Water Conflict Classifier
Collection
Models and datasets for the classification of news and event headlines aligned with the Water Conflict Chronology by the Pacific Institute
•
5 items
•
Updated
version
string | timestamp
string | base_model
string | train_size
int64 | test_size
int64 | full_train_size
float64 | batch_size
int64 | num_epochs
int64 | sample_size
float64 | sampling_strategy
string | test_split
float64 | num_iterations
float64 | f1_micro
float64 | f1_macro
float64 | f1_samples
float64 | accuracy
float64 | hamming_loss
float64 | trigger_precision
float64 | trigger_recall
float64 | trigger_f1
float64 | trigger_support
int64 | casualty_precision
float64 | casualty_recall
float64 | casualty_f1
float64 | casualty_support
int64 | weapon_precision
float64 | weapon_recall
float64 | weapon_f1
float64 | weapon_support
int64 | model_repo
string | dataset_repo
string | dataset_version
string | notes
float64 | training_type
string | n_trials
float64 | search_sample_size
float64 | search_models
bool | best_hyperparameters
string |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
v1.0
|
2025-11-27T05:17:07.315790
|
BAAI/bge-small-en-v1.5
| 1,200
| 519
| 2,937
| 64
| 1
| 1,200
|
undersampling
| 0.15
| null | 0.884026
| 0.814339
| 0.7158
| 0.851638
| 0.06808
| 0.914286
| 0.924855
| 0.91954
| 173
| 0.903361
| 0.922747
| 0.912951
| 233
| 0.674419
| 0.557692
| 0.610526
| 52
|
baobabtech/water-conflict-classifier
|
baobabtech/water-conflict-training-data
| null | null | null | null | null | null | null |
v1.0
|
2025-11-27T19:20:51.778713
|
sentence-transformers/all-MiniLM-L6-v2
| 1,200
| 519
| 2,937
| 64
| 1
| 1,200
|
undersampling
| 0.15
| null | 0.873085
| 0.785678
| 0.703918
| 0.83815
| 0.074502
| 0.891429
| 0.901734
| 0.896552
| 173
| 0.883534
| 0.944206
| 0.912863
| 233
| 0.71875
| 0.442308
| 0.547619
| 52
|
baobabtech/water-conflict-classifier-minilm
|
baobabtech/water-conflict-training-data
| null | null | null | null | null | null | null |
v1.0
|
2025-11-27T20:28:51.973089
|
BAAI/bge-small-en-v1.5
| 1,200
| 519
| 2,937
| 64
| 1
| 1,200
|
undersampling
| 0.15
| null | 0.884026
| 0.814339
| 0.7158
| 0.851638
| 0.06808
| 0.914286
| 0.924855
| 0.91954
| 173
| 0.903361
| 0.922747
| 0.912951
| 233
| 0.674419
| 0.557692
| 0.610526
| 52
|
baobabtech/water-conflict-classifier
|
baobabtech/water-conflict-training-data
| null | null | null | null | null | null | null |
v1.0
|
2025-11-27T20:53:26.770653
|
BAAI/bge-small-en-v1.5
| 1,200
| 519
| 2,937
| 64
| 1
| 1,200
|
undersampling
| 0.15
| null | 0.884026
| 0.814339
| 0.7158
| 0.851638
| 0.06808
| 0.914286
| 0.924855
| 0.91954
| 173
| 0.903361
| 0.922747
| 0.912951
| 233
| 0.674419
| 0.557692
| 0.610526
| 52
|
baobabtech/water-conflict-classifier
| null | null | null | null | null | null | null | null |
v1.1
|
2025-11-27T21:03:58.453990
|
BAAI/bge-small-en-v1.5
| 1,200
| 519
| 2,937
| 64
| 1
| 1,200
|
undersampling
| 0.15
| null | 0.884026
| 0.814339
| 0.7158
| 0.851638
| 0.06808
| 0.914286
| 0.924855
| 0.91954
| 173
| 0.903361
| 0.922747
| 0.912951
| 233
| 0.674419
| 0.557692
| 0.610526
| 52
|
baobabtech/water-conflict-classifier
| null | null | null | null | null | null | null | null |
v1.2
|
2025-11-30T00:15:31.781887
|
BAAI/bge-small-en-v1.5
| 1,200
| 519
| null | 64
| 1
| null |
undersampling
| null | 20
| 0.878723
| 0.809403
| 0.716442
| 0.83815
| 0.073218
| 0.91954
| 0.924855
| 0.92219
| 173
| 0.919492
| 0.93133
| 0.925373
| 233
| 0.5
| 0.692308
| 0.580645
| 52
|
baobabtech/water-conflict-classifier
| null | null | null | null | null | null | null | null |
v2.0
|
2025-11-30T00:32:52.657728
|
BAAI/bge-small-en-v1.5
| 1,200
| 519
| null | 64
| 1
| null |
undersampling
| null | 20
| 0.862327
| 0.814176
| 0.704817
| 0.816956
| 0.082852
| 0.888889
| 0.873563
| 0.881159
| 174
| 0.890756
| 0.909871
| 0.900212
| 233
| 0.57971
| 0.769231
| 0.661157
| 52
|
baobabtech/water-conflict-classifier
| null | null | null | null | null | null | null | null |
v2.1
|
2025-11-30T01:09:00.509893
|
BAAI/bge-small-en-v1.5
| 1,200
| 519
| 1,719
| 64
| 1
| 1,200
|
undersampling
| 0.30192
| 20
| 0.862327
| 0.814176
| 0.704817
| 0.816956
| 0.082852
| 0.888889
| 0.873563
| 0.881159
| 174
| 0.890756
| 0.909871
| 0.900212
| 233
| 0.57971
| 0.769231
| 0.661157
| 52
|
baobabtech/water-conflict-classifier
| null |
d2.0
| null | null | null | null | null | null |
v2.2
|
2025-11-30T01:39:22.540112
|
BAAI/bge-small-en-v1.5
| 1,200
| 519
| 1,719
| 16
| 3
| 1,200
|
undersampling
| 0.30192
| 20
| 0.86875
| 0.823141
| 0.709377
| 0.822736
| 0.080925
| 0.888889
| 0.873563
| 0.881159
| 174
| 0.876984
| 0.948498
| 0.91134
| 233
| 0.564103
| 0.846154
| 0.676923
| 52
|
baobabtech/water-conflict-classifier
| null |
d2.0
| null | null | null | null | null | null |
v2.3
|
2025-11-30T06:32:31.012425
|
BAAI/bge-small-en-v1.5
| 1,200
| 519
| 1,719
| 32
| 4
| 1,200
|
undersampling
| 0.30192
| 20
| 0.870021
| 0.822135
| 0.708992
| 0.822736
| 0.07964
| 0.875
| 0.885057
| 0.88
| 174
| 0.890244
| 0.939914
| 0.914405
| 233
| 0.575342
| 0.807692
| 0.672
| 52
|
baobabtech/water-conflict-classifier
| null |
d2.0
| null | null | null | null | null | null |
v2.4
|
2025-11-30T08:39:53.600475
|
BAAI/bge-small-en-v1.5
| 1,200
| 519
| 1,719
| 16
| 3
| null |
undersampling
| 0.30192
| 20
| 0.794297
| 0.72961
| 0.65896
| 0.691715
| 0.129737
| 0.843023
| 0.833333
| 0.83815
| 174
| 0.854772
| 0.88412
| 0.869198
| 233
| 0.354545
| 0.75
| 0.481481
| 52
|
baobabtech/water-conflict-classifier
| null |
d2.0
| null |
optuna
| 50
| 200
| false
|
{'body_learning_rate': 1.4291965748432987e-06, 'head_learning_rate': 0.010793429167673138, 'num_epochs': 3, 'batch_size': 16, 'num_iterations': 20, 'seed': 72, 'max_iter': 153, 'solver': 'lbfgs', 'sampling_strategy': 'undersampling'}
|
v2.5
|
2025-12-02T02:13:03.385824
|
BAAI/bge-small-en-v1.5
| 1,200
| 519
| 1,719
| 32
| 2
| 1,200
|
oversampling
| 0.30192
| 20
| 0.865608
| 0.810628
| 0.70745
| 0.818882
| 0.081567
| 0.895349
| 0.885057
| 0.890173
| 174
| 0.888889
| 0.927039
| 0.907563
| 233
| 0.549296
| 0.75
| 0.634146
| 52
|
baobabtech/water-conflict-classifier
| null |
d2.0
| null |
standard
| null | null | null | null |
v2.6
|
2025-12-02T02:40:51.360905
|
BAAI/bge-small-en-v1.5
| 1,200
| 519
| 1,719
| 16
| 3
| 1,200
|
undersampling
| 0.30192
| null | 0.86875
| 0.823141
| 0.709377
| 0.822736
| 0.080925
| 0.888889
| 0.873563
| 0.881159
| 174
| 0.876984
| 0.948498
| 0.91134
| 233
| 0.564103
| 0.846154
| 0.676923
| 52
|
baobabtech/water-conflict-classifier
| null |
d2.0
| null |
standard
| null | null | null | null |
v2.7
|
2025-12-02T03:07:10.699513
|
BAAI/bge-small-en-v1.5
| 1,200
| 519
| 1,719
| 64
| 2
| 1,200
|
undersampling
| 0.30192
| 20
| 0.852321
| 0.798252
| 0.699294
| 0.809249
| 0.089917
| 0.90303
| 0.856322
| 0.879056
| 174
| 0.880658
| 0.918455
| 0.89916
| 233
| 0.506173
| 0.788462
| 0.616541
| 52
|
baobabtech/water-conflict-classifier
| null |
d2.0
| null |
standard
| null | null | null | null |
v2.8
|
2025-12-02T04:01:31.981874
|
BAAI/bge-small-en-v1.5
| 1,200
| 519
| 1,719
| 64
| 1
| 1,200
|
undersampling
| 0.30192
| 20
| 0.852972
| 0.798679
| 0.702762
| 0.801541
| 0.090559
| 0.884393
| 0.87931
| 0.881844
| 174
| 0.884298
| 0.918455
| 0.901053
| 233
| 0.494118
| 0.807692
| 0.613139
| 52
|
baobabtech/water-conflict-classifier
| null |
d2.0
| null |
standard
| null | null | null | null |
Evaluation metrics tracking the performance of the Water Conflict Classifier across multiple training iterations and model configurations.
This dataset contains evaluation results from training runs of the Water Conflict Classifier, a multi-label SetFit model that identifies water-related conflict events in news headlines. Each row represents one model version with comprehensive performance metrics across three classification labels: Trigger, Casualty, and Weapon.
Related Links:
| Field | Type | Description |
|---|---|---|
version |
string | Model version identifier (v1.0, v2.0, etc.) |
timestamp |
string | Training completion timestamp |
base_model |
string | Base embedding model used |
train_size |
int | Number of training examples |
test_size |
int | Number of test examples |
f1_micro |
float | Micro-averaged F1 score |
f1_macro |
float | Macro-averaged F1 score |
accuracy |
float | Overall accuracy |
trigger_* |
float | Precision/recall/F1 for Trigger label |
casualty_* |
float | Precision/recall/F1 for Casualty label |
weapon_* |
float | Precision/recall/F1 for Weapon label |
model_repo |
string | HuggingFace model repository |
The dataset tracks performance across different configurations:
from datasets import load_dataset
# Load the evaluation metrics
evals = load_dataset("baobabtech/water-conflict-classifier-evals")
# Compare model versions
import pandas as pd
df = pd.DataFrame(evals['train'])
print(df[['version', 'f1_macro', 'accuracy']].sort_values('f1_macro', ascending=False))
If you use this dataset or the Water Conflict Classifier in your research, please cite:
@misc{baobab_water_conflict_classifier,
author = {Mills, Olivier},
title = {Water Conflict Classifier: Few-Shot Learning for Water-Related Conflict Event Detection},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/baobabtech/water-conflict-classifier}}
}
CC-BY-NC-4.0 (Non-commercial use only)
Olivier Mills
Website: baobabtech.ai
LinkedIn: oliviermills