language:
- af
- ar
- de
- en
- es
- ha
- hi
- id
- ig
- jv
- mr
- pcm
- pt
- ro
- ru
- rw
- su
- sv
- sw
- tt
- uk
- vmw
- xh
- yo
- zh
- zu
license: cc-by-4.0
configs:
- config_name: afr
data_files:
- split: train
path: afr/train-*
- split: dev
path: afr/dev-*
- split: test
path: afr/test-*
- config_name: arq
data_files:
- split: train
path: arq/train-*
- split: dev
path: arq/dev-*
- split: test
path: arq/test-*
- config_name: ary
data_files:
- split: train
path: ary/train-*
- split: dev
path: ary/dev-*
- split: test
path: ary/test-*
- config_name: chn
data_files:
- split: train
path: chn/train-*
- split: dev
path: chn/dev-*
- split: test
path: chn/test-*
- config_name: deu
data_files:
- split: train
path: deu/train-*
- split: dev
path: deu/dev-*
- split: test
path: deu/test-*
- config_name: eng
data_files:
- split: train
path: eng/train-*
- split: dev
path: eng/dev-*
- split: test
path: eng/test-*
- config_name: esp
data_files:
- split: train
path: esp/train-*
- split: dev
path: esp/dev-*
- split: test
path: esp/test-*
- config_name: hau
data_files:
- split: train
path: hau/train-*
- split: dev
path: hau/dev-*
- split: test
path: hau/test-*
- config_name: hin
data_files:
- split: train
path: hin/train-*
- split: dev
path: hin/dev-*
- split: test
path: hin/test-*
- config_name: ibo
data_files:
- split: train
path: ibo/train-*
- split: dev
path: ibo/dev-*
- split: test
path: ibo/test-*
- config_name: ind
data_files:
- split: dev
path: ind/dev-*
- split: test
path: ind/test-*
- config_name: jav
data_files:
- split: dev
path: jav/dev-*
- split: test
path: jav/test-*
- config_name: kin
data_files:
- split: train
path: kin/train-*
- split: dev
path: kin/dev-*
- split: test
path: kin/test-*
- config_name: mar
data_files:
- split: train
path: mar/train-*
- split: dev
path: mar/dev-*
- split: test
path: mar/test-*
- config_name: pcm
data_files:
- split: train
path: pcm/train-*
- split: dev
path: pcm/dev-*
- split: test
path: pcm/test-*
- config_name: ptbr
data_files:
- split: train
path: ptbr/train-*
- split: dev
path: ptbr/dev-*
- split: test
path: ptbr/test-*
- config_name: ptmz
data_files:
- split: train
path: ptmz/train-*
- split: dev
path: ptmz/dev-*
- split: test
path: ptmz/test-*
- config_name: ron
data_files:
- split: train
path: ron/train-*
- split: dev
path: ron/dev-*
- split: test
path: ron/test-*
dataset_info:
- config_name: afr
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 257404
num_examples: 1222
- name: dev
num_bytes: 37574
num_examples: 196
- name: test
num_bytes: 443868
num_examples: 2130
download_size: 185339
dataset_size: 738846
- config_name: arq
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 189788
num_examples: 901
- name: dev
num_bytes: 38340
num_examples: 200
- name: test
num_bytes: 375933
num_examples: 1804
download_size: 180591
dataset_size: 604061
- config_name: ary
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 338711
num_examples: 1608
- name: dev
num_bytes: 102370
num_examples: 534
- name: test
num_bytes: 338423
num_examples: 1624
download_size: 267222
dataset_size: 779504
- config_name: chn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 556515
num_examples: 2642
- name: dev
num_bytes: 76681
num_examples: 400
- name: test
num_bytes: 1101127
num_examples: 5284
download_size: 789776
dataset_size: 1734323
- config_name: deu
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 548300
num_examples: 2603
- name: dev
num_bytes: 76681
num_examples: 400
- name: test
num_bytes: 1085289
num_examples: 5208
download_size: 894088
dataset_size: 1710270
- config_name: eng
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 583056
num_examples: 2768
- name: dev
num_bytes: 44475
num_examples: 232
- name: test
num_bytes: 1153224
num_examples: 5534
download_size: 402232
dataset_size: 1780755
- config_name: esp
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 420441
num_examples: 1996
- name: dev
num_bytes: 70547
num_examples: 368
- name: test
num_bytes: 706438
num_examples: 3390
download_size: 216719
dataset_size: 1197426
- config_name: hau
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 451826
num_examples: 2145
- name: dev
num_bytes: 136493
num_examples: 712
- name: test
num_bytes: 450120
num_examples: 2160
download_size: 258761
dataset_size: 1038439
- config_name: hin
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 538400
num_examples: 2556
- name: dev
num_bytes: 38340
num_examples: 200
- name: test
num_bytes: 420945
num_examples: 2020
download_size: 377557
dataset_size: 997685
- config_name: ibo
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 606648
num_examples: 2880
- name: dev
num_bytes: 183653
num_examples: 958
- name: test
num_bytes: 601827
num_examples: 2888
download_size: 266394
dataset_size: 1392128
- config_name: ind
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: dev
num_bytes: 29905
num_examples: 156
- name: test
num_bytes: 177339
num_examples: 851
download_size: 77485
dataset_size: 207244
- config_name: jav
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: dev
num_bytes: 28947
num_examples: 151
- name: test
num_bytes: 174421
num_examples: 837
download_size: 83743
dataset_size: 203368
- config_name: kin
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 516283
num_examples: 2451
- name: dev
num_bytes: 156047
num_examples: 814
- name: test
num_bytes: 513053
num_examples: 2462
download_size: 430821
dataset_size: 1185383
- config_name: mar
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 508699
num_examples: 2415
- name: dev
num_bytes: 38340
num_examples: 200
- name: test
num_bytes: 416777
num_examples: 2000
download_size: 348097
dataset_size: 963816
- config_name: pcm
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 785272
num_examples: 3728
- name: dev
num_bytes: 237713
num_examples: 1240
- name: test
num_bytes: 779374
num_examples: 3740
download_size: 574462
dataset_size: 1802359
- config_name: ptbr
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 468888
num_examples: 2226
- name: dev
num_bytes: 76681
num_examples: 400
- name: test
num_bytes: 927747
num_examples: 4452
download_size: 455209
dataset_size: 1473316
- config_name: ptmz
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 325652
num_examples: 1546
- name: dev
num_bytes: 98536
num_examples: 514
- name: test
num_bytes: 323419
num_examples: 1552
download_size: 166765
dataset_size: 747607
- config_name: ron
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
list: string
splits:
- name: train
num_bytes: 261406
num_examples: 1241
- name: dev
num_bytes: 47159
num_examples: 246
- name: test
num_bytes: 466374
num_examples: 2238
download_size: 225486
dataset_size: 774939
BRIGHTER Emotion Categories Dataset
This dataset contains the emotion categories data from the BRIGHTER paper: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages.
Dataset Description
The BRIGHTER Emotion Categories dataset is a comprehensive multi-language, multi-label emotion classification dataset with separate configurations for each language. It represents one of the largest human-annotated emotion datasets across multiple languages.
- Total languages: 28 languages
- Total examples: 139595
- Splits: train, dev, test
About BRIGHTER
BRIGHTER addresses the gap in human-annotated textual emotion recognition datasets for low-resource languages. While most existing emotion datasets focus on English, BRIGHTER covers multiple languages, including many low-resource ones. The dataset was created by selecting text from various sources and having annotators label six categorical emotions: anger, disgust, fear, joy, sadness, and surprise.
The dataset contains text in the following languages: Afrikaans, Algerian Arabic, Moroccan Arabic, Mandarin Chinese, German, English, Spanish (Ecuador, Colombia, Mexico), Hausa, Hindi, Igbo, Indonesian, Javanese, Kinyarwanda, Marathi, Nigerian Pidgin, Portuguese (Brazil), Portuguese (Mozambique), Romanian, Russian, Sundanese, Swahili, Swedish, Tatar, Ukrainian, Makhuwa, Xhosa, Yoruba, and Zulu.
Language Configurations
Each language is available as a separate configuration with the following statistics:
| Original Code | ISO Code | Train Examples | Dev Examples | Test Examples | Total |
|---|---|---|---|---|---|
| afr | af | 1222 | 196 | 2130 | 3548 |
| arq | ar | 901 | 200 | 1804 | 2905 |
| ary | ar | 1608 | 534 | 1624 | 3766 |
| chn | zh | 2642 | 400 | 5284 | 8326 |
| deu | de | 2603 | 400 | 5208 | 8211 |
| eng | en | 2768 | 232 | 5534 | 8534 |
| esp | es | 1996 | 368 | 3390 | 5754 |
| hau | ha | 2145 | 712 | 2160 | 5017 |
| hin | hi | 2556 | 200 | 2020 | 4776 |
| ibo | ig | 2880 | 958 | 2888 | 6726 |
| ind | id | 0 | 156 | 851 | 1007 |
| jav | jv | 0 | 151 | 837 | 988 |
| kin | rw | 2451 | 814 | 2462 | 5727 |
| mar | mr | 2415 | 200 | 2000 | 4615 |
| pcm | pcm | 3728 | 1240 | 3740 | 8708 |
| ptbr | pt | 2226 | 400 | 4452 | 7078 |
| ptmz | pt | 1546 | 514 | 1552 | 3612 |
| ron | ro | 1241 | 246 | 2238 | 3725 |
| rus | ru | 2679 | 398 | 2000 | 5077 |
| sun | su | 924 | 398 | 1852 | 3174 |
| swa | sw | 3307 | 1102 | 3312 | 7721 |
| swe | sv | 1187 | 400 | 2376 | 3963 |
| tat | tt | 1000 | 400 | 2000 | 3400 |
| ukr | uk | 2466 | 498 | 4468 | 7432 |
| vmw | vmw | 1551 | 516 | 1554 | 3621 |
| xho | xh | 0 | 682 | 1594 | 2276 |
| yor | yo | 2992 | 994 | 3000 | 6986 |
| zul | zu | 0 | 875 | 2047 | 2922 |
Features
- id: Unique identifier for each example
- text: Text content to classify
- anger, disgust, fear, joy, sadness, surprise: Presence of emotion
- emotions: List of emotions present in the text
Dataset Characteristics
This dataset provides binary labels for emotion presence, making it suitable for multi-label classification tasks. For regression tasks or fine-grained emotion analysis, please see the companion BRIGHTER-emotion-intensities dataset.
Usage
from datasets import load_dataset
# Load all data for a specific language
eng_dataset = load_dataset("YOUR_USERNAME/BRIGHTER-emotion-categories", "eng")
# Or load a specific split for a language
eng_train = load_dataset("YOUR_USERNAME/BRIGHTER-emotion-categories", "eng", split="train")
Citation
If you use this dataset, please cite the following papers:
@misc{muhammad2025brighterbridginggaphumanannotated,
title={BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages},
author={Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine de Kock and Nirmal Surange and Daniela Teodorescu and Ibrahim Said Ahmad and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino D. M. A. Ali and Ilseyar Alimova and Vladimir Araujo and Nikolay Babakov and Naomi Baes and Ana-Maria Bucur and Andiswa Bukula and Guanqun Cao and Rodrigo Tufiño and Rendi Chevi and Chiamaka Ijeoma Chukwuneke and Alexandra Ciobotaru and Daryna Dementieva and Murja Sani Gadanya and Robert Geislinger and Bela Gipp and Oumaima Hourrane and Oana Ignat and Falalu Ibrahim Lawan and Rooweither Mabuya and Rahmad Mahendra and Vukosi Marivate and Andrew Piper and Alexander Panchenko and Charles Henrique Porto Ferreira and Vitaly Protasov and Samuel Rutunda and Manish Shrivastava and Aura Cristina Udrea and Lilian Diana Awuor Wanzare and Sophie Wu and Florian Valentin Wunderlich and Hanif Muhammad Zhafran and Tianhui Zhang and Yi Zhou and Saif M. Mohammad},
year={2025},
eprint={2502.11926},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.11926},
}
@misc{muhammad2025semeval2025task11bridging,
title={SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection},
author={Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Seid Muhie Yimam and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine De Kock and Tadesse Destaw Belay and Ibrahim Said Ahmad and Nirmal Surange and Daniela Teodorescu and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino Ali and Vladimir Araujo and Abinew Ali Ayele and Oana Ignat and Alexander Panchenko and Yi Zhou and Saif M. Mohammad},
year={2025},
eprint={2503.07269},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2503.07269},
}
License
This dataset is licensed under CC-BY 4.0.