id
int64
187
569k
file_name
stringlengths
4
119
file_path
stringlengths
14
227
content
stringlengths
24
9.96M
size
int64
24
9.96M
language
stringclasses
1 value
extension
stringclasses
14 values
total_lines
int64
1
219k
avg_line_length
float64
3.48
4.02M
max_line_length
int64
5
9.91M
alphanum_fraction
float64
0
1
repo_name
stringlengths
7
101
repo_stars
int64
94
139k
repo_forks
int64
0
26.4k
repo_open_issues
int64
0
2.27k
repo_license
stringclasses
12 values
repo_extraction_date
stringclasses
455 values
2,290,166
pos2xyz.py
aboys-cb_VaspTool/script/tool/pos2xyz.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/13 20:18 # @Author : å…µ # @email : [email protected] import sys from ase.io import read, write pos_path = sys.argv[1] write("model.xyz", read(pos_path), format="extxyz")
244
Python
.py
9
25.777778
51
0.652361
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,167
split_train.py
aboys-cb_VaspTool/script/tool/split_train.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/14 12:00 # @Author : 兵 # @email : [email protected] import sys from pathlib import Path import numpy as np from ase.io import read, write from sklearn.model_selection import train_test_split from sklearn.utils import shuffle from tqdm import tqdm if Path("train-0.9.xyz").exists(): print("当前目录下已经有train-0.9.xyz文件,将追加到文件,而不是覆盖写入。") if Path("test-0.1.xyz").exists(): print("当前目录下已经有train-0.9.xyz文件,将追加到文件,而不是覆盖写入。") path = Path(sys.argv[1]) if path.is_file(): files = [path] else: files = [] for file in path.glob("*.xyz"): files.append(file) count = 0 trains = [] tests = [] for file in tqdm(files, "文件分割"): atoms_list = read(file, ":", format="extxyz") screen_list = [] for atoms in atoms_list: if (np.any(abs(atoms.calc.results["forces"]) > 100)): continue screen_list.append(atoms) count += len(screen_list) train, test = train_test_split(screen_list, test_size=0.1, random_state=88, shuffle=True) # 这里append=True 考虑可以将多个体系合并下 trains.extend(train) tests.extend(test) trains = shuffle(trains) tests = shuffle(tests) write("./train-0.9.xyz", trains, format='extxyz', append=True) write("./test-0.1.xyz", tests, format='extxyz', append=True) print(f"数据集一共有{count}条")
1,486
Python
.py
43
27.744186
93
0.677067
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,168
split_xyz.py
aboys-cb_VaspTool/script/tool/split_xyz.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/8/28 15:14 # @Author : 兵 # @email : [email protected] # 按照间隔分割xyz 分散任务 多节点提交 # python split_xyz.py new.xyz 10 import sys from ase.io import read, write job_num = int(sys.argv[2]) atoms_list = read(sys.argv[1], index=":", format="extxyz", do_not_split_by_at_sign=True) def split_list(lst, n): k, m = divmod(len(lst), n) return [lst[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n)] result = split_list(atoms_list, job_num) for i, sublist in enumerate(result): write(f"split-{i}-num-{len(sublist)}.xyz", sublist)
648
Python
.py
17
34
88
0.642978
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,169
generate_perturb_structure.py
aboys-cb_VaspTool/script/tool/generate_perturb_structure.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/12 11:07 # @Author : 兵 # @email : [email protected] """ 脚本执行方式:python generate_perturb_structure.py some_structure_path num some_structure_path 可以是POSCAR、CONTCAR、.vasp、 文件 num是生成微扰结构的个数 """ import sys from pathlib import Path import dpdata from ase.io import write from hiphive.structure_generation import generate_mc_rattled_structures from tqdm import tqdm path = Path(sys.argv[1]) if path.is_file(): files = [path] else: files = [] for file in path.glob("POSCAR"): files.append(file) for file in path.glob("*/POSCAR"): files.append(file) num = int(sys.argv[2]) for file in tqdm(files): system = dpdata.System(file, "vasp/poscar") perturbed_system = system.perturb(pert_num=int(num * 0.4), cell_pert_fraction=0.05, atom_pert_distance=0.1, atom_pert_style='uniform') structures = perturbed_system.to('ase/structure') for structure in structures: structure.info['Config_type'] = "dpdata perturb 0.05 0.1" # append=True是追加写入 怕缓存影响 直接覆盖写入 如果有需要自己改成True write(f"./perturb_{system.formula}.xyz", structures, format='extxyz', append=True) rattle_std = 0.04 min_distance = 0.1 structures_mc_rattle = generate_mc_rattled_structures( system.to('ase/structure')[0], int(num * 0.6), rattle_std, min_distance, n_iter=20) for structure in structures_mc_rattle: structure.info['Config_type'] = "hiphive mc perturb 0.04 0.1" write(f"./perturb_{system.formula}.xyz", structures_mc_rattle, format='extxyz', append=True)
1,801
Python
.py
44
32.545455
96
0.656345
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,170
plot_optic.py
aboys-cb_VaspTool/script/plot/plot_optic.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/5/22 13:07 # @Author : 兵 # @email : [email protected] """ 绘制光吸收曲线的图 """ import matplotlib.pyplot as plt from pymatgen.analysis.solar.slme import absorption_coefficient, optics, slme from pymatgen.io.vasp.outputs import Vasprun plt.style.use("./science.mplstyle") fig=plt.figure() sort_name=[ ("$Cs_2AgBiI_6$", "./Cs1Ag0.5Bi0.5I3.xml", 0.85), ("$Cs_2Cu_{0.25}Ag_{0.75}BiI_6$", "./Cs1Cu0.125Ag0.375Bi0.5I3.xml", 0.4618), ("$Cs_2AgBi_{0.75}Sb_{0.25}I_6$", "./Cs2AgBi0.75Sb0.25I6.xml", 0.5952) ] for label, path, gap in sort_name: vasp=Vasprun(path) new_en, new_abs =absorption_coefficient(vasp.dielectric) new_en += gap plt.plot(new_en, new_abs,label=label) data = optics(path) print(data[2], data[3], slme(*data, thickness=5e-6)) plt.legend(ncol=2) # plt.ylim(0,7) # plt.ticklabel_format(style='sci', scilimits=(0,0)) plt.xlim(0, 5) plt.xlabel("Photon energy (eV)") plt.ylabel("Absorption ($cm^{-1}$)") plt.yscale('log') plt.savefig("./absorption_coefficient.png")
1,095
Python
.py
33
30.272727
80
0.675676
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,171
plot_energy_force.py
aboys-cb_VaspTool/script/plot/plot_energy_force.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/24 19:44 # @Author : 兵 # @email : [email protected] """ 使用方式 python plot_sr_energy_force.py OUTCAR """ import os.path import sys import matplotlib.pyplot as plt import numpy as np from pymatgen.io.vasp.outputs import Outcar try: path = sys.argv[1] except: if os.path.exists("OUTCAR"): print("没有传入文件路径,检测到当前目录下有OUTCAR") path = "OUTCAR" else: print("没有传入文件路径,请使用python plot_energy_force.py OUTCAR ") exit() print("正在载入文件。。。") out = Outcar(path) print("开始解析能量。。。") out.read_pattern({ "e_fr_energy": r"free energy TOTEN\s+=\s+([\d\-\.]+)", }, postprocess=float) energy = np.array(out.data["e_fr_energy"]) energy = energy.flatten() print("开始解析力。。。") a = out.read_table_pattern(r"TOTAL-FORCE \(eV/Angst\)\n\s*\-+\n", r"\s+".join([r"(\-*[\.\d]+)"] * 6), r"-*\n", last_one_only=False, postprocess=float) force = np.array(a)[:, :, 3:] force = force.reshape((force.shape[0], -1)) max_froce = np.max(force, 1) result = np.vstack([np.arange(energy.shape[0]), energy, max_froce]).T print("正在画图。。。") fig, axes = plt.subplots(2, 1, sharex=True) axes1, axes2 = axes axes1.plot(result[:, 0], result[:, 1], label="energy", color="red") axes1.set_ylabel("energy(eV)") axes1.legend() axes2.plot(result[:, 0], result[:, 2], label="max force", color="green") axes2.set_ylabel("max force") axes2.legend() axes2.set_xlabel("steps") plt.tight_layout() plt.savefig("energy_forces.png", dpi=150) np.savetxt("energy_forces.csv", result, header="step,energy,force", fmt='%.8f', comments="") print("导出成功!./energy_forces.csv")
1,805
Python
.py
51
29.764706
110
0.651819
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,172
plot_soc.py
aboys-cb_VaspTool/script/plot/plot_soc.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/5/9 22:40 # @Author : 兵 # @email : [email protected] import itertools import re from collections import defaultdict import numpy as np from matplotlib import pyplot as plt from monty.io import zopen plt.rc('font', family='Times New Roman') # 修改公式中默认字体 from matplotlib import rcParams rcParams['mathtext.default'] = 'regular' import matplotlib as mpl from pymatgen.electronic_structure.core import Spin from pymatgen.io.vasp import BSVasprun class Procar: def __init__(self, filename): """ Args: filename: Name of file containing PROCAR. """ headers = None with zopen(filename, "rt") as file_handle: preambleexpr = re.compile(r"# of k-points:\s*(\d+)\s+# of bands:\s*(\d+)\s+# of " r"ions:\s*(\d+)") kpointexpr = re.compile(r"^k-point\s+(\d+).*weight = ([0-9\.]+)") bandexpr = re.compile(r"^band\s+(\d+)") ionexpr = re.compile(r"^ion.*") expr = re.compile(r"^([0-9]+)\s+") current_kpoint = 0 current_band = 0 done = False spin = Spin.down weights = None # pylint: disable=E1137 for line in file_handle: # print(line) line = line.strip() if bandexpr.match(line): m = bandexpr.match(line) # print(m.group()) current_band = int(m.group(1)) - 1 current_direction = -1 done = False elif kpointexpr.match(line): m = kpointexpr.match(line) # print(m.groups()) current_kpoint = int(m.group(1)) - 1 weights[current_kpoint] = float(m.group(2)) if current_kpoint == 0: spin = Spin.up if spin == Spin.down else Spin.down done = False elif headers is None and ionexpr.match(line): headers = line.split() headers.pop(0) # headers.pop(-1) data = defaultdict(lambda: np.zeros((nkpoints, nbands, nions, len(headers)))) phase_factors = defaultdict( lambda: np.full( (nkpoints, nbands, nions, 3, len(headers)), np.NaN, dtype=np.float32, ) ) elif expr.match(line): # print(line) toks = line.split() index = int(toks.pop(0)) - 1 # toks.pop(-1) num_data = np.array([float(t) for t in toks[: len(headers)]]) # print(done) if not done: data[spin][current_kpoint, current_band, index, :] = num_data else: # for orb in range(len(["x","y","z"])): phase_factors[spin][current_kpoint, current_band, index, current_direction, :] = num_data elif line.startswith("tot"): # print("tot") current_direction += 1 done = True elif preambleexpr.match(line): m = preambleexpr.match(line) nkpoints = int(m.group(1)) nbands = int(m.group(2)) nions = int(m.group(3)) weights = np.zeros(nkpoints) self.nkpoints = nkpoints self.nbands = nbands self.nions = nions self.weights = weights self.orbitals = headers self.data = data self.phase_factors = phase_factors def get_projection_on_elements(self, structure): """ Method returning a dictionary of projections on elements. Args: structure (Structure): Input structure. Returns: a dictionary in the {Spin.up:[k index][b index][{Element:values}]] """ dico = {} for spin in self.data: dico[spin] = [[defaultdict(float) for i in range(self.nkpoints)] for j in range(self.nbands)] for iat in range(self.nions): name = structure.species[iat].symbol for spin, d in self.data.items(): # print(d.shape) for k, b in itertools.product(range(self.nkpoints), range(self.nbands)): dico[spin][b][k][name] = np.sum(d[k, b, iat, :]) # return return dico def get_spin_component_by_direction(self, direction="z"): directions = ["x", "y", "z"] if direction not in directions: print("只支持x y z三个方向") return direction_index = directions.index(direction) dico = {} for spin in self.data: dico[spin] = [[defaultdict(float) for i in range(self.nkpoints)] for j in range(self.nbands)] for k, b in itertools.product(range(self.nkpoints), range(self.nbands)): dico[spin][b][k] = np.sum(self.phase_factors[spin][k, b, :, direction_index, :], 0)[-1] # print(self.phase_factors[spin][k, b, :, direction_index, :]) # print( (np.sum(self.phase_factors[spin][k, b, :, direction_index, :],0) )) return dico def get_occupation(self, atom_index, orbital): """ Returns the occupation for a particular orbital of a particular atom. Args: atom_num (int): Index of atom in the PROCAR. It should be noted that VASP uses 1-based indexing for atoms, but this is converted to 0-based indexing in this parser to be consistent with representation of structures in pymatgen. orbital (str): An orbital. If it is a single character, e.g., s, p, d or f, the sum of all s-type, p-type, d-type or f-type orbitals occupations are returned respectively. If it is a specific orbital, e.g., px, dxy, etc., only the occupation of that orbital is returned. Returns: Sum occupation of orbital of atom. """ orbital_index = self.orbitals.index(orbital) return { spin: np.sum(d[:, :, atom_index, orbital_index] * self.weights[:, None]) for spin, d in self.data.items() } def get_ticks(bs): """ Get all ticks and labels for a band structure plot. Returns: dict: A dictionary with 'distance': a list of distance at which ticks should be set and 'label': a list of label for each of those ticks. """ ticks, distance = [], [] for br in bs.branches: start, end = br["start_index"], br["end_index"] # print(br["name"]) labels = br["name"].split("-") labels=[i for i in labels if i.strip()] # skip those branches with only one point if labels[0] == labels[1]: continue # add latex $$ for idx, label in enumerate(labels): if label.startswith("\\") or "_" in label: labels[idx] = "$" + label + "$" if ticks and labels[0] != ticks[-1]: ticks[-1] += "$\\mid$" + labels[0] ticks.append(labels[1]) distance.append(bs.distance[end]) else: ticks.extend(labels) distance.extend([bs.distance[start], bs.distance[end]]) return {"distance": distance, "label": ticks} def plot_spin_by_direction(path_dir,direction, energy_min: float = -1, energy_max: float = 1,): bs_vasprun = BSVasprun(path_dir+"/vasprun.xml", parse_projected_eigen=True) pro = Procar(path_dir+"/PROCAR") projection_on_elements = pro.get_spin_component_by_direction(direction) band_structure = bs_vasprun.get_band_structure(line_mode=True) ware1,enery1,spin1 = [],[],[] ware2,enery2,spin2 = [],[],[] for band, projection in zip(band_structure.bands[Spin.up], projection_on_elements[Spin.up]): for distance, energy, tot in zip(band_structure.distance, band, projection): if tot >0: ware1.append(distance) enery1.append(energy - band_structure.efermi) spin1.append(tot) else: ware2.append(distance) enery2.append(energy - band_structure.efermi) spin2.append(tot) fig = plt.figure(figsize=(8,5)) norm = mpl.colors.Normalize(-1,1) plt.plot([0, max(band_structure.distance)], [0, 0], 'k-.', linewidth=1) xticks = get_ticks(band_structure) for dis in xticks["distance"]: plt.plot([dis,dis],[energy_min, energy_max],'k-.', linewidth=1) plt.xticks(xticks["distance"],xticks["label"]) plt.xlim(0, max(xticks["distance"])) a = plt.scatter(ware1, enery1,c=spin1,s=30,lw=0, alpha=0.5 ,cmap=mpl.cm.coolwarm,norm=norm, marker="o") b = plt.scatter(ware2, enery2,c=spin2,s=20,lw=0, alpha=0.5,cmap=mpl.cm.coolwarm, norm=norm,marker="*") plt.ylim(energy_min, energy_max) plt.tick_params(axis='y', direction='in') plt.colorbar( fraction=0.2, pad=0.1) # plt.legend((a,b),("spin-up","spin-down"),fontsize=16 , frameon=False ) plt.tight_layout() ax = plt.gca() #处理刻度 ax.tick_params(labelsize=16,bottom=False, top=False, left=True, right=False) plt.subplots_adjust(left=0.2, right=0.85, top=0.9, bottom=0.15, wspace=0.01, hspace=0.1) plt.xlabel("Wavevector $k$", fontsize=16 ) plt.ylabel("$E-E_F$ / eV", fontsize=16 ) # plt.title("title",x=0.5,y=1.02) # plt.savefig("bnd.eps",format='eps', transparent=True,bbox_inches='tight', dpi=600) plt.savefig("band.jpg",bbox_inches='tight', dpi=1200) if __name__ == '__main__': #这里传入的是vasprun.xml所在的路径 plot_spin_by_direction("./danzi/vasprun/", "z", -2,2)
10,164
Python
.py
225
32.915556
117
0.545649
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,173
plot_nep.py
aboys-cb_VaspTool/script/plot/plot_nep.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/21 16:40 # @Author : å…µ # @email : [email protected] import glob import os import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import r2_score, mean_squared_error Config = [ {"name": "energy", "unit": "eV/atom"}, {"name": "force", "unit": "eV/A"}, {"name": "virial", "unit": "eV/atom"}, {"name": "stress", "unit": "GPa"}, ] def plot_loss_result(axes: plt.Axes): loss = np.loadtxt("loss.out") axes.loglog(loss[:, 1:7], label=['Total', 'L1-regularization', 'L2-regularization', 'Energy-train', 'Force-train', 'Virial-train']) axes.set_xlabel('Generation/100') axes.set_ylabel('Loss') if np.any(loss[7:10] != 0): axes.loglog(loss[:, 7:10], label=['Energy-test', 'Force-test', 'Virial-test']) axes.legend(ncol=2, frameon=False) def plot_train_result(axes: plt.Axes, config: dict): types = ["train", "test"] colors = ['deepskyblue', 'orange'] xys = [(0.1, 0.7), (0.4, 0.1)] for i in range(2): data_type = types[i] color = colors[i] xy = xys[i] if not os.path.exists(f"{config['name']}_{data_type}.out"): continue data = np.loadtxt(f"{config['name']}_{data_type}.out") min_value = np.min(data) max_value = np.max(data) index = data.shape[1] // 2 axes.plot(data[:, index:], data[:, :index], '.', color=color, label=data_type) axes.plot(np.linspace(min_value, max_value, num=10), np.linspace(min_value, max_value, num=10), '-', color="k") rmse = np.sqrt(mean_squared_error(data[:, :index], data[:, index:])) r2 = r2_score(data[:, :index], data[:, index:]) axes.text(xy[0], xy[1], f'{data_type} RMSE={1000 * rmse:.3f}({"m" + config["unit"] if config["name"] != "stress" else "MPa"} )\n{data_type} $R^2$={r2:.3f}', transform=axes.transAxes, fontsize=13) handles, labels = axes.get_legend_handles_labels() label_dict = dict(zip(labels, handles)) axes.legend(label_dict.values(), label_dict, frameon=False, ncol=2, columnspacing=1) axes.set_xlabel(f'DFT {config["name"]} ({config["unit"]})') axes.set_ylabel(f'NEP {config["name"]} ({config["unit"]})') if __name__ == '__main__': out_num = len(glob.glob("*.out")) test_out_num = len(glob.glob("*test.out")) rows = 2 if out_num >= 4 else 1 cols = (out_num - test_out_num) // rows + (out_num - test_out_num) % rows fig = plt.figure(figsize=(6 * cols, 5 * rows)) grids = fig.add_gridspec(rows, cols) if os.path.exists("loss.out"): axes_index = 0 axes = fig.add_subplot(grids[axes_index]) axes_index += 1 plot_loss_result(axes) else: axes_index = 0 for config in Config: if not os.path.exists(f"{config['name']}_train.out"): continue axes = fig.add_subplot(grids[axes_index]) plot_train_result(axes, config) axes_index += 1 plt.subplots_adjust(left=0.1, right=0.95, bottom=0.1, top=0.95) plt.savefig("nep_result.png", dpi=150)
3,234
Python
.py
77
35.246753
150
0.581662
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,174
plot_bond.py
aboys-cb_VaspTool/script/plot/plot_bond.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/8/10 22:51 # @Author : 兵 # @email : [email protected] """ 画原子键长变化的 临时写的 """ # path=sys.argv[1] import matplotlib.pyplot as plt from ase.io import read as ase_read path = "dump.xyz" frames = ase_read(path, ":", format="extxyz") bonds = [] for atoms in frames: # print(atoms[16]) dis = atoms.get_distance(27, 55) bonds.append(dis) plt.plot(list(range(len(bonds))), bonds) plt.show()
491
Python
.py
20
21.45
45
0.660633
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,175
plot_dos.py
aboys-cb_VaspTool/script/plot/plot_dos.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/5/9 22:40 # @Author : å…µ # @email : [email protected] import matplotlib import numpy as np matplotlib.use("Agg") import palettable from matplotlib import pyplot as plt from pymatgen.electronic_structure.core import OrbitalType, Spin from pymatgen.electronic_structure.plotter import DosPlotter from pymatgen.io.vasp import Vasprun plt.style.use("./science.mplstyle") class MyDosPlotter(DosPlotter): def get_plot( self, xlim=None, ylim=None, ax=None, invert_axes=False, beta_dashed=False, ): n_colors = min(9, max(3, len(self._doses))) colors = palettable.colorbrewer.qualitative.Set1_9.mpl_colors ys = None all_densities = [] all_energies = [] for dos in self._doses.values(): energies = dos["energies"] densities = dos["densities"] if not ys: ys = { Spin.up: np.zeros(energies.shape), Spin.down: np.zeros(energies.shape), } new_dens = {} for spin in [Spin.up, Spin.down]: if spin in densities: if self.stack: ys[spin] += densities[spin] new_dens[spin] = ys[spin].copy() else: new_dens[spin] = densities[spin] all_energies.append(energies) all_densities.append(new_dens) keys = list((self._doses)) # all_densities.reverse() # all_energies.reverse() all_pts = [] for idx, key in enumerate(keys): for spin in [Spin.up, Spin.down]: if spin in all_densities[idx]: energy = all_energies[idx] densities = list(int(spin) * all_densities[idx][spin]) if invert_axes: x = densities y = energy else: x = energy y = densities all_pts.extend(list(zip(x, y))) if self.stack: ax.fill(x, y, color=colors[idx % n_colors], label=str(key)) elif spin == Spin.down and beta_dashed: ax.plot(x, y, color=colors[idx % n_colors], label=str(key), linestyle="--" ) else: ax.plot(x, y, color=colors[idx % n_colors], label=str(key) ) if xlim: ax.set_xlim(xlim) if ylim: ax.set_ylim(ylim) elif not invert_axes: xlim = ax.get_xlim() relevant_y = [p[1] for p in all_pts if xlim[0] < p[0] < xlim[1]] ax.set_ylim((min(relevant_y), max(relevant_y))) if not xlim and invert_axes: ylim = ax.get_ylim() relevant_y = [p[0] for p in all_pts if ylim[0] < p[1] < ylim[1]] ax.set_xlim((min(relevant_y), max(relevant_y))) if self.zero_at_efermi: xlim = ax.get_xlim() ylim = ax.get_ylim() ax.plot(xlim, [0, 0], "k--" ) if invert_axes else ax.plot([0, 0], ylim, "k--" ) if invert_axes: ax.axvline(x=0, color="k", linestyle="-" ) # ax.xaxis.set_major_locator(ticker.MaxNLocator(nbins=2, integer=True)) # ax.yaxis.set_major_locator(ticker.MaxNLocator( integer=True)) # ax.xaxis.set_minor_locator(ticker.AutoMinorLocator()) # ax.yaxis.set_minor_locator(ticker.AutoMinorLocator()) else: # ax.xaxis.set_major_locator(ticker.MaxNLocator( integer=True)) # ax.yaxis.set_major_locator(ticker.MaxNLocator(nbins=2, integer=True)) # ax.xaxis.set_minor_locator(ticker.AutoMinorLocator()) # ax.yaxis.set_minor_locator(ticker.AutoMinorLocator()) ax.axhline(y=0, color="k", linestyle="-" ) # ax.tick_params(axis='both', which='both', direction='in') # ax.tick_params(axis='both', which='both', direction='in') # plt.xticks(fontsize=16) # plt.yticks(fontsize=16) # plt.tick_params(labelsize=16) # Remove duplicate labels with a dictionary handles, labels = ax.get_legend_handles_labels() label_dict = dict(zip(labels, handles)) ax.legend(label_dict.values(), label_dict, frameon=False, ncol=2, columnspacing=1 ) def plot_all(self, dos_conf, invert_axes=True, energy_lim=None, density_lim=None): orb_map = ["s", "p", "d", "f"] if invert_axes: xlim, ylim = density_lim, energy_lim fig, axes = plt.subplots(1, len(dos_conf), sharex=True, sharey=True) else: xlim, ylim = energy_lim, density_lim fig, axes = plt.subplots(len(dos_conf), 1, sharex=True, sharey=True) if len(dos_conf)==1: axes=[axes] axes:list[plt.Axes] for col, conf in enumerate(dos_conf): vasprun = Vasprun(conf["path"], parse_potcar_file=False) # self.add_dos("total", vasprun.tdos) for elem, orbits in conf["projected"].items(): if isinstance(elem,int): site=vasprun.final_structure[elem-1] elem=site.label elem_dos = vasprun.complete_dos.get_site_spd_dos(site) else: elem_dos = vasprun.complete_dos.get_element_spd_dos(elem) for orb in orbits: orb_type = OrbitalType(orb_map.index(orb)) self.add_dos(f"{elem}-{orb}", elem_dos[orb_type]) self.get_plot(xlim, ylim, ax=axes[col], invert_axes=invert_axes) if invert_axes: if col == 0: axes[0].set_ylabel("Energy (eV)") axes[col].set_xlabel("DOS (states/eV)" ) else: if col == len(dos_conf) - 1: axes[col].set_xlabel("Energy (eV)") axes[col].set_ylabel("DOS (states/eV)" ) self._doses.clear() plt.tight_layout(h_pad=0) if __name__ == '__main__': plotter = MyDosPlotter() dos_conf = [ {"path": "./vasprun.xml", "projected": {"I": ["p"], "Ag": ["d"], "Bi": ["p"]}, }, ] plotter.plot_all(dos_conf, energy_lim=(-2, 2), density_lim=(-10, 10), invert_axes=False) plt.savefig("./dos.png", dpi=300)
6,571
Python
.py
149
31.302013
100
0.527298
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,176
msd.py
aboys-cb_VaspTool/script/plot/msd.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/18 19:18 # @Author : 兵 # @email : [email protected] from pymatgen.analysis.diffusion.analyzer import DiffusionAnalyzer from pymatgen.core.trajectory import Trajectory from pymatgen.io.vasp.outputs import Vasprun # 这一步是读取 XDATCAR,得到一系列结构信息 traj = Vasprun("./vasprun.xml").get_trajectory() traj: Trajectory # 这一步是实例化 DiffusionAnalyzer 的类 # 并用 from_structures 方法初始化这个类; 900 是温度,2 是POTIM 的值,1是间隔步数 # 间隔步数(step_skip)不太容易理解,但是根据官方教程: # dt = timesteps * self.time_step * self.step_skip diff = DiffusionAnalyzer.from_structures(traj, 'Ag', 300, 1, 10) # 可以用内置的 plot_msd 方法画出 MSD 图像 # 有些终端不能显示图像,这时候可以调用 export_msdt() 方法,得到数据后再自己作图 # diff.plot_msd() # plt.show()
957
Python
.py
20
35.2
66
0.758865
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,177
plt.py
aboys-cb_VaspTool/script/plot/plt.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/13 22:37 # @Author : å…µ # @email : [email protected] from gpyumd.load import load_thermo from pylab import * matplotlib.use('Agg') data = load_thermo() plot(list(range(data["U"].shape[0])), data["U"]) savefig("./en.png", dpi=150)
304
Python
.py
11
26.363636
48
0.652921
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,178
plot_aimd.py
aboys-cb_VaspTool/script/plot/plot_aimd.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/13 12:09 # @Author : 兵 # @email : [email protected] """ 绘制分子动力学的 """ import sys import matplotlib.pyplot as plt from pymatgen.io.vasp.outputs import Vasprun plt.style.use("./science.mplstyle") # vasp_path=sys.argv[1] plt.figure(figsize=(3.5, 2.625)) # vasp_path = "./vasprun.xml" vasp_path = sys.argv[1] vasprun = Vasprun(vasp_path, parse_potcar_file=False) name = vasprun.final_structure.composition.to_pretty_string() energies = [step["e_0_energy"] for step in vasprun.ionic_steps] steps = list(range(1, len(energies) + 1)) plt.plot(steps, energies, label=name) plt.ylabel("E0 Energy(eV)") plt.xlabel("time(fs)") plt.legend() plt.tight_layout() plt.savefig(f"./aimd-{name}.png", dpi=300)
784
Python
.py
26
28.230769
63
0.715646
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,179
plot_dos_cohp.py
aboys-cb_VaspTool/script/plot/plot_dos_cohp.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/5/18 19:19 # @Author : 兵 # @email : [email protected] from itertools import product from typing import Literal import matplotlib.pyplot as plt import numpy as np import palettable from matplotlib.patches import ConnectionPatch from numpy._typing import ArrayLike from pymatgen.electronic_structure.cohp import Cohp, CompleteCohp from pymatgen.electronic_structure.core import Spin, Orbital, OrbitalType from pymatgen.electronic_structure.dos import Dos from pymatgen.io.vasp import Vasprun plt.style.use("./science.mplstyle") class DosCohpPlotter: def __init__(self, zero_at_efermi=True): self.figure = plt.figure( ) self.stack=False self.zero_at_efermi = zero_at_efermi self._doses: dict[ str, dict[Literal["energies", "densities", "efermi"], float | ArrayLike | dict[Spin, ArrayLike]] ] = {} self._cohps: dict[str, dict[str, np.ndarray | dict[Spin, np.ndarray] | float]] = {} def add_dos(self, label, dos:Dos): """Add a dos for plotting. 从其他地方粘贴的 Args: label: label for the DOS. Must be unique. dos: Dos object """ if dos.norm_vol is None: self._norm_val = False energies = dos.energies - dos.efermi if self.zero_at_efermi else dos.energies densities = dos.densities efermi = dos.efermi self._doses[label] = { "energies": energies, "densities": densities, "efermi": efermi, } def add_cohp(self, label, cohp:Cohp): """Add a COHP for plotting. 从其他地方粘贴的 Args: label: Label for the COHP. Must be unique. cohp: COHP object. """ energies = cohp.energies - cohp.efermi if self.zero_at_efermi else cohp.energies populations = cohp.get_cohp() int_populations = cohp.get_icohp() self._cohps[label] = { "energies": energies, "COHP": populations, "ICOHP": int_populations, "efermi": cohp.efermi, } @staticmethod def get_orb_list(orb: str): """ :param orb: str 4d or 5p :return: """ result = [] for i in Orbital: if str(i.orbital_type) == orb[1:]: result.append(orb[:1] + i.name) return result def compose_orbit(self,orb): """ 对传入的轨道进行拆分组合 :param orb: 4d-5p or 4d-5px or 4dx2-5p :return: """ a, b = orb.split("-") a_orb = [a] if a[-1] not in ["s", "p", "d", "f"] else self.get_orb_list(a) b_orb = [b] if b[-1] not in ["s", "p", "d", "f"] else self.get_orb_list(b) result = [] for a, b in product(a_orb, b_orb): result.append(f"{a}-{b}") return result def parse_config(self,dos_config:dict, cohp_config:dict): """ 解析下投影配置文件 将需要画图的放在字典里 :param dos_config: dict :param cohp_config: dict :return: Examples ----- dos_conf = {"vasprun_path": "../cache/Cs1Ag0.5Bi0.5I3/vasprun.xml", "projected": {"I": ["p"],"Ag": [ "d"],"Bi": ["p" ] }, } cohp_conf={ "cohpcar_path":"../cache/Cs1Ag0.5Bi0.5I3/COHPCAR.lobster", "poscar_path":"../cache/Cs1Ag0.5Bi0.5I3/POSCAR", "projected": {"I": ["p"], "Ag": ["d"], "Bi": ["p"]} } plotter=DosCohpPlotter() plotter.parse_config(dos_conf,cohp_conf) """ #解析dos的 orb_map = ["s", "p", "d", "f"] vasprun = Vasprun(dos_config["vasprun_path"], parse_potcar_file=False) #加入总的dos 先不加入 主要看投影 # self.add_dos("total", vasprun.tdos) for elem, orbits in dos_config["projected"].items(): if isinstance(elem, int): site = vasprun.final_structure[elem - 1] elem = site.label elem_dos = vasprun.complete_dos.get_site_spd_dos(site) else: elem_dos = vasprun.complete_dos.get_element_spd_dos(elem) for orb in orbits: orb_type = OrbitalType(orb_map.index(orb)) self.add_dos(f"{elem}-{orb}", elem_dos[orb_type]) #解析cohp complete_cohp = CompleteCohp.from_file(filename=cohp_config["cohpcar_path"], fmt='LOBSTER', structure_file=cohp_config["poscar_path"]) for elem_label, config in cohp_config["projected"].items(): if isinstance(config["label"], tuple): label = [str(i) for i in range(config["label"][0], config["label"][1] + 1)] else: label = config["label"] cohp=None for orb in config["orb"]: for _orb in self.compose_orbit(orb): # complete_cohp.get_summed_cohp_by_label_list() _cohp = complete_cohp.get_summed_cohp_by_label_and_orbital_list(label,[_orb] * len(label)) if cohp is None: cohp=_cohp else: #对轨道进行加和 if Spin.up in cohp.cohp.keys(): cohp.cohp[Spin.up]+=_cohp.cohp[Spin.up] if Spin.down in cohp.cohp.keys(): cohp.cohp[Spin.down] += _cohp.cohp[Spin.down] if cohp: self.add_cohp(elem_label, cohp) def get_plot(self, energy_lim=(-2, 2), density_lim=(-10, 10), cohp_lim=(-5,5), invert_axes=False): if invert_axes: #反转 竖排模式 左边为Dos 右边为Cohp pass gridspec = self.figure.add_gridspec(1, 2, wspace=0.1 , width_ratios=[1,1], ) else: #上下堆叠 上面为Dos 下面为Cohp gridspec = self.figure.add_gridspec(2, 1, hspace=0.1 , height_ratios=[1,1], ) #先画Dos dos_axes=self.figure.add_subplot(gridspec[0]) n_colors = min(9, max(3, len(self._doses))) colors = palettable.colorbrewer.qualitative.Set1_9.mpl_colors all_pts = [] idx=0 for idx, key in enumerate(self._doses.keys()): for spin in [Spin.up, Spin.down]: if spin in self._doses[key]["densities"]: energy = self._doses[key]["energies"] densities = list(int(spin) * self._doses[key]["densities"][spin]) if invert_axes: x = densities y = energy else: x = energy y = densities all_pts.extend(list(zip(x, y))) if self.stack: dos_axes.fill(x, y, color=colors[idx % n_colors], label=str(key)) else: dos_axes.plot(x, y, color=colors[idx % n_colors], label=str(key) ) # 画cohp cohp_axes = self.figure.add_subplot(gridspec[1]) n_colors = min(9, max(3, len(self._cohps))) for idx, key in enumerate(self._cohps.keys()): energies = self._cohps[key]["energies"] populations = self._cohps[key]["COHP"] for spin in [Spin.up, Spin.down]: if spin in populations: if invert_axes: x = -populations[spin] y = energies else: x = energies y = -populations[spin] if spin == Spin.up: cohp_axes.plot( x, y, color=colors[idx % n_colors], linestyle="-", label=str(key), ) else: cohp_axes.plot(x, y, color=colors[idx % n_colors], linestyle="--", linewidth=3) cohp_axes.tick_params(axis='both', which='both', direction='in') dos_axes.tick_params(axis='both', which='both', direction='in') energy_label = "$E - E_f$ (eV)" if self.zero_at_efermi else "Energy (eV)" energy_label="Energy (eV)" if invert_axes: #画一个水平线 con = ConnectionPatch(xyA=(density_lim[0],0), xyB=(cohp_lim[1],0), coordsA="data", coordsB="data", axesA=dos_axes, axesB=cohp_axes, color="k",linestyle="--", linewidth=0.5) cohp_axes.add_artist(con) cohp_axes.text(0.1 , 0.1, 'Antibonding', transform=cohp_axes.transAxes,rotation="vertical" , color='k') cohp_axes.text(0.8, 0.16, 'Bonding', transform=cohp_axes.transAxes,rotation="vertical" , color='k') # cohp_axes.set_xticklabels([]) cohp_axes.set_yticklabels([]) cohp_axes.set_xlim(cohp_lim) cohp_axes.set_ylim(energy_lim) cohp_axes.axvline(x=0, color="k", linestyle="-", linewidth=0.5) handles, labels = cohp_axes.get_legend_handles_labels() label_dict = dict(zip(labels, handles)) cohp_axes.legend(label_dict.values(), label_dict, loc="upper right" ) cohp_axes.set_xlabel("-COHP") # dos_axes.set_xticklabels([]) dos_axes.axvline(x=0, color="k", linestyle="-", linewidth=0.5 ) dos_axes.set_xlim(density_lim) dos_axes.set_ylim(energy_lim) dos_axes.set_ylabel(energy_label) dos_axes.set_xlabel("DOS (states/eV)") handles, labels = dos_axes.get_legend_handles_labels() label_dict = dict(zip(labels, handles)) dos_axes.legend(label_dict.values(), label_dict, loc="upper right" ) else: con = ConnectionPatch(xyA=( 0,density_lim[1]), xyB=(0,cohp_lim[0]), coordsA="data", coordsB="data", axesA=dos_axes, axesB=cohp_axes, color="k",linestyle="--") cohp_axes.add_artist(con) cohp_axes.text(0.2 , 0.1, 'Antibonding', transform=cohp_axes.transAxes, color='k') cohp_axes.text(0.2 , 0.7, 'Bonding', transform=cohp_axes.transAxes, color='k') # cohp_axes.set_yticklabels([]) cohp_axes.axhline(y=0, color="k", linestyle="-" ) cohp_axes.set_ylim(cohp_lim) cohp_axes.set_xlim(energy_lim) cohp_axes.set_ylabel("-COHP") cohp_axes.set_xlabel(energy_label) dos_axes.set_xticklabels([]) # dos_axes.set_yticklabels([]) dos_axes.set_xlim(energy_lim) dos_axes.set_ylim(density_lim) dos_axes.axhline(y=0, color="k", linestyle="-" ) dos_axes.set_ylabel("DOS (states/eV)") handles, labels = dos_axes.get_legend_handles_labels() label_dict = dict(zip(labels, handles)) dos_axes.legend(label_dict.values(), label_dict,ncols=2, loc="upper right" ) handles, labels = cohp_axes.get_legend_handles_labels() label_dict = dict(zip(labels, handles)) cohp_axes.legend(label_dict.values(), label_dict,ncols=2, loc="upper right" ) #如果边框太多空白 调整这里 plt.subplots_adjust(left=0.1, right=0.9 ,bottom=0.1, top=0.9 ) if __name__ == '__main__': # dos_conf = {"vasprun_path": "../cache/Cs1Ag0.5Bi0.5I3/vasprun.xml", # "projected": {"I": ["p"],"Ag": [ "d"],"Bi": ["s","p" ] }, # } # # cohp_conf={ # "cohpcar_path":"../cache/Cs1Ag0.5Bi0.5I3/COHPCAR.lobster", # "poscar_path":"../cache/Cs1Ag0.5Bi0.5I3/POSCAR", # "projected": {"Bi(6s)-I(5p)":{ # "label":(185,190), # "orb":["6s-5p"] # }, # "Bi(6p)-I(5p)": { # "label": (185, 190), # "orb": ["6p-5p"] # }, # "Ag(4d)-I(5p)": { # "label": (161, 166), # "orb": ["4d-5p"] # } # } # # } sb_dos_conf = {"vasprun_path": "../cache/Cs8Ag4Bi3Sb1I24/vasprun.xml", "projected": {"I": ["p"],"Ag": [ "d"],"Bi": ["s","p" ] , "Sb": ["s","p" ] }, } sb_cohp_conf={ "cohpcar_path":"../cache/Cs8Ag4Bi3Sb1I24/COHPCAR.lobster", "poscar_path":"../cache/Cs8Ag4Bi3Sb1I24/POSCAR", "projected": {"Bi(6s)-I(5p)":{ "label":(185,190), "orb":["6s-5p"] }, "Bi(6p)-I(5p)": { "label": (185, 190), "orb": ["6p-5p"] }, "Sb(5s)-I(5p)": { "label": (203, 208), "orb": ["5s-5p"] }, "Sb(5p)-I(5p)": { "label": (203, 208), "orb": ["5p-5p"] }, "Ag(4d)-I(5p)": { "label": (161, 166), "orb": ["4d-5p"] } } } # cu_dos_conf = {"vasprun_path": "../cache/Cu/vasprun.xml", # "projected": {"I": ["p"], "Ag": ["d"], "Bi": ["s", "p"], "Cu": ["d"]}, # } # # cu_cohp_conf = { # "cohpcar_path": "../cache/Cu/COHPCAR.lobster", # "poscar_path": "../cache/Cu/POSCAR", # "projected": {"Bi(6s)-I(5p)": { # "label": (185, 190), # "orb": ["6s-5p"] # }, # "Bi(6p)-I(5p)": { # "label": (185, 190), # "orb": ["6p-5p"] # }, # # "Cu(4d)-I(5p)": { # "label": (161, 166), # "orb": ["3d-5p"] # }, # "Ag(4d)-I(5p)": { # "label": (167, 172), # "orb": ["4d-5p"] # } # } # # } # 这里可以是分轨道 比如"6px-5px" 如果不是分轨道 会把所有的加和 plotter=DosCohpPlotter() plotter.parse_config(sb_dos_conf,sb_cohp_conf) plotter.get_plot(invert_axes=True,cohp_lim=(-10,20),energy_lim=(-2,2),density_lim=(0,10)) plt.savefig("dos_and_cohp_sb.png")
14,961
Python
.py
338
30.653846
117
0.477212
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,180
plot_gpumd_result.py
aboys-cb_VaspTool/script/plot/plot_gpumd_result.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/13 22:23 # @Author : 兵 # @email : [email protected] import os.path import matplotlib matplotlib.use('Agg') from gpyumd.load import load_thermo import matplotlib.pyplot as plt if os.path.exists("thermo.out"): data = load_thermo() plt.plot(list(range(data["U"].shape[0])), data["U"]) plt.savefig("./energy.png", dpi=150) else: print("没有找到画图文件,请完善逻辑!")
473
Python
.py
16
25.25
56
0.674584
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,181
main.py
chitang233_KeyboxChecker/main.py
import subprocess import tempfile import re import requests import telebot from os import getenv def verify_certificate_chain(keybox): keybox = keybox.replace("\r\n", "\n") keybox = keybox.split("</CertificateChain>")[0] pattern = r"-----BEGIN CERTIFICATE-----\n.*?\n-----END CERTIFICATE-----" certificates = re.findall(pattern, keybox, re.DOTALL) if len(certificates) < 2: return "❓ Invalid certificate chain" elif len(certificates) == 2: certificates = {"end_entity": certificates[0], "root": certificates[1]} elif len(certificates) == 3: certificates = {"end_entity": certificates[0], "intermediate": certificates[1], "root": certificates[2]} else: return "❓ Invalid certificate chain" with tempfile.NamedTemporaryFile(delete=True) as root_cert_file: root_cert_file.write(certificates['root'].encode()) root_cert_file.flush() root_pubkey = subprocess.run( ['openssl', 'x509', '-in', root_cert_file.name, '-pubkey', '-noout'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) if root_pubkey.returncode != 0: return f"OpenSSL error: {root_pubkey.stderr}" if root_pubkey.returncode == 0: with open("google_ca_pubkey.key", "r") as google_pubkey_file: google_pubkey = google_pubkey_file.read() if root_pubkey.stdout.encode() != google_pubkey.encode(): message = "❌ Root certificate is not signed by Google" else: message = "✅ Root certificate is signed by Google" with tempfile.NamedTemporaryFile(delete=True) as end_entity_cert_file: end_entity_cert_file.write(certificates['end_entity'].encode()) end_entity_cert_file.flush() if "intermediate" in certificates: with tempfile.NamedTemporaryFile(delete=True) as intermediate_cert_file: intermediate_cert_file.write(certificates['intermediate'].encode()) intermediate_cert_file.flush() result = subprocess.run( ['openssl', 'verify', '-CAfile', root_cert_file.name, '-untrusted', intermediate_cert_file.name, end_entity_cert_file.name], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) else: result = subprocess.run( ['openssl', 'verify', '-CAfile', root_cert_file.name, end_entity_cert_file.name], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) if result.returncode != 0: message += f"\n❌ Invalid certificate chain: {result.stderr}" else: message += "\n✅ Certificate chain is valid" return message def extract_certificate_information(cert_pem): with tempfile.NamedTemporaryFile(delete=True) as temp_cert_file: temp_cert_file.write(cert_pem.encode()) temp_cert_file.flush() result = subprocess.run( ['openssl', 'x509', '-text', '-noout', '-in', temp_cert_file.name], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) if result.returncode != 0: raise RuntimeError(f"OpenSSL error: {result.stderr}") cert_text = result.stdout pattern = r"Serial Number:\s*([\da-f:]+)" match = re.search(pattern, cert_text, re.IGNORECASE) if match: serial_number = hex(int(match.group(1).replace(":", ""), 16)).split("0x")[1] else: return "❌ Cannot find serial number" pattern = r"Subject: " match = re.search(pattern, cert_text, re.IGNORECASE) if match: subject = cert_text[match.end():].split("\n")[0] else: return "❌ Cannot find subject" return [serial_number, subject] def common_handler(message): if message.reply_to_message and message.reply_to_message.document: document = message.reply_to_message.document elif message.document: document = message.document else: bot.reply_to(message, "Please reply to a message with a keybox file or send a keybox file") return None file_info = bot.get_file(document.file_id) file = requests.get('https://api.telegram.org/file/bot{0}/{1}'.format(API_TOKEN, file_info.file_path)) certificate = extract_certificate_information(file.text.split("<Certificate format=\"pem\">")[1].split("</Certificate>")[0]) reply = f"ℹ️ Serial Number: `{certificate[0]}`\nℹ️ Subject: `{certificate[1]}`" reply += f"\n{verify_certificate_chain(file.text)}" try: status = get_google_sn_list()['entries'][certificate[0]] reply += f"\n❌ Serial number found in Google's revoked keybox list\nReason: `{status['reason']}`" except KeyError: if certificate[0] == "4097": reply += "\n❌ AOSP keybox found, this keybox is untrusted" else: reply += "\n✅ Serial number not found in Google's revoked keybox list" bot.reply_to(message, reply, parse_mode='Markdown') def get_google_sn_list(): url = "https://android.googleapis.com/attestation/status" response = requests.get( url, headers={ "Cache-Control": "max-age=0, no-cache, no-store, must-revalidate", "Pragma": "no-cache", "Expires": "0", } ).json() return response API_TOKEN = getenv('API_TOKEN') bot = telebot.TeleBot(API_TOKEN) @bot.message_handler(commands=['start', 'help']) def send_welcome(message): bot.reply_to(message, "Send me keybox file and I will check if it's revoked") @bot.message_handler(content_types=['document']) def handle_document(message): common_handler(message) @bot.message_handler(commands=['keybox']) def handle_keybox(message): common_handler(message) bot.infinity_polling()
5,253
Python
.py
133
36.12782
130
0.716088
chitang233/KeyboxChecker
8
0
0
AGPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)