectory = get_diversity_trajectory() plt.plot(trajectory, "#447CCD") plt.ylabel("diversity") plt.xlabel("generation") def get_divergence(population): haplotypes = population.keys() divergence = 0 for haplotype in haplotypes: frequency = population[haplotype] / float(pop_size) divergence += frequency * get_distance(base_haplotype, haplotype) return divergence def get_divergence_trajectory(): trajectory = [get_divergence(generation) for generation in history] return trajectory def divergence_plot(): mpl.rcParams['font.size']=14 trajectory = get_divergence_trajectory() plt.plot(trajectory, "#447CCD") plt.ylabel("divergence") plt.xlabel("generation") def get_frequency(haplotype, generation): pop_at_generation = history[generation] if haplotype in pop_at_generation: return pop_at_generation[haplotype]/float(pop_size) else: return 0 def get_trajectory(haplotype): trajectory = [get_frequency(haplotype, gen) for gen in range(generations)] return trajectory def get_all_haplotypes(): haplotypes = set() for generation in history: for haplotype in generation: haplotypes.add(haplotype) return haplotypes colors = ["#781C86", "#571EA2", "#462EB9", "#3F47C9", "#3F63CF", "#447CCD", "#4C90C0", "#56A0AE", "#63AC9A", "#72B485", "#83BA70", "#96BD60", "#AABD52", "#BDBB48", "#CEB541", "#DCAB3C", "#E49938", "#E68133", "#E4632E", "#DF4327", "#DB2122"] colors_lighter = ["#A567AF", "#8F69C1", "#8474D1", "#7F85DB", "#7F97DF", "#82A8DD", "#88B5D5", "#8FC0C9", "#97C8BC", "#A1CDAD", "#ACD1A0", "#B9D395", "#C6D38C", "#D3D285", "#DECE81", "#E8C77D", "#EDBB7A", "#EEAB77", "#ED9773", "#EA816F", "#E76B6B"] def stacked_trajectory_plot(xlabel="generation"): mpl.rcParams['font.size']=18 haplotypes = get_all_haplotypes() trajectories = [get_trajectory(haplotype) for haplotype in haplotypes] plt.stackplot(range(generations), trajectories, colors=colors_lighter) plt.ylim(0, 1) plt.ylabel("frequency") plt.xlabel(xlabel) def get_snp_frequency(site, generation): minor_allele_frequency = 0.0 pop_at_generation = history[generation] for haplotype in pop_at_generation.keys(): allele = haplotype[site] frequency = pop_at_generation[haplotype] / float(pop_size) if allele != "A": minor_allele_frequency += frequency return minor_allele_frequency def get_snp_trajectory(site): trajectory = [get_snp_frequency(site, gen) for gen in range(generations)] return trajectory def get_all_snps(): snps = set() for generation in history: for haplotype in generation: for site in range(seq_length): if haplotype[site] != "A": snps.add(site) return snps def snp_trajectory_plot(xlabel="generation"): mpl.rcParams['font.size']=18 snps = get_all_snps() trajectories = [get_snp_trajectory(snp) for snp in snps] data = [] for trajectory, color in itertools.izip(trajectories, itertools.cycle(colors)): data.append(range(generations)) data.append(trajectory) data.append(color) fig = plt.plot(*data) plt.ylim(0, 1) plt.ylabel("frequency") plt.xlabel(xlabel) pop_size = 50 seq_length = 100 generations = 500 mutation_rate = 0.0001 # per gen per individual per site fitness_effect = 1.1 # fitness effect if a functional mutation occurs fitness_chance = 0.1 # chance that a mutation has a fitness effect seq_length * mutation_rate 2 * pop_size * seq_length * mutation_rate base_haplotype = ''.join(["A" for i in range(seq_length)]) pop.clear() fitness.clear() del history[:] pop[base_haplotype] = pop_size fitness[base_haplotype] = 1.0 simulate() plt.figure(num=None, figsize=(14, 14), dpi=80, facecolor='w', edgecolor='k') plt.subplot2grid((3,2), (0,0), colspan=2) stacked_trajectory_plot() plt.subplot2grid((3,2), (1,0), colspan=2) snp_trajectory_plot() plt.subplot2grid((3,2), (2,0)) diversity_plot() plt.subplot2grid((3,2), (2,1)) divergence_plot() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Simulation Step2: Spielverläufe Step3: Ergebnisse
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt from random import random, choice # Kugeln (Werte erstmal unwichtig) black, red, green, white = 0, 1, 2, 7 # Urnen kugeln_urne1 = [white, white, white, black, black] kugeln_urne2 = [white, green, green, red, red] # Wkeiten p_urne1 = 0.7 p_urne2 = 0.3 # 1 - p_urne1 def color(s, c): return '\033[1;3{}m{}\033[0m'.format(c, s) N = 100000 # Anzahl der Spiele spiele = [] # Spielverläufe h_N = [0] * 11 # absolute Häufigkeiten der Ereignisse Z_k for _ in range(N): urne1, urne2 = list(kugeln_urne1), list(kugeln_urne2) # copy spiel, kugel = [], None while kugel != red: # Urne auswählen (Urne 1 kann leer sein, dann Urne2) urne = urne1 if random() < p_urne1 and urne1 else urne2 # zufällige Kugel aus der ausgewählten Urne nehmen und merken kugel = choice(urne) del urne[urne.index(kugel)] spiel.append(color('●' + '₁₂'[urne == urne2], kugel)) h_N[len(spiel)] += 1 spiele.append(spiel) for n, spiel in zip(range(20), spiele): print("{:2} {}".format(n + 1, ' '.join(spiel))) plt.stem(h_N) plt.axvspan(0, 3.5, 0, 1, alpha=0.2) plt.xlabel('Anzahl Runden $k$') plt.ylabel('absolute Häufigkeit $h_N(Z_k)$'); print("P(Z₁ + Z₂ + Z₃) ≅ {:.4}".format(sum(h_N[:4]) / N)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: matplotlib figure Step2: matplotlib axes Step3: matplotlib artists
<ASSISTANT_TASK:> Python Code: import autofig import numpy as np import matplotlib.pyplot as plt #autofig.inline() x = np.linspace(0,0.1,11) y = x**2 mplfig = autofig.plot(x=x, y=y, show=True) print dir(mplfig) mplfig.set_facecolor('blue') mplfig mplfig.axes mplax = mplfig.axes[0] print dir(mplax) mplax.set_xticks([0, 0.05, 0.1]) mplfig mplax.get_lines() line = mplax.get_lines()[0] print dir(line) line.set_color('red') mplfig <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 이 히스토그램에서 -0.143394 부터 0.437156 사이의 값이 전체의 약 24%를 차지하고 있음을 알 수 있다. 그럼 만약 -0.01 부터 0.01 사이의 구간에 대한 정보를 얻고 싶다면? 더 세부적인 구간에 대해 정보를 구하고 싶다면 히스토그램의 구간을 더 작게 나누어야 한다. Step2: 정확한 묘사를 위해 구간의 수를 증가시키면 몇 가지 문제가 발생한다.
<ASSISTANT_TASK:> Python Code: sp.random.seed(0) x = sp.random.normal(size=1000) ns, bins, ps = plt.hist(x, bins=10) pd.DataFrame([bins, ns/1000]) ns, bins, ps = plt.hist(x, bins=100) pd.DataFrame([bins, ns/1000]) x = np.linspace(-3, 3, 100) y = sp.stats.norm.pdf(x) plt.plot(x, y) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In this example notebook, we will walk through the creation of logsums from Step2: We'll also load the saved model from the mode choice estimation. Step3: We'll replicate the pre-processing used in the mode choice estimation, Step4: Then we bundle the raw data into the larch.DataFrames structure, Step5: The logsums from a Model can be computed using the Model.logsums method. Step6: Then we can persist the logsums dataframe to disk, for use in the next Step7: To recover the DataArray later, we can read it using the DataArray.from_zarr method.
<ASSISTANT_TASK:> Python Code: # TEST import larch.numba as lx from pytest import approx import os import numpy as np import xarray as xr from addicty import Dict from larch import P, X import larch.numba as lx hh, pp, tour, skims = lx.example(200, ['hh', 'pp', 'tour', 'skims']) exampville_mode_choice_file = lx.example(201, output_file='exampville_mode_choice.html', estimate=True) m = lx.read_metadata(exampville_mode_choice_file) Mode = Dict( DA = 1, SR = 2, Walk = 3, Bike = 4, Transit = 5, ).freeze() tour_dataset = lx.Dataset.construct.from_idco(tour.set_index('TOURID'), alts=Mode) od_skims = lx.Dataset.construct.from_omx(skims) dt = lx.DataTree( tour=tour_dataset.dc.query_cases("TOURPURP == 1"), hh=hh.set_index('HHID'), person=pp.set_index('PERSONID'), od=od_skims, do=od_skims, relationships=( "tours.HHID @ hh.HHID", "tours.PERSONID @ person.PERSONID", "hh.HOMETAZ @ od.otaz", "tours.DTAZ @ od.dtaz", "hh.HOMETAZ @ do.dtaz", "tours.DTAZ @ do.otaz", ), ) logsums = lx.DataArray.zeros( dt.caseids(), skims.TAZ_ID, name='logsums', ) for i,dtaz in enumerate(logsums.TAZ_ID): m.datatree = dt.replace_datasets( tour=dt.root_dataset.assign( DTAZ=xr.full_like(dt['DTAZ'], dtaz) ), ) logsums.loc[dict(TAZ_ID=dtaz)] = m.logsums() # TEST assert logsums[:4, :5].values == approx(np.array([ [-2.935642, -2.660468, -1.745647, -2.229293, -2.403132], [-2.935642, -2.660468, -1.745647, -2.229293, -2.403132], [-2.935642, -2.660468, -1.745647, -2.229293, -2.403132], [-3.046127, -2.770006, -1.823385, -2.320373, -2.4941 ], ]), rel=1e-5) assert logsums.shape == (7564, 40) assert logsums[-4:, -5:].values == approx(np.array([ [-0.353981, -0.729011, -1.163964, -0.421501, -0.912948], [-0.353981, -0.729011, -1.163964, -0.421501, -0.912948], [-0.246663, -0.721656, -1.156654, -0.354325, -0.89051 ], [-0.391211, -0.731383, -1.166312, -0.444022, -0.920203], ]), rel=1e-5) logsums.to_zarr('logsums.zarr.zip') lx.DataArray.from_zarr('logsums.zarr.zip') # TEST reloaded = _ assert reloaded[:4, :5].values == approx(np.array([ [-2.935642, -2.660468, -1.745647, -2.229293, -2.403132], [-2.935642, -2.660468, -1.745647, -2.229293, -2.403132], [-2.935642, -2.660468, -1.745647, -2.229293, -2.403132], [-3.046127, -2.770006, -1.823385, -2.320373, -2.4941 ], ]), rel=1e-5) assert reloaded.shape == (7564, 40) assert reloaded[-4:, -5:].values == approx(np.array([ [-0.353981, -0.729011, -1.163964, -0.421501, -0.912948], [-0.353981, -0.729011, -1.163964, -0.421501, -0.912948], [-0.246663, -0.721656, -1.156654, -0.354325, -0.89051 ], [-0.391211, -0.731383, -1.166312, -0.444022, -0.920203], ]), rel=1e-5) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: Data Step6: We make a vocabulary, replacing any word that occurs less than 10 times with unk. Step8: Mikolov suggested keeping word $w$ with probability Step9: We compare the frequency of certain common and rare words in the original and subsampled data below. Step10: Let's tokenize the subsampled data. Step11: Extracting central target words and their contexts Step12: Example. Suppose we have a corpus with 2 sentences of length 7 and 3, and we use a max context of size 2. Here are the centers and contexts. Step13: Extract context for the full dataset. Step15: Negative sampling Step16: Example. Step17: Now we generate $K$ negatives for each context. These are drawn from $p(w) \propto \text{freq}(w)^{0.75}$. Step18: Minibatching Step19: Example. We make a ragged minibatch with 2 examples, and then pad them to a standard size. Step20: Dataloader Step21: Let's print the first minibatch. Step22: Model Step23: Example. Assume the vocab size is 20 and we use $E=4$ embedding dimensions. Step25: Loss Step26: Different masks can lead to different results. Step32: Training Step33: Test
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt import math import os import random random.seed(0) import jax import jax.numpy as jnp try: from flax import linen as nn except ModuleNotFoundError: %pip install -qq flax from flax import linen as nn from flax.training import train_state try: import optax except ModuleNotFoundError: %pip install -qq optax import optax try: import torch except ModuleNotFoundError: %pip install -qq torch import torch import requests import zipfile import tarfile import hashlib import collections from IPython import display import time !mkdir figures # for saving plots # Required functions for downloading data def download(name, cache_dir=os.path.join("..", "data")): Download a file inserted into DATA_HUB, return the local filename. assert name in DATA_HUB, f"{name} does not exist in {DATA_HUB}." url, sha1_hash = DATA_HUB[name] os.makedirs(cache_dir, exist_ok=True) fname = os.path.join(cache_dir, url.split("/")[-1]) if os.path.exists(fname): sha1 = hashlib.sha1() with open(fname, "rb") as f: while True: data = f.read(1048576) if not data: break sha1.update(data) if sha1.hexdigest() == sha1_hash: return fname # Hit cache print(f"Downloading {fname} from {url}...") r = requests.get(url, stream=True, verify=True) with open(fname, "wb") as f: f.write(r.content) return fname def download_extract(name, folder=None): Download and extract a zip/tar file. fname = download(name) base_dir = os.path.dirname(fname) data_dir, ext = os.path.splitext(fname) if ext == ".zip": fp = zipfile.ZipFile(fname, "r") elif ext in (".tar", ".gz"): fp = tarfile.open(fname, "r") else: assert False, "Only zip/tar files can be extracted." fp.extractall(base_dir) return os.path.join(base_dir, folder) if folder else data_dir DATA_HUB = dict() DATA_URL = "http://d2l-data.s3-accelerate.amazonaws.com/" DATA_HUB["ptb"] = (DATA_URL + "ptb.zip", "319d85e578af0cdc590547f26231e4e31cdf1e42") def read_ptb(): data_dir = download_extract("ptb") with open(os.path.join(data_dir, "ptb.train.txt")) as f: raw_text = f.read() return [line.split() for line in raw_text.split("\n")] sentences = read_ptb() f"# sentences: {len(sentences)}" class Vocab: Vocabulary for text. def __init__(self, tokens=None, min_freq=0, reserved_tokens=None): if tokens is None: tokens = [] if reserved_tokens is None: reserved_tokens = [] # Sort according to frequencies counter = count_corpus(tokens) self.token_freqs = sorted(counter.items(), key=lambda x: x[1], reverse=True) # The index for the unknown token is 0 self.unk, uniq_tokens = 0, ["<unk>"] + reserved_tokens uniq_tokens += [token for token, freq in self.token_freqs if freq >= min_freq and token not in uniq_tokens] self.idx_to_token, self.token_to_idx = [], dict() for token in uniq_tokens: self.idx_to_token.append(token) self.token_to_idx[token] = len(self.idx_to_token) - 1 def __len__(self): return len(self.idx_to_token) def __getitem__(self, tokens): if not isinstance(tokens, (list, tuple)): return self.token_to_idx.get(tokens, self.unk) return [self.__getitem__(token) for token in tokens] def to_tokens(self, indices): if not isinstance(indices, (list, tuple)): return self.idx_to_token[indices] return [self.idx_to_token[index] for index in indices] def count_corpus(tokens): Count token frequencies. # Here `tokens` is a 1D list or 2D list if len(tokens) == 0 or isinstance(tokens[0], list): # Flatten a list of token lists into a list of tokens tokens = [token for line in tokens for token in line] return collections.Counter(tokens) vocab = Vocab(sentences, min_freq=10) f"vocab size: {len(vocab)}" def count_corpus(tokens): Count token frequencies. # Here `tokens` is a 1D list or 2D list if len(tokens) == 0 or isinstance(tokens[0], list): # Flatten a list of token lists into a list of tokens tokens = [token for line in tokens for token in line] return collections.Counter(tokens) def subsampling(sentences, vocab): # Map low frequency words into <unk> sentences = [[vocab.idx_to_token[vocab[tk]] for tk in line] for line in sentences] # Count the frequency for each word counter = count_corpus(sentences) num_tokens = sum(counter.values()) # Return True if to keep this token during subsampling def keep(token): return random.uniform(0, 1) < math.sqrt(1e-4 / counter[token] * num_tokens) # Now do the subsampling return [[tk for tk in line if keep(tk)] for line in sentences] subsampled = subsampling(sentences, vocab) def compare_counts(token): return ( f'# of "{token}": ' f"before={sum([line.count(token) for line in sentences])}, " f"after={sum([line.count(token) for line in subsampled])}" ) print(compare_counts("the")) print(compare_counts("join")) corpus = [vocab[line] for line in subsampled] print(corpus[0:3]) def get_centers_and_contexts(corpus, max_window_size): centers, contexts = [], [] for line in corpus: # Each sentence needs at least 2 words to form a "central target word # - context word" pair if len(line) < 2: continue centers += line for i in range(len(line)): # Context window centered at i window_size = random.randint(1, max_window_size) indices = list(range(max(0, i - window_size), min(len(line), i + 1 + window_size))) # Exclude the central target word from the context words indices.remove(i) contexts.append([line[idx] for idx in indices]) return centers, contexts tiny_dataset = [list(range(7)), list(range(7, 10))] print("dataset", tiny_dataset) for center, context in zip(*get_centers_and_contexts(tiny_dataset, 2)): print("center", center, "has contexts", context) all_centers, all_contexts = get_centers_and_contexts(corpus, 5) f"# center-context pairs: {len(all_centers)}" class RandomGenerator: Draw a random int in [0, n] according to n sampling weights. def __init__(self, sampling_weights): self.population = list(range(len(sampling_weights))) self.sampling_weights = sampling_weights self.candidates = [] self.i = 0 def draw(self): if self.i == len(self.candidates): self.candidates = random.choices(self.population, self.sampling_weights, k=10000) self.i = 0 self.i += 1 return self.candidates[self.i - 1] generator = RandomGenerator([2, 3, 4]) [generator.draw() for _ in range(10)] def get_negatives(all_contexts, corpus, K): counter = count_corpus(corpus) sampling_weights = [counter[i] ** 0.75 for i in range(len(counter))] all_negatives, generator = [], RandomGenerator(sampling_weights) for contexts in all_contexts: negatives = [] while len(negatives) < len(contexts) * K: neg = generator.draw() # Noise words cannot be context words if neg not in contexts: negatives.append(neg) all_negatives.append(negatives) return all_negatives all_negatives = get_negatives(all_contexts, corpus, 5) def batchify(data): max_len = max(len(c) + len(n) for _, c, n in data) centers, contexts_negatives, masks, labels = [], [], [], [] for center, context, negative in data: cur_len = len(context) + len(negative) centers += [center] contexts_negatives += [context + negative + [0] * (max_len - cur_len)] masks += [[1] * cur_len + [0] * (max_len - cur_len)] labels += [[1] * len(context) + [0] * (max_len - len(context))] return (np.array(centers).reshape((-1, 1)), np.array(contexts_negatives), np.array(masks), np.array(labels)) x_1 = (1, [2, 2], [3, 3, 3, 3]) x_2 = (1, [2, 2, 2], [3, 3]) batch = batchify((x_1, x_2)) names = ["centers", "contexts_negatives", "masks", "labels"] for name, data in zip(names, batch): print(name, "=", data) def load_data_ptb(batch_size, max_window_size, num_noise_words): num_workers = 2 sentences = read_ptb() vocab = Vocab(sentences, min_freq=10) subsampled = subsampling(sentences, vocab) corpus = [vocab[line] for line in subsampled] all_centers, all_contexts = get_centers_and_contexts(corpus, max_window_size) all_negatives = get_negatives(all_contexts, corpus, num_noise_words) class PTBDataset(torch.utils.data.Dataset): def __init__(self, centers, contexts, negatives): assert len(centers) == len(contexts) == len(negatives) self.centers = centers self.contexts = contexts self.negatives = negatives def __getitem__(self, index): return (self.centers[index], self.contexts[index], self.negatives[index]) def __len__(self): return len(self.centers) dataset = PTBDataset(all_centers, all_contexts, all_negatives) data_iter = torch.utils.data.DataLoader( dataset, batch_size, shuffle=True, collate_fn=batchify, num_workers=num_workers ) return data_iter, vocab data_iter, vocab = load_data_ptb(512, 5, 5) for batch in data_iter: for name, data in zip(names, batch): print(name, "shape:", data.shape) break batch_size, max_window_size, num_noise_words = 512, 5, 5 data_iter, vocab = load_data_ptb(batch_size, max_window_size, num_noise_words) class SkipGram(nn.Module): vocab_size: int embed_size: int @nn.compact def __call__(self, center, contexts_and_negatives): v = nn.Embed(self.vocab_size, self.embed_size)(center) u = nn.Embed(self.vocab_size, self.embed_size)(contexts_and_negatives) pred = jax.vmap(jnp.matmul)(v, u.transpose(0, 2, 1)) return pred center = jnp.ones((2, 1), dtype=jnp.int32) contexts_and_negatives = jnp.ones((2, 4), dtype=jnp.int32) skip_gram = SkipGram(20, 4) variables = skip_gram.init(jax.random.PRNGKey(0), center, contexts_and_negatives) print( f"Parameter embedding_weight ({variables['params']['Embed_0']['embedding'].shape}, " f"dtype={variables['params']['Embed_0']['embedding'].dtype})" ) skip_gram.apply(variables, center, contexts_and_negatives).shape def sigmoid_bce_loss(inputs, target, mask=None): BCE with logit loss, based on https://github.com/pytorch/pytorch/blob/1522912602bc4cc5f7adbce66cad00ebb436f195/aten/src/ATen/native/Loss.cpp#L317 max_val = jnp.clip(-inputs, 0, None) loss = (1 - target) * inputs + max_val + jnp.log(jnp.exp(-max_val) + jnp.exp((-inputs - max_val))) if mask is not None: loss = loss * mask return loss.mean(axis=1) pred = jnp.array([[0.5] * 4] * 2) label = jnp.array([[1.0, 0.0, 1.0, 0.0]] * 2) mask = jnp.array([[1, 1, 1, 1], [1, 1, 0, 0]]) sigmoid_bce_loss(pred, label, mask) sigmoid_bce_loss(pred, label, mask) / mask.sum(axis=1) * mask.shape[1] # Functions for plotting and accumulating sum def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend): Set the axes for matplotlib. axes.set_xlabel(xlabel) axes.set_ylabel(ylabel) axes.set_xscale(xscale) axes.set_yscale(yscale) axes.set_xlim(xlim) axes.set_ylim(ylim) if legend: axes.legend(legend) axes.grid() class Animator: For plotting data in animation. def __init__( self, xlabel=None, ylabel=None, legend=None, xlim=None, ylim=None, xscale="linear", yscale="linear", fmts=("-", "m--", "g-.", "r:"), nrows=1, ncols=1, figsize=(3.5, 2.5), ): # Incrementally plot multiple lines if legend is None: legend = [] display.set_matplotlib_formats("svg") self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize) if nrows * ncols == 1: self.axes = [ self.axes, ] # Use a lambda function to capture arguments self.config_axes = lambda: set_axes(self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend) self.X, self.Y, self.fmts = None, None, fmts def add(self, x, y): # Add multiple data points into the figure if not hasattr(y, "__len__"): y = [y] n = len(y) if not hasattr(x, "__len__"): x = [x] * n if not self.X: self.X = [[] for _ in range(n)] if not self.Y: self.Y = [[] for _ in range(n)] for i, (a, b) in enumerate(zip(x, y)): if a is not None and b is not None: self.X[i].append(a) self.Y[i].append(b) self.axes[0].cla() for x, y, fmt in zip(self.X, self.Y, self.fmts): self.axes[0].plot(x, y, fmt) self.config_axes() display.display(self.fig) display.clear_output(wait=True) class Accumulator: For accumulating sums over `n` variables. def __init__(self, n): self.data = [0.0] * n def add(self, *args): self.data = [a + float(b) for a, b in zip(self.data, args)] def reset(self): self.data = [0.0] * len(self.data) def __getitem__(self, idx): return self.data[idx] def create_train_state(rng, learning_rate, embed_size): Creates initial `TrainState`. net = SkipGram(len(vocab), embed_size) params = net.init( rng, jnp.ones([1, 1], dtype=jnp.int32), jnp.ones([1, max_window_size * 2 * (num_noise_words + 1)], dtype=jnp.int32), )["params"] tx = optax.adam(learning_rate) return train_state.TrainState.create(apply_fn=net.apply, params=params, tx=tx) @jax.jit def train_step(state, batch): Train for a single step. center, context_negative, mask, label = batch def loss_fn(params): pred = state.apply_fn({"params": params}, center, context_negative) loss = sigmoid_bce_loss(pred.reshape(label.shape), label, mask) / mask.sum(axis=1) * mask.shape[1] return jnp.sum(loss) grad_fn = jax.value_and_grad(loss_fn) loss, grads = grad_fn(state.params) state = state.apply_gradients(grads=grads) return state, loss def train(data_iter, lr, num_epochs, embed_size): rng = jax.random.PRNGKey(1) state = create_train_state(rng, lr, embed_size) animator = Animator(xlabel="epoch", ylabel="loss", xlim=[1, num_epochs]) metric = Accumulator(2) # Sum of losses, no. of tokens for epoch in range(num_epochs): seconds, num_batches = time.time(), len(data_iter) for i, batch in enumerate(data_iter): state, loss = train_step(state, list(map(jnp.array, batch))) metric.add(loss, batch[0].shape[0]) if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1: animator.add(epoch + (i + 1) / num_batches, (metric[0] / metric[1],)) device = jax.default_backend() print( f"loss {metric[0] / metric[1]:.3f}, " f"{metric[1] / (time.time() - seconds):.1f} tokens/sec on {str(device)}" ) return state embed_size = 100 lr, num_epochs = 0.01, 5 state = train(data_iter, lr, num_epochs, embed_size) def get_similar_tokens(query_token, k, state): W = state.params["Embed_0"]["embedding"] x = W[vocab[query_token]] # Compute the cosine similarity. Add 1e-9 for numerical stability cos = jnp.dot(W, x) / jnp.sqrt(jnp.sum(W * W, axis=1) * jnp.sum(x * x) + 1e-9) topk = jax.lax.top_k(cos, k + 1)[1] for i in topk[1:]: # Remove the input words print(f"cosine sim={float(cos[i]):.3f}: {vocab.idx_to_token[i]}") get_similar_tokens("chip", 3, state) get_similar_tokens("president", 3, state) get_similar_tokens("dog", 3, state) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: First here's a very compact set of statements to get and plot the data for a station. No exploratory side trips. Step2: Now the same thing, but with lots of exploration in between Step3: May 10
<ASSISTANT_TASK:> Python Code: from datetime import datetime, timedelta import pandas as pd from pyoos.collectors.nerrs.nerrs_soap import NerrsSoap # FROM pyoos SOS handling # Convenience function to build record style time series representation def flatten_element(p): rd = {'time':p.time} for m in p.members: rd[m['standard']] = m['value'] return rd # sta.get_unique_members() serves the same function as the pyoos SOS get_unique_members method # Convenience function to extract a dict of unique members (observed properties) by standard name obsprops_bystdname = lambda sta: {m['standard']:m for m in sta.get_unique_members()} # NERRS/CDMO access token. accesstoken = 'TOKEN STRING' # Initialize pyoos NERRS collector object nerrsData = NerrsSoap() # Access pdbpfmet station, for the last 7 days (roughly) nerrsData.filter(features=['pdbpfmet'], start=datetime.utcnow() - timedelta(days=7), end=datetime.utcnow() - timedelta(hours=12)) response = nerrsData.collect(accesstoken) sta = response.elements[0] obsprops_bystdname_dict = obsprops_bystdname(sta) # FROM pyoos SOS handling # For first (and only) station flattenedsta_0 = map(flatten_element, sta.elements) sta_0df = pd.DataFrame.from_records(flattenedsta_0, index=['time']) sta_0df.head() # Time series plot. # "wind_speed" is currently mispelled; that's in pyoos, and can be fixed easily obsprop_name = 'wind_sped' obsprop = obsprops_bystdname_dict[obsprop_name] sta_0df[obsprop_name].plot() ylabel(obsprop_name + ' ('+obsprop['unit']+')'); # pyoos NERRS collector nerrsData = NerrsSoap() # Get all Padilla Bay stations (pdb) [featureid for featureid in nerrsData.list_features() if featureid.startswith('pdb')] # Access pdbpfmet station, for the last 7 days (roughly) nerrsData.filter(features=['pdbpfmet'], start=datetime.utcnow() - timedelta(days=7), end=datetime.utcnow() - timedelta(hours=12)) #nerrsData.filter(variables=["ATemp"]) response = nerrsData.collect() # The raw response (a string) is not used outside this cell. The collect method response is what's used # I'm showing the raw response here, just for reference raw = nerrsData.raw() type(raw), raw.keys() # response.elements is a one-element array with a paegan.cdm.dsg.features.station.Station element response.elements # Looks like the station in the response doesn't include any info about the Reserve it belongs to. Too bad. # Or is one of the pieces of information below the NERRS site? sta = response.elements[0] sta.__dict__.keys() sta.uid, sta.name, sta.description, sta.type, sta.location, sta.properties # 'siteid' and 'location_description' seem to refer to the NERRS reserve/site sta.get_property('siteid'), sta._properties staloc = sta.get_location() print staloc, '||', staloc.type, '||', staloc.xy obsprops_bystdname_dict = obsprops_bystdname(sta) obsprops_bystdname_dict['wind_sped'] # The individual observations are returned in the station "elements" stael = sta.elements type(stael), len(stael) stael0 = stael[0] stael0.time # See sta.get_unique_members(), above # stael0.get_member_names() returns a list of member names for this station 'element' stael0.members # From paegan: flatten Returns a Generator of Points that are part of this collection # Just exploring what this does... response.flatten # FROM pyoos SOS handling # For first (and only) station flattenedsta_0 = map(flatten_element, sta.elements) sta_0df = pd.DataFrame.from_records(flattenedsta_0, index=['time']) sta_0df.head() # Time series plot. # "wind_speed" is currently mispelled; that's in pyoos, and can be fixed easily obsprop_name = 'wind_sped' obsprop = obsprops_bystdname_dict[obsprop_name] sta_0df[obsprop_name].plot() ylabel(obsprop_name + ' ('+obsprop['unit']+')'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: 1 - The problem of very deep neural networks Step4: Expected Output Step6: Expected Output Step7: Run the following code to build the model's graph. If your implementation is not correct you will know it by checking your accuracy when running model.fit(...) below. Step8: As seen in the Keras Tutorial Notebook, prior training a model, you need to configure the learning process by compiling the model. Step9: The model is now ready to be trained. The only thing you need is a dataset. Step10: Run the following cell to train your model on 2 epochs with a batch size of 32. On a CPU it should take you around 5min per epoch. Step11: Expected Output Step12: Expected Output Step13: ResNet50 is a powerful model for image classification when it is trained for an adequate number of iterations. We hope you can use what you've learnt and apply it to your own classification problem to perform state-of-the-art accuracy. Step14: You can also print a summary of your model by running the following code. Step15: Finally, run the code below to visualize your ResNet50. You can also download a .png picture of your model by going to "File -> Open...-> model.png".
<ASSISTANT_TASK:> Python Code: import numpy as np from keras import layers from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D from keras.models import Model, load_model from keras.preprocessing import image from keras.utils import layer_utils from keras.utils.data_utils import get_file from keras.applications.imagenet_utils import preprocess_input import pydot from IPython.display import SVG from keras.utils.vis_utils import model_to_dot from keras.utils import plot_model from resnets_utils import * from keras.initializers import glorot_uniform import scipy.misc from matplotlib.pyplot import imshow %matplotlib inline import keras.backend as K K.set_image_data_format('channels_last') K.set_learning_phase(1) # GRADED FUNCTION: identity_block def identity_block(X, f, filters, stage, block): Implementation of the identity block as defined in Figure 3 Arguments: X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev) f -- integer, specifying the shape of the middle CONV's window for the main path filters -- python list of integers, defining the number of filters in the CONV layers of the main path stage -- integer, used to name the layers, depending on their position in the network block -- string/character, used to name the layers, depending on their position in the network Returns: X -- output of the identity block, tensor of shape (n_H, n_W, n_C) # defining name basis conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' # Retrieve Filters F1, F2, F3 = filters # Save the input value. You'll need this later to add back to the main path. X_shortcut = X # First component of main path X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X) X = Activation('relu')(X) ### START CODE HERE ### # Second component of main path (≈3 lines) X = None X = None X = None # Third component of main path (≈2 lines) X = None X = None # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines) X = None X = None ### END CODE HERE ### return X tf.reset_default_graph() with tf.Session() as test: np.random.seed(1) A_prev = tf.placeholder("float", [3, 4, 4, 6]) X = np.random.randn(3, 4, 4, 6) A = identity_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a') test.run(tf.global_variables_initializer()) out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0}) print("out = " + str(out[0][1][1][0])) # GRADED FUNCTION: convolutional_block def convolutional_block(X, f, filters, stage, block, s = 2): Implementation of the convolutional block as defined in Figure 4 Arguments: X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev) f -- integer, specifying the shape of the middle CONV's window for the main path filters -- python list of integers, defining the number of filters in the CONV layers of the main path stage -- integer, used to name the layers, depending on their position in the network block -- string/character, used to name the layers, depending on their position in the network s -- Integer, specifying the stride to be used Returns: X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C) # defining name basis conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' # Retrieve Filters F1, F2, F3 = filters # Save the input value X_shortcut = X ##### MAIN PATH ##### # First component of main path X = Conv2D(F1, (1, 1), strides = (s,s), name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X) X = Activation('relu')(X) ### START CODE HERE ### # Second component of main path (≈3 lines) X = None X = None X = None # Third component of main path (≈2 lines) X = None X = None ##### SHORTCUT PATH #### (≈2 lines) X_shortcut = None X_shortcut = None # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines) X = None X = None ### END CODE HERE ### return X tf.reset_default_graph() with tf.Session() as test: np.random.seed(1) A_prev = tf.placeholder("float", [3, 4, 4, 6]) X = np.random.randn(3, 4, 4, 6) A = convolutional_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a') test.run(tf.global_variables_initializer()) out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0}) print("out = " + str(out[0][1][1][0])) # GRADED FUNCTION: ResNet50 def ResNet50(input_shape = (64, 64, 3), classes = 6): Implementation of the popular ResNet50 the following architecture: CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3 -> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER Arguments: input_shape -- shape of the images of the dataset classes -- integer, number of classes Returns: model -- a Model() instance in Keras # Define the input as a tensor with shape input_shape X_input = Input(input_shape) # Zero-Padding X = ZeroPadding2D((3, 3))(X_input) # Stage 1 X = Conv2D(64, (7, 7), strides = (2, 2), name = 'conv1', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = 'bn_conv1')(X) X = Activation('relu')(X) X = MaxPooling2D((3, 3), strides=(2, 2))(X) # Stage 2 X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block='a', s = 1) X = identity_block(X, 3, [64, 64, 256], stage=2, block='b') X = identity_block(X, 3, [64, 64, 256], stage=2, block='c') ### START CODE HERE ### # Stage 3 (≈4 lines) X = None X = None X = None X = None # Stage 4 (≈6 lines) X = None X = None X = None X = None X = None X = None # Stage 5 (≈3 lines) X = None X = None X = None # AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)" X = None ### END CODE HERE ### # output layer X = Flatten()(X) X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X) # Create model model = Model(inputs = X_input, outputs = X, name='ResNet50') return model model = ResNet50(input_shape = (64, 64, 3), classes = 6) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset() # Normalize image vectors X_train = X_train_orig/255. X_test = X_test_orig/255. # Convert training and test labels to one hot matrices Y_train = convert_to_one_hot(Y_train_orig, 6).T Y_test = convert_to_one_hot(Y_test_orig, 6).T print ("number of training examples = " + str(X_train.shape[0])) print ("number of test examples = " + str(X_test.shape[0])) print ("X_train shape: " + str(X_train.shape)) print ("Y_train shape: " + str(Y_train.shape)) print ("X_test shape: " + str(X_test.shape)) print ("Y_test shape: " + str(Y_test.shape)) model.fit(X_train, Y_train, epochs = 2, batch_size = 32) preds = model.evaluate(X_test, Y_test) print ("Loss = " + str(preds[0])) print ("Test Accuracy = " + str(preds[1])) model = load_model('ResNet50.h5') preds = model.evaluate(X_test, Y_test) print ("Loss = " + str(preds[0])) print ("Test Accuracy = " + str(preds[1])) img_path = 'images/my_image.jpg' img = image.load_img(img_path, target_size=(64, 64)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) print('Input image shape:', x.shape) my_image = scipy.misc.imread(img_path) imshow(my_image) print("class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = ") print(model.predict(x)) model.summary() plot_model(model, to_file='model.png') SVG(model_to_dot(model).create(prog='dot', format='svg')) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now that you have imported the library, we will walk you through its different applications. You will start with an example, where we compute for you the loss of one training example. Step2: Writing and running programs in TensorFlow has the following steps Step3: As expected, you will not see 20! You got a tensor saying that the result is a tensor that does not have the shape attribute, and is of type "int32". All you did was put in the 'computation graph', but you have not run this computation yet. In order to actually multiply the two numbers, you will have to create a session and run it. Step4: Great! To summarize, remember to initialize your variables, create a session and run the operations inside the session. Step6: When you first defined x you did not have to specify a value for it. A placeholder is simply a variable that you will assign data to only later, when running the session. We say that you feed data to these placeholders when running the session. Step8: Expected Output Step10: Expected Output Step12: Expected Output Step14: Expected Output Step15: Expected Output Step16: Change the index below and run the cell to visualize some examples in the dataset. Step17: As usual you flatten the image dataset, then normalize it by dividing by 255. On top of that, you will convert each label to a one-hot vector as shown in Figure 1. Run the cell below to do so. Step19: Note that 12288 comes from $64 \times 64 \times 3$. Each image is square, 64 by 64 pixels, and 3 is for the RGB colors. Please make sure all these shapes make sense to you before continuing. Step21: Expected Output Step23: Expected Output Step25: Expected Output Step27: Expected Output Step28: Run the following cell to train your model! On our machine it takes about 5 minutes. Your "Cost after epoch 100" should be 1.016458. If it's not, don't waste time; interrupt the training by clicking on the square (⬛) in the upper bar of the notebook, and try to correct your code. If it is the correct cost, take a break and come back in 5 minutes! Step29: Expected Output
<ASSISTANT_TASK:> Python Code: import math import numpy as np import h5py import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.python.framework import ops from tf_utils import load_dataset, random_mini_batches, convert_to_one_hot, predict %matplotlib inline np.random.seed(1) y_hat = tf.constant(36, name='y_hat') # Define y_hat constant. Set to 36. y = tf.constant(39, name='y') # Define y. Set to 39 loss = tf.Variable((y - y_hat)**2, name='loss') # Create a variable for the loss init = tf.global_variables_initializer() # When init is run later (session.run(init)), # the loss variable will be initialized and ready to be computed with tf.Session() as session: # Create a session and print the output session.run(init) # Initializes the variables print(session.run(loss)) # Prints the loss a = tf.constant(2) b = tf.constant(10) c = tf.multiply(a,b) print(c) sess = tf.Session() print(sess.run(c)) # Change the value of x in the feed_dict x = tf.placeholder(tf.int64, name = 'x') print(sess.run(2 * x, feed_dict = {x: 3})) sess.close() # GRADED FUNCTION: linear_function def linear_function(): Implements a linear function: Initializes W to be a random tensor of shape (4,3) Initializes X to be a random tensor of shape (3,1) Initializes b to be a random tensor of shape (4,1) Returns: result -- runs the session for Y = WX + b np.random.seed(1) ### START CODE HERE ### (4 lines of code) X = tf.constant(np.random.randn(3,1), name = "X") W = tf.constant(np.random.randn(4,3), name = "W") b = tf.constant(np.random.randn(4,1), name = "b") Y = tf.add(tf.matmul(W,X),b) ### END CODE HERE ### # Create the session using tf.Session() and run it with sess.run(...) on the variable you want to calculate ### START CODE HERE ### sess = tf.Session() result = sess.run(Y) ### END CODE HERE ### # close the session sess.close() return result print( "result = " + str(linear_function())) # GRADED FUNCTION: sigmoid def sigmoid(z): Computes the sigmoid of z Arguments: z -- input value, scalar or vector Returns: results -- the sigmoid of z ### START CODE HERE ### ( approx. 4 lines of code) # Create a placeholder for x. Name it 'x'. x = tf.placeholder(tf.float32, name = "x") # compute sigmoid(x) sigmoid = tf.sigmoid(x) # Create a session, and run it. Please use the method 2 explained above. # You should use a feed_dict to pass z's value to x. with tf.Session() as sess: # Run session and call the output "result" result = sess.run(sigmoid, feed_dict = {x:z}) ### END CODE HERE ### return result print ("sigmoid(0) = " + str(sigmoid(0))) print ("sigmoid(12) = " + str(sigmoid(12))) # GRADED FUNCTION: cost def cost(logits, labels):     Computes the cost using the sigmoid cross entropy          Arguments:     logits -- vector containing z, output of the last linear unit (before the final sigmoid activation)     labels -- vector of labels y (1 or 0) Note: What we've been calling "z" and "y" in this class are respectively called "logits" and "labels" in the TensorFlow documentation. So logits will feed into z, and labels into y.          Returns:     cost -- runs the session of the cost (formula (2)) ### START CODE HERE ### # Create the placeholders for "logits" (z) and "labels" (y) (approx. 2 lines) z = tf.placeholder(tf.float32, name = "z") y = tf.placeholder(tf.float32, name = "y") # Use the loss function (approx. 1 line) cost = tf.nn.sigmoid_cross_entropy_with_logits(logits = z, labels = y) # Create a session (approx. 1 line). See method 1 above. sess = tf.Session() # Run the session (approx. 1 line). cost = sess.run(cost, feed_dict = {z:logits, y:labels}) # Close the session (approx. 1 line). See method 1 above. sess.close() ### END CODE HERE ### return cost logits = sigmoid(np.array([0.2,0.4,0.7,0.9])) cost = cost(logits, np.array([0,0,1,1])) print ("cost = " + str(cost)) # GRADED FUNCTION: one_hot_matrix def one_hot_matrix(labels, C): Creates a matrix where the i-th row corresponds to the ith class number and the jth column corresponds to the jth training example. So if example j had a label i. Then entry (i,j) will be 1. Arguments: labels -- vector containing the labels C -- number of classes, the depth of the one hot dimension Returns: one_hot -- one hot matrix ### START CODE HERE ### # Create a tf.constant equal to C (depth), name it 'C'. (approx. 1 line) C = tf.constant(C) # Use tf.one_hot, be careful with the axis (approx. 1 line) one_hot_matrix = tf.one_hot(labels, C, axis=0) # Create the session (approx. 1 line) sess = tf.Session() # Run the session (approx. 1 line) one_hot = sess.run(one_hot_matrix, feed_dict={}) # Close the session (approx. 1 line). See method 1 above. sess.close() ### END CODE HERE ### return one_hot labels = np.array([1,2,3,0,2,1]) one_hot = one_hot_matrix(labels, C = 4) print ("one_hot = " + str(one_hot)) # GRADED FUNCTION: ones def ones(shape): Creates an array of ones of dimension shape Arguments: shape -- shape of the array you want to create Returns: ones -- array containing only ones ### START CODE HERE ### # Create "ones" tensor using tf.ones(...). (approx. 1 line) ones = tf.ones(shape) # Create the session (approx. 1 line) sess = tf.Session() # Run the session to compute 'ones' (approx. 1 line) ones = sess.run(ones) # Close the session (approx. 1 line). See method 1 above. sess.close() ### END CODE HERE ### return ones print ("ones = " + str(ones([3]))) # Loading the dataset X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset() # Example of a picture index = 0 plt.imshow(X_train_orig[index]) print ("y = " + str(np.squeeze(Y_train_orig[:, index]))) # Flatten the training and test images X_train_flatten = X_train_orig.reshape(X_train_orig.shape[0], -1).T X_test_flatten = X_test_orig.reshape(X_test_orig.shape[0], -1).T # Normalize image vectors X_train = X_train_flatten/255. X_test = X_test_flatten/255. # Convert training and test labels to one hot matrices Y_train = convert_to_one_hot(Y_train_orig, 6) Y_test = convert_to_one_hot(Y_test_orig, 6) print ("number of training examples = " + str(X_train.shape[1])) print ("number of test examples = " + str(X_test.shape[1])) print ("X_train shape: " + str(X_train.shape)) print ("Y_train shape: " + str(Y_train.shape)) print ("X_test shape: " + str(X_test.shape)) print ("Y_test shape: " + str(Y_test.shape)) # GRADED FUNCTION: create_placeholders def create_placeholders(n_x, n_y): Creates the placeholders for the tensorflow session. Arguments: n_x -- scalar, size of an image vector (num_px * num_px = 64 * 64 * 3 = 12288) n_y -- scalar, number of classes (from 0 to 5, so -> 6) Returns: X -- placeholder for the data input, of shape [n_x, None] and dtype "float" Y -- placeholder for the input labels, of shape [n_y, None] and dtype "float" Tips: - You will use None because it let's us be flexible on the number of examples you will for the placeholders. In fact, the number of examples during test/train is different. ### START CODE HERE ### (approx. 2 lines) X = tf.placeholder(tf.float32, [n_x, None], name='X') Y = tf.placeholder(tf.float32, [n_y,None], name='Y') ### END CODE HERE ### return X, Y X, Y = create_placeholders(12288, 6) print ("X = " + str(X)) print ("Y = " + str(Y)) # GRADED FUNCTION: initialize_parameters def initialize_parameters(): Initializes parameters to build a neural network with tensorflow. The shapes are: W1 : [25, 12288] b1 : [25, 1] W2 : [12, 25] b2 : [12, 1] W3 : [6, 12] b3 : [6, 1] Returns: parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3 tf.set_random_seed(1) # so that your "random" numbers match ours ### START CODE HERE ### (approx. 6 lines of code) W1 = tf.get_variable("W1", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1)) b1 = tf.get_variable("b1", [25,1], initializer = tf.zeros_initializer()) W2 = tf.get_variable("W2", [12,25], initializer = tf.contrib.layers.xavier_initializer(seed = 1)) b2 = tf.get_variable("b2", [12,1], initializer = tf.zeros_initializer()) W3 = tf.get_variable("W3", [6,12], initializer = tf.contrib.layers.xavier_initializer(seed = 1)) b3 = tf.get_variable("b3", [6,1], initializer = tf.zeros_initializer()) ### END CODE HERE ### parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2, "W3": W3, "b3": b3} return parameters tf.reset_default_graph() with tf.Session() as sess: parameters = initialize_parameters() print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # GRADED FUNCTION: forward_propagation def forward_propagation(X, parameters): Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX Arguments: X -- input dataset placeholder, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3" the shapes are given in initialize_parameters Returns: Z3 -- the output of the last LINEAR unit # Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] W3 = parameters['W3'] b3 = parameters['b3'] ### START CODE HERE ### (approx. 5 lines) # Numpy Equivalents: Z1 = tf.add(tf.matmul(W1,X),b1) # Z1 = np.dot(W1, X) + b1 A1 = tf.nn.relu(Z1) # A1 = relu(Z1) Z2 = tf.add(tf.matmul(W2,A1),b2) # Z2 = np.dot(W2, a1) + b2 A2 = tf.nn.relu(Z2) # A2 = relu(Z2) Z3 = tf.add(tf.matmul(W3,A2),b3) # Z3 = np.dot(W3,Z2) + b3 ### END CODE HERE ### return Z3 tf.reset_default_graph() with tf.Session() as sess: X, Y = create_placeholders(12288, 6) parameters = initialize_parameters() Z3 = forward_propagation(X, parameters) print("Z3 = " + str(Z3)) # GRADED FUNCTION: compute_cost def compute_cost(Z3, Y): Computes the cost Arguments: Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples) Y -- "true" labels vector placeholder, same shape as Z3 Returns: cost - Tensor of the cost function # to fit the tensorflow requirement for tf.nn.softmax_cross_entropy_with_logits(...,...) logits = tf.transpose(Z3) labels = tf.transpose(Y) ### START CODE HERE ### (1 line of code) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits, labels = labels)) ### END CODE HERE ### return cost tf.reset_default_graph() with tf.Session() as sess: X, Y = create_placeholders(12288, 6) parameters = initialize_parameters() Z3 = forward_propagation(X, parameters) cost = compute_cost(Z3, Y) print("cost = " + str(cost)) def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001, num_epochs = 1500, minibatch_size = 32, print_cost = True): Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX. Arguments: X_train -- training set, of shape (input size = 12288, number of training examples = 1080) Y_train -- test set, of shape (output size = 6, number of training examples = 1080) X_test -- training set, of shape (input size = 12288, number of training examples = 120) Y_test -- test set, of shape (output size = 6, number of test examples = 120) learning_rate -- learning rate of the optimization num_epochs -- number of epochs of the optimization loop minibatch_size -- size of a minibatch print_cost -- True to print the cost every 100 epochs Returns: parameters -- parameters learnt by the model. They can then be used to predict. ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables tf.set_random_seed(1) # to keep consistent results seed = 3 # to keep consistent results (n_x, m) = X_train.shape # (n_x: input size, m : number of examples in the train set) n_y = Y_train.shape[0] # n_y : output size costs = [] # To keep track of the cost # Create Placeholders of shape (n_x, n_y) ### START CODE HERE ### (1 line) X, Y = create_placeholders(n_x, n_y) ### END CODE HERE ### # Initialize parameters ### START CODE HERE ### (1 line) parameters = initialize_parameters() ### END CODE HERE ### # Forward propagation: Build the forward propagation in the tensorflow graph ### START CODE HERE ### (1 line) Z3 = forward_propagation(X, parameters) ### END CODE HERE ### # Cost function: Add cost function to tensorflow graph ### START CODE HERE ### (1 line) cost = compute_cost(Z3, Y) ### END CODE HERE ### # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer. ### START CODE HERE ### (1 line) optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost) ### END CODE HERE ### # Initialize all the variables init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph with tf.Session() as sess: # Run the initialization sess.run(init) # Do the training loop for epoch in range(num_epochs): epoch_cost = 0. # Defines a cost related to an epoch num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set seed = seed + 1 minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch (minibatch_X, minibatch_Y) = minibatch # IMPORTANT: The line that runs the graph on a minibatch. # Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y). ### START CODE HERE ### (1 line) _ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y}) ### END CODE HERE ### epoch_cost += minibatch_cost / num_minibatches # Print the cost every epoch if print_cost == True and epoch % 100 == 0: print ("Cost after epoch %i: %f" % (epoch, epoch_cost)) if print_cost == True and epoch % 5 == 0: costs.append(epoch_cost) # plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() # lets save the parameters in a variable parameters = sess.run(parameters) print ("Parameters have been trained!") # Calculate the correct predictions correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y)) # Calculate accuracy on the test set accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train})) print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test})) return parameters parameters = model(X_train, Y_train, X_test, Y_test) import scipy from PIL import Image from scipy import ndimage ## START CODE HERE ## (PUT YOUR IMAGE NAME) my_image = "thumbs_up.jpg" ## END CODE HERE ## # We preprocess your image to fit your algorithm. fname = "images/" + my_image image = np.array(ndimage.imread(fname, flatten=False)) my_image = scipy.misc.imresize(image, size=(64,64)).reshape((1, 64*64*3)).T my_image_prediction = predict(my_image, parameters) plt.imshow(image) print("Your algorithm predicts: y = " + str(np.squeeze(my_image_prediction))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Read history file from Virtual Explorer Step2: Visualise calculated geophysical fields Step3: We now get two files for the caluclated fields Step4: Change history and compare gravity Step5: As a simple test, we are changing the fault slip for all the faults and simply add 1000 m to all defined slips. In order to not mess up the original model, we are creating a copy of the history object first Step6: We now write the adjusted history back to a new history file and then calculate the updated gravity field Step7: Figure with all results
<ASSISTANT_TASK:> Python Code: %matplotlib inline import sys, os import matplotlib.pyplot as plt # adjust some settings for matplotlib from matplotlib import rcParams # print rcParams rcParams['font.size'] = 15 # determine path of repository to set paths corretly below repo_path = os.path.realpath('../..') import pynoddy import matplotlib.pyplot as plt import numpy as np from IPython.core.display import HTML css_file = 'pynoddy.css' HTML(open(css_file, "r").read()) import pynoddy.history reload(pynoddy.history) # read model directly from Atlas of Virtual Geophysics #his = pynoddy.history.NoddyHistory(url = http://virtualexplorer.com.au/special/noddyatlas/ch3/ch3_5/his/nfold_thrust.his") # his = pynoddy.history.NoddyHistory(url = "http://virtualexplorer.com.au/special/noddyatlas/ch3/ch3_6/his/ndome_basin.his") his = pynoddy.history.NoddyHistory(url = "http://tectonique.net/asg/ch3/ch3_5/his/fold_thrust.his") his.determine_model_stratigraphy() his.change_cube_size(50) # Save to (local) file to compute and visualise model history_name = "fold_thrust.his" his.write_history(history_name) # his = pynoddy.history.NoddyHistory(history_name) output = "fold_thrust_out" pynoddy.compute_model(history_name, output) import pynoddy.output reload(pynoddy.output) # load and visualise model h_out = pynoddy.output.NoddyOutput(output) # his.determine_model_stratigraphy() h_out.plot_section('x', layer_labels = his.model_stratigraphy, colorbar_orientation = 'horizontal', colorbar=False, title = '', # savefig=True, fig_filename = 'fold_thrust_NS_section.eps', cmap = 'YlOrRd') h_out.plot_section('y', layer_labels = his.model_stratigraphy, colorbar_orientation = 'horizontal', title = '', cmap = 'YlOrRd', # savefig=True, fig_filename = 'fold_thrust_EW_section.eps', ve=1.5) h_out.export_to_vtk(vtk_filename = "fold_thrust") pynoddy.compute_model(history_name, output, sim_type = 'GEOPHYSICS') reload(pynoddy.output) geophys = pynoddy.output.NoddyGeophysics(output) fig = plt.figure(figsize = (8,8)) ax = fig.add_subplot(111) # imshow(geophys.grv_data, cmap = 'jet') # define contour levels levels = np.arange(322,344,1) cf = ax.contourf(geophys.grv_data, levels, cmap = 'gray', vmin = 324, vmax = 342) cbar = plt.colorbar(cf, orientation = 'horizontal') # print levels for i in range(4): print("\nEvent %d" % (i+2)) print "Event type:\t" + his.events[i+2].event_type print "Fault slip:\t%.1f" % his.events[i+2].properties['Slip'] print "Fault dip:\t%.1f" % his.events[i+2].properties['Dip'] print "Dip direction:\t%.1f" % his.events[i+2].properties['Dip Direction'] reload(pynoddy.history) reload(pynoddy.events) his2 = pynoddy.history.NoddyHistory("fold_thrust.his") print his2.events[6].properties import copy his = pynoddy.history.NoddyHistory(history_name) his.all_events_end += 1 his_changed = copy.deepcopy(his) # change parameters of kinematic events slip_change = 2000. wavelength_change = 2000. # his_changed.events[3].properties['Slip'] += slip_change # his_changed.events[5].properties['Slip'] += slip_change # change fold wavelength his_changed.events[6].properties['Wavelength'] += wavelength_change his_changed.events[6].properties['X'] += wavelength_change/2. his_changed.write_history('fold_thrust_changed.his') reload(pynoddy) # %%timeit # recompute block model pynoddy.compute_model('fold_thrust_changed.his', 'fold_thrust_changed_out') # %%timeit # recompute geophysical response pynoddy.compute_model('fold_thrust_changed.his', 'fold_thrust_changed_out', sim_type = 'GEOPHYSICS') # load changed block model geo_changed = pynoddy.output.NoddyOutput('fold_thrust_changed_out') # load output and visualise geophysical field geophys_changed = pynoddy.output.NoddyGeophysics('fold_thrust_changed_out') fig = plt.figure(figsize = (8,8)) ax = fig.add_subplot(111) # imshow(geophys_changed.grv_data, cmap = 'jet') cf = ax.contourf(geophys_changed.grv_data, levels, cmap = 'gray', vmin = 324, vmax = 342) cbar = plt.colorbar(cf, orientation = 'horizontal') fig = plt.figure(figsize = (8,8)) ax = fig.add_subplot(111) # imshow(geophys.grv_data - geophys_changed.grv_data, cmap = 'jet') maxval = np.ceil(np.max(np.abs(geophys.grv_data - geophys_changed.grv_data))) # comp_levels = np.arange(-maxval,1.01 * maxval, 0.05 * maxval) cf = ax.contourf(geophys.grv_data - geophys_changed.grv_data, 20, cmap = 'spectral') #, comp_levels, cmap = 'RdBu_r') cbar = plt.colorbar(cf, orientation = 'horizontal') # compare sections through model geo_changed.plot_section('y', colorbar = False) h_out.plot_section('y', colorbar = False) his.events for i in range(4): print("Event %d" % (i+2)) print his.events[i+2].properties['Slip'] print his.events[i+2].properties['Dip'] print his.events[i+2].properties['Dip Direction'] # recompute the geology blocks for comparison: pynoddy.compute_model('fold_thrust_changed', 'fold_thrust_changed_out') geology_changed = pynoddy.output.NoddyOutput('fold_thrust_changed_out') geology_changed.plot_section('x', # layer_labels = his.model_stratigraphy, colorbar_orientation = 'horizontal', colorbar=False, title = '', # savefig=True, fig_filename = 'fold_thrust_NS_section.eps', cmap = 'YlOrRd') geology_changed.plot_section('y', # layer_labels = his.model_stratigraphy, colorbar_orientation = 'horizontal', title = '', cmap = 'YlOrRd', # savefig=True, fig_filename = 'fold_thrust_EW_section.eps', ve=1.5) # Calculate block difference and export as VTK for 3-D visualisation: import copy diff_model = copy.deepcopy(geology_changed) diff_model.block -= h_out.block diff_model.export_to_vtk(vtk_filename = "diff_model_fold_thrust_belt") fig = plt.figure(figsize=(20,8)) ax1 = fig.add_subplot(131) # original plot levels = np.arange(322,344,1) cf1 = ax1.contourf(geophys.grv_data, levels, cmap = 'gray', vmin = 324, vmax = 342) # cbar1 = ax1.colorbar(cf1, orientation = 'horizontal') fig.colorbar(cf1, orientation='horizontal') ax1.set_title('Gravity of original model') ax2 = fig.add_subplot(132) cf2 = ax2.contourf(geophys_changed.grv_data, levels, cmap = 'gray', vmin = 324, vmax = 342) ax2.set_title('Gravity of changed model') fig.colorbar(cf2, orientation='horizontal') ax3 = fig.add_subplot(133) comp_levels = np.arange(-10.,10.1,0.25) cf3 = ax3.contourf(geophys.grv_data - geophys_changed.grv_data, comp_levels, cmap = 'RdBu_r') ax3.set_title('Gravity difference') fig.colorbar(cf3, orientation='horizontal') plt.savefig("grav_ori_changed_compared.eps") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Example - Tunnel Traffic Step2: Let's take a look at seasonal plots over a week and over a year. Step3: Now let's look at the periodogram Step4: The periodogram agrees with the seasonal plots above Step5: With our feature set created, we're ready to fit the model and make predictions. We'll add a 90-day forecast to see how our model extrapolates beyond the training data. The code here is the same as that in earlier lessons.
<ASSISTANT_TASK:> Python Code: #$HIDE_INPUT$ import numpy as np def fourier_features(index, freq, order): time = np.arange(len(index), dtype=np.float32) k = 2 * np.pi * (1 / freq) * time features = {} for i in range(1, order + 1): features.update({ f"sin_{freq}_{i}": np.sin(i * k), f"cos_{freq}_{i}": np.cos(i * k), }) return pd.DataFrame(features, index=index) # Compute Fourier features to the 4th order (8 new features) for a # series y with daily observations and annual seasonality: # # fourier_features(y, freq=365.25, order=4) #$HIDE_INPUT$ from pathlib import Path from warnings import simplefilter import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.linear_model import LinearRegression from statsmodels.tsa.deterministic import CalendarFourier, DeterministicProcess simplefilter("ignore") # Set Matplotlib defaults plt.style.use("seaborn-whitegrid") plt.rc("figure", autolayout=True, figsize=(11, 5)) plt.rc( "axes", labelweight="bold", labelsize="large", titleweight="bold", titlesize=16, titlepad=10, ) plot_params = dict( color="0.75", style=".-", markeredgecolor="0.25", markerfacecolor="0.25", legend=False, ) %config InlineBackend.figure_format = 'retina' # annotations: https://stackoverflow.com/a/49238256/5769929 def seasonal_plot(X, y, period, freq, ax=None): if ax is None: _, ax = plt.subplots() palette = sns.color_palette("husl", n_colors=X[period].nunique(),) ax = sns.lineplot( x=freq, y=y, hue=period, data=X, ci=False, ax=ax, palette=palette, legend=False, ) ax.set_title(f"Seasonal Plot ({period}/{freq})") for line, name in zip(ax.lines, X[period].unique()): y_ = line.get_ydata()[-1] ax.annotate( name, xy=(1, y_), xytext=(6, 0), color=line.get_color(), xycoords=ax.get_yaxis_transform(), textcoords="offset points", size=14, va="center", ) return ax def plot_periodogram(ts, detrend='linear', ax=None): from scipy.signal import periodogram fs = pd.Timedelta("1Y") / pd.Timedelta("1D") freqencies, spectrum = periodogram( ts, fs=fs, detrend=detrend, window="boxcar", scaling='spectrum', ) if ax is None: _, ax = plt.subplots() ax.step(freqencies, spectrum, color="purple") ax.set_xscale("log") ax.set_xticks([1, 2, 4, 6, 12, 26, 52, 104]) ax.set_xticklabels( [ "Annual (1)", "Semiannual (2)", "Quarterly (4)", "Bimonthly (6)", "Monthly (12)", "Biweekly (26)", "Weekly (52)", "Semiweekly (104)", ], rotation=30, ) ax.ticklabel_format(axis="y", style="sci", scilimits=(0, 0)) ax.set_ylabel("Variance") ax.set_title("Periodogram") return ax data_dir = Path("../input/ts-course-data") tunnel = pd.read_csv(data_dir / "tunnel.csv", parse_dates=["Day"]) tunnel = tunnel.set_index("Day").to_period("D") X = tunnel.copy() # days within a week X["day"] = X.index.dayofweek # the x-axis (freq) X["week"] = X.index.week # the seasonal period (period) # days within a year X["dayofyear"] = X.index.dayofyear X["year"] = X.index.year fig, (ax0, ax1) = plt.subplots(2, 1, figsize=(11, 6)) seasonal_plot(X, y="NumVehicles", period="week", freq="day", ax=ax0) seasonal_plot(X, y="NumVehicles", period="year", freq="dayofyear", ax=ax1); plot_periodogram(tunnel.NumVehicles); from statsmodels.tsa.deterministic import CalendarFourier, DeterministicProcess fourier = CalendarFourier(freq="A", order=10) # 10 sin/cos pairs for "A"nnual seasonality dp = DeterministicProcess( index=tunnel.index, constant=True, # dummy feature for bias (y-intercept) order=1, # trend (order 1 means linear) seasonal=True, # weekly seasonality (indicators) additional_terms=[fourier], # annual seasonality (fourier) drop=True, # drop terms to avoid collinearity ) X = dp.in_sample() # create features for dates in tunnel.index #$HIDE_INPUT$ y = tunnel["NumVehicles"] model = LinearRegression(fit_intercept=False) _ = model.fit(X, y) y_pred = pd.Series(model.predict(X), index=y.index) X_fore = dp.out_of_sample(steps=90) y_fore = pd.Series(model.predict(X_fore), index=X_fore.index) ax = y.plot(color='0.25', style='.', title="Tunnel Traffic - Seasonal Forecast") ax = y_pred.plot(ax=ax, label="Seasonal") ax = y_fore.plot(ax=ax, label="Seasonal Forecast", color='C3') _ = ax.legend() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: 1. Utility functions Step3: 2. Open the data file Step4: We can open the file, as a normal HDF5 file Step5: The object h5file is a pytables file reference. The root group is accessed with h5file.root. Step6: We see the typical Photon-HDF5 structure. In particular the field description provides a short description of the measurement and acquisition_duration tells that the acquisition lasted 600 seconds. Step7: Finally, we define a shortcut to the photon_data group to save some typing later Step8: 4. Reading the data Step9: Ok, tha's what we espect. Step10: We may want to check the excitation wavelengths used in the measurement. This information is found in the setup group Step11: Now, let's load the definitions of donor/acceptor channel and excitation periods Step12: These numbers define the donor and acceptor alternation periods as shown below Step13: Now that the data has been loaded we can plot an alternation histogram using matplotlib Step14: 6. Timestamps in different excitation periods
<ASSISTANT_TASK:> Python Code: from __future__ import division, print_function # only needed on py2 %matplotlib inline import numpy as np import h5py import matplotlib.pyplot as plt def print_children(group): Print all the sub-groups in `group` and leaf-nodes children of `group`. Parameters: data_file (h5py HDF5 file object): the data file to print for name, value in group.items(): if isinstance(value, h5py.Group): content = '(Group)' else: content = value[()] print(name) print(' Content: %s' % content) print(' Description: %s\n' % value.attrs['TITLE'].decode()) filename = '../data/0023uLRpitc_NTP_20dT_0.5GndCl.hdf5' h5file = h5py.File(filename) print_children(h5file) print_children(h5file['sample']) photon_data = h5file['photon_data'] photon_data['measurement_specs']['measurement_type'][()].decode() timestamps = photon_data['timestamps'][:] timestamps_unit = photon_data['timestamps_specs']['timestamps_unit'][()] detectors = photon_data['detectors'][:] print('Number of photons: %d' % timestamps.size) print('Timestamps unit: %.2e seconds' % timestamps_unit) print('Detectors: %s' % np.unique(detectors)) h5file['setup']['excitation_wavelengths'][:] donor_ch = photon_data['measurement_specs']['detectors_specs']['spectral_ch1'][()] acceptor_ch = photon_data['measurement_specs']['detectors_specs']['spectral_ch2'][()] print('Donor CH: %d Acceptor CH: %d' % (donor_ch, acceptor_ch)) alex_period = photon_data['measurement_specs']['alex_period'][()] donor_period = photon_data['measurement_specs']['alex_excitation_period1'][()] offset = photon_data['measurement_specs']['alex_offset'][()] acceptor_period = photon_data['measurement_specs']['alex_excitation_period2'][()] print('ALEX period: %d \nOffset: %4d \nDonor period: %s \nAcceptor period: %s' % \ (alex_period, offset, donor_period, acceptor_period)) timestamps_donor = timestamps[detectors == donor_ch] timestamps_acceptor = timestamps[detectors == acceptor_ch] fig, ax = plt.subplots() ax.hist((timestamps_acceptor - offset) % alex_period, bins=100, alpha=0.8, color='red', label='donor') ax.hist((timestamps_donor - offset) % alex_period, bins=100, alpha=0.8, color='green', label='acceptor') ax.axvspan(donor_period[0], donor_period[1], alpha=0.3, color='green') ax.axvspan(acceptor_period[0], acceptor_period[1], alpha=0.3, color='red') ax.set_xlabel('(timestamps - offset) MOD alex_period') ax.set_title('ALEX histogram') ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False); timestamps_mod = (timestamps - offset) % alex_period donor_excitation = (timestamps_mod < donor_period[1])*(timestamps_mod > donor_period[0]) acceptor_excitation = (timestamps_mod < acceptor_period[1])*(timestamps_mod > acceptor_period[0]) timestamps_Dex = timestamps[donor_excitation] timestamps_Aex = timestamps[acceptor_excitation] fig, ax = plt.subplots() ax.hist((timestamps_Dex - offset) % alex_period, bins=np.arange(0, alex_period, 40), alpha=0.8, color='green', label='D_ex') ax.hist((timestamps_Aex - offset) % alex_period, bins=np.arange(0, alex_period, 40), alpha=0.8, color='red', label='A_ex') ax.set_xlabel('(timestamps - offset) MOD alex_period') ax.set_title('ALEX histogram (selected periods only)') ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), frameon=False); #plt.close('all') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Examine a single patient Step4: Here we can see that these drugs were documented 2153 minutes (1.5 days) after ICU admission, but administered 87132 minutes (60 days) before ICU admission (thus, the negative offset). Since it's reasonable to assume the patient is still taking the drug (as this is the admissiondrug table), drugoffset can likely be treated as a start time for a prescription of the drug. Step6: Instead of using the drug name, we could try to use the HICL code. Step7: As we can see, using the HICL returned many more observations. Let's take a look at a few Step9: All the rows use the drug name "Metolazone". Metolazone is the generic name for the brand Zaroxolyn. This demonstrates the utility of using HICL codes to identify drugs - synonyms like these are very common and can be tedious to find.
<ASSISTANT_TASK:> Python Code: # Import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import psycopg2 import getpass import pdvega # for configuring connection from configobj import ConfigObj import os %matplotlib inline # Create a database connection using settings from config file config='../db/config.ini' # connection info conn_info = dict() if os.path.isfile(config): config = ConfigObj(config) conn_info["sqluser"] = config['username'] conn_info["sqlpass"] = config['password'] conn_info["sqlhost"] = config['host'] conn_info["sqlport"] = config['port'] conn_info["dbname"] = config['dbname'] conn_info["schema_name"] = config['schema_name'] else: conn_info["sqluser"] = 'postgres' conn_info["sqlpass"] = '' conn_info["sqlhost"] = 'localhost' conn_info["sqlport"] = 5432 conn_info["dbname"] = 'eicu' conn_info["schema_name"] = 'public,eicu_crd' # Connect to the eICU database print('Database: {}'.format(conn_info['dbname'])) print('Username: {}'.format(conn_info["sqluser"])) if conn_info["sqlpass"] == '': # try connecting without password, i.e. peer or OS authentication try: if (conn_info["sqlhost"] == 'localhost') & (conn_info["sqlport"]=='5432'): con = psycopg2.connect(dbname=conn_info["dbname"], user=conn_info["sqluser"]) else: con = psycopg2.connect(dbname=conn_info["dbname"], host=conn_info["sqlhost"], port=conn_info["sqlport"], user=conn_info["sqluser"]) except: conn_info["sqlpass"] = getpass.getpass('Password: ') con = psycopg2.connect(dbname=conn_info["dbname"], host=conn_info["sqlhost"], port=conn_info["sqlport"], user=conn_info["sqluser"], password=conn_info["sqlpass"]) query_schema = 'set search_path to ' + conn_info['schema_name'] + ';' patientunitstayid = 2704494 query = query_schema + select * from admissiondrug where patientunitstayid = {} order by drugoffset .format(patientunitstayid) df = pd.read_sql_query(query, con) df.head() # Look at a subset of columns cols = ['admissiondrugid','patientunitstayid','drugoffset','drugenteredoffset','drugname','drughiclseqno'] df[cols].head() drug = 'ZAROXOLYN' query = query_schema + select admissiondrugid, patientunitstayid , drugoffset, drugenteredoffset , drugname, drughiclseqno from admissiondrug where drugname = '{}' .format(drug) df_drug = pd.read_sql_query(query, con) df_drug.set_index('admissiondrugid',inplace=True) print('{} unit stays with {}.'.format(df_drug['patientunitstayid'].nunique(), drug)) hicl = 3663 query = query_schema + select admissiondrugid, patientunitstayid , drugoffset, drugenteredoffset , drugname, drughiclseqno from admissiondrug where drughiclseqno = {} .format(hicl) df_hicl = pd.read_sql_query(query, con) df_hicl.set_index('admissiondrugid',inplace=True) print('{} unit stays with HICL = {}.'.format(df_hicl['patientunitstayid'].nunique(), hicl)) # rows in HICL which are *not* in the drug dataframe idx = ~df_hicl.index.isin(df_drug.index) # count the drug names df_hicl.loc[idx, 'drugname'].value_counts() query = query_schema + select pt.hospitalid , count(pt.patientunitstayid) as number_of_patients , count(ad.patientunitstayid) as number_of_patients_with_admdrug from patient pt left join admissiondrug ad on pt.patientunitstayid = ad.patientunitstayid group by pt.hospitalid .format(patientunitstayid) df = pd.read_sql_query(query, con) df['data completion'] = df['number_of_patients_with_admdrug'] / df['number_of_patients'] * 100.0 df.sort_values('number_of_patients_with_admdrug', ascending=False, inplace=True) df.head(n=10) df[['data completion']].vgplot.hist(bins=10, var_name='Number of hospitals', value_name='Percent of patients with data') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 2. Read in the hanford.csv file in the data/ folder Step2: <img src="../../images/hanford_variables.png"></img> Step3: 4. Find a reasonable threshold to say exposure is high and recode the data Step4: 6. Predict whether the mortality rate (Cancer per 100,000 man years) will be high at an exposure level of 50
<ASSISTANT_TASK:> Python Code: import pandas as pd %matplotlib inline import numpy as np from sklearn.linear_model import LogisticRegression df = pd.read_csv("hanford.csv") df.head() df.describe() df.median() rang= df['Mortality'].max() - df['Mortality'].min() rang iqr_m = df['Mortality'].quantile(q=0.75)- df['Mortality'].quantile(q=0.25) iqr_m iqr_e = df['Exposure'].quantile(q=0.75)- df['Exposure'].quantile(q=0.25) iqr_e UAL_m= (iqr_m*1.5) + df['Mortality'].quantile(q=0.75) UAL_m UAL_e= (iqr_m*1.5) + df['Exposure'].quantile(q=0.75) UAL_e LAL_m= df['Mortality'].quantile(q=0.25) - (iqr_e*1.5) LAL_m LAL_e= df['Exposure'].quantile(q=0.25) - (iqr_e*1.5) LAL_e len(df[df['Mortality']> UAL_m]) len(df[df['Exposure']> UAL_e]) len(df[df['Mortality']< LAL_m]) len(df[df['Mortality'] > UAL_m]) lm = LogisticRegression() data = np.asarray(df[['Mortality','Exposure']]) x = data[:,1:] y = data[:,0] data x y lm.fit(x,y) lm.coef_ lm.score(x,y) slope = lm.coef_[0] intercept = lm.intercept_ lm.predict(50) <END_TASK>