chemical_formula_hill
string
chemical_formula_reduced
string
chemical_formula_anonymous
string
atomic_numbers
list
elements
list
elements_ratios
list
nelements
int32
nsites
int32
cell
list
positions
list
pbc
list
dimension_types
list
nperiodic_dimensions
int32
structure_hash
string
multiplicity
int32
software
string
method
string
adsorption_energy
float64
atomic_forces
list
atomization_energy
float64
cauchy_stress
list
cauchy_stress_volume_normalized
bool
electronic_band_gap
float64
electronic_band_gap_type
string
energy
float64
formation_energy
float64
max_force_norm
float64
mean_force_norm
float64
property_object_metadata
string
property_object_metadata_id
string
property_object_last_modified
timestamp[ns]
property_object_hash
string
property_object_id
string
configuration_metadata
string
configuration_metadata_id
string
configuration_labels
list
configuration_names
list
configuration_dataset_ids
list
configuration_last_modified
timestamp[ns]
configuration_hash
string
configuration_id
string
dataset_name
string
dataset_authors
list
dataset_description
string
dataset_elements
list
dataset_nelements
int32
dataset_nproperty_objects
int64
dataset_nconfigurations
int32
dataset_nsites
int64
dataset_adsorption_energy_count
int64
dataset_atomic_forces_count
int64
dataset_atomization_energy_count
int64
dataset_cauchy_stress_count
int64
dataset_electronic_band_gap_count
int64
dataset_energy_count
int64
dataset_energy_mean
float64
dataset_energy_variance
float64
dataset_formation_energy_count
int64
dataset_last_modified
timestamp[ns]
dataset_dimension_types
list
dataset_nperiodic_dimensions
list
dataset_publication_year
string
dataset_total_elements_ratios
list
dataset_license
string
dataset_links
string
dataset_doi
string
dataset_hash
string
dataset_id
string
dataset_extended_id
string
Al
Al
A
[ 13 ]
[ "Al" ]
[ 1 ]
1
1
[ [ 1.5974, 1.5974, -1.5974 ], [ -1.5974, 1.5974, 1.5974 ], [ 1.5974, -1.5974, 1.5974 ] ]
[ [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4950260480422630668817901522308694851963024916388737885077274205467669489411631596691121991223916418089121717944752285606907422269408562025614735131110987
1
VASP
DFT
null
[ [ 0, 0, 0 ] ]
null
[ [ -0.0018216468534802876, 0, 0 ], [ 0, -0.0018216468534802876, 0 ], [ 0, 0, -0.0018216468534802876 ] ]
true
null
null
-3.645104
null
0
0
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:08:24
7889621618534151397054592793601767748297965999094259312842650984581225982472908810824952371386095627642683744479846920715398090279102541019875658931481609
PO_7889621618534151397054592
null
null
null
[ "train_2nd_stage_226" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10248721548667461145263806716299744324039816019525800445456842798649639062968720762514747157210140617256417392405206840185339197221653386693268968297590633
CO_1024872154866746114526380
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni4Ti2
AlNi2Ti
A2BC
[ 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5, 0.25 ]
3
8
[ [ 2.04325, -3.53901, 0 ], [ 2.04325, 3.53901, 0 ], [ 0, 0, 7.55161 ] ]
[ [ 0, 0, 0 ], [ 0, 0, 3.77581 ], [ 2.04325, 1.17967, 4.38942 ], [ 2.04325, -1.17967, 0.61362 ], [ 2.04325, -1.17967, 3.16219 ], [ 2.04325, 1.17967, 6.93799 ], [ 2.04325, 1.17966, 1.8879 ], [ 2.04325, -1.17966, 5.66371 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8454385973115587076316350570514006284426901696338478899640790550080767734384362334534153488023736447509298407529112747969031663011755018664561969201101911
1
VASP
DFT
null
[ [ 0.000001, 0.000001, 0.000046 ], [ 0, 0, 0.000103 ], [ 0.000002, 0.00001, 0.360258 ], [ 0.000004, -0.000011, 0.359551 ], [ 0.000002, -0.000009, -0.359952 ], [ -0.000003, 0.000011, -0.360095 ], [ -0.000006, 0.000051, -0.000115 ], [ 0, -0.000053, 0.000203 ] ]
null
[ [ 0.016525518882418582, 0, -6.241509125883259e-8 ], [ 0, 0.01652514439187103, 6.241509125883259e-8 ], [ -6.241509125883259e-8, 6.241509125883259e-8, 0.0035210225431845225 ] ]
true
null
null
-49.436902
null
0.180043
0.360258
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:37:45
2901091710069113665672114167400068994602065594892175687078172316345827282701110742571952626633810963864015143474158539648077934489389620336422077927825264
PO_2901091710069113665672114
null
null
null
[ "train_2nd_stage_458" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7525563499499495281799520998762646376676905686636512372893411677509383592891320914358808601681812820861735267085988703422891977953378114299212020323695616
CO_7525563499499495281799520
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi4
AlNiTi4
A4BC
[ 13, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.16666666666666666, 0.6666666666666666 ]
3
6
[ [ 3.94153, 0, 0 ], [ 0, 0.01693, -3.97164 ], [ 0, 5.8947, -1.96073 ] ]
[ [ 0, 5.88654, -1.96077 ], [ 0, 3.96492, -3.95482 ], [ 1.97077, 2.01321, -3.96313 ], [ 1.97077, 5.83671, -3.94684 ], [ 0, 1.96219, -1.97749 ], [ 1.97077, 3.95753, -1.96899 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3322952412364572134016350792555894866326655211882903662177447008136776919108021370924324566613517086511781089012418946004891064454064197102445263179758781
1
VASP
DFT
null
[ [ 0.000028, -0.483754, -0.002024 ], [ 0.000009, 0.570422, 0.003079 ], [ -0.000022, -0.309206, -0.001348 ], [ -0.000022, 0.154557, -0.000121 ], [ 0.000031, 0.466358, 0.001908 ], [ -0.000025, -0.398377, -0.001493 ] ]
null
[ [ -0.003965105917491116, -6.241509125883259e-8, 6.241509125883259e-8 ], [ -6.241509125883259e-8, -0.007706391317728058, -0.000018724527377649776 ], [ 6.241509125883259e-8, -0.000018724527377649776, -0.002072181029793242 ] ]
true
null
null
-41.663721
null
0.397116
0.57043
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:04:54
8677772849989117971653737242467870132747924731990713064948331149826942360174180829359842319001054415962942675372221843368034627343764155970731994683521984
PO_8677772849989117971653737
null
null
null
[ "train_1st_stage_990" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3006760098497731657571827780954557856538431785387253962508486918891550550059856263609136464267143609823041800417987495064046018894877679581148185397157990
CO_3006760098497731657571827
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni2
Al3Ni
A3B
[ 13, 13, 13, 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.75, 0.25 ]
2
8
[ [ 2.79439, -2.98603, -0.198065 ], [ 0.207094, 0.699708, -7.62684 ], [ 1.33609, 4.2082, -2.27266 ] ]
[ [ 0.91052, 1.3172, -7.51577 ], [ 1.27225, 1.31717, -2.41176 ], [ 1.48156, -1.32074, -2.00969 ], [ 3.02696, 0.24956, -3.88027 ], [ 3.59579, 0.94922, -6.40311 ], [ 1.58511, -0.97088, -5.82311 ], [ 1.14503, 1.37435, -5.06862 ], [ 3.36127, 0.89209, -8.85026 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11788951986721321199970630299911075872633855391240041594127520529177860273025010717192267917825102666881837667823719091214685606481135601701107506966257304
1
VASP
DFT
null
[ [ -0.099847, -0.093907, 0.006615 ], [ -0.126123, -0.127226, 0.137272 ], [ -0.000227, -0.000225, -0.000132 ], [ 0.126029, 0.127122, -0.13776 ], [ 0.099883, 0.093899, -0.006587 ], [ 0.000088, 0.000081, -0.000039 ], [ -0.0456, -0.047086, 0.061685 ], [ 0.045796, 0.047342, -0.061053 ] ]
null
[ [ 0.005945599178225133, -0.0071880339848234545, -0.009692314691401594 ], [ -0.0071880339848234545, 0.008190357935349047, -0.009060424307497173 ], [ -0.009692314691401594, -0.009060424307497173, 0.014175028960702208 ] ]
true
null
null
-35.621178
null
0.113292
0.225879
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:35:31
3743211021239757137064151671373858881051665377290319261514888678112795714284949075158158938051482415252664569433690543492962701933309005703423456446426265
PO_3743211021239757137064151
null
null
null
[ "train_2nd_stage_854" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12829322763813380641113212802901318146010332407105079229527739996624954671285564460744920726061314029822756219187503423630448633593536423453132883123013832
CO_1282932276381338064111321
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni6Ti6
AlNiTi
ABC
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
18
[ [ 3.46749, -6.00467, 0.002049 ], [ 3.46646, 6.00527, 0.000419 ], [ -0.002172, 0.00083, 6.12785 ] ]
[ [ 0.35343, 0.0304, 2.21296 ], [ 0.35235, -0.02935, 5.2769 ], [ 3.31387, 2.32446, 5.27763 ], [ 3.26284, 2.29397, 2.21368 ], [ 3.26213, -2.29238, 5.27824 ], [ 3.31533, -2.32287, 2.21433 ], [ 1.15556, -2.00145, 0.76796 ], [ 1.15528, 2.00184, 0.59453 ], [ 4.62185, 0.0007, 2.21448 ], [ 1.15413, 2.00227, 3.8314 ], [ 4.62099, 4.00421, 3.65951 ], [ 4.62076, 0.00111, 5.27841 ], [ 5.58646, 1.67061, 0.68264 ], [ 5.58673, -1.66947, 0.68308 ], [ 2.69399, 0.00034, 0.68183 ], [ 5.58537, 1.67102, 3.74655 ], [ 5.58564, -1.66906, 3.74702 ], [ 2.6929, 0.00075, 3.74576 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7681113270438923934588286413610230011828166761062554530879752504128235536979054491960322843391927725341757344816708141497617787813605773270035888654097596
1
VASP
DFT
null
[ [ 0.268258, 0.180484, -0.001124 ], [ 0.268279, -0.180664, 0.00133 ], [ 0.022841, 0.321973, 0.00141 ], [ -0.289944, 0.141284, -0.00154 ], [ -0.290385, -0.141146, 0.001399 ], [ 0.022437, -0.321759, -0.001312 ], [ 0.000599, 0.000773, 0.190697 ], [ 0.000655, -0.000791, -0.190995 ], [ -0.000028, 0.000054, -0.00083 ], [ -0.000252, 0.000619, 0.190774 ], [ -0.00006, -0.0006, -0.191018 ], [ -0.000001, 0.000127, 0.000716 ], [ 0.065948, 0.114343, 0.000199 ], [ 0.065587, -0.114362, 0.000331 ], [ -0.133674, -0.000103, 0.000246 ], [ 0.065893, 0.114116, 0.000006 ], [ 0.066796, -0.114, -0.000066 ], [ -0.132949, -0.000347, -0.000224 ] ]
null
[ [ -0.03139316811082006, 0.000001997282920282643, -0.00001622792372729647 ], [ 0.000001997282920282643, -0.03142063075097394, 0.000006241509125883258 ], [ -0.00001622792372729647, 0.000006241509125883258, 0.015651832434977444 ] ]
true
null
null
-109.140982
null
0.194273
0.323442
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:29:47
10842918456710005292164784324113893197634429994464545262881399886576511392940694464123625851315133336636402268575960461672321438270571497362093280478416590
PO_1084291845671000529216478
null
null
null
[ "train_2nd_stage_18" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7773355453653825476384821825478824756203975100667618615792688296601105302928688667397814662007911275830307804630214582821398770611651142718391924941227669
CO_7773355453653825476384821
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni5
Al3Ni5
A5B3
[ 13, 13, 13, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.375, 0.625 ]
2
8
[ [ 0, 3.78641, 0 ], [ 4.9774, 0, -0.376987 ], [ 0.376987, 0, -4.9774 ] ]
[ [ 5.21043, 0, -5.21043 ], [ 1.3386, 1.89321, -1.3386 ], [ 2.82116, 0, -2.82116 ], [ 4.01579, 1.89321, -4.01579 ], [ 2.37616, 0, -0.30104 ], [ 3.8273, 1.89321, -1.52709 ], [ 0.30104, 0, -2.37616 ], [ 1.52709, 1.89321, -3.8273 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6485252511560595687395710909387212039857134611771334471933256195157087758869028539496145632716120842142893367934226646974388650097408458699900395229403364
1
VASP
DFT
null
[ [ -0.030381, 0.00004, 0.030267 ], [ 0.000062, -0.00006, 0.000055 ], [ 0.030287, 0.000041, -0.030285 ], [ 0.000003, -0.000037, -0.000032 ], [ -0.062195, 0.000046, -0.062146 ], [ 0.000007, -0.000037, 0.000001 ], [ 0.062201, 0.000045, 0.062131 ], [ 0.000016, -0.000037, 0.00001 ] ]
null
[ [ -0.002486742065934408, 0, -0.0031487165238255864 ], [ 0, -0.0006483679679967528, 0 ], [ -0.0031487165238255864, 0, -0.002487054141390702 ] ]
true
null
null
-43.111372
null
0.032723
0.087922
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:32:16
10732888781025024393287808355765961242395369427314767286843809889490709545980644936587362583181723541326031607576168587078353378428088587592397621694632278
PO_1073288878102502439328780
null
null
null
[ "train_1st_stage_1041" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6095524975302470563535147917329767301295684324378689934433747381603103358154039841250840160787254756775036795698627469242388056322587696376329180530532166
CO_6095524975302470563535147
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ni4
Al2Ni
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ -1.6221, 1.91425, 1.29837 ], [ 0.160211, 6.53655, -6.36341 ], [ -5.32663, -2.79924, -2.5277 ] ]
[ [ -6.17443, 5.05606, -6.58788 ], [ -5.97383, 0.3921, -2.53466 ], [ -3.85902, 1.31454, -4.32604 ], [ -2.54317, 3.52502, -5.94113 ], [ -2.68715, 1.28992, 0.24794 ], [ -1.57202, 1.89271, -2.32126 ], [ -0.51198, 3.85099, -3.88405 ], [ -3.78675, -0.78752, -1.1366 ], [ -4.99831, 3.20295, -5.45996 ], [ -3.98902, 1.61187, -1.85323 ], [ -2.9933, 3.57166, -3.49867 ], [ -1.72221, 5.72076, -5.07915 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3927547365475815748599975712082186417522462583014026208174967551217567296972294139322913970658961630642973766928030164287353638592663217946888937575649723
1
VASP
DFT
null
[ [ 0.02552, 0.183782, -0.236377 ], [ -0.209976, -0.149848, -0.038802 ], [ 0.117126, 0.037536, 0.091606 ], [ 0.051188, 0.099791, -0.082591 ], [ 0.024211, -0.03998, 0.089593 ], [ -0.036908, -0.044286, 0.015302 ], [ -0.013941, -0.030871, 0.030601 ], [ 0.014202, 0.011536, -0.002979 ], [ -0.078649, -0.117272, 0.080883 ], [ -0.01608, -0.02912, 0.0151 ], [ 0.129185, 0.071974, 0.056964 ], [ -0.005877, 0.006758, -0.0193 ] ]
null
[ [ -0.005878752615486924, -0.0033492562120402154, 0.0019313725839133153 ], [ -0.0033492562120402154, -0.004548125284939871, -0.0026432791148115597 ], [ 0.0019313725839133153, -0.0026432791148115597, 0.002899680309702844 ] ]
true
null
null
-56.724271
null
0.121492
0.300502
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:43:01
1750373708445811988040924608965010980745217533006436772600043849235429609934328981829767258369131134102756312896516145517832452471902055199842079549176658
PO_1750373708445811988040924
null
null
null
[ "train_1st_stage_604" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4247770445179694084695156257173553911582355147361228669243213732247085545156817003671071442898306116758441947874607308250276473307576900386906017920378006
CO_4247770445179694084695156
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti2
Ni2Ti
A2B
[ 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ 0.000008, -0.000007, 4.251771 ], [ 3.869391, 2.2524, 0.000006 ], [ -0.027867, 4.49691, 0.000014 ] ]
[ [ 3.77702, 6.69407, 0.00445 ], [ 2.47081, 4.48854, 0.00442 ], [ 1.33347, 5.27172, 2.13033 ], [ 0.02724, 3.0662, 2.1303 ], [ 1.06115, 2.13414, 0.00441 ], [ 2.77097, 3.12928, 2.1303 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7835427594399038581747748980130405904653569874521427562888560431651895129938720015675650618613939304426224096074673882195594757733224726364743730289504395
1
VASP
DFT
null
[ [ -0.014554, -0.00954, 0.000003 ], [ -0.016814, -0.00769, -0.000003 ], [ 0.016762, 0.007617, 0.000011 ], [ 0.014533, 0.010144, -0.000009 ], [ 0.00448, 0.001931, -0.000007 ], [ -0.004406, -0.002462, 0.000006 ] ]
null
[ [ -0.0020057713726938436, 0.00021146232918492478, 0 ], [ 0.00021146232918492478, -0.0023346989036278913, 6.241509125883259e-8 ], [ 0, 6.241509125883259e-8, -0.0018781949261607901 ] ]
true
null
null
-40.046303
null
0.013659
0.018489
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:33:51
12607181586317307644284611638261680156869181439181874911577509706655353690697377524864146755701731034348551261861391760491931088291366141108274832601053573
PO_1260718158631730764428461
null
null
null
[ "train_1st_stage_249" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6003203875631377000444654577305916338334676146740014545155391632814705717037482417482895285251693527398518611840602424028233331780036356877368058381624392
CO_6003203875631377000444654
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni10Ti8
Ni5Ti4
A5B4
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5555555555555556, 0.4444444444444444 ]
2
18
[ [ 7.32224, 0, 0 ], [ -3.66112, 6.34124, 0 ], [ 0, 0, 5.15982 ] ]
[ [ 2.35303, 0, 1.28995 ], [ 6.14572, 2.03779, 1.28995 ], [ 2.4846, 4.30346, 1.28995 ], [ 4.96921, 0, 3.86986 ], [ -2.4846, 4.30346, 3.86986 ], [ 1.17652, 2.03779, 3.86986 ], [ 0, 4.2275, 0 ], [ 3.66112, 2.11375, 2.57991 ], [ 3.66112, 2.11375, 0 ], [ 0, 4.2275, 2.57991 ], [ 0, 0, 0 ], [ 0, 0, 2.57991 ], [ 4.69559, 0, 1.28995 ], [ 4.97444, 4.0665, 1.28995 ], [ 1.31332, 2.27474, 1.28995 ], [ 2.62665, 0, 3.86986 ], [ -1.31332, 2.27474, 3.86986 ], [ 2.3478, 4.0665, 3.86986 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4049287063008006187584334745903824602452023864501644877772948382375922346457294850642477530182161683481754881043632387103358155279649211636645651469444044
1
VASP
DFT
null
[ [ -0.379626, -0.00016, -0.000006 ], [ 0.189723, -0.329085, -0.000012 ], [ 0.189892, 0.329062, -0.000015 ], [ 0.379623, -0.000021, 0.000024 ], [ -0.189817, 0.32902, 0.000025 ], [ -0.189806, -0.329015, 0.000028 ], [ -0.000097, 0.000203, -0.000031 ], [ 0.000114, -0.000151, -0.000008 ], [ 0.000107, -0.000131, -0.000025 ], [ -0.000099, 0.00021, -0.000005 ], [ -0.000121, -0.000175, -0.000065 ], [ -0.000053, -0.000122, 0.000038 ], [ 0.271097, -0.000088, 0.000087 ], [ -0.135692, 0.235089, 0.000051 ], [ -0.135508, -0.234673, 0.00005 ], [ -0.271039, -0.000051, -0.00008 ], [ 0.135624, -0.234975, -0.000032 ], [ 0.135678, 0.235061, -0.000024 ] ]
null
[ [ 0.0001521679924890338, -0.000003183169654200462, -4.993207300706607e-7 ], [ -0.000003183169654200462, 0.00014130776660999697, 1.2483018251766518e-7 ], [ -4.993207300706607e-7, 1.2483018251766518e-7, 0.018354343471393638 ] ]
true
null
null
-123.092425
null
0.217065
0.379922
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:09:04
13339813064681852440692275206838829166401839677531437695394135702904510066923099513638876256821982335205590611102656440187151186517198426283126357879913601
PO_1333981306468185244069227
null
null
null
[ "train_2nd_stage_259" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2457246901164999395081933191236685919910064251511237243486995870852514788259623167703079254117099996839706918480289092622373386559024964559327703347714850
CO_2457246901164999395081933
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti10
AlTi5
A5B
[ 13, 13, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
12
[ [ 3.35405, -2.97068, 3.62757 ], [ -3.26112, -2.78957, -3.83948 ], [ 4.70824, 1.6891, -5.22621 ] ]
[ [ 3.00718, -2.96111, 3.19556 ], [ 0.31669, -2.7614, -3.30044 ], [ 1.99909, -4.2623, -1.52271 ], [ 3.2082, -2.70775, -3.61668 ], [ 4.37014, -1.19353, -5.76617 ], [ 1.94372, -1.33528, -1.40047 ], [ 3.18709, 0.16765, -3.54848 ], [ 6.03302, 0.22888, -3.80838 ], [ 1.49097, -1.23039, -5.41018 ], [ 1.38015, -4.38724, 1.29559 ], [ 3.66197, -2.83988, 0.43508 ], [ 4.82391, -1.32567, -1.71441 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9105067522096054945146233739557898965865993409270486636907942295047463387128941450634908027540189939387156432517051596040005786928380788168707841441670977
1
VASP
DFT
null
[ [ -0.192175, -0.010534, 0.171145 ], [ 0.192171, 0.010437, -0.170564 ], [ 0.024889, -0.059393, -0.113852 ], [ -0.130238, -0.111225, -0.153259 ], [ -0.127915, -0.028089, -0.006487 ], [ 0.19852, 0.07318, -0.222453 ], [ 0.009241, 0.026894, -0.027421 ], [ -0.024549, 0.060103, 0.113287 ], [ -0.008793, -0.027648, 0.027025 ], [ -0.198884, -0.073324, 0.222061 ], [ 0.1277, 0.028061, 0.007467 ], [ 0.130033, 0.111539, 0.153051 ] ]
null
[ [ 0.0069505445625835955, 0.0012072951102195986, -0.01219197668122658 ], [ 0.0012072951102195986, -0.00903277442206951, 0.0009045819176142606 ], [ -0.01219197668122658, 0.0009045819176142606, 0.003321294251156258 ] ]
true
null
null
-87.640388
null
0.182572
0.307003
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:35:31
8402663195746090461225532366559737722852392506715536026974323297051489113858392153535301966175378839297570253435514872148973423107426790158844229736867346
PO_8402663195746090461225532
null
null
null
[ "train_1st_stage_597" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3075900720309750481886060768498395375962624000143019492583811027716570831142339405880949394575376086287752007021700749499156753886617237963803866988780713
CO_3075900720309750481886060
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ti4
Al2Ti
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ 5.14657, 0, 0 ], [ -2.57329, 4.45706, 0 ], [ 0, 0, 8.30762 ] ]
[ [ 0, 0, 0 ], [ 0, 0, 4.15381 ], [ 2.57329, 2.92771, 2.07691 ], [ 0, 1.52935, 6.23071 ], [ 1.32446, 0.76467, 2.07691 ], [ 3.82212, 0.76467, 2.07691 ], [ -1.24883, 3.69239, 6.23071 ], [ 1.24883, 3.69239, 6.23071 ], [ 0, 2.97138, 0.52117 ], [ 2.57329, 1.48569, 4.67498 ], [ 2.57329, 1.48569, 7.78645 ], [ 0, 2.97138, 3.63264 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7270670477811054262580604883584265439981517139709699115491445467606622648071300243701913162170668586626051598553714905054084480223869419976668740716855828
1
VASP
DFT
null
[ [ 0.000029, 0.00001, -0.000077 ], [ 0.000029, 0.000013, -0.00015 ], [ -0.000013, -0.102949, -0.000122 ], [ 0.000013, 0.103111, 0.000137 ], [ 0.089173, 0.051491, -0.000121 ], [ -0.089192, 0.051491, -0.000122 ], [ 0.089269, -0.051546, 0.000139 ], [ -0.089289, -0.051569, 0.000138 ], [ 0.000003, -0.000031, 0.091957 ], [ -0.000013, 0.000009, 0.09246 ], [ -0.000013, -0.000001, -0.092194 ], [ 0.000003, -0.000028, -0.092046 ] ]
null
[ [ -0.0010528177593539878, -5.617358213294933e-7, 2.4966036503533035e-7 ], [ -5.617358213294933e-7, -0.001052755344262729, -6.241509125883259e-8 ], [ 2.4966036503533035e-7, -6.241509125883259e-8, -0.020767373314551366 ] ]
true
null
null
-65.294609
null
0.082259
0.103111
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:19:36
10523504183244107260736826101696730595385377733816854928031745023372245289924326647667367574576774035647514414034508812684863890856218224531493380082922693
PO_1052350418324410726073682
null
null
null
[ "train_2nd_stage_159" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12018087713195264411433542959032669458651332873654962932539461595124673405974042759204324190877115369877420410648759084754526380118709811487529025540786512
CO_1201808771319526441143354
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni4Ti3
Al5Ni4Ti3
A5B4C3
[ 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.3333333333333333, 0.25 ]
3
12
[ [ 2.45369, 0.263582, 4.27595 ], [ -0.95649, 5.55431, -0.001575 ], [ -2.44942, -0.267672, 4.2593 ] ]
[ [ -2.41238, -0.00396, 4.1532 ], [ -0.01339, 0.25648, 4.34539 ], [ 0.5308, 3.55732, 4.11647 ], [ -1.91598, 3.26345, 4.41817 ], [ 0.17576, 2.43321, 6.39993 ], [ -1.42704, 1.95663, 4.08022 ], [ 1.05008, 2.22549, 4.46728 ], [ 0.19248, 2.46107, 2.13874 ], [ -1.03425, 4.24749, 6.39193 ], [ 1.07034, 0.84239, 2.14784 ], [ -0.8079, 0.36469, 2.14601 ], [ -1.12901, 4.15464, 2.12701 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4823339670525136660173159247413192626001508707411150490326491178187425089392868705581889131361754632875974833175934563179568534759789614592213144275536715
1
VASP
DFT
null
[ [ 0.249541, -3.094771, -1.548665 ], [ 1.890094, -2.719357, 2.427161 ], [ -9.796813, 25.247842, -6.463781 ], [ -10.199344, 27.34565, 6.787332 ], [ -3.019147, -0.735373, 0.061061 ], [ 11.547994, -24.123982, -5.75224 ], [ 10.728135, -22.619695, 5.219305 ], [ -2.029592, 5.177171, 0.131264 ], [ -0.747742, 1.077879, -0.070534 ], [ 6.735065, -5.101493, 0.000427 ], [ -6.81861, -0.185532, -0.7912 ], [ 1.460419, -0.268338, -0.00013 ] ]
null
[ [ 0.4952450246114588, -0.21056136734260353, -0.0003604471520197582 ], [ -0.21056136734260353, 0.9015629620651622, 0.0014437234759080563 ], [ -0.0003604471520197582, 0.0014437234759080563, 0.3432457401140977 ] ]
true
null
null
-37.394854
null
12.091489
29.96463
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:31:50
11601686481461874845969202930796532727412957405447019430758840253143219441094282807927467532557733809738985346511666179980709812138880941285986586761006743
PO_1160168648146187484596920
null
null
null
[ "train_1st_stage_1612", "train_1st_stage_1812", "train_1st_stage_2012", "train_1st_stage_1412" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6847634287361620628587906373153989788581437617875617477131778146374364089256949258622856796411174083773078694967872187868127144219235230712943405147437825
CO_6847634287361620628587906
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni3Ti3
AlNiTi
ABC
[ 13, 13, 13, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
9
[ [ 5.16055, -4.27032, 0.110033 ], [ 5.16055, 4.27032, 0.110033 ], [ 0.726571, 0, 2.75261 ] ]
[ [ 9.12918, 1.42344, 2.82477 ], [ 9.12918, -1.42344, 2.82477 ], [ 3.96863, 0, 2.71473 ], [ 2.17665, -1.42343, 1.71554 ], [ 2.17665, 1.42343, 1.71554 ], [ 7.3372, 0, 1.82557 ], [ 5.50788, 1.42344, 0.83624 ], [ 5.50788, -1.42344, 0.83624 ], [ 0.34732, 0, 0.72621 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4804830909627027314044550952871262637773951485147619037924275744395991820930736797886976340597185014117721015365346997379909419084316027456907451968558731
1
VASP
DFT
null
[ [ 0.19068, -0.002108, -0.050212 ], [ 0.192067, 0.001974, -0.050578 ], [ 0.190022, 0.000189, -0.049984 ], [ 0.515373, 0.000203, -0.13599 ], [ 0.515473, -0.000471, -0.136014 ], [ 0.517206, 0.000326, -0.136441 ], [ -0.706218, 0.001322, 0.186203 ], [ -0.706152, -0.000421, 0.186184 ], [ -0.708451, -0.001013, 0.186833 ] ]
null
[ [ -0.03297651414587412, -6.865660038471584e-7, 0.0004293534127695093 ], [ -6.865660038471584e-7, -0.03192020114140964, 2.4966036503533035e-7 ], [ 0.0004293534127695093, 2.4966036503533035e-7, -0.031592646742483285 ] ]
true
null
null
-55.242991
null
0.487405
0.732673
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:37:59
1191927841421305157399235168409331608740913355785148386160116497583577267550011479724133712246829069893842227716528485777120244918735063135206130143227801
PO_1191927841421305157399235
null
null
null
[ "train_2nd_stage_78" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8638345761698377453476883682325818277978493196306365123703081564049724189738901315299075295876943324845426687804008369880953782454447123402201690453358391
CO_8638345761698377453476883
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni
Al2Ni
A2B
[ 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
3
[ [ 3.99671, 0, 0 ], [ 0, 3.99671, 0 ], [ 0, 0, 2.74118 ] ]
[ [ 0, 1.99836, 1.37059 ], [ 1.99836, 0, 1.37059 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5440604562743380521772977032267477806650775124853894299399767870225033867051475298261847301235905504626982623965819182110482193311657666611319149471817440
1
VASP
DFT
null
[ [ 0.000017, -0.000061, 0 ], [ -0.00006, 0.000017, 0 ], [ 0.000044, 0.000044, 0 ] ]
null
[ [ -0.014152372282575251, 0, 0 ], [ 0, -0.01415243469766651, 0 ], [ 0, 0, -0.0031131399218080513 ] ]
true
null
null
-14.11441
null
0.000063
0.000063
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:26:42
7357740594885029215516723806111523125419674042594682113476316681903223006656055242282215199889631643748246360057242211581074337492524724623599382842331485
PO_7357740594885029215516723
null
null
null
[ "train_2nd_stage_58" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3168896631866456495760163564284600585471227701945406175541892941544911651053114959386189637976229258699880177124605950907272460122447140238623418767403933
CO_3168896631866456495760163
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni9
AlNi3
A3B
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.25, 0.75 ]
2
12
[ [ 3.321909, -2.861835, 2.53115 ], [ 3.321918, -2.861842, -2.531182 ], [ 6.211224, 2.730377, -0.000004 ] ]
[ [ 6.27956, -5.42254, 0.00684 ], [ 6.73043, -0.42173, 0.00689 ], [ 3.18301, -0.06039, 0.00689 ], [ 4.84407, -1.49127, 1.27248 ], [ 4.61812, -3.97953, 1.25809 ], [ 6.50502, -2.9222, 0.00689 ], [ 8.39191, -1.86481, -1.24436 ], [ 4.61812, -3.97953, -1.24435 ], [ 8.3919, -1.86482, 1.25807 ], [ 2.97587, -2.5647, 0.0069 ], [ 4.84408, -1.49129, -1.25866 ], [ 10.03412, -3.27962, 0.00685 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6227439930547831520960527303721544998291096167481565316643368319812740565174219093798978469707304183522799250994891252037415193120851406061633619744187112
1
VASP
DFT
null
[ [ -0.013013, -0.015332, 0.000268 ], [ 0.012199, 0.014145, -0.000237 ], [ 0.000931, 0.000992, 0.00003 ], [ 0.000108, 0.000279, 0.000027 ], [ 0.000949, -0.003871, 0.006284 ], [ 0.000425, 0.00022, 0.000114 ], [ -0.001548, 0.003872, -0.006698 ], [ 0.000931, -0.003789, -0.006401 ], [ -0.001361, 0.003729, 0.006597 ], [ -0.007011, 0.002991, -0.00011 ], [ 0.000037, 0.000418, -0.000019 ], [ 0.007353, -0.003654, 0.000146 ] ]
null
[ [ -0.00003133237581193396, 0.0002951609665630193, -0.0000023093583765768054 ], [ 0.0002951609665630193, 0.000009112603323789557, -0.000002808679106647466 ], [ -0.0000023093583765768054, -0.000002808679106647466, -0.000288544966889583 ] ]
true
null
null
-65.535808
null
0.007311
0.020112
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:37:02
12497210606317404619123530692630287969700397093853465708858072114593328202623681055505446711610453836980982498668058663738625019379637694001312577456440799
PO_1249721060631740461912353
null
null
null
[ "train_1st_stage_361" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11945507231525496173065532890571962278240927932473006613383362863358880333069019622942385732910262952579814284794995891499670784713573683543418264021370777
CO_1194550723152549617306553
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni3Ti4
Al5Ni3Ti4
A5B4C3
[ 13, 13, 13, 13, 13, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.25, 0.3333333333333333 ]
3
12
[ [ 3.75231, -0.527797, 0.01337 ], [ -0.549789, 3.22721, 4.48394 ], [ 0.562723, -3.28537, 4.50246 ] ]
[ [ 0.99681, -3.12328, 4.49468 ], [ 2.78541, -2.56556, 4.53427 ], [ 2.83759, 0.94057, 4.5181 ], [ 0.3796, 1.0998, 2.32073 ], [ 0.39753, 1.07666, 6.65305 ], [ 0.31746, 0.37516, 4.48574 ], [ 1.35777, -1.25995, 4.4569 ], [ 1.58718, 2.48143, 4.51694 ], [ 2.07992, -0.47518, 2.44443 ], [ 2.0707, -0.50328, 6.57154 ], [ 2.89427, -1.17876, 6.73234 ], [ 2.95333, -1.17071, 2.26542 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5743415190235576801758222398147523601866728857905786397267135892599308948475684809536601400896073646068174647798917516791044432206458054177034845670753023
1
VASP
DFT
null
[ [ -9.484919, -2.491959, -0.414094 ], [ 13.661592, 28.73811, 0.326218 ], [ -11.828063, 1.923814, 0.100188 ], [ -0.261904, 0.031089, -0.039581 ], [ -0.35753, -0.467592, 0.080197 ], [ 8.184761, -5.993964, -0.033954 ], [ 0.246997, 3.217869, -0.188101 ], [ -2.872783, -27.296222, -0.0651 ], [ 239.960898, -188.708827, -49.176998 ], [ 71.556759, -56.068574, 14.121382 ], [ -70.135927, 57.278441, -14.423049 ], [ -238.66988, 189.837814, 49.712891 ] ]
null
[ [ -2.3192231441653552, 1.375682350738244, 0.19751798640151522 ], [ 1.375682350738244, -1.490777901132634, -0.1523405702163645 ], [ 0.19751798640151522, -0.1523405702163645, -0.9752018471096143 ] ]
true
null
null
-22.677749
null
74.766274
309.209688
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:24:28
4566006017850303045506084463193231097085537911099769841882609982045587839964599194226950518868565851945979309396695223545044263053691304214328054842638652
PO_4566006017850303045506084
null
null
null
[ "train_1st_stage_1904", "train_1st_stage_1704", "train_1st_stage_1504", "train_1st_stage_1304" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12559299755511445424117351215559304384408706396545293374720584513283265154122900254744494559528884075483442350806052802993148628506635481553898296266775242
CO_1255929975551144542411735
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi4Ti
AlNi4Ti
A4BC
[ 13, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.6666666666666666, 0.16666666666666666 ]
3
6
[ [ 0, 2.89861, -2.89861 ], [ 2.87547, -2.87547, -2.87547 ], [ -2.89861, -2.89861, 0 ] ]
[ [ 0.06911, -0.06911, -0.06911 ], [ -1.52872, -1.36989, -1.36989 ], [ 0.00892, -0.00893, -2.90753 ], [ -1.41228, -4.38493, -1.48633 ], [ 1.45416, -1.45416, -4.35276 ], [ -0.09835, -2.80026, -2.80026 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2580738634261440207681255293442399571996162865822829549910174115827764881500204508734310340226334794423075161078648891017922959894748166148286995024115723
1
VASP
DFT
null
[ [ -0.020088, 0.020073, 0.02012 ], [ -0.026117, 0.026105, 0.026118 ], [ -0.008129, 0.008199, 0.008119 ], [ -0.017735, 0.017657, 0.017745 ], [ 0.083343, -0.083322, -0.083386 ], [ -0.011274, 0.011289, 0.011284 ] ]
null
[ [ 0.003020453511288685, 0.0014312404576562899, 0.0014313652878388077 ], [ 0.0014312404576562899, 0.0030205159263799438, -0.0014313652878388077 ], [ 0.0014313652878388077, -0.0014313652878388077, 0.0030205159263799438 ] ]
true
null
null
-36.099263
null
0.048122
0.144367
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:26:58
9682786463647675870060331158817313084866803157887722355508136482241699302054255285241534754650551637449000049774980864398659366382716518550279685024690439
PO_9682786463647675870060331
null
null
null
[ "train_1st_stage_1086", "train_1st_stage_884", "train_1st_stage_685" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8461126552993802632501681986037460927856988934129060886825993961182001911937132231589772392765746057439547969004272589443738833377597263218754573278270697
CO_8461126552993802632501681
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al10Ni4
Al5Ni2
A5B2
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.7142857142857143, 0.2857142857142857 ]
2
14
[ [ -1.1139, -4.79146, -0.136094 ], [ 2.85291, 0.425932, 3.93716 ], [ -7.04812, 2.2119, 4.35453 ] ]
[ [ -7.61371, -2.22883, 4.35549 ], [ -0.87387, -1.06343, 4.21762 ], [ -3.33859, -0.38877, 4.21209 ], [ -5.82438, -0.17043, 4.42628 ], [ 1.61192, -1.28174, 4.0034 ], [ -2.66319, -3.12183, 4.1468 ], [ -5.1848, -2.51817, 2.7798 ], [ -0.23427, -3.41115, 2.57112 ], [ -1.88059, 0.64005, 1.71274 ], [ -3.9782, 1.95896, 5.85858 ], [ -1.81728, 0.32898, 6.13944 ], [ 0.28033, -0.98992, 1.99359 ], [ -2.39519, -1.78118, 2.29026 ], [ -4.4928, -0.46226, 6.43611 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2880933850561159179738076643746241274352196913481735565362933903607673223059934244664529132404788922420274523287142235978011233150403655267477863404988723
1
VASP
DFT
null
[ [ 0.000089, -0.000363, 0.000195 ], [ -0.087855, 0.023964, -0.10076 ], [ 0.087816, -0.024421, 0.100629 ], [ -0.087993, 0.024069, -0.100387 ], [ 0.087929, -0.024313, 0.100642 ], [ -0.000035, 0.000007, -0.000106 ], [ 0.004534, 0.173544, 0.058083 ], [ 0.004593, 0.173571, 0.057896 ], [ -0.004561, -0.174029, -0.057875 ], [ -0.004615, -0.173907, -0.057987 ], [ -0.082778, -0.259475, 0.024808 ], [ -0.082662, -0.25956, 0.024669 ], [ 0.082853, 0.260487, -0.024792 ], [ 0.082686, 0.260426, -0.025016 ] ]
null
[ [ 0.007397748691453131, 0.004216451489990435, 0.002673051113342023 ], [ 0.004216451489990435, -0.008936655181530908, 0.0049744203582376975 ], [ 0.002673051113342023, 0.0049744203582376975, 0.002703509677876333 ] ]
true
null
null
-64.945297
null
0.169456
0.274468
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:17:09
10040891079345991958347800014547775447694738988438389333174793822375685875010319825095093671658598877276097472065061006010500899146700093384020354023659494
PO_1004089107934599195834780
null
null
null
[ "train_1st_stage_914" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8808543048133016791115062274722365142866797776543598499823398368867038940878353867861859784617510245378732725609122882560472889400426646977323670779782227
CO_8808543048133016791115062
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni3Ti4
Al5Ni3Ti4
A5B4C3
[ 13, 13, 13, 13, 13, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.25, 0.3333333333333333 ]
3
12
[ [ 3.64628, 0.80648, 0.002793 ], [ -0.181775, 4.57964, 4.49997 ], [ 0.186938, -4.55746, 4.48372 ] ]
[ [ 3.33121, 5.04333, 4.50446 ], [ 2.52986, 1.46598, 4.48589 ], [ 0.90718, -2.15582, 4.47529 ], [ 1.63067, 0.13417, 2.54992 ], [ 1.61867, 0.17462, 6.44684 ], [ 1.132, 1.47265, 4.49396 ], [ 2.43414, -0.82396, 4.47731 ], [ 1.85663, 3.45922, 4.50825 ], [ 2.87763, 2.19444, 1.65209 ], [ 2.87131, 2.20037, 7.32715 ], [ 0.2248, 2.70702, 2.77087 ], [ 0.25315, 2.68242, 6.25112 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
240099268458771948476865988972417170508630341420488455184547904033419077805602362315933220388459035021217967089638878366375907624689885376297787999066844
1
VASP
DFT
null
[ [ 0.619313, 2.544717, 0.212618 ], [ 32.887612, -0.586175, -0.179229 ], [ 0.426149, -1.552845, 0.103095 ], [ -0.595545, -0.090138, -1.579501 ], [ -0.470225, -0.53266, 1.303926 ], [ -30.35937, -4.160975, 0.066221 ], [ 0.953823, 3.033475, 0.254174 ], [ -0.072927, 4.066903, 0.091562 ], [ -1.420343, -2.440665, 1.30851 ], [ -1.368516, -2.532759, -0.983168 ], [ -0.283619, 0.864711, -1.66812 ], [ -0.316351, 1.386413, 1.069912 ] ]
null
[ [ 0.47105075071134134, 0.07883462931629366, -0.002919840384179447 ], [ 0.07883462931629366, 0.3391513725426095, -0.0016099972790215864 ], [ -0.002919840384179447, -0.0016099972790215864, 0.1625154159782881 ] ]
true
null
null
-51.166597
null
7.337163
32.893324
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:39:40
11267887128197809111355853877694268051071995738880613081249406144311697917462021371498153164987554447025572053224193001364366245861556894164941908167305804
PO_1126788712819780911135585
null
null
null
[ "train_1st_stage_1481", "train_1st_stage_1281", "train_1st_stage_1681", "train_1st_stage_1881" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4746458509937457598298880249540397162749599390167255315191045673631957965943328988218692915466800398692833127262742042574839818221988814871048458603511556
CO_4746458509937457598298880
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni9Ti
Al2Ni9Ti
A9B2C
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.75, 0.08333333333333333 ]
3
12
[ [ 0, 0, 4.10797 ], [ 3.7568, 2.16899, 0 ], [ -3.87427, 6.71043, 0 ] ]
[ [ -0.049, 0.09326, 0 ], [ -2.52658, 4.38455, 0 ], [ 1.2161, 2.17415, 0 ], [ 2.36592, 4.34838, 0 ], [ -0.09192, 4.43972, 0 ], [ -1.33652, 6.6844, 0 ], [ -2.57728, 7.43394, 2.05399 ], [ 2.49531, 2.92199, 2.05399 ], [ 1.19532, 5.17363, 2.05399 ], [ -1.30778, 5.23509, 2.05399 ], [ -0.0529, 7.4255, 2.05399 ], [ -0.03547, 2.96193, 2.05399 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12625703791988575172506781634907622206210814909122300297445836224324367143412034133130726634310205304349763666935201226848075742013514106790653922493322095
1
VASP
DFT
null
[ [ 0.038808, -0.302346, 0.000043 ], [ -0.242631, 0.185041, 0.000042 ], [ 0.09962, -0.056423, 0.000041 ], [ -0.040463, -0.023591, 0.000045 ], [ 0.001241, 0.113852, 0.000041 ], [ -0.196991, -0.113671, 0.000042 ], [ 0.32883, 0.094406, -0.000044 ], [ -0.12892, 0.003949, -0.000048 ], [ -0.060868, -0.11294, -0.000048 ], [ 0.24601, 0.237665, -0.000043 ], [ -0.128307, -0.074125, -0.000033 ], [ 0.083671, 0.048183, -0.000037 ] ]
null
[ [ -0.007184351494439183, -0.0048673784767288, 0 ], [ -0.0048673784767288, -0.0015570068665428374, 0 ], [ 0, 0, 0.002763178505119777 ] ]
true
null
null
-69.278786
null
0.191564
0.342114
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:28:16
6550687403817949662356757537169981034051722714373121441121534096722357447633803698681364997235851576294406287491747886271074202098569106641392190219164976
PO_6550687403817949662356757
null
null
null
[ "train_1st_stage_1098" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6102697698022272922506934295781555791926421538444519398258774082947317878032387049088742891504566014402403202315417252889135340731142179726314715642682228
CO_6102697698022272922506934
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni2Ti4
Al3NiTi2
A3B2C
[ 13, 13, 13, 13, 13, 13, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.16666666666666666, 0.3333333333333333 ]
3
12
[ [ 0, 4.89279, 0 ], [ -5.64073, 0, 4.32511 ], [ 3.1305, 0, 4.08271 ] ]
[ [ 2.39956, 4.48505, 4.10291 ], [ 0.20675, 0.99236, 4.16351 ], [ -1.98605, 4.48506, 4.22411 ], [ -4.17886, 3.08497, 4.28471 ], [ -1.3585, 0.99236, 2.12216 ], [ -2.61361, 3.08496, 6.32607 ], [ 2.39956, 2.03866, 4.10291 ], [ -1.98605, 2.03866, 4.22411 ], [ -4.11724, 0.74763, 5.85823 ], [ -1.10998, 0.74763, 6.79391 ], [ 0.14513, 3.3297, 2.58999 ], [ 0.26837, 3.3297, 5.73703 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1528453352451321521645048345524371468812206409437140869179102808344382677912339034741790079947266859760107598877417494920409705091242005333246585875405654
1
VASP
DFT
null
[ [ 0.000105, 0.000376, -0.000076 ], [ -0.000014, -0.019383, -0.000012 ], [ -0.000115, 0.000262, 0.000123 ], [ 0.000069, 0.019763, 0.000009 ], [ 0.000039, -0.019328, -0.000011 ], [ 0.000033, 0.019807, -0.000108 ], [ 0.000064, -0.000657, -0.000014 ], [ -0.000075, -0.000594, 0.000036 ], [ -0.003136, 0.148204, 0.002405 ], [ 0.002402, 0.147998, -0.001872 ], [ 0.00309, -0.148237, -0.002361 ], [ -0.002462, -0.148212, 0.001881 ] ]
null
[ [ 0.004862260439245576, 0.000007489810951059909, -0.0009296103692090524 ], [ 0.000007489810951059909, -0.014427498004844186, -0.000005118037483224271 ], [ -0.0009296103692090524, -0.000005118037483224271, 0.004357946501874208 ] ]
true
null
null
-70.648097
null
0.056089
0.148288
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:34:29
11215063331422103740709191137343841427407935319829590333214903653289270868359587407978339751208857776197077430357005805647347394396000561438363559358469879
PO_1121506333142210374070919
null
null
null
[ "train_1st_stage_1032" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9385855104184414384260841998877106190500379619459961751653354343232893679428267095348496251355583066382835776124401555259314312166095962315304900912291443
CO_9385855104184414384260841
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti2
Al2Ti
A2B
[ 13, 13, 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ 0, 0, -4.4275 ], [ 0.220361, -4.68604, 0 ], [ -4.62164, -2.58914, 0 ] ]
[ [ -1.54021, -1.52806, -3.32062 ], [ -2.86107, -5.74712, -1.10687 ], [ -2.9375, -3.94479, -3.32062 ], [ -1.46378, -3.33039, -1.10687 ], [ -4.43613, -6.36085, -3.32062 ], [ 0.03485, -0.91433, -1.10687 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13218562474422389615946755962136533118924748973699248050597010429348431893659019144405175403467982480780047428534263811571877649267171386072529601362011675
1
VASP
DFT
null
[ [ 0.189872, -0.168494, -0.000002 ], [ -0.189784, 0.168577, -0.000003 ], [ -0.210647, -0.247193, -0.000002 ], [ 0.210531, 0.247246, -0.000003 ], [ -0.069102, 0.475451, 0.00001 ], [ 0.06913, -0.475587, 0 ] ]
null
[ [ -0.0030359324539208756, -0.00017563606680235486, -6.241509125883259e-8 ], [ -0.00017563606680235486, 0.0042080878677617515, 0 ], [ -6.241509125883259e-8, 0, 0.012951942832394125 ] ]
true
null
null
-31.880951
null
0.353039
0.480585
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:34:10
11877984426358305043547758301616797308733203142856561680661312794572348663443792589643279822386616806358309709820581373027737862400918299667935836300994775
PO_1187798442635830504354775
null
null
null
[ "train_2nd_stage_579" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1530546486601181803778063465792695275802665708442513663721361280915208155335730942221223153378011385710179367506657009555139370667715133256178835166804281
CO_1530546486601181803778063
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi4Ti3
AlNi4Ti3
A4B3C
[ 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.5, 0.375 ]
3
8
[ [ 4.195975, -0.191194, -0.115667 ], [ 2.108315, 3.705504, -5.989673 ], [ -1.908421, 2.771119, 2.516928 ] ]
[ [ 4.38463, 6.27206, -3.57239 ], [ 2.15932, 1.39561, 0.11068 ], [ 4.2127, 1.56972, -2.03251 ], [ 0.16076, 4.68822, -1.52295 ], [ 2.21413, 4.86271, -3.66657 ], [ 0.13278, 2.89655, 0.4286 ], [ 2.1867, 3.12889, -1.77766 ], [ 4.2406, 3.36177, -3.98452 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11845096552094805402160980509181117531947035245890132803651058712441945846822056465886965505190802149719802660943986252355372087780954635493465210543276771
1
VASP
DFT
null
[ [ 0.000005, -0.00227, 0.002498 ], [ -0.000239, 0.009283, -0.00988 ], [ 0.000228, 0.000873, -0.001133 ], [ -0.00019, 0.000494, -0.000313 ], [ 0.00006, -0.010008, 0.010614 ], [ -0.000238, 0.00406, -0.004161 ], [ 0.000055, 0.002683, -0.002971 ], [ 0.000319, -0.005115, 0.005345 ] ]
null
[ [ -0.0000885045994050246, 0.000013481659711907837, -0.000014917206810860988 ], [ 0.000013481659711907837, 0.0002645775718461913, -0.0003922164334705039 ], [ -0.000014917206810860988, -0.0003922164334705039, 0.00034709032249036795 ] ]
true
null
null
-52.949915
null
0.006352
0.014588
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:05:52
2568233433777609861997598839446469358594152730408011589884322653250741021491215382855682954172900062713675410651379898035190241897908163541633104254993964
PO_2568233433777609861997598
null
null
null
[ "train_1st_stage_185" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7799240360232288577250160293683339910195041597954016753254937143109790710373479599102739514805534432180457470336354820605976641600132840892847406637079302
CO_7799240360232288577250160
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi
NiTi
AB
[ 28, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
2
[ [ -1.90073, -3.84477, 1.90073 ], [ -1.90073, -1.90073, 3.84477 ], [ -3.84477, -1.90073, 1.90073 ] ]
[ [ 0, 0, 0 ], [ -3.82312, -3.82312, 3.82312 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10696300010849453542825436529926125713441397424997337751329428828745366236822805839307229809046705993058623509287515956237308420998197368122940452433041425
1
VASP
DFT
null
[ [ -0.00002, -0.00002, 0.00002 ], [ 0.00002, 0.00002, -0.00002 ] ]
null
[ [ -0.008648609535371395, -0.0040525494603447405, 0.0040525494603447405 ], [ -0.0040525494603447405, -0.008648609535371395, 0.0040525494603447405 ], [ 0.0040525494603447405, 0.0040525494603447405, -0.008648609535371395 ] ]
true
null
null
-13.425667
null
0.000035
0.000035
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:16:05
2459746847026289466283736511077400500358750624827726718271271520896118548944371427849060719086232895420818546069965295276481471407797299073494708171464982
PO_2459746847026289466283736
null
null
null
[ "train_1st_stage_2059" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12579806283411591829220696680130852917675486240174360887480909865011853891982879351794541395944231411332031465298363026607662586797571881398780493047213590
CO_1257980628341159182922069
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi2Ti3
AlNi2Ti3
A3B2C
[ 13, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.3333333333333333, 0.5 ]
3
6
[ [ 0, 2.01611, 2.01611 ], [ 3.52189, 0, 0 ], [ 0, 5.86155, -5.86155 ] ]
[ [ 3.51049, 0.0434, -0.0053 ], [ 0.03665, 1.77215, -1.76215 ], [ 0.01875, 6.08051, -2.14254 ], [ 1.75684, 1.93456, 0.06705 ], [ 1.71675, 3.90203, -1.94537 ], [ 1.77934, 5.91949, -3.93644 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4448390784546214276498401026954952983447146497366240444843930377412924966019677312495450348688738419541860736070435485034505954825377068413811640608066640
1
VASP
DFT
null
[ [ 0.24983, -0.564444, -0.020399 ], [ -0.204576, 0.738523, -0.875842 ], [ -0.058228, -0.674396, 0.88634 ], [ 0.088756, 1.392098, -1.071972 ], [ 0.127872, 0.07017, -0.049513 ], [ -0.203655, -0.961952, 1.131386 ] ]
null
[ [ -0.0263557709255022, -0.0003937768107519747, 0.0005923192160463211 ], [ -0.0003937768107519747, -0.026080770033415784, 0.00573669586778182 ], [ 0.0005923192160463211, 0.00573669586778182, -0.02849635889531512 ] ]
true
null
null
-39.41478
null
1.051477
1.759244
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:55:15
6987187085083159778365861135258188106721656672405195894152904461188604085627294505746633676760893925299377954895453964363919597648941581424855939569430804
PO_6987187085083159778365861
null
null
null
[ "train_1st_stage_1182" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9617317039842444263220899047190013675902741076348626288635136308114165089137498143517178915468539625317898340519252065544781204230760470385397196121534890
CO_9617317039842444263220899
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi7
NiTi7
A7B
[ 28, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.125, 0.875 ]
2
8
[ [ 3.89761, 0.045813, 0.074325 ], [ 1.99514, 3.91533, -5.94372 ], [ -2.06658, 4.00047, 2.12857 ] ]
[ [ 0.02254, 0.00142, 0.00076 ], [ 1.9456, 2.22697, 0.19414 ], [ -0.03707, 4.13223, 0.02228 ], [ 3.93742, 2.07007, -1.60821 ], [ 1.95685, 3.98019, -1.86987 ], [ -0.02149, 5.89535, -2.12924 ], [ 3.9412, 3.82589, -3.76373 ], [ 1.97642, 5.73738, -3.93276 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2650275992176558587584742501577808605508758062245322414213126218309448303454500210948419629498995337015574849228838185903890019659425363701395861701535555
1
VASP
DFT
null
[ [ 0.0567, -0.003117, 0.002458 ], [ -0.003085, -0.28906, 1.22771 ], [ 0.004973, 0.306767, 0.880741 ], [ -0.01566, -1.091543, -0.473398 ], [ -0.01999, 0.014073, -0.011147 ], [ -0.004387, 1.034026, 0.449418 ], [ 0.084137, -0.240928, -0.852879 ], [ -0.102689, 0.269782, -1.222903 ] ]
null
[ [ 0.03317312168333945, 0.0024455481057035783, 0.0009742995745503765 ], [ 0.0024455481057035783, 0.015737778015640858, -0.012930159965544792 ], [ 0.0009742995745503765, -0.012930159965544792, 0.021333041286630165 ] ]
true
null
null
-59.946565
null
0.842719
1.261284
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:28:46
2353868470780156264695136119644661612927189776998289076709435133379551994225115173017269198275112847809311451927332131565805514903214574873171693804234473
PO_2353868470780156264695136
null
null
null
[ "train_1st_stage_2302" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5064676544424867699031384131436553897510134436887014999940686520705540763399302308045168956386640252020678373317195085218358910816571543676568326170354594
CO_5064676544424867699031384
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ni4
Al7Ni4
A7B4
[ 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6363636363636364, 0.36363636363636365 ]
2
11
[ [ -0.057405, 2.84629, -2.86741 ], [ 1.13198, 0.945646, 3.76326 ], [ 9.35761, -5.60675, -5.75486 ] ]
[ [ 9.41339, -4.66643, -4.82236 ], [ 1.11364, 1.24396, -1.63466 ], [ 2.32408, -1.3181, -1.35542 ], [ 4.63375, -0.09639, -0.18898 ], [ 5.78678, 0.18784, -2.77716 ], [ 6.90204, -2.3548, -2.4769 ], [ 8.12901, -2.08747, -5.08334 ], [ 2.29489, 0.43315, 0.38384 ], [ 4.66293, -1.84763, -1.92824 ], [ 7.11822, -4.14853, -4.262 ], [ 9.19722, -2.8727, -3.03726 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11959563367196018574188383012331373702213142916702940942465023319957338681299573247978533575224553624033153320453945658394639813950981974705409942999428565
1
VASP
DFT
null
[ [ -0.12502, 0.024668, 0.026523 ], [ -0.041322, 0.008161, 0.009552 ], [ -0.025243, 0.007832, 0.00832 ], [ 0.025817, -0.007923, -0.008448 ], [ 0.041293, -0.008084, -0.009477 ], [ 0.125048, -0.024673, -0.026542 ], [ 0.000021, 0.000017, 0.00007 ], [ 0.315784, -0.069093, -0.075041 ], [ -0.316153, 0.069082, 0.07507 ], [ -0.245692, 0.0515, 0.055453 ], [ 0.245467, -0.051486, -0.055482 ] ]
null
[ [ -0.009069786571185998, 0.0027761608441016143, 0.0029566028729308995 ], [ 0.0027761608441016143, 0.002499349914368692, -0.0004063222440950001 ], [ 0.0029566028729308995, -0.0004063222440950001, 0.002467206142370393 ] ]
true
null
null
-53.71356
null
0.143706
0.332206
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:05:06
7967867269887125758405266412463038930538278256889799220686801783520578357788490509967143896456519012279978952108549340966570413925647839708180452688338888
PO_7967867269887125758405266
null
null
null
[ "train_1st_stage_1138" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7876309082199513265363881933142011851636191791384768949187990617431206585657205340106393371656762395971813421990400460177625052746159975828991913653748148
CO_7876309082199513265363881
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni2Ti4
Al3NiTi2
A3B2C
[ 13, 13, 13, 13, 13, 13, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.16666666666666666, 0.3333333333333333 ]
3
12
[ [ 3.3179, 1.97591, 0.013716 ], [ 0.049499, 4.02645, 3.99054 ], [ -0.03975, -3.99933, 3.9798 ] ]
[ [ 0.06993, -0.02319, 0.23647 ], [ 0.08755, -0.00771, 3.79539 ], [ 1.10706, -2.00026, 3.87046 ], [ 1.10947, 2.00833, 4.12509 ], [ 1.15684, 0.50678, 1.9795 ], [ 0.08158, -1.44747, 5.97269 ], [ 2.21073, 0.18339, 3.86461 ], [ 2.243, 4.21068, 4.11308 ], [ 0.91398, 0.46595, 5.9601 ], [ 1.68078, 2.76113, 2.00113 ], [ 2.78493, 2.78649, 6.03225 ], [ 0.10358, -1.39338, 1.9417 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11413339243135017617735495710341024810103884026854388853919004273549305522485964209774029437310920276152194843409142570440888837198098649841530024637714916
1
VASP
DFT
null
[ [ -2.661826, 2.518117, -3.387166 ], [ -3.302922, 1.367462, 1.542094 ], [ 0.694483, 0.111854, -0.400696 ], [ 2.729061, -0.239258, -1.499734 ], [ -0.182798, 3.148448, 0.947055 ], [ -25.844181, -6.836975, 0.004955 ], [ 0.002712, -2.312808, 2.292956 ], [ -0.187301, -3.411979, -2.814694 ], [ 42.369933, -1.861683, -0.842854 ], [ 28.592354, -1.267131, 0.307317 ], [ -42.096431, 5.762223, 1.181948 ], [ -0.113084, 3.021729, 2.668817 ] ]
null
[ [ 1.2538351726771122, -0.06173046012281444, -0.014600637467996188 ], [ -0.06173046012281444, 0.7913021470547724, 0.0019320591499171625 ], [ -0.014600637467996188, 0.0019320591499171625, 0.6653769541760624 ] ]
true
null
null
-21.255996
null
14.008807
42.505408
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:50:17
3049363199397398128865170976899690616004033554470307088794922076840833264947762634285727128288680856351102241383715250999052659336406841343677423036094018
PO_3049363199397398128865170
null
null
null
[ "train_1st_stage_1788", "train_1st_stage_1588", "train_1st_stage_1988", "train_1st_stage_1388" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12780792474113829660970748434082727934605732978099230741374144497592789403896039322301854121633890249236697475215177548338186081851705206349381017962180939
CO_1278079247411382966097074
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ti4
Al2Ti
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ 3.93838, -0.091946, -4.16795 ], [ -3.93772, 3.93751, -0.093054 ], [ 3.89671, 3.98691, 4.03133 ] ]
[ [ -3.87045, 3.93902, -0.06198 ], [ 1.95541, 1.95457, -0.06105 ], [ 3.84355, 3.90763, -0.15317 ], [ -1.96784, 2.03613, -0.01597 ], [ -0.01345, 3.92333, -0.10758 ], [ 1.94095, 5.81053, -0.19918 ], [ 5.92064, 3.99199, 1.78232 ], [ 1.8869, 3.90407, 2.12691 ], [ 3.9246, 1.9086, -2.14502 ], [ 3.84025, 5.85341, 1.87254 ], [ 1.95574, 3.87735, -2.19155 ], [ 0.02957, 5.98015, 1.94363 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11363047119855008559183265388659052156543980504079679293234255154558412939451571522189704163678381120905983802212038192103004997070779523572364317571764707
1
VASP
DFT
null
[ [ -0.016275, 0.087428, -0.190244 ], [ 0.000027, 0.00011, 0.000042 ], [ 0.016372, -0.087232, 0.190181 ], [ 0.089877, -0.022588, -0.191204 ], [ 0.00006, 0.000077, 0.000036 ], [ -0.089845, 0.022723, 0.191107 ], [ -0.412718, -0.393361, 0.593366 ], [ 0.412637, 0.393365, -0.593364 ], [ 0.000025, -0.000126, -0.000091 ], [ 0.091852, 0.083501, 0.025867 ], [ 0.000067, 0.000007, -0.000073 ], [ -0.092079, -0.083905, -0.025624 ] ]
null
[ [ -0.01121037454099892, -0.0016405182586471557, -0.00739350446524753 ], [ -0.0016405182586471557, -0.011524884185852177, -0.007801012596076448 ], [ -0.00739350446524753, -0.007801012596076448, 0.01402155025129674 ] ]
true
null
null
-65.577282
null
0.228746
0.822893
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:44:02
10690530052394273130703912047401799236971750892906822757994737497542889297853255959871210205479422498829243172381729984014292265570376361862095607337407449
PO_1069053005239427313070391
null
null
null
[ "train_1st_stage_817" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3278805672653282961951706154390876279668578835306842650449099003908202892352289829154297837172888151541813509891153095062012503151994227492749898569980889
CO_3278805672653282961951706
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni
Al2Ni
A2B
[ 13, 13, 28 ]
[ "Al", "Ni" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
3
[ [ -1.40112, 1.39669, 4.88058 ], [ 1.39669, -1.40112, 4.88058 ], [ 1.40111, 1.40111, -4.87931 ] ]
[ [ -0.00156, -0.00156, 3.44351 ], [ -0.00286, -0.00286, 6.31764 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
904343717911416486341834628874392834488531926761531107909456959600844606623307556318204048848437568802610630913610255595508270036879645417152074122623356
1
VASP
DFT
null
[ [ -0.001013, -0.001013, -0.325867 ], [ 0.001002, 0.001002, 0.325907 ], [ 0.000011, 0.000011, -0.00004 ] ]
null
[ [ -0.014131088736455992, 0.00004038256404446468, 0.00009393471234454302 ], [ 0.00004038256404446468, -0.01413115115154725, 0.00009393471234454302 ], [ 0.00009393471234454302, 0.00009393471234454302, -0.013548943180284859 ] ]
true
null
null
-14.034662
null
0.217274
0.32591
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:36:00
1496892941211224286644837623170723468598237127097537183966584655715809216179518505543955243011804497993210507810031948479208274128132333642411358947976334
PO_1496892941211224286644837
null
null
null
[ "train_2nd_stage_64" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7047268954350476118617039299138253136221152747846281246292522814234233537762236229354339872867534778506481175301246071669694421317316212911631842315112159
CO_7047268954350476118617039
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4NiTi5
Al4NiTi5
A5B4C
[ 13, 13, 13, 13, 28, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.1, 0.5 ]
3
10
[ [ 0, 2.85796, -0.000001 ], [ 2.85796, 0, 0 ], [ 0.000002, -0.000003, -18.9558 ] ]
[ [ 0, 2.85795, -0.38683 ], [ 1.42897, 1.42899, -5.41954 ], [ 1.42898, 1.42898, -9.33133 ], [ 0.00001, 2.85794, -15.4031 ], [ 1.42898, 1.42898, -1.81815 ], [ 2.85795, 0.00001, -3.46337 ], [ 2.85795, 0.00001, -7.38854 ], [ 0, 2.85795, -11.328 ], [ 1.42898, 1.42897, -13.4084 ], [ 1.42899, 1.42897, -17.354 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13107290040011212871058845360462469469884859470611303030721856949860330734186145606175150405121905036799825570387612482855336838508452899678323815339625458
1
VASP
DFT
null
[ [ 0.000005, 0.000043, 0.075589 ], [ 0.000002, -0.000014, 0.087477 ], [ -0.000019, -0.000004, 0.020252 ], [ -0.000021, 0.000048, -0.050189 ], [ -0.000009, -0.000022, -0.035166 ], [ 0.000021, -0.000005, 0.035853 ], [ 0.000028, -0.000021, -0.078894 ], [ -0.000015, 0.000024, -0.07286 ], [ 0.000031, -0.000022, 0.081803 ], [ -0.000023, -0.000029, -0.063865 ] ]
null
[ [ -0.0028416966899233883, 3.120754562941629e-7, -4.993207300706607e-7 ], [ 3.120754562941629e-7, -0.0028416966899233883, -1.8724527377649775e-7 ], [ -4.993207300706607e-7, -1.8724527377649775e-7, -0.015099271632063 ] ]
true
null
null
-63.48213
null
0.060195
0.087477
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:40:35
7962587133287762896054837477036056930226486143365565454326888060012146770123668482464946413872936465392158996221032384523642823847385325364894102964140655
PO_7962587133287762896054837
null
null
null
[ "train_1st_stage_513" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9629939015611292523570393731138607135716062878530836088556828090260608986126223787482833418151329318084440352713717931877413060991299056865336482473943396
CO_9629939015611292523570393
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ti5
Al7Ti5
A7B5
[ 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.5833333333333334, 0.4166666666666667 ]
2
12
[ [ 0.000001, 4.04357, 0 ], [ 2.787519, 0, 2.787518 ], [ 8.547188, 0.000001, -8.547187 ] ]
[ [ 11.27897, 0.00015, -5.71596 ], [ 4.20077, 2.02194, 1.36221 ], [ 5.66957, 0.00015, -0.10659 ], [ 8.47401, 0.00015, -2.91104 ], [ 2.807, 0.00015, -0.03152 ], [ 5.64444, 0.00015, -2.86899 ], [ 8.51627, 0.00015, -5.74081 ], [ 7.06322, 2.02194, -1.50027 ], [ 9.88492, 2.02194, -4.32197 ], [ 1.45338, 2.02194, 1.32207 ], [ 4.16057, 2.02194, -1.38514 ], [ 7.08019, 2.02194, -4.30477 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7503111893216169066493491998797638836508928753892486191989657066989864623014798247429854635075339220855482591895163419150207143421539877986833123174749326
1
VASP
DFT
null
[ [ 0.002551, -0.000002, -0.002731 ], [ -0.000648, 0.000002, 0.000654 ], [ -0.002937, 0.000002, 0.002905 ], [ 0.000244, 0, -0.000264 ], [ -0.000711, 0.000001, 0.000718 ], [ -0.000325, 0.000002, 0.000301 ], [ 0.001281, -0.000001, -0.00125 ], [ 0.003586, -0.000002, -0.003587 ], [ -0.002328, -0.000001, 0.002338 ], [ -0.000215, 0.000003, 0.000354 ], [ -0.001535, -0.000001, 0.001691 ], [ 0.001037, -0.000003, -0.001129 ] ]
null
[ [ -0.000014854791719602155, 1.8724527377649775e-7, -0.0000013731320076943167 ], [ 1.8724527377649775e-7, -0.00015716119978974045, 0 ], [ -0.0000013731320076943167, 0, -0.00001522928226715515 ] ]
true
null
null
-70.268862
null
0.002083
0.005072
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:21:04
7968408535822341820119233833878659644429806412235573097778113800646309630692920611921236082522309023568773688546469349139553388572602536819646723153096627
PO_7968408535822341820119233
null
null
null
[ "train_1st_stage_116" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12846666381645601376320443844793344274272185480543874908395040279714548249410712528655707639900467113004311129809637067772010552383300455767496433005715064
CO_1284666638164560137632044
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ni2Ti2
Al4NiTi
A4BC
[ 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.6666666666666666, 0.16666666666666666, 0.16666666666666666 ]
3
12
[ [ 1.8368, -7.33564, 0 ], [ 1.8368, 7.33564, 0 ], [ 0, 0, 6.8188 ] ]
[ [ 0, 0, 0 ], [ 0, 0, 3.4094 ], [ 1.8368, -4.65065, 6.4671 ], [ 1.8368, 4.65065, 3.0577 ], [ 1.8368, -4.65065, 3.76109 ], [ 1.8368, 4.65065, 0.3517 ], [ 1.8368, 1.11013, 5.1141 ], [ 1.8368, -1.11013, 1.7047 ], [ 1.8368, 3.52045, 5.1141 ], [ 1.8368, -3.52045, 1.7047 ], [ 1.8368, -1.7755, 5.1141 ], [ 1.8368, 1.7755, 1.7047 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10926668267199114627002509496411720323608315793674090176223257441432028806992454752094849417368713430462082274188487393620418633573697214897624491534529491
1
VASP
DFT
null
[ [ 0, -0.000248, -0.000004 ], [ 0, -0.000252, 0.000002 ], [ 0, 0.101905, 0.037482 ], [ 0, -0.101744, 0.037978 ], [ -0.000001, 0.101892, -0.037401 ], [ 0, -0.101743, -0.037949 ], [ 0, -0.300933, -0.000008 ], [ 0.000001, 0.300869, -0.000004 ], [ 0.000001, -0.405663, -0.000032 ], [ -0.000002, 0.406013, -0.000043 ], [ -0.000001, 0.471455, -0.000007 ], [ 0.000001, -0.471551, -0.000013 ] ]
null
[ [ -0.034579396104492205, -6.241509125883259e-8, 0 ], [ -6.241509125883259e-8, 0.00575591971588954, 6.241509125883259e-8 ], [ 0, 6.241509125883259e-8, 0.002994426418233752 ] ]
true
null
null
-60.417251
null
0.232608
0.471551
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:15:00
2908162695198555872413492552103954279046297691472072524978477215450317463571604658436401495159779333784491401384933139349578590228107262492493296485538933
PO_2908162695198555872413492
null
null
null
[ "train_2nd_stage_350" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1057812588726509602855235658829030653180197000311590204628458604235623424161845162850961120817175883889352085877278165734490875229064156138077639796724129
CO_1057812588726509602855235
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi6
AlNiTi6
A6BC
[ 13, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.125, 0.125, 0.75 ]
3
8
[ [ 0, 2.03137, 2.03137 ], [ 5.82543, 0.000377, -0.000377 ], [ -0.000117, 5.04242, -5.04242 ] ]
[ [ 0.02859, 4.90186, -4.90186 ], [ 2.94874, 0.01895, -0.01895 ], [ 1.6062, 2.18973, -0.15837 ], [ 2.94429, 4.5536, -0.49087 ], [ 4.23097, 4.90045, -2.86909 ], [ 4.2827, 2.19105, -0.15968 ], [ 0.03199, 2.60811, -2.60811 ], [ 1.65773, 4.90117, -2.8698 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4839266772567056222293100475720219870172863786339988848436100880872184406239999285300023164674002826063613079765934355473673571655885571055169044589642653
1
VASP
DFT
null
[ [ 0.018269, 1.04181, -1.041841 ], [ -0.008539, 0.094542, -0.094566 ], [ -1.438713, 0.083155, -0.083135 ], [ -0.004003, -0.216656, 0.216657 ], [ 0.65225, -0.417287, 0.417343 ], [ 1.441409, 0.090436, -0.090429 ], [ 0.000877, -0.275016, 0.274989 ], [ -0.661549, -0.400984, 0.40098 ] ]
null
[ [ 0.05595506689845215, 0.00004699856371790093, -0.0000473106391741951 ], [ 0.00004699856371790093, 0.051457497837431934, 0.004111968627223149 ], [ -0.0000473106391741951, 0.004111968627223149, 0.05145762266761445 ] ]
true
null
null
-56.814808
null
0.868043
1.473477
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:59:41
13307099058126763621336233023805328379974822455885355272522589850112983033985975865818866919140969775230153459085143187206270675233685704478262217481650507
PO_1330709905812676362133623
null
null
null
[ "train_2nd_stage_778" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1312621008273493349302024382809093128444242965935167052406255458551948698803254784811274903503286362591290726855883886738044967875743352183914175449628454
CO_1312621008273493349302024
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ti16
AlTi2
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
24
[ [ 0, 5.94648, 5.94648 ], [ 5.94648, 0, 5.94648 ], [ 5.94648, 5.94648, 0 ] ]
[ [ 3.36409, 3.36409, 3.36409 ], [ 5.55564, 5.55564, 3.36409 ], [ 5.55564, 3.36409, 5.55564 ], [ 3.36409, 5.55564, 5.55564 ], [ 8.52888, 8.52888, 8.52888 ], [ 6.33733, 6.33733, 8.52888 ], [ 6.33733, 8.52888, 6.33733 ], [ 8.52888, 6.33733, 6.33733 ], [ 5.94648, 2.97324, 2.97324 ], [ 2.97324, 5.94648, 2.97324 ], [ 2.97324, 2.97324, 5.94648 ], [ 5.94648, 5.94648, 5.94648 ], [ 4.45986, 4.45986, 0.86434 ], [ 4.45986, 0.86434, 4.45986 ], [ 0.86434, 4.45986, 4.45986 ], [ 8.05538, 4.45986, 4.45986 ], [ 4.45986, 8.05538, 4.45986 ], [ 4.45986, 4.45986, 8.05538 ], [ 7.4331, 7.4331, 11.0286 ], [ 7.4331, 11.0286, 7.4331 ], [ 11.0286, 7.4331, 7.4331 ], [ 3.83758, 7.4331, 7.4331 ], [ 7.4331, 3.83758, 7.4331 ], [ 7.4331, 7.4331, 3.83758 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9809490490197411840634954825189399861253037584236472821170680247144663416121610781018971555903212697214652976715948852060338831462950120339222757393684753
1
VASP
DFT
null
[ [ -0.056171, -0.055697, -0.055113 ], [ 0.055795, 0.057189, -0.057112 ], [ 0.054677, -0.056572, 0.055985 ], [ -0.055888, 0.05492, 0.05483 ], [ 0.05698, 0.05591, 0.055746 ], [ -0.055792, -0.056553, 0.056564 ], [ -0.056341, 0.057286, -0.057133 ], [ 0.057328, -0.056078, -0.056115 ], [ 0.00017, 0.000734, -0.000319 ], [ 0.001217, 0.000382, -0.000661 ], [ 0.000221, -0.000427, -0.000142 ], [ 0.000196, 0.000593, -0.00078 ], [ 0.001223, 0.001714, -0.053971 ], [ -0.000033, -0.055614, 0.001237 ], [ -0.05494, -0.000783, 0.000202 ], [ 0.055341, 0.000726, -0.000493 ], [ 0.001493, 0.054969, -0.001703 ], [ 0.000362, -0.001505, 0.055079 ], [ -0.000621, -0.000545, 0.054986 ], [ -0.001647, 0.054764, 0.000308 ], [ 0.053136, -0.000727, 0.000986 ], [ -0.054308, 0.000211, 0.000094 ], [ -0.000694, -0.054897, 0.000867 ], [ -0.001703, -0.000001, -0.05334 ] ]
null
[ [ 0.015231716455714243, 0.0000220325272143679, -0.000009299848597566054 ], [ 0.0000220325272143679, 0.015303681055935677, -0.0000637882232665269 ], [ -0.000009299848597566054, -0.0000637882232665269, 0.015217860305454783 ] ]
true
null
null
-158.778121
null
0.059896
0.098591
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:36:49
8374735419236092790134983621745874704258266837415535464894029500019480061437770965547942290808049265520575715887882796132364932990541256567130357029668947
PO_8374735419236092790134983
null
null
null
[ "train_2nd_stage_383" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
2763399431224587624071596120278073777825383160937978411795114807860232468124265720550852290849563185875405872327374422797640308272416481708186534957172422
CO_2763399431224587624071596
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni2Ti
Al2Ni2Ti
A2B2C
[ 13, 13, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.4, 0.2 ]
3
5
[ [ 2.02955, -3.51533, 0.000041 ], [ 2.02955, 3.51533, -0.000041 ], [ 0, -0.000013, 4.90786 ] ]
[ [ 2.02955, 1.17176, 3.17043 ], [ 2.02955, -1.17178, 1.73742 ], [ 2.02955, 1.17177, 0.71767 ], [ 2.02955, -1.17178, 4.19019 ], [ 2.02955, 3.51531, 4.90782 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5925966103478241856342648647709414848807875093956982692074120000279322609028089469215682588008905738721100197765331862728460765643078498428676043024949225
1
VASP
DFT
null
[ [ 0, -0.000005, -0.264644 ], [ 0, 0.000017, 0.264803 ], [ 0.000001, 0.000073, 0.194197 ], [ -0.000001, -0.000166, -0.194295 ], [ 0, 0.000081, -0.000061 ] ]
null
[ [ -0.013901838106262299, -6.241509125883259e-8, -6.241509125883259e-8 ], [ -6.241509125883259e-8, -0.013895159691497601, -0.000003120754562941629 ], [ -6.241509125883259e-8, -0.000003120754562941629, -0.004099610439153901 ] ]
true
null
null
-28.81584
null
0.183608
0.264803
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:47:43
12910088580675167078794520766423333441568534256221947066345964557982088354956630229728945276892830920466128809190100409323616595290527858712946807139857608
PO_1291008858067516707879452
null
null
null
[ "train_2nd_stage_183" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9262632547921547512537394712554566236526020645868132710649600307607231474806451789909992107419779421169366332650625448694164497894412964482315346588181304
CO_9262632547921547512537394
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ni4
Al2Ni
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
12
[ [ 2.27021, 0.456557, 4.26302 ], [ -1.48237, 7.66723, -0.101056 ], [ -2.44075, -0.386083, 4.89938 ] ]
[ [ -2.32633, 6.19172, 4.29735 ], [ 0.05859, 1.00362, 5.40077 ], [ -1.82287, 2.99463, 4.39642 ], [ -0.05895, 4.98075, 5.41117 ], [ 0.51186, 5.09081, 2.72914 ], [ -0.80638, 0.76745, 8.09775 ], [ -0.43526, 2.62424, 1.8105 ], [ -1.25356, 6.92311, 1.68576 ], [ 0.51692, 3.09016, 4.0474 ], [ -0.86321, 0.80821, 3.2551 ], [ -0.59587, 2.9206, 6.60547 ], [ -1.28754, 6.66493, 6.52168 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6178661414819246358960021280854682120119284879676163866102751230440267765381687145721485770598410369152262782161134755745431733123461724441900641818044384
1
VASP
DFT
null
[ [ 0.345924, 0.060943, 0.060939 ], [ -0.128066, -0.074213, 0.088234 ], [ -0.112432, 0.00477, 0.134544 ], [ -0.029628, 0.073001, 0.20945 ], [ -0.036108, 0.076154, -0.099127 ], [ -0.095552, -0.279491, -0.052057 ], [ -0.02878, -0.141402, 0.037065 ], [ -0.158592, 0.081816, 0.036103 ], [ 0.012057, -0.129399, 0.018545 ], [ 0.127927, -0.009415, -0.314603 ], [ 0.073982, -0.089835, -0.13573 ], [ 0.029268, 0.42707, 0.016635 ] ]
null
[ [ 0.02484151839647166, -0.006266724822751826, -0.006746759289623508 ], [ -0.006266724822751826, 0.036949734025228886, -0.001455083022517164 ], [ -0.006746759289623508, -0.001455083022517164, 0.03636571601631999 ] ]
true
null
null
-56.501993
null
0.230608
0.428395
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:10:19
8827156397093431815000201127480067326055719271225315313061940806993477219955447029337460558306981472577071071790741511278684598454409977388080659638776550
PO_8827156397093431815000201
null
null
null
[ "train_2nd_stage_850" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9943546327254686694766475503513606723215920547560204994237669651849282970131197249712331057341637310444326454019834753480521765802400951183006396687334946
CO_9943546327254686694766475
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti2
Al2Ti
A2B
[ 13, 13, 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ 4.50556, -0.000016, 0 ], [ -2.25278, 3.90191, 0 ], [ 0, 0, 5.4024 ] ]
[ [ 0, 0.00001, 0 ], [ 0, 0.00001, 2.7012 ], [ -0.00004, 2.6013, 4.0518 ], [ 2.2528, 1.3006, 1.3506 ], [ -0.00003, 2.6013, 1.3506 ], [ 2.25282, 1.30059, 4.0518 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3504795692134357786277906087826942309140601228772470731928986194887905558700905364618668953026842544268830647735401714860586299397677881846682952208890648
1
VASP
DFT
null
[ [ 0.000007, -0.000018, 0.000091 ], [ 0.000008, -0.000019, -0.000084 ], [ 0.000451, -0.000456, 0.000003 ], [ -0.000323, 0.000405, 0.000004 ], [ 0.00037, -0.00042, -0.000006 ], [ -0.000511, 0.000509, -0.000008 ] ]
null
[ [ -0.007865362555164306, -0.000007864301498612905, 6.241509125883259e-8 ], [ -0.000007864301498612905, -0.007881091158161532, -1.2483018251766518e-7 ], [ 6.241509125883259e-8, -1.2483018251766518e-7, 0.00036980941570858303 ] ]
true
null
null
-31.481253
null
0.000437
0.000721
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:32:49
9847995556769684926142352068314332813212493834839974989146269646922266542511665217693954973109188194148312018053784402136360394100605988431780120427993627
PO_9847995556769684926142352
null
null
null
[ "train_2nd_stage_520" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11295777045845843826890734674495494151864507923619998634699120260970947293390995449371670374328836068294912994603931173699392799601301674732502858939884426
CO_1129577704584584382689073
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi3
NiTi3
A3B
[ 28, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
4
[ [ 3.97104, 0, 0 ], [ 0, 3.97104, 0 ], [ 0, 0, 3.97104 ] ]
[ [ 0, 0, 0 ], [ 0, 0, 1.98552 ], [ 0, 1.98552, 0 ], [ 1.98552, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
411813630716626143456436556496005698052581569856478352566307581740839101564692737875508921642011761684836170254244180904325906519926839386437160489654530
1
VASP
DFT
null
[ [ 0.000001, -0.000004, 0.000001 ], [ 0.000001, 0.000002, 0.000001 ], [ -0.000001, 0.000003, 0.000003 ], [ -0.000001, -0.000001, -0.000004 ] ]
null
[ [ 0.17920109198487688, -6.241509125883259e-8, 0 ], [ -6.241509125883259e-8, 0.17921613402187025, 6.241509125883259e-8 ], [ 0, 6.241509125883259e-8, 0.17915527930789288 ] ]
true
null
null
-19.493817
null
0.000004
0.000004
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:45:00
11166278761038544484820558881764678167594880731620129563160656262566193755551828065660899102086816208478312918882628562798838653790462686824572488507669501
PO_1116627876103854448482055
null
null
null
[ "train_1st_stage_2064" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6951482782496747213544942990341868698791291641431706074985488486031754911875587686030529848881268492367534963558620336660028165160072111801431211473583035
CO_6951482782496747213544942
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi3Ti2
AlNi3Ti2
A3B2C
[ 13, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.5, 0.3333333333333333 ]
3
6
[ [ 1.56994, -6.24726, 0 ], [ 1.56994, 6.24726, 0 ], [ 0, 0, 4.02309 ] ]
[ [ 0, 0, 0 ], [ 1.56994, -2.04847, 0 ], [ 1.56994, 2.04847, 0 ], [ 1.56994, 0, 2.01155 ], [ 1.56994, -4.26914, 2.01155 ], [ 1.56994, 4.26914, 2.01155 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
13389040966723202736975900116488528686653434688275066692707265029592432104904069286559622481090537149567106889950307668122127992824230355503758847553304504
1
VASP
DFT
null
[ [ 0, 0.000066, 0.000046 ], [ 0, -0.33742, 0.000022 ], [ 0, 0.337285, 0.000022 ], [ 0, -0.000066, -0.000018 ], [ 0, 0.759536, -0.000035 ], [ 0, -0.759401, -0.000038 ] ]
null
[ [ 0.0020595107662676987, -6.241509125883259e-8, 0 ], [ -6.241509125883259e-8, 0.0005078715975731207, 0 ], [ 0, 0, -0.0016671695026146771 ] ]
true
null
null
-38.015269
null
0.365632
0.759536
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:42:32
7377500434219789347784553419311518088048564478654524153868246560092776044324353205923868436850605081845932207555662290897073719827859007513048649382443855
PO_7377500434219789347784553
null
null
null
[ "train_2nd_stage_110" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11689261784896838876217595274357013875126077364816517406372315383801289727374001263155247459576253662051801949334764773657895665078292586771502384455296327
CO_1168926178489683887621759
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni10Ti2
Ni5Ti
A5B
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.8333333333333334, 0.16666666666666666 ]
2
12
[ [ 0, 0, 4.17076 ], [ 3.76524, 2.17386, 0 ], [ -3.77598, 6.5402, 0 ] ]
[ [ -3.73679, 6.51215, 0 ], [ -1.26336, 2.22804, 0 ], [ 0.00884, 4.35635, 0 ], [ 1.17926, 6.49435, 0 ], [ -1.25751, 6.54974, 0 ], [ -2.52743, 7.25217, 2.08538 ], [ 2.57703, 2.94122, 2.08538 ], [ -0.0178, 2.90536, 2.08538 ], [ 1.2544, 5.03368, 2.08538 ], [ -0.04815, 7.28977, 2.08538 ], [ 1.27968, 2.1922, 0 ], [ -1.28863, 5.06952, 2.08538 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11558731631577186430928367466522764335347039526809318599886973662384636501417537563055692285598249230421189367604564407220549800101391360349969086835695583
1
VASP
DFT
null
[ [ 0.08793, -0.062249, 0 ], [ -0.010137, 0.107285, 0.000001 ], [ 0.081981, 0.027133, 0.000002 ], [ -0.021461, -0.011435, 0 ], [ 0.065595, 0.057267, -0.000003 ], [ -0.064606, -0.058585, 0 ], [ 0.021433, 0.012222, -0.000001 ], [ -0.082659, -0.027404, -0.000002 ], [ 0.010083, -0.106805, -0.000001 ], [ -0.087906, 0.062552, 0 ], [ -0.046963, -0.027081, 0 ], [ 0.046711, 0.0271, 0.000003 ] ]
null
[ [ -0.012878480269982479, 0.0020900317458932677, -6.241509125883259e-8 ], [ 0.0020900317458932677, -0.015291884603687758, 0 ], [ -6.241509125883259e-8, 0, 0.016498555562994767 ] ]
true
null
null
-73.523046
null
0.077967
0.10789
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:49:18
13260835229688572902205659465844384210003626687042894629458267874674612154859148325810954210073375914353366161568757703992853021111127663455243804954243629
PO_1326083522968857290220565
null
null
null
[ "train_1st_stage_497" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1155806330959613018156491664753370725022942212836269707144869334659946282196207770544709757073272480623704736855700527572076725182879113593139577972420519
CO_1155806330959613018156491
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni7Ti2
Al3Ni7Ti2
A7B3C2
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5833333333333334, 0.16666666666666666 ]
3
12
[ [ 3.12293, -0.000325, -0.00008 ], [ 0.000488, 3.73964, 3.93242 ], [ -0.000213, -3.80867, 7.32681 ] ]
[ [ 0.03214, -3.49512, 7.34176 ], [ 0.03245, 0.40349, 3.66286 ], [ 0.03252, 0.15461, 7.6263 ], [ 1.5938, -1.65075, 7.39967 ], [ 1.59411, 2.2085, 3.88935 ], [ 1.59371, -1.59091, 3.67832 ], [ 1.59386, 0.27257, 1.85337 ], [ 1.59395, 0.27888, 5.64455 ], [ 1.59405, 0.28515, 9.43566 ], [ 0.03238, -1.62532, 9.30793 ], [ 0.03268, 2.09485, 5.79922 ], [ 0.03229, -1.53677, 5.4899 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1046816636760590518751775115059203144103145978573347865460490984457470663103193052247056480979234468594373219410578233091767293791847183318262044897158421
1
VASP
DFT
null
[ [ 0.000145, 0.000383, -0.000426 ], [ 0.00014, 0.078853, -0.057378 ], [ 0.000126, -0.079291, 0.057159 ], [ -0.000043, -0.067447, 0.229268 ], [ -0.000004, 0.067553, -0.22895 ], [ -0.000092, -0.000194, -0.000419 ], [ -0.000015, 0.244244, -0.052349 ], [ -0.00002, 0.000412, -0.0001 ], [ -0.00005, -0.244386, 0.052532 ], [ -0.000047, 0.000044, 0.000306 ], [ -0.000005, 0.873223, -0.875772 ], [ -0.000134, -0.873393, 0.876129 ] ]
null
[ [ 0.12870740798666386, 3.744905475529955e-7, 3.120754562941629e-7 ], [ 3.744905475529955e-7, 0.13237959988087725, -0.0035785068422339067 ], [ 3.120754562941629e-7, -0.0035785068422339067, 0.13575812877071786 ] ]
true
null
null
-69.409123
null
0.304029
1.2371
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:28:02
13077334576824343012691056702473017371119150623567453016178792109978787202542147836194363089602449330590118861846309269609910274443578840795874582280028370
PO_1307733457682434301269105
null
null
null
[ "train_2nd_stage_766" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3552551270504727394794226738263277422234871329152473662043737929775386861276860079005739014988405906260912398692929143176580659318481999000221360654731197
CO_3552551270504727394794226
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni4Ti2
Al3Ni2Ti
A3B2C
[ 13, 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.3333333333333333, 0.16666666666666666 ]
3
12
[ [ 0.002906, 4.86139, -0.002212 ], [ -4.59693, 0.004271, 3.38408 ], [ 3.4757, 0.000097, 4.72138 ] ]
[ [ 3.10249, 0.81067, 4.98235 ], [ -0.88284, 3.24344, 4.35048 ], [ -2.4588, 0.81416, 5.43634 ], [ -1.23887, 3.24488, 7.02362 ], [ 0.78295, 3.24133, 1.89521 ], [ -1.87528, 3.2427, 1.44105 ], [ 1.25516, 4.44691, 3.99769 ], [ -2.84583, 4.44905, 3.37665 ], [ -2.84727, 2.03927, 3.37775 ], [ 1.25372, 2.03713, 3.99879 ], [ -0.68174, 0.81195, 2.88634 ], [ 0.1397, 0.81286, 5.92166 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7748385941088287432232893644915668400194788261623496568921925221407803280608349182256252385102187136103028989991549416421539032702282083141001907392147305
1
VASP
DFT
null
[ [ 0.016473, 0.000014, -0.158915 ], [ 0.089349, 0.000147, 0.054158 ], [ -0.158199, 0.000233, -0.032306 ], [ 0.145931, 0.000043, -0.018085 ], [ -0.061129, 0.000267, 0.133908 ], [ 0.026509, 0.00019, 0.101789 ], [ -0.052688, -0.133562, -0.054253 ], [ -0.036076, -0.133642, -0.065814 ], [ -0.036082, 0.133312, -0.065585 ], [ -0.05233, 0.1332, -0.054409 ], [ -0.368178, 0.000369, 0.394343 ], [ 0.486421, -0.000571, -0.234832 ] ]
null
[ [ 0.04621051077566691, -0.000013856150259460833, 0.007460226197803223 ], [ -0.000013856150259460833, 0.016372601908834446, 0.000010610565514001538 ], [ 0.007460226197803223, 0.000010610565514001538, 0.05087179462105905 ] ]
true
null
null
-65.493022
null
0.209795
0.540141
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:36:58
10071315284753860512785178316205940567630613737488163765391296595061609637030058545044789253328702694007811937325930978746446589296555886843850684346184698
PO_1007131528475386051278517
null
null
null
[ "train_2nd_stage_634" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4093300566856974721992072019238199513917529498074969030173024204338862951341536706583315535016739674886751844477353390526884750548749609275364190602450837
CO_4093300566856974721992072
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ti
Al3Ti
A3B
[ 13, 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.75, 0.25 ]
2
4
[ [ 0, 3.91986, 0 ], [ 2.77174, 0, 2.77175 ], [ 2.77177, 0, -2.77177 ] ]
[ [ 0.02232, 3.91985, 0 ], [ 1.40821, 1.95993, -1.38589 ], [ 1.4082, 1.95993, 1.38587 ], [ 2.79408, 3.91985, -0.00001 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9053388652075772790090221594291665534523936838088379106761013755916547317291164313839248227216427314874838039417062181861243480167842416597504716423550369
1
VASP
DFT
null
[ [ -0.00004, 0.000064, -0.000033 ], [ -0.000084, -0.000077, 0.000028 ], [ -0.00013, -0.000077, 0.00002 ], [ 0.000254, 0.00009, -0.000015 ] ]
null
[ [ 0.011942628391647543, -6.241509125883259e-8, 0.000001497962190211982 ], [ -6.241509125883259e-8, 0.011941255259639849, -1.2483018251766518e-7 ], [ 0.000001497962190211982, -1.2483018251766518e-7, 0.011941068014366073 ] ]
true
null
null
-20.494288
null
0.000156
0.00027
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:53:08
7588260833030917798207516609096953668070026170323675182116134148533608597255981407858971379971155479992151822314394797778727847248493463200764726203485853
PO_7588260833030917798207516
null
null
null
[ "train_2nd_stage_925" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10792207976118191647686887022489002366717099245181347029680287809293501017605214431735193545086170222601926152352776556039969863223299814405756980745795903
CO_1079220797611819164768688
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni11
Al3Ni11
A11B3
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.21428571428571427, 0.7857142857142857 ]
2
14
[ [ -0.000001, -0.000005, 4.089443 ], [ 3.771527, 2.172152, -0.000004 ], [ -2.542311, 8.775074, -0.000002 ] ]
[ [ 3.75957, 2.16195, 4.0769 ], [ 1.21633, 6.57837, 4.07695 ], [ -0.01463, 2.92916, 2.0322 ], [ 1.23346, 2.16894, 4.07685 ], [ 2.44348, 4.34461, 4.07697 ], [ -0.04568, 4.38988, 4.07699 ], [ -1.29044, 6.57709, 4.07696 ], [ -0.042, 8.76935, 4.07698 ], [ -1.24898, 9.51012, 2.03214 ], [ 2.50314, 2.91521, 2.03221 ], [ 1.23692, 5.11391, 2.0323 ], [ -1.25579, 5.16161, 2.03223 ], [ -0.051, 7.33526, 2.03226 ], [ 1.23589, 9.46117, 2.03226 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7607299138837168930451271980226206044263713611374256035139187330393145189849333451341894502251164609399228002060046061326518001608762205530347118781300455
1
VASP
DFT
null
[ [ -0.007017, 0.003083, -0.000009 ], [ -0.001941, -0.00671, 0.000039 ], [ 0.004169, 0.00108, -0.000093 ], [ -0.015234, -0.021447, 0.000153 ], [ 0.001855, 0.000097, 0.000056 ], [ -0.025726, -0.002881, -0.000031 ], [ -0.011885, -0.014252, -0.000048 ], [ -0.018522, -0.002677, -0.000236 ], [ 0.013302, 0.003233, 0.000091 ], [ 0.021235, 0.002157, -0.00009 ], [ 0.013515, 0.017055, -0.000028 ], [ 0.009291, 0.010304, 0.000027 ], [ 0.010214, 0.003214, 0.000115 ], [ 0.006744, 0.007745, 0.000052 ] ]
null
[ [ 0.0018352533433747132, 0.00013937289878097314, 3.744905475529955e-7 ], [ 0.00013937289878097314, 0.001694694557859822, 6.865660038471584e-7 ], [ 3.744905475529955e-7, 6.865660038471584e-7, 0.0003145720599445162 ] ]
true
null
null
-76.269191
null
0.014424
0.026307
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:40:34
4052345727692103529607193805027184481666776332666314389946996169059811926466540363466582270790933854300488592347930820017560630901374810542314693589840961
PO_4052345727692103529607193
null
null
null
[ "train_1st_stage_362" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5610182155133578226490511860856636493034213917120096599068689879329706937542448355230456979916505020075809558177429224426297845857162547708948759555141197
CO_5610182155133578226490511
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi6Ti3
AlNi6Ti3
A6B3C
[ 13, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.1, 0.6, 0.3 ]
3
10
[ [ -3.03406, -2.86698, 0.093741 ], [ -0.066373, 2.87817, -2.87248 ], [ 2.92676, -5.79889, -5.81965 ] ]
[ [ -0.02681, -0.01349, -0.01397 ], [ -1.56875, -1.47522, -1.42555 ], [ -1.7251, -1.40011, -4.21212 ], [ -0.05465, -2.90116, -2.87497 ], [ -1.46313, -4.40505, -4.33199 ], [ 1.49218, -4.31567, -4.31449 ], [ 1.33176, -4.31377, -7.17284 ], [ -0.04504, -0.1104, -2.97557 ], [ -0.19727, -2.73706, -5.57092 ], [ -0.04174, -5.80626, -5.75348 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4435955258394644913839547644673288200202779485943194979129913385121945636003927744592009605138854115482190029328801084866528969213435089842019712366235684
1
VASP
DFT
null
[ [ -0.065348, 0.071956, 0.070425 ], [ 0.120817, -0.118326, -0.124883 ], [ -0.073651, 0.065712, 0.057713 ], [ 0.036515, -0.019492, -0.020091 ], [ -0.100595, 0.082321, 0.084919 ], [ -0.006308, -0.079356, -0.076741 ], [ 0.096032, -0.031167, -0.025171 ], [ -0.01399, -0.055759, -0.06703 ], [ 0.105692, 0.112117, 0.139594 ], [ -0.099163, -0.028006, -0.038733 ] ]
null
[ [ -0.0009415316516394896, -0.0034044935678042816, -0.0039478169372124195 ], [ -0.0034044935678042816, -0.003984017690142542, 0.0022954398112260857 ], [ -0.0039478169372124195, 0.0022954398112260857, -0.005110984577912024 ] ]
true
null
null
-64.636909
null
0.126679
0.210223
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:15:47
4597344124713450626093723986223129371957884142815828604179596137326416763759290139526994266004260775736182231177877701841444124587152370352935240479415236
PO_4597344124713450626093723
null
null
null
[ "train_1st_stage_810" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1199675333417246477354752063924522688575155776355680991006162491258382147198760783781103603983767379599933405125732054687746122227051696693736763585914930
CO_1199675333417246477354752
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi8
NiTi8
A8B
[ 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.1111111111111111, 0.8888888888888888 ]
2
9
[ [ 6.65809, 1.80396, -0.056754 ], [ -0.056754, 1.80396, 6.65809 ], [ 6.707, 0.448618, 6.707 ] ]
[ [ 0, 0, 0 ], [ 2.22811, 0.14904, 2.22811 ], [ 4.47886, 0.29959, 4.47886 ], [ 8.88094, 2.25258, 11.1344 ], [ 4.51167, 1.95666, 6.65541 ], [ 6.65292, 2.09988, 8.79666 ], [ 11.1344, 2.25258, 8.88094 ], [ 6.65541, 1.95666, 4.51167 ], [ 8.79666, 2.09988, 6.65292 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1686975091552470041879999484411606276918607662870161851891725114185222547735817443107897342847633877851880716338447743607633721510158318682483479153651302
1
VASP
DFT
null
[ [ -0.000125, 0.000013, 0.000287 ], [ 0.15433, 0.010259, 0.153997 ], [ -0.15378, -0.010305, -0.154773 ], [ 0.153797, -0.000059, -0.155682 ], [ -0.131674, -0.004377, 0.000738 ], [ 0.00074, 0.004439, 0.131815 ], [ -0.154502, 0.000009, 0.15451 ], [ -0.000126, -0.004426, -0.132301 ], [ 0.13134, 0.004447, 0.001408 ] ]
null
[ [ -0.013103549089061828, -0.00027980685411334647, 0.000007989131681130571 ], [ -0.00027980685411334647, -0.004727006936487685, -0.0002802437597521583 ], [ 0.000007989131681130571, -0.0002802437597521583, -0.013115345541309748 ] ]
true
null
null
-68.078093
null
0.155753
0.218839
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:42:27
9889633844924104606642591544132401965075338686882387628082941362437629615876354611502129182008054830914902747364465434999969079692696570327674119121541852
PO_9889633844924104606642591
null
null
null
[ "train_2nd_stage_344" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4521814389633363434515643277057269593650747155871327739325517311772321391752481571900470513581897701079974728305162905637023821630026804142911217262086592
CO_4521814389633363434515643
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti10
AlTi5
A5B
[ 13, 13, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.16666666666666666, 0.8333333333333334 ]
2
12
[ [ 3.34305, -2.97705, 3.64396 ], [ -3.26986, -2.793, -3.84131 ], [ 4.68656, 1.68414, -5.21105 ] ]
[ [ 2.98162, -2.96856, 3.22431 ], [ 0.31308, -2.76696, -3.30381 ], [ 1.9712, -4.28289, -1.49447 ], [ 3.17051, -2.72635, -3.60879 ], [ -0.3441, -2.87738, -0.5438 ], [ 1.96146, -1.33775, -1.41915 ], [ 3.18615, 0.16772, -3.55447 ], [ 1.3235, -1.45263, 1.41498 ], [ 1.45206, -1.24205, -5.38004 ], [ 6.0198, -2.71362, -3.8714 ], [ 3.6388, -2.85813, 0.46431 ], [ 4.81075, -1.32503, -1.68176 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1685027064751113213860487651073103156615841569879276215598188450430161510133790686686312088826705832355034180148815903617934130385024986004910805026946012
1
VASP
DFT
null
[ [ -0.04245, 0.023094, 0.021698 ], [ 0.04239, -0.023179, -0.021561 ], [ 0.015098, -0.009347, -0.141034 ], [ -0.083322, -0.072684, -0.097286 ], [ -0.116413, -0.077386, 0.019513 ], [ 0.042624, 0.061745, -0.078242 ], [ -0.051365, -0.006187, 0.051166 ], [ -0.015337, 0.009511, 0.141338 ], [ 0.051573, 0.006095, -0.05127 ], [ -0.042471, -0.061601, 0.078147 ], [ 0.116617, 0.07775, -0.019417 ], [ 0.083056, 0.07219, 0.096949 ] ]
null
[ [ 0.0033232915340765407, 0.00021002678208597163, -0.007810936595586603 ], [ 0.00021002678208597163, -0.006515573791600791, 0.0005740940093987421 ], [ -0.007810936595586603, 0.0005740940093987421, 0.0004352828464390984 ] ]
true
null
null
-87.677542
null
0.110785
0.147276
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:27:37
6218430385621063966733140004167929384580234526748975045059468227242636083216905278994381829610496177650822674914145847714138246956571636841441234605066192
PO_6218430385621063966733140
null
null
null
[ "train_1st_stage_844" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13057656156225036367548449583920465016694346123325398248342985950748943533088663376734303803169027197460415019355730076881150165795240038817245385234948703
CO_1305765615622503636754844
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ti2
Al2Ti
A2B
[ 13, 13, 13, 13, 22, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
6
[ [ 2.93959, -2.57662, 0.411585 ], [ 2.06746, 1.90283, -2.84825 ], [ 6.06938, 4.1779, 1.5756 ] ]
[ [ 6.03602, 4.112, 1.51762 ], [ 4.8157, -0.45874, 0.3884 ], [ 6.72482, 1.72458, 0.42264 ], [ 4.37962, 1.78096, -1.24155 ], [ 2.55602, -0.28238, -1.13337 ], [ 6.20287, 3.84383, -1.35031 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9490821875010909837521147367493267142828369095268752170285938817839299363441876371205434916479594673572032504147119534631343127377967537528392779179576709
1
VASP
DFT
null
[ [ 0.004376, 0.005683, 0.007081 ], [ -0.001304, -0.001788, -0.002141 ], [ -0.003791, -0.004972, -0.006283 ], [ -0.001147, -0.001559, -0.001866 ], [ -0.002235, -0.002735, -0.003658 ], [ 0.004101, 0.005371, 0.006867 ] ]
null
[ [ -0.00006878143056723351, -0.0000800785620850822, 0.0001594081430750584 ], [ -0.0000800785620850822, -0.00008269999591795317, 0.00016477584092331802 ], [ 0.0001594081430750584, 0.00016477584092331802, -0.00015297938867539864 ] ]
true
null
null
-33.207905
null
0.006572
0.010079
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:28:57
12172429405874086478955851541402698768611806253218615501263403969733988667281358341618365043465112956286082844401902476520455290106443245886547020456709076
PO_1217242940587408647895585
null
null
null
[ "train_1st_stage_39" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4593386050374664517590306778747171081108961861534169208537863255188999644456431466462495314229288142340394880096329530445037278871871978336154867222823192
CO_4593386050374664517590306
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al10Ni4
Al5Ni2
A5B2
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.7142857142857143, 0.2857142857142857 ]
2
14
[ [ -4.17137, 2.28739, -0.067255 ], [ -0.191014, -5.16979, 4.23647 ], [ 2.64984, 4.92191, 4.13169 ] ]
[ [ -0.2684, 0.08126, 0.08317 ], [ 0.54855, -0.58268, 4.18385 ], [ -0.35038, 4.96878, 4.01733 ], [ 1.07223, 2.15702, 4.71317 ], [ -1.47549, -2.49966, 3.63039 ], [ -2.58661, 3.00756, 1.93679 ], [ -1.57054, 0.41869, 2.62605 ], [ -1.46842, 0.68392, 5.67495 ], [ 0.1452, 3.04195, 2.13432 ], [ -0.94475, 3.42362, 6.20427 ], [ -3.16389, -0.75893, 4.3063 ], [ -1.28963, 2.63723, 3.97192 ], [ 0.89343, 0.20371, 6.4162 ], [ 0.11786, -1.32204, 1.95013 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9628194611442907969901915153565087167454945726101037207247359633631607185614389123295123877130292238775537490068077109474490042206578050900810730939776627
1
VASP
DFT
null
[ [ -0.096623, 0.078635, -0.252374 ], [ 0.221452, -0.12121, -0.003272 ], [ -0.107622, 0.043587, 0.248713 ], [ 0.053088, -0.09638, 0.133079 ], [ 0.110117, 0.016922, -0.13329 ], [ 0.096551, -0.078012, 0.251826 ], [ -0.110163, -0.016643, 0.133495 ], [ -0.05296, 0.09652, -0.132819 ], [ 0.108031, -0.043061, -0.249264 ], [ -0.221513, 0.12158, 0.004072 ], [ 0.007397, 0.025545, -0.199854 ], [ -0.036073, -0.017827, 0.201119 ], [ 0.035867, 0.01673, -0.201173 ], [ -0.007547, -0.026387, 0.199742 ] ]
null
[ [ 0.0030236366809428855, -0.004774067915296845, 0.009282434787104839 ], [ -0.004774067915296845, -0.004053360856531105, 0.01444709634349946 ], [ 0.009282434787104839, 0.01444709634349946, 0.007845202480687702 ] ]
true
null
null
-65.022941
null
0.223078
0.281446
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:55:07
2876381322204953796669386192156167206382169941180493341622379852180175811068053573959072747437600783409212861851558256135252568007831860785601376674315123
PO_2876381322204953796669386
null
null
null
[ "train_1st_stage_922" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
102479784726567720693828751189837162742627413283328393798926475600595839598267193494109416656887051923176255766339102567378083718243585284736356995097423
CO_1024797847265677206938287
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti4
AlTi2
A2B
[ 13, 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ 0, 3.20268, -3.20268 ], [ 3.2502, -3.2502, -3.2502 ], [ -3.20268, -3.20268, 0 ] ]
[ [ -0.19228, -2.9891, -6.18104 ], [ 0.25834, -0.30714, -3.52922 ], [ -1.54607, -1.56921, -1.62741 ], [ 1.3454, -1.40275, -1.39275 ], [ 0.07828, -3.26681, -3.26051 ], [ 1.87894, -1.88579, -5.06753 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
940419155358113485675902026780974629432437808932150052590063205264382972471171537223115187469816847678880182214658893346791080537705606184486365121142790
1
VASP
DFT
null
[ [ -0.039235, -0.114392, -0.150512 ], [ -0.019628, 0.193003, 0.374495 ], [ -0.328755, -0.24657, 0.111963 ], [ 0.189423, 0.175558, -0.100023 ], [ -0.344721, 0.225178, 0.188658 ], [ 0.542917, -0.232777, -0.424582 ] ]
null
[ [ 0.0013041009167620479, -0.006093398114326048, -0.00530896524738504 ], [ -0.006093398114326048, 0.0017937473076875894, 0.004922116511762796 ], [ -0.00530896524738504, 0.004922116511762796, 0.0025552738361366055 ] ]
true
null
null
-40.579805
null
0.416351
0.727471
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:18:58
3074328209624950443743940256056364306852094931836335505922498516891008365465616466746064987909939617301026108525174524155673883551302966370023797829488844
PO_3074328209624950443743940
null
null
null
[ "train_1st_stage_1185" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12275500971793083591878280759829160814808096936802034094274382766888396530447518986639857107580768945973885417134010023630616361870707158365263075788909355
CO_1227550097179308359187828
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni2Ti3
Al3Ni2Ti3
A3B3C2
[ 13, 13, 13, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.375, 0.25, 0.375 ]
3
8
[ [ 0.326014, 4.04567, -0.301703 ], [ 3.85652, 1.254504, -6.46046 ], [ -2.793066, 0.005868, -2.937133 ] ]
[ [ 3.65718, 1.27972, -6.29807 ], [ -1.36916, 1.83269, -4.31429 ], [ 0.25418, 3.63429, -5.85393 ], [ 1.23575, 1.43782, -6.79197 ], [ 2.67561, 3.47618, -5.36013 ], [ 2.44734, 3.30184, -7.9398 ], [ 0.19038, 3.85258, -2.99659 ], [ 1.464, 1.61218, -4.21219 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6384259481762114299439957963429675767229244469271213437035315196877598775125547768887294695391996082543347543496015028814865857163129716776278871967792519
1
VASP
DFT
null
[ [ 0.008981, -0.001341, -0.009048 ], [ 0.000213, -0.000055, -0.000136 ], [ -0.009215, 0.001412, 0.009145 ], [ -0.002222, -0.000001, 0.001849 ], [ 0.001986, -0.000021, -0.00144 ], [ -0.010937, 0.001388, 0.010142 ], [ 0.000647, -0.000056, -0.000634 ], [ 0.010548, -0.001325, -0.009879 ] ]
null
[ [ -0.00023131032820523356, -0.0000300840739867573, -0.000263953420933603 ], [ -0.0000300840739867573, -0.00035227077506485107, 0.000034702790739910915 ], [ -0.000263953420933603, 0.000034702790739910915, -0.0002583360627203081 ] ]
true
null
null
-49.597458
null
0.007735
0.01498
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:24:33
9103926121673375645275369206839468067534451777079753481047312097298733638828095996639173008735449761109215175514005562125240225879451785958986943008228008
PO_9103926121673375645275369
null
null
null
[ "train_1st_stage_71" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3641434179925760955800763128692773280852264701890144596679052722737512058266556633120234136796444402688694073040068521291569720440254622629111123169328060
CO_3641434179925760955800763
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti10
Ni3Ti5
A5B3
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.375, 0.625 ]
2
16
[ [ 7.43464, 0.000012, 0 ], [ -3.71731, 6.43859, 0 ], [ 0, 0, 5.04862 ] ]
[ [ -1.50472, 2.60634, 3.78646 ], [ -2.2125, 3.83224, 1.26215 ], [ 3.00959, 0.00001, 3.78646 ], [ 1.50482, 2.60635, 1.26215 ], [ 0.70783, 6.4386, 1.26215 ], [ 2.2126, 3.83226, 3.78646 ], [ -0.88082, 1.52571, 1.26215 ], [ -2.83639, 4.91288, 3.78646 ], [ 1.76178, 0, 1.26215 ], [ 0.88092, 1.52573, 3.78646 ], [ 0.00005, 4.2924, 0 ], [ 0.00005, 4.2924, 2.52431 ], [ 3.71737, 2.1462, 5.04861 ], [ 3.71737, 2.1462, 2.52432 ], [ 5.67295, 0.00001, 3.78646 ], [ 2.8365, 4.91287, 1.26215 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4509877971049425707013777127488992529534764833375618298496243814584752167734051634253657227915503387160118171460455989800433921502558460937170275048847323
1
VASP
DFT
null
[ [ 0.016887, -0.028845, 0.000362 ], [ -0.016455, 0.028629, -0.000393 ], [ -0.033212, 0.000048, 0.000392 ], [ -0.016616, -0.028661, -0.000357 ], [ 0.033013, -0.000004, -0.000428 ], [ 0.016477, 0.028524, 0.000358 ], [ -0.161718, 0.280489, -0.000149 ], [ 0.162193, -0.280915, 0.000146 ], [ 0.324208, 0.000241, -0.000169 ], [ 0.161913, 0.280793, 0.000225 ], [ -0.00019, -0.000173, 0.000084 ], [ -0.00026, -0.000215, -0.000132 ], [ 0.000145, 0.000084, 0.000283 ], [ 0.000174, 0.000147, -0.000345 ], [ -0.324222, 0.00011, 0.000153 ], [ -0.162336, -0.280254, -0.000031 ] ]
null
[ [ 0.03274464208184756, -4.993207300706607e-7, 3.744905475529955e-7 ], [ -4.993207300706607e-7, 0.03272054985662165, 6.241509125883259e-8 ], [ 3.744905475529955e-7, 6.241509125883259e-8, 0.0746480746550162 ] ]
true
null
null
-115.281921
null
0.134044
0.324376
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:30:10
4432213233428740473150494305306720549085491761092898814856367603144015929744556693059711402551699926188748711990157272019075915570697086789198597593673362
PO_4432213233428740473150494
null
null
null
[ "train_2nd_stage_222" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7093185096873281752320445716113354391905236588117649629958222193004808590097461043879792131891917868600846402513163580220668842567978794497608418065260774
CO_7093185096873281752320445
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2
Al
A
[ 13, 13 ]
[ "Al" ]
[ 1 ]
1
2
[ [ 4.03879, 0, 0 ], [ 0, 4.03879, 0 ], [ 2.01939, 2.01939, 2.01939 ] ]
[ [ 4.03879, 3.02909, 0.50485 ], [ 2.01939, 3.02909, 1.51455 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6492595461953519075527942853433792767291419116090423737176177241694103938262261827693909987192735357158999048000749914267239700038958893419618263960411144
1
VASP
DFT
null
[ [ 0.001668, -0.001667, 0.000027 ], [ -0.001668, 0.001667, -0.000027 ] ]
null
[ [ 0.0677186263932781, 0.00007514776987563443, 0.00019267538671601618 ], [ 0.00007514776987563443, 0.06772024918565084, 0.00019267538671601618 ], [ 0.00019267538671601618, 0.00019267538671601618, 0.028479506820675234 ] ]
true
null
null
-4.500737
null
0.002358
0.002358
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:42:33
4844674063683556682156307237670009930037181458641748302320729118592587674093947466475545990065069484928854140429404774087621892518009960349202200799577220
PO_4844674063683556682156307
null
null
null
[ "train_1st_stage_2342" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7535276714941445524373896530930571752626764861005255116174660859452524327978409970486326890034654029193750344490095657936320127035461690510951235989027705
CO_7535276714941445524373896
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni4Ti4
AlNiTi
ABC
[ 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
12
[ [ 3.02354, 0, 0 ], [ 0, 5.73033, 0 ], [ 0, 0, 9.78096 ] ]
[ [ 0.75589, 3.56824, 5.88419 ], [ 2.26766, 5.02725, 0.99371 ], [ 2.26766, 2.16209, 3.89676 ], [ 0.75589, 0.70308, 8.78724 ], [ 0.75589, 0.74237, 2.49989 ], [ 2.26766, 2.12279, 7.39037 ], [ 2.26766, 4.98795, 7.28107 ], [ 0.75589, 3.60754, 2.39059 ], [ 0.75589, 0.73435, 5.826 ], [ 2.26766, 2.13082, 0.93552 ], [ 2.26766, 4.99598, 3.95496 ], [ 0.75589, 3.59951, 8.84544 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8152929537764873134487486299063211508351443526037573007541211658951456881632079837427535174617137254052474844065145063301553782892904284286732294530903183
1
VASP
DFT
null
[ [ 0.000022, 0.244929, 0.349399 ], [ -0.000021, -0.244747, 0.349449 ], [ -0.000021, -0.244837, -0.349347 ], [ 0.000022, 0.244786, -0.349551 ], [ 0.000023, -0.183332, 0.257715 ], [ -0.000022, 0.183463, 0.257594 ], [ -0.000021, 0.183253, -0.257623 ], [ 0.000022, -0.183201, -0.257493 ], [ 0.000025, -0.4133, -0.483083 ], [ -0.000023, 0.413184, -0.483186 ], [ -0.000028, 0.412994, 0.482993 ], [ 0.000022, -0.413191, 0.483132 ] ]
null
[ [ 0.024518957204846016, 6.241509125883259e-8, 6.241509125883259e-8 ], [ 6.241509125883259e-8, -0.005008186922608726, -0.000002122113102800308 ], [ 6.241509125883259e-8, -0.000002122113102800308, -0.01784459942108275 ] ]
true
null
null
-72.875816
null
0.459507
0.635759
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:25:14
5076563127474156800216751407448089571083586246185934447992159933825212540744404068731964831205865442866827386992979482111310200632399728488661881600492175
PO_5076563127474156800216751
null
null
null
[ "train_2nd_stage_283" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
625228535284716811261845054687508331570005847507313643548269323257336847197082379535950916177066435167077075205614842697013466976380416884326028819425640
CO_6252285352847168112618450
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2NiTi4
Al2NiTi4
A4B2C
[ 13, 13, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.2857142857142857, 0.14285714285714285, 0.5714285714285714 ]
3
7
[ [ 1.70085, -2.94597, 0 ], [ 1.70085, 2.94597, 0 ], [ 0, 0, 11.257 ] ]
[ [ 1.70085, 0.98218, 2.41463 ], [ 1.70085, -0.98218, 8.84238 ], [ 0, 0, 5.6285 ], [ 1.70085, 0.98218, 9.76996 ], [ 1.70085, -0.98218, 1.48705 ], [ 1.70085, 0.98218, 4.48592 ], [ 1.70085, -0.98218, 6.77109 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3309629225824095984341320995814436387655900746103061727401722065022560214111196857899324890961811351163805302108801639203975600441079981874637097701448048
1
VASP
DFT
null
[ [ 0.000003, -0.005744, -1.071938 ], [ -0.000003, 0.005737, 1.072444 ], [ -0.000002, -0.000008, 0.000191 ], [ 0.000007, -0.005468, 6.192964 ], [ 0.000008, 0.005477, -6.193774 ], [ 0.000002, -0.000125, 3.870112 ], [ -0.000016, 0.000131, -3.869999 ] ]
null
[ [ 0.14670985517354018, -1.2483018251766518e-7, 6.241509125883259e-8 ], [ -1.2483018251766518e-7, 0.14650082703291434, -0.00005542460103784333 ], [ 6.241509125883259e-8, -0.00005542460103784333, 0.22505914474020516 ] ]
true
null
null
-31.179592
null
3.181637
6.193776
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:07:11
9885027315397547571676649695436159377577906640506107763758406619302388332465170249642078379480999405891950035560167873106015068119232567516993035121074728
PO_9885027315397547571676649
null
null
null
[ "train_1st_stage_2368" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5483012016209439604863664185347219142615141192142750042502554419020204813542633368388631496562332702265803808230058758267320253703224899236840259101256561
CO_5483012016209439604863664
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti5
Ni4Ti5
A5B4
[ 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.4444444444444444, 0.5555555555555556 ]
2
9
[ [ -0.10558, 1.96103, 1.93536 ], [ 5.14477, 0.108534, -1.79338 ], [ 0.191739, 6.0146, -6.08388 ] ]
[ [ 0.02287, 0.0893, -0.08924 ], [ 1.70264, 1.92354, 0.10792 ], [ 1.73778, 4.09404, -2.08944 ], [ 0.17947, 3.93339, -3.97575 ], [ 3.39487, 2.12438, -1.96733 ], [ 0.28643, 2.00255, -2.01346 ], [ 3.53101, 4.06799, -3.92929 ], [ 1.63082, 6.02489, -4.05174 ], [ 3.66715, 6.01159, -5.89125 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3367543647553277019832485430532886188012761974618758680857657039856205320378857711098480559442467098593446968048769367039007596335422004141560580534585362
1
VASP
DFT
null
[ [ -0.251214, 0.022348, -0.036337 ], [ 0.250599, -0.021738, 0.035378 ], [ 0.339173, -0.077178, 0.096901 ], [ -0.339389, 0.076571, -0.096674 ], [ -0.482696, -0.728886, 0.71273 ], [ 0.645982, -0.149417, 0.184933 ], [ 0.000432, 0.000275, -0.000141 ], [ -0.645682, 0.14972, -0.184989 ], [ 0.482796, 0.728306, -0.711801 ] ]
null
[ [ 0.043781253008781884, -0.003086051772201718, 0.0028073683897310306 ], [ -0.003086051772201718, 0.03796847314475555, 0.01163748101048311 ], [ 0.0028073683897310306, 0.01163748101048311, 0.03798264137047131 ] ]
true
null
null
-62.790398
null
0.540333
1.127942
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:35:18
9682242951197411064837486778233630946067407064537907346790372767790491539321567093108522437175120768148940458911630759036577356707113905998579999712661334
PO_9682242951197411064837486
null
null
null
[ "train_2nd_stage_659" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11439530180812863124601814422761284303664264699548967667791416828309982805806450467873858436949431289483470209801413539788852077872552791188232565197893313
CO_1143953018081286312460181
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2
Ni
A
[ 28, 28 ]
[ "Ni" ]
[ 1 ]
1
2
[ [ 2.43011, 0, 0 ], [ -1.21505, 2.10453, 0 ], [ 0, 0, 4.12415 ] ]
[ [ 2.4301, 0, 0 ], [ 1.21505, 0.70151, 2.06208 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3053208652969810730326316569120372158663470983697842235448866285592437279235110761536889208656441127894216182916572114793313943255149296177529290493313864
1
VASP
DFT
null
[ [ 0.000007, 0.00001, 0.000048 ], [ -0.000007, -0.00001, -0.000048 ] ]
null
[ [ -0.0062850124444906634, 0.000001747622555247312, 0 ], [ 0.000001747622555247312, -0.0062839513879392635, 0 ], [ 0, 0, -0.0009329183690457705 ] ]
true
null
null
-10.753812
null
0.00005
0.00005
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:51:34
1659586298761762513094235966406403996894478043523556216813074971511262648868186721393656205077212254009941258665952153594496293808570264972402344775551438
PO_1659586298761762513094235
null
null
null
[ "train_1st_stage_419" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
355621065126368019318862535794485656958633420240362363842619693136941592382942466126160624434864073829263526843302673454503227267508833938330841772734475
CO_3556210651263680193188625
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi8Ti3
AlNi8Ti3
A8B3C
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.08333333333333333, 0.6666666666666666, 0.25 ]
3
12
[ [ 3.616412, -0.510008, -0.000004 ], [ -1.035513, 5.734802, 3.591196 ], [ 1.035518, -5.734826, 3.591196 ] ]
[ [ 1.85428, 0.05434, 1.79786 ], [ 1.08157, -5.4255, 3.65294 ], [ 0.04606, 0.30932, 3.53395 ], [ 3.14537, -3.86849, 3.63375 ], [ 2.10985, 1.86632, 3.55317 ], [ 1.59875, -1.7576, 3.55322 ], [ 0.56323, 3.9772, 3.63368 ], [ 0.29636, 2.08471, 5.38907 ], [ 3.41223, -1.97597, 5.38904 ], [ 1.85427, 0.05428, 5.38904 ], [ 0.32933, 2.31749, 1.79785 ], [ 3.37926, -2.20871, 1.79787 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1369566052402208498898349370118109164367556556443205621560983470695429181910482537672151646631555055995465809279884950382100237057318534881247305690066249
1
VASP
DFT
null
[ [ -0.000061, 0.000163, -0.00017 ], [ 0.000104, 0.000273, -0.012815 ], [ 0.00015, 0.000395, 0.013047 ], [ 0.000319, 0.003911, -0.005254 ], [ 0.000345, 0.004064, 0.005323 ], [ -0.000221, -0.004131, 0.004948 ], [ -0.00022, -0.004093, -0.004771 ], [ -0.004991, -0.035153, -0.00004 ], [ 0.00483, 0.034834, -0.000153 ], [ -0.000018, 0.000584, 0.00019 ], [ 0.001084, 0.012892, 0.000225 ], [ -0.001321, -0.01374, -0.000531 ] ]
null
[ [ 0.001946789111454247, -0.00002328082903954455, -6.241509125883259e-8 ], [ -0.00002328082903954455, 0.0018195247403774873, -6.865660038471584e-7 ], [ -6.241509125883259e-8, -6.865660038471584e-7, 0.0016812128981479142 ] ]
true
null
null
-76.963734
null
0.012513
0.035506
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:42:28
7035340818997319298134022892135421605747846680017250126179003815026651395958829742664593106137557463045244829471968604711487916779849922108530065154931534
PO_7035340818997319298134022
null
null
null
[ "train_1st_stage_319" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3916058864903312892581190102520719568029932593452278987586920292524095310191228787275383780809359218454082868859071839816546566344984410959301719007143905
CO_3916058864903312892581190
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi3Ti2
AlNi3Ti2
A3B2C
[ 13, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.5, 0.3333333333333333 ]
3
6
[ [ -4.04061, 2.40051, 0.237019 ], [ 0.084598, -4.94765, -0.151846 ], [ -1.40847, 2.32583, 4.13721 ] ]
[ [ -5.34833, 0.60385, 4.24647 ], [ -1.96185, -0.4484, 0.06668 ], [ -1.91955, -2.92223, -0.00924 ], [ -2.62379, -1.75932, 2.05936 ], [ -1.37597, 0.72324, 2.56957 ], [ -3.95621, 0.70578, 1.70098 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10584695154820444292987288113627550159057760501455247371153494057662458433385115559896880378552123716390557004980606746231154379338470449375123606203208079
1
VASP
DFT
null
[ [ 0.000226, 0.00002, -0.000033 ], [ 0.000033, -0.000132, 0.000177 ], [ 0.000075, 0.000091, 0.000137 ], [ 0.000119, 0.00003, -0.000055 ], [ 0.278478, 0.003115, 0.094505 ], [ -0.278932, -0.003123, -0.094732 ] ]
null
[ [ 0.020382958767488215, 0.00019354919799363982, 0.011311237328473193 ], [ 0.00019354919799363982, -0.013244295119850497, 0.00008731871267110679 ], [ 0.011311237328473193, 0.00008731871267110679, -0.009459631231188667 ] ]
true
null
null
-38.426594
null
0.098243
0.294596
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:48:54
12169888082928369650938607595535350266318801358953143597624706005695490142573603989485446282692896176760866755370616143856285603700691927805214474203483654
PO_1216988808292836965093860
null
null
null
[ "train_2nd_stage_813" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4904434426294656212192445617097122012249678858903280820599184870728772571563805567064669416591894044187275920899687154382228936125802196803909685937295126
CO_4904434426294656212192445
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti
Al2Ti
A2B
[ 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.6666666666666666, 0.3333333333333333 ]
2
3
[ [ 1.88366, -3.26259, 0 ], [ 1.88366, 3.26259, 0 ], [ 0, 0, 4.0834 ] ]
[ [ 1.88366, 1.08753, 2.0417 ], [ 1.88366, -1.08753, 2.0417 ], [ 0, 0, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2427574458183146531902425250128227029160018787095047585236390056674702106537369668315472275014795034312705175939996763433682616393717086348911024512158607
1
VASP
DFT
null
[ [ 0, 0.000043, 0 ], [ 0, -0.000044, 0.000001 ], [ 0, 0.000001, -0.000001 ] ]
null
[ [ 0.06673746115868925, -6.241509125883259e-8, 1.8724527377649775e-7 ], [ -6.241509125883259e-8, 0.06673852221524065, -1.2483018251766518e-7 ], [ 1.8724527377649775e-7, -1.2483018251766518e-7, -0.04032564148123663 ] ]
true
null
null
-13.797082
null
0.000029
0.000044
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:26:58
6301924840611327323721309577990086440343439073958976066715173766863947895916998111047277041053234700911103767732226713409193371296544000967107897557606114
PO_6301924840611327323721309
null
null
null
[ "train_1st_stage_2167" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1794169450370786826795684803079277987124392884234304622423259929622688687987325428554656923300426136662588415151358318135747087093000609433847477297041938
CO_1794169450370786826795684
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi4
NiTi4
A4B
[ 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.2, 0.8 ]
2
5
[ [ 6.23701, 0.007234, 0.012071 ], [ 0.005018, 6.23949, 0.012013 ], [ 3.11558, 3.1113, 1.92059 ] ]
[ [ 6.24202, 6.24673, 0.02409 ], [ 5.12732, 3.84515, 0.01747 ], [ 4.23028, 5.51288, 1.92721 ], [ 3.83478, 1.11772, 0.01956 ], [ 5.52282, 8.24031, 1.92512 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4038145050901895833859839528943469936366278598170587633270775436221048301388388638222331603356134797892331974089928489717146377347112895953573674368951188
1
VASP
DFT
null
[ [ -0.000024, -0.000127, -0.00001 ], [ -1.005316, 0.783608, 0.002957 ], [ 1.004672, -0.783722, -0.002941 ], [ 0.824009, 1.008223, -0.107258 ], [ -0.823341, -1.007982, 0.107251 ] ]
null
[ [ 0.020441753783454034, -0.00016958180295024812, 0.00000193486782902381 ], [ -0.00016958180295024812, 0.019945116902307502, 0.0004836545421646937 ], [ 0.00000193486782902381, 0.0004836545421646937, 0.031002886545178576 ] ]
true
null
null
-36.756405
null
1.032284
1.306525
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:29:27
11235622051879909065526371496938135625725848979461714104979027160027444375915513224594240730557789105692377468387385588216997475485991331265104994147856985
PO_1123562205187990906552637
null
null
null
[ "train_1st_stage_2196" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7396848590248544709669280963704054423085545390933437355582117415571026365102282707415416274231254676956974537682032205748309293906402951992493050332994920
CO_7396848590248544709669280
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni6Ti6
NiTi
AB
[ 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
12
[ [ 2.47399, 0.127157, 4.04324 ], [ 3.07248, 5.78279, 0.71865 ], [ -2.55794, 4.37564, 4.20807 ] ]
[ [ 4.84805, 5.33195, 4.8119 ], [ 2.53264, 5.96671, 4.6173 ], [ 0.61687, 4.5556, 4.2425 ], [ -0.07251, 6.9958, 4.78872 ], [ 1.48523, 2.12461, 3.98877 ], [ 3.18955, 9.00007, 6.90046 ], [ 2.06007, 8.38602, 4.83036 ], [ 0.94682, 0.75197, 1.68586 ], [ 1.18813, 6.4536, 2.64415 ], [ 1.01507, 5.55693, 6.84403 ], [ 3.11726, 3.9976, 3.03625 ], [ 0.30422, 3.55868, 1.7808 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4727678712866415874252296093806178461356804013265996591567125296967580580866069340822888365337990937662594756001098606626683077343722135035269937505732411
1
VASP
DFT
null
[ [ 0.115568, 0.006374, 0.189748 ], [ -0.034686, 0.177476, 0.015516 ], [ -0.116215, -0.005983, -0.189313 ], [ -0.084858, -0.021406, 0.052092 ], [ 0.084103, 0.02083, -0.051956 ], [ 0.034547, -0.177882, -0.015615 ], [ -0.107494, 0.55537, 0.048246 ], [ 0.260808, 0.051087, -0.159839 ], [ 0.109007, -0.553773, -0.048617 ], [ -0.255775, -0.078703, 0.157512 ], [ -0.258924, -0.050014, 0.161796 ], [ 0.253919, 0.076625, -0.159571 ] ]
null
[ [ -0.007348690429723689, 0.0035857469928199316, 0.006804680494311705 ], [ 0.0035857469928199316, -0.027995602618145505, -0.0011925027335912552 ], [ 0.006804680494311705, -0.0011925027335912552, -0.00021227372537128958 ] ]
true
null
null
-83.937905
null
0.282044
0.567731
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:52:01
12354048243324281192419816903648087378236370033325832189778654123666490622584827551715332450186768491278806595369311793849592362230364810288673876831026377
PO_1235404824332428119241981
null
null
null
[ "train_2nd_stage_872" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11509443011437561653683782282249519588188099289776094109939004364993007223850621715827374658450058141441789780150620101102992496277234030730135830237568615
CO_1150944301143756165368378
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni6Ti3
AlNi2Ti
A2BC
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5, 0.25 ]
3
12
[ [ 3.96015, 2.28102, -0.274945 ], [ -0.086278, 4.37773, 4.0324 ], [ -0.046275, -4.5697, 3.99163 ] ]
[ [ 3.40513, 1.59106, 7.53491 ], [ 2.38743, 3.58442, 2.0251 ], [ 2.43431, 2.88135, 5.39778 ], [ 3.57302, 2.12244, 3.65902 ], [ 1.54634, -2.2972, 4.04415 ], [ 1.22317, 2.41409, 3.97572 ], [ 2.99705, -0.72369, 3.53258 ], [ 2.58631, 4.34147, 4.20774 ], [ 0.23376, -1.58712, 5.92055 ], [ 0.92719, 1.42515, 2.09229 ], [ 1.97936, 0.35248, 5.53994 ], [ 3.87711, 0.61839, 2.27947 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1152101280303681935221683196085758902841082108259127488767009161994085459631389893341419696350550265814922668398466895228975988016025288842914054089272687
1
VASP
DFT
null
[ [ 3.838135, 0.677733, 0.154403 ], [ 9.8458, -31.055466, 11.053051 ], [ 2.043653, -3.061465, 9.19792 ], [ 1.105398, 0.938677, 0.300126 ], [ -2.709186, -0.460266, -0.08628 ], [ -3.664341, -1.96153, -0.733416 ], [ -0.238295, 1.753429, 2.523995 ], [ -0.393345, 4.09821, -2.93578 ], [ -4.962909, 13.272405, -3.426348 ], [ 6.063066, -16.854315, 0.349782 ], [ -12.587083, 31.558481, -11.500916 ], [ 1.659107, 1.094108, -4.896537 ] ]
null
[ [ 0.24889815194087744, -0.08180290381128996, 0.027743508064551083 ], [ -0.08180290381128996, 0.6051875850715198, -0.11742026288341655 ], [ 0.027743508064551083, -0.11742026288341655, 0.2579361692306127 ] ]
true
null
null
-47.653766
null
11.537338
35.869813
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:16:06
4456235668799499224661950377836742714054730879683999944762788479794627737681740128287281118221808726641969472603229353484250080014537202280668668044417297
PO_4456235668799499224661950
null
null
null
[ "train_1st_stage_1662", "train_1st_stage_1262", "train_1st_stage_1462", "train_1st_stage_1862" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
410141774494878430924164677853271873756732564297886615571523273667672216993351580969725464129061936986196588181639002564040715510126561871141818131130680
CO_4101417744948784309241646
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni2Ti2
Al5Ni2Ti2
A5B2C2
[ 13, 13, 13, 13, 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5555555555555556, 0.2222222222222222, 0.2222222222222222 ]
3
9
[ [ 0.002376, 1.9612, 2.07633 ], [ 2.84755, -0.165254, 0.147147 ], [ 2.52188, 12.2519, -9.78566 ] ]
[ [ 2.51189, 12.1487, -9.68666 ], [ 1.55683, 2.26271, -0.19808 ], [ 1.83072, 5.09791, -2.91926 ], [ 2.03436, 7.20573, -4.94237 ], [ 2.238, 9.31354, -6.96549 ], [ 3.35783, 7.05318, -2.82233 ], [ 3.56082, 9.15422, -4.83894 ], [ 3.11702, 4.56049, -0.42985 ], [ 3.80163, 11.6469, -7.23142 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11510102283136719989808581460256048043143534798038814118158130874916077595521735288174169222823767864403243348913649115218634156740905966525829131453486237
1
VASP
DFT
null
[ [ 0.026167, -0.033712, 0.075809 ], [ -0.026084, 0.0338, -0.075705 ], [ -0.002142, 0.031156, -0.037643 ], [ 0.000056, 0.000045, -0.000029 ], [ 0.002232, -0.031162, 0.03778 ], [ -0.004484, -0.037773, 0.035027 ], [ 0.004226, 0.037663, -0.035235 ], [ -0.006319, -0.034264, 0.028398 ], [ 0.006348, 0.034248, -0.028402 ] ]
null
[ [ -0.006243506408803542, -0.00326399719738065, 0.0020901565760757853 ], [ -0.00326399719738065, -0.006777467514522853, -0.003107023242864686 ], [ 0.0020901565760757853, -0.003107023242864686, 0.0012894333703162223 ] ]
true
null
null
-49.549787
null
0.051697
0.086995
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:52:56
6267403594417761888765519087668276705432733952962213157849121479139647748805335424768228997490124528028438992542440398401168934711376479500014161187435525
PO_6267403594417761888765519
null
null
null
[ "train_1st_stage_676" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6109244245402575435001381547965737469262563031436997922364761652606759466300690168356026416187042098479326655421737359427270271993704233084447296918075027
CO_6109244245402575435001381
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni8Ti2
AlNi4Ti
A4BC
[ 13, 13, 28, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.16666666666666666, 0.6666666666666666, 0.16666666666666666 ]
3
12
[ [ 0, 0, 3.75422 ], [ 4.80486, 1.57957, 0 ], [ -4.04573, 6.63252, 0 ] ]
[ [ 3.7232, 1.89514, 0 ], [ -1.49126, 6.72724, 1.87711 ], [ 1.30729, 1.07597, 0 ], [ -1.59546, 2.77448, 0 ], [ 0.82051, 3.6051, 0 ], [ -2.36325, 5.16593, 0 ], [ 0.02421, 6.00479, 0 ], [ 2.38853, 2.67667, 1.87711 ], [ -0.79506, 4.39361, 1.87711 ], [ 0.92686, 7.6513, 1.87711 ], [ 0.01868, 2.11994, 1.87711 ], [ 1.59054, 5.18243, 1.87711 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3547572301913862163467938017487440383999640822572957985490528647840538961825770910591581274915302831891236213282252363353531067566723159010852770547541337
1
VASP
DFT
null
[ [ -0.182354, -0.368263, -0.000001 ], [ 0.198233, 0.134517, 0 ], [ 0.022448, -0.061837, -0.000001 ], [ 0.136108, 0.198299, 0 ], [ -0.060431, -0.247601, -0.000001 ], [ -0.047745, 0.119493, 0 ], [ -0.025175, -0.053835, 0 ], [ 0.125405, 0.201789, -0.000001 ], [ 0.019207, -0.085301, 0 ], [ -0.07342, 0.153571, -0.000001 ], [ -0.311962, -0.151768, 0.000003 ], [ 0.199687, 0.160936, 0.000001 ] ]
null
[ [ -0.003919730146145945, 0.0006421888739621284, -1.2483018251766518e-7 ], [ 0.0006421888739621284, 0.0047908575748454715, -1.2483018251766518e-7 ], [ -1.2483018251766518e-7, -1.2483018251766518e-7, 0.005599133006647353 ] ]
true
null
null
-72.699033
null
0.208201
0.410939
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:08:14
1560412844744724741411393334561545065121312882947892559780772083544284608764105332840376563092639505134288509604503746636169182369380464609245907429183129
PO_1560412844744724741411393
null
null
null
[ "train_1st_stage_863" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11979279535301786512899633663463200062957400310839309728522214381259999099762673478187784529985365280735534878264925247276971002874149076871865978490707387
CO_1197927953530178651289963
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni3Ti3
Al4Ni3Ti3
A4B3C3
[ 13, 13, 13, 13, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4, 0.3, 0.3 ]
3
10
[ [ -1.43147, 1.43156, 2.02447 ], [ 1.43156, -1.43147, 2.02447 ], [ 12.0112, 12.0112, -0.000467 ] ]
[ [ 0.19023, 0.19023, 0 ], [ 2.21209, 2.2121, 4.04884 ], [ 5.79764, 5.79764, 2.02422 ], [ 8.61589, 8.61589, 2.02415 ], [ 1.20116, 1.20116, 2.02442 ], [ 4.7953, 4.7953, 4.04872 ], [ 9.61823, 9.61823, -0.00034 ], [ 3.61801, 3.61801, 2.0243 ], [ 7.20673, 7.20673, -0.00028 ], [ 10.7955, 10.7955, 2.02407 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7961429845703632857345122571362583315387069552402944294015132152440136283963628852814466229008377078800121615683385119625838390287244047858055067863548836
1
VASP
DFT
null
[ [ -0.257239, -0.257231, -0.000021 ], [ 0.256624, 0.256564, -0.00001 ], [ 0.128904, 0.128904, 0.000013 ], [ -0.12898, -0.12898, 0.00003 ], [ 0.0003, 0.000328, 0.000012 ], [ -0.082296, -0.082297, 0.000062 ], [ 0.082463, 0.082464, -0.000091 ], [ -0.087819, -0.087796, 0.000033 ], [ 0.000174, 0.000177, -0.000023 ], [ 0.087869, 0.087867, -0.000006 ] ]
null
[ [ -0.004797473574518907, -0.0002837390048626529, 0.000001747622555247312 ], [ -0.0002837390048626529, -0.004797411159427649, 0.0000018100376465061448 ], [ 0.000001747622555247312, 0.0000018100376465061448, -0.0045122990225573015 ] ]
true
null
null
-59.924199
null
0.157351
0.363785
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:27:01
12077498407246172357013233363643982222361510666894939110628955414771669678809887741208957221656888432967225440087507599168032834219142955794995309234399895
PO_1207749840724617235701323
null
null
null
[ "train_1st_stage_572" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3252086410953964368816444886919070272958048159737459725611333262530206151983327726242481071623236578591234675748508670744599450475631402698047707611858500
CO_3252086410953964368816444
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ni2
Al4Ni
A4B
[ 13, 13, 13, 13, 13, 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.8, 0.2 ]
2
10
[ [ -5.296346, 3.04916, 1.033219 ], [ -2.733731, -4.503934, 4.234625 ], [ -1.438127, 2.502356, 3.935817 ] ]
[ [ -8.09139, -1.08464, 5.72535 ], [ -4.59441, 2.99486, 4.18622 ], [ -3.69858, 0.25248, 4.67314 ], [ -6.9562, 1.20666, 4.62056 ], [ -5.49263, -0.84215, 6.31383 ], [ -1.86303, 0.91941, 2.56607 ], [ -4.95801, 1.04181, 2.35895 ], [ -7.5313, 1.25283, 7.39963 ], [ -4.15568, -2.21801, 4.68924 ], [ -5.03551, 1.62836, 6.29774 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9248889367793624031131537065324076592585540816099768764427967299576763929323248385291028883462345911049395342551940127663674146445896266750347998543097788
1
VASP
DFT
null
[ [ -0.014242, -0.000472, 0.009076 ], [ -0.009989, 0.003233, 0.003187 ], [ 0.001754, 0.004787, 0.006918 ], [ -0.000694, -0.007051, 0.011924 ], [ -0.00158, -0.005043, -0.007071 ], [ 0.010142, -0.002969, -0.003271 ], [ 0.013996, 0.000641, -0.008946 ], [ 0.000518, 0.006968, -0.012108 ], [ 0.000795, 0.007864, -0.014371 ], [ -0.0007, -0.007957, 0.014661 ] ]
null
[ [ 0.0008510921844054411, 0.00007308807186409295, 0.00019535923564014597 ], [ 0.00007308807186409295, 0.0009978924790462152, -0.00004493886570635946 ], [ 0.00019535923564014597, -0.00004493886570635946, 0.0010694201736288374 ] ]
true
null
null
-43.750469
null
0.013392
0.016895
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:23:18
3185355657807567364919503726859250106613117341649259232938145663877974191017769839947974438723239556232708333682617770632534575112821031764231851910138034
PO_3185355657807567364919503
null
null
null
[ "train_1st_stage_349", "train_1st_stage_366" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6424204353083456197874283208738970962053025774763218393368397314157744388547141692966002810009132596926695601215166867197305725199480813885918065988319218
CO_6424204353083456197874283
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni5Ti4
Al3Ni5Ti4
A5B4C3
[ 13, 13, 13, 28, 28, 28, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.4166666666666667, 0.3333333333333333 ]
3
12
[ [ -4.25603, 2.28487, 0.257448 ], [ -4.27893, -7.4061, -0.088528 ], [ -1.28618, 2.30551, 4.08513 ] ]
[ [ -4.16411, -6.59012, -0.02911 ], [ -3.41802, 1.83279, 4.15619 ], [ -5.66467, 0.54407, 4.16784 ], [ -3.50124, -0.59001, 4.04598 ], [ -7.6855, -0.72783, 4.24065 ], [ -6.32753, -5.45604, 0.09275 ], [ -6.97087, -4.30269, 2.13605 ], [ -2.8579, -1.74335, 2.00268 ], [ -1.33804, 0.79163, 2.50839 ], [ -4.21181, 0.56841, 1.71887 ], [ -5.65169, -1.86481, 2.63329 ], [ -4.17709, -4.18124, 1.50544 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9911944389690113294680591245351903156733949722634761435419184322708073265304665868326781276231533178594170758337047336682552418537283822071716303510585111
1
VASP
DFT
null
[ [ -0.114695, -0.051928, -0.007384 ], [ 0.000189, 0.000327, -0.000345 ], [ 0.11423, 0.052118, 0.007031 ], [ -0.042553, -0.029639, -0.096949 ], [ 0.000622, 0.000198, 0.000018 ], [ 0.042722, 0.029277, 0.097408 ], [ 0.084186, -0.053773, -0.039671 ], [ -0.084163, 0.053316, 0.040452 ], [ 0.072212, 0.1557, -0.069426 ], [ -0.072109, -0.155448, 0.069208 ], [ -0.109135, -0.146623, 0.056554 ], [ 0.108492, 0.146475, -0.056896 ] ]
null
[ [ 0.008389898982103534, 0.004197040396608938, 0.0031289309398965363 ], [ 0.004197040396608938, -0.003871046374964056, 0.0016348384853426018 ], [ 0.0031289309398965363, 0.0016348384853426018, -0.004774442405844398 ] ]
true
null
null
-75.568514
null
0.120046
0.19133
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:26:12
100134127753077542239714211095682800049304768261841510043971626374342584040112424242451848638677757686378584393573942286111133177181815598017923604135865
PO_1001341277530775422397142
null
null
null
[ "train_1st_stage_1074", "train_1st_stage_872" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5244743238456022327750678271049131736796432522730900981765861102301410282487663764745633579975210880728857644354840375871634486187826906217961749792965404
CO_5244743238456022327750678
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni2Ti2
Al3NiTi
A3BC
[ 13, 13, 13, 13, 13, 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.6, 0.2, 0.2 ]
3
10
[ [ 3.97289, 0, 0 ], [ 0, 0.074761, -3.99579 ], [ 0, 9.20599, -1.8218 ] ]
[ [ 0, 8.85602, -1.82855 ], [ 1.98645, 1.73468, -3.96397 ], [ 0, 3.8428, -3.92335 ], [ 1.98645, 5.94069, -3.883 ], [ 1.98645, 8.92712, -3.82569 ], [ 1.98645, 3.80057, -1.92562 ], [ 0, 7.48051, -3.85363 ], [ 1.98645, 7.39802, -1.85646 ], [ 0, 1.94353, -1.96141 ], [ 0, 5.64842, -1.8902 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12929399960999665428966288488378817646822543227990329210309148529444451177002908766859440769150017311866446541452043883441330595633967963421074789454746465
1
VASP
DFT
null
[ [ 0.000037, 0.169124, 0.000493 ], [ -0.000026, 0.15884, 0.00482 ], [ 0.000024, 0.045414, 0.000662 ], [ -0.000037, -0.033398, -0.002348 ], [ -0.000033, 0.190058, 0.00256 ], [ -0.000044, 0.118003, 0.001722 ], [ 0.000035, 0.225168, 0.005475 ], [ -0.000027, -0.315615, -0.00634 ], [ 0.00003, -0.789918, -0.014369 ], [ 0.00004, 0.232324, 0.007325 ] ]
null
[ [ -0.0003911553769191038, 0, -6.241509125883259e-8 ], [ 0, -0.007833905349169855, -0.00003570143220005224 ], [ -6.241509125883259e-8, -0.00003570143220005224, 0.006500843830063707 ] ]
true
null
null
-53.738175
null
0.227843
0.790049
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:20:49
10651379146354885942680673804926167117266942685016681666316115054847683575952569458376276218770020159992690827417022483854211650419445430953769168069201054
PO_1065137914635488594268067
null
null
null
[ "train_1st_stage_732" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10708780208923633322778164842067406961160586485767304034347148676076933511996635287109528993493501286611847024255424311280855989070755983546779059730594667
CO_1070878020892363332277816
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ti6
AlTi3
A3B
[ 13, 13, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.25, 0.75 ]
2
8
[ [ 5.14447, 0, 0 ], [ 0, 5.14447, 0 ], [ 0, 0, 5.14447 ] ]
[ [ 0, 0, 0 ], [ 2.57224, 2.57224, 2.57224 ], [ 1.28612, 2.57224, 0 ], [ 3.85835, 2.57224, 0 ], [ 0, 1.28612, 2.57224 ], [ 0, 3.85835, 2.57224 ], [ 2.57224, 0, 1.28612 ], [ 2.57224, 0, 3.85835 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12516322627287443139770375590257442847032065567394880303821025674915968820055760313288547131873404303788979306631060455657043330614439600942345260940217637
1
VASP
DFT
null
[ [ -0.000058, 0.000565, 0.000757 ], [ 0.000043, -0.000551, -0.000956 ], [ 0.000192, -0.000541, 0.000983 ], [ -0.000112, -0.00045, 0.000931 ], [ 0.000053, -0.000287, -0.000982 ], [ 0.00001, 0.000394, -0.000701 ], [ 0.000099, 0.000502, -0.000065 ], [ -0.000226, 0.000369, 0.000033 ] ]
null
[ [ 0.011364165325860683, 1.2483018251766518e-7, 0.0000012483018251766516 ], [ 1.2483018251766518e-7, 0.01139262660747471, 6.241509125883259e-8 ], [ 0.0000012483018251766516, 6.241509125883259e-8, 0.011420463738176151 ] ]
true
null
null
-56.18841
null
0.000876
0.001138
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:35:46
707147684080319300536498418867229522503384602091434225301455008033862702621347140846254998133812263671904512127946528679119067845747847397710567296378214
PO_7071476840803193005364984
null
null
null
[ "train_2nd_stage_324" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
507280671483349523086534045695728959350914768549981931650786103628442989160421653417710468090783000167571021617406091035249843048770804888539321514405065
CO_5072806714833495230865340
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni3Ti7
Ni3Ti7
A7B3
[ 28, 28, 28, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3, 0.7 ]
2
10
[ [ 1.79803, 2.84026, 2.39307 ], [ 6.86487, 0.633234, -2.35197 ], [ -0.115032, 3.65159, -4.24757 ] ]
[ [ 1.77664, 6.0129, -1.35641 ], [ 4.16137, 3.25582, 0.12415 ], [ 6.43106, 4.15032, -2.64286 ], [ 2.24831, 1.45223, 0.14465 ], [ 4.27639, 2.21915, -2.28941 ], [ 6.74172, 1.914, -3.77956 ], [ 1.70829, 3.43745, -1.80584 ], [ 4.10385, 5.08161, -1.99964 ], [ 4.70138, 3.88552, -4.5865 ], [ 6.64785, 2.39061, -0.71717 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10297514538929068206046726499941590713087968198730061626370012581645498689565458406609033444797431729873444985162178170020751265243649737606080701599500526
1
VASP
DFT
null
[ [ -0.073805, 0.25202, -0.244238 ], [ 0.000084, -0.000355, 0.000202 ], [ 0.073924, -0.251952, 0.244131 ], [ 0.253453, 0.030831, -0.228152 ], [ -0.25349, -0.030872, 0.227718 ], [ 0.165631, -0.076095, -0.033869 ], [ 0.010675, -0.026235, 0.022994 ], [ 0.000294, -0.000097, -0.000178 ], [ -0.010982, 0.026005, -0.022908 ], [ -0.165784, 0.076751, 0.034301 ] ]
null
[ [ 0.02615254738836344, -0.00925347418476074, 0.006350673120494956 ], [ -0.00925347418476074, 0.026191556820400207, -0.00038322866032923205 ], [ 0.006350673120494956, -0.00038322866032923205, 0.01570463560218242 ] ]
true
null
null
-72.812926
null
0.18466
0.358627
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:59:54
12229979111484177585465197855907635179200539070728798032475423795095225073009293040554995423656325284093780747619047977491445063730891092991600101603300670
PO_1222997911148417758546519
null
null
null
[ "train_1st_stage_476" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12102332087084925016311250047689162593407327054779627605312720855425596399172932569035938941716312457161478417593700765107626629986627983538551870430602321
CO_1210233208708492501631125
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni2Ti2
Al2NiTi
A2BC
[ 13, 13, 13, 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5, 0.25, 0.25 ]
3
8
[ [ 3.88047, 0, 0 ], [ 0, 4.9561, 0 ], [ 0, 0, 6.16574 ] ]
[ [ 1.94023, 0, 0 ], [ 1.94023, 2.47805, 0 ], [ 1.94023, 1.23902, 3.80706 ], [ 1.94023, 3.71707, 2.35868 ], [ 0, 1.23902, 5.35652 ], [ 0, 3.71707, 0.80922 ], [ 0, 1.23902, 1.87809 ], [ 0, 3.71707, 4.28765 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
672683349524126463482981182770488496502050122295721925297598731075176159539353037850852949996054815349926085689039310184650330908112593731313921537396210
1
VASP
DFT
null
[ [ 0.000049, 0.000117, -0.000067 ], [ 0.000048, -0.000172, -0.000106 ], [ 0.000032, 0.000006, -0.289403 ], [ 0.000033, 0.000005, 0.289677 ], [ -0.000051, 0.000017, -0.172542 ], [ -0.000054, 0.000016, 0.172774 ], [ -0.000025, 0.000006, -0.145632 ], [ -0.000032, 0.000004, 0.145299 ] ]
null
[ [ -0.007742217580110628, -6.241509125883259e-8, 6.241509125883259e-8 ], [ -6.241509125883259e-8, 0.016393448549314897, 0 ], [ 6.241509125883259e-8, 0, -0.0028466274821328363 ] ]
true
null
null
-44.960945
null
0.15196
0.289677
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:54:12
12661458169478218646231177351165844983380539186030523803901383904101180889443764121874832181691187133537586463564028606594843036478268486448695296550990833
PO_1266145816947821864623117
null
null
null
[ "train_2nd_stage_340" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5690045479576098203735345804896708284621922663876291417768512364862117997563423139926997203008301485385878735687705418266169586662506746324048260583653906
CO_5690045479576098203735345
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni8
AlNi2
A2B
[ 13, 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Al", "Ni" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ -2.64949, -2.64949, 0 ], [ -1.95269, 1.95269, -4.16809 ], [ 4.40074, -4.40074, -4.12335 ] ]
[ [ 1.91107, -1.91107, -7.54823 ], [ -1.64267, -1.00683, -1.44162 ], [ -1.2822, -1.36729, -4.77822 ], [ 1.5506, -1.5506, -4.21164 ], [ -0.09295, 0.09295, -3.19222 ], [ 0.76762, -0.76762, -0.9997 ], [ -0.16711, -2.48238, -2.75339 ], [ 0.36135, -3.01085, -5.79763 ], [ 0.43551, -0.43551, -6.23647 ], [ 1.45347, -4.10297, -3.82206 ], [ 2.98007, -2.98007, -5.62178 ], [ -2.71166, 0.06217, -3.36807 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4368146889573509382474235304442327659084696187502061933316384470030749299176336501477365112151450525599804148117527137940518424831183304535726597633679555
1
VASP
DFT
null
[ [ -0.026194, 0.026182, 0.042486 ], [ 0.026136, -0.026059, -0.042484 ], [ -0.037847, 0.037842, 0.017902 ], [ 0.03773, -0.037781, -0.017792 ], [ 0.015626, -0.015649, -0.06792 ], [ -0.050399, 0.050368, -0.005867 ], [ -0.032228, 0.03226, 0.127452 ], [ -0.015806, 0.01585, 0.067713 ], [ 0.033477, -0.033504, -0.128127 ], [ 0.050082, -0.050024, 0.00644 ], [ -0.096271, 0.096241, -0.006708 ], [ 0.095694, -0.095724, 0.006905 ] ]
null
[ [ 0.004931416360360362, -0.002729099865292455, -0.0022788998120424953 ], [ -0.002729099865292455, 0.004930792209447774, 0.0022787125667687188 ], [ -0.0022788998120424953, 0.0022787125667687188, 0.00493472436019708 ] ]
true
null
null
-64.947914
null
0.087872
0.136601
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:08:35
8237676296723258623103564291122377082450077489139302008574718325293230411930050418702812724898202561213290343580096987943564894369952735049421326679864521
PO_8237676296723258623103564
null
null
null
[ "train_1st_stage_777" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
731318241098643523810734834601006666657811103897156789536080784782942003026243800701747397699304376968237825113385575089907782891854902549559991457237498
CO_7313182410986435238107348
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni4Ti3
Al5Ni4Ti3
A5B4C3
[ 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.3333333333333333, 0.25 ]
3
12
[ [ 2.46768, 0.085627, 4.78983 ], [ -1.08157, 6.06261, -0.189794 ], [ -2.1892, -0.588496, 4.11015 ] ]
[ [ -2.09259, -0.5039, 4.16082 ], [ 0.03479, 3.62865, 4.2794 ], [ -2.4762, 3.13893, 4.34827 ], [ -1.188, 0.41155, 6.22609 ], [ -1.21365, 4.93055, 2.20868 ], [ -0.66528, 5.82555, 4.2409 ], [ -0.68721, 1.46835, 4.52415 ], [ 1.31468, 1.83016, 4.14132 ], [ 0.29401, 2.17387, 2.3949 ], [ 1.1448, 0.92748, 6.77824 ], [ 0.73124, 2.64443, 6.87751 ], [ -0.79878, 4.42477, 6.40677 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2626872757662064195821379810960638652592450714303245794995945156838330181243656341095084489217078248816007877986916451510444163132601446327476572761753015
1
VASP
DFT
null
[ [ 1.75918, -1.386295, -0.711385 ], [ -1.318405, 0.926228, -1.980335 ], [ 2.440784, 0.343036, 1.464046 ], [ 16.420069, -26.314072, -3.956542 ], [ 3.071344, -0.70005, 1.86467 ], [ 1.214404, -4.03508, -0.17933 ], [ -5.274726, 4.334236, -1.610648 ], [ 5.414495, 1.069499, 4.181217 ], [ -11.189215, 28.776919, 3.906767 ], [ -2.355918, -9.638642, -1.694821 ], [ -5.791248, 7.555287, -1.272614 ], [ -4.390763, -0.931066, -0.011023 ] ]
null
[ [ 0.5297067682689282, -0.1520877890967662, -0.005929496084680354 ], [ -0.1520877890967662, 0.6272986304706912, 0.0728845362514979 ], [ -0.005929496084680354, 0.0728845362514979, 0.27318018145930495 ] ]
true
null
null
-44.749616
null
9.677959
31.268247
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:33:00
3668492051437790093640996642561811450405939200415922736149840847091912112144875064064805814204380112795450875663011837023880021757390021899913037539851661
PO_3668492051437790093640996
null
null
null
[ "train_1st_stage_1617", "train_1st_stage_2017", "train_1st_stage_1817", "train_1st_stage_1417" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6753371615222255204220966396456062288314918264216523620345148146597439302980955539893454486364163571778981795397605613809167026864558769006808704555013688
CO_6753371615222255204220966
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ti
Al7Ti
A7B
[ 13, 13, 13, 13, 13, 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.875, 0.125 ]
2
8
[ [ 4.0135, 0, 4.0135 ], [ 0, 4.0135, -4.0135 ], [ 0, 4.0135, 4.0135 ] ]
[ [ 0, 0, 0 ], [ 2.00675, 2.00675, 0 ], [ 2.00675, 0, 2.00675 ], [ 0, 2.00675, -2.00675 ], [ 0, 2.00675, 2.00675 ], [ 2.00675, 4.0135, 2.00675 ], [ 2.00675, 2.00675, 4.0135 ], [ 0, 4.0135, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12279383913563197679086660502406534915169080900190483852626938332482343343578082012386812374662093391093367506038162460605767543838187551019911787904941432
1
VASP
DFT
null
[ [ 0.000001, 0, 0.000001 ], [ 0, 0, 0.000001 ], [ -0.000001, 0, 0 ], [ 0, 0, 0 ], [ 0.000001, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0 ], [ -0.000001, 0, -0.000001 ] ]
null
[ [ -0.002812361597031737, -1.2483018251766518e-7, 0.0005626096326071168 ], [ -1.2483018251766518e-7, -0.0028614822738524384, 6.241509125883259e-8 ], [ 0.0005626096326071168, 6.241509125883259e-8, -0.002637224850959453 ] ]
true
null
null
-35.158743
null
0.000001
0.000001
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:28:29
9772428354227523776682973001856289079660070021588050017420291784416189823940609052635287908478797375031698376179042563612952780206184739947886836003516479
PO_9772428354227523776682973
null
null
null
[ "train_1st_stage_1118" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6799025281488244519863005752334464592360214064384496766818418278295779988926383340432359756554152823353404135437289577835311103587512966332952847346454182
CO_6799025281488244519863005
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni7Ti5
Ni7Ti5
A7B5
[ 28, 28, 28, 28, 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.5833333333333334, 0.4166666666666667 ]
2
12
[ [ 4.24576, 0, 0 ], [ 0, 4.44726, 0 ], [ 0, 0, 8.20769 ] ]
[ [ 0, 0.02206, 0.081 ], [ 0, 0.02206, 2.65489 ], [ 0, 0.15405, 5.47179 ], [ 2.12288, 2.90823, 0.07553 ], [ 2.12288, 2.90823, 2.66037 ], [ 2.12288, 2.9184, 5.47179 ], [ 2.12288, 0.64049, 1.36795 ], [ 2.12288, 0.54639, 3.9548 ], [ 2.12288, 0.54639, 6.98878 ], [ 0, 2.19099, 1.36795 ], [ 0, 2.46587, 4.10782 ], [ 0, 2.46587, 6.83577 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
4164950862434163913649587100902871547209559949960926102693330031228960141538556276435923852746605939443906714152917095211779138044386736263376517340685988
1
VASP
DFT
null
[ [ 0.000001, 0.017341, -0.305949 ], [ 0, 0.017413, 0.305013 ], [ 0, 0.008641, 0.00045 ], [ 0, -0.007839, -0.187003 ], [ -0.000001, -0.007295, 0.186376 ], [ -0.000001, 0.178439, 0.000403 ], [ 0, 0.050635, 0.000642 ], [ -0.000002, -0.308165, -0.268517 ], [ -0.000001, -0.307106, 0.267014 ], [ 0.000002, -0.478331, 0.001601 ], [ 0.000004, 0.418281, 0.184189 ], [ -0.000002, 0.417986, -0.184218 ] ]
null
[ [ 0.004268006355370231, 0, -6.241509125883259e-8 ], [ 0, -0.01747628796756438, -0.000010236074966448542 ], [ -6.241509125883259e-8, -0.000010236074966448542, 0.019934381506610983 ] ]
true
null
null
-82.141505
null
0.285934
0.478334
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:15:51
2241474171526355010144828594576471039122604097486185714506261947653839439010511775677646160117680291408018951945386617245604063709152185637378780832763150
PO_2241474171526355010144828
null
null
null
[ "train_1st_stage_1169" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10831874680870819625992105303466066529822896783901306624965478528808868662020677320379623453274192927032333279797463896621777195986590822938293928265683851
CO_1083187468087081962599210
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al9Ti3
Al3Ti
A3B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.75, 0.25 ]
2
12
[ [ 3.25927, -2.88436, 3.53308 ], [ -3.1631, -2.71619, -3.75513 ], [ 4.6365, 1.66502, -5.10987 ] ]
[ [ 7.50971, -1.18671, -1.97388 ], [ 1.97218, -4.14269, -1.43895 ], [ 3.15511, -2.62369, -3.55462 ], [ -0.29845, -2.7697, -0.5604 ], [ 1.96363, -1.34448, -1.38022 ], [ 1.29855, -1.39834, 1.33551 ], [ 1.52548, -1.18151, -5.32116 ], [ 3.53828, -2.79786, 0.42026 ], [ 4.73667, -1.26559, -1.67705 ], [ 3.10703, 0.17659, -3.44359 ], [ 0.42254, -2.68947, -3.30135 ], [ 5.88769, -2.55791, -3.80788 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9988543199602458753422147822542871931758145622788270100821965679294402659347943914314108972412527290287755154070075155303757765166966477304434584023299576
1
VASP
DFT
null
[ [ -0.180239, -0.076351, 0.206951 ], [ -0.065135, 0.051614, -0.096472 ], [ 0.000053, 0.000012, 0.000147 ], [ 0.065165, -0.051594, 0.096412 ], [ 0.180298, 0.076293, -0.207081 ], [ -0.020875, -0.1255, -0.005766 ], [ -0.00011, 0.000101, 0.000034 ], [ 0.02083, 0.125408, 0.005672 ], [ -0.000128, -0.000137, -0.000043 ], [ -0.000187, 0.000058, 0.000252 ], [ 0.231467, 0.336894, -0.438707 ], [ -0.23114, -0.3368, 0.438601 ] ]
null
[ [ -0.012324109429421528, 0.004941465190053034, 0.014670230294749785 ], [ 0.004941465190053034, -0.008780430208110049, 0.008933721672241744 ], [ 0.014670230294749785, 0.008933721672241744, -0.009485471078969823 ] ]
true
null
null
-61.174594
null
0.189905
0.599615
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:29:43
3051770379057422125995993767670928885781882222340026624896300650742634229391211882162420197748601314307313363182293546702822674422671623681021440363982942
PO_3051770379057422125995993
null
null
null
[ "train_1st_stage_421" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9574523287702897607561173403273885972180331072331645563466008469960150435468591986863240977347781239317992102385516670117507679399524509780378432236962723
CO_9574523287702897607561173
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al8Ti16
AlTi2
A2B
[ 13, 13, 13, 13, 13, 13, 13, 13, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
24
[ [ 0, 5.96689, 5.96689 ], [ 5.96689, 0, 5.96689 ], [ 5.96689, 5.96689, 0 ] ]
[ [ 3.40274, 3.40274, 3.40274 ], [ 5.54759, 5.54759, 3.40274 ], [ 5.54759, 3.40274, 5.54759 ], [ 3.40274, 5.54759, 5.54759 ], [ 8.53103, 8.53103, 8.53103 ], [ 6.38619, 6.38619, 8.53103 ], [ 6.38619, 8.53103, 6.38619 ], [ 8.53103, 6.38619, 6.38619 ], [ 5.96689, 8.95033, 8.95033 ], [ 8.95033, 5.96689, 8.95033 ], [ 8.95033, 8.95033, 5.96689 ], [ 5.96689, 5.96689, 5.96689 ], [ 4.47516, 4.47516, 0.87455 ], [ 4.47516, 0.87455, 4.47516 ], [ 0.87455, 4.47516, 4.47516 ], [ 8.07578, 4.47516, 4.47516 ], [ 4.47516, 8.07578, 4.47516 ], [ 4.47516, 4.47516, 8.07578 ], [ 7.45861, 7.45861, 11.0592 ], [ 7.45861, 11.0592, 7.45861 ], [ 11.0592, 7.45861, 7.45861 ], [ 3.85799, 7.45861, 7.45861 ], [ 7.45861, 3.85799, 7.45861 ], [ 7.45861, 7.45861, 3.85799 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6064818225783800822878521746363939999258133526504434138262396888516695964170680774691465579496958318758603702134475174625980694295731940232596448832151616
1
VASP
DFT
null
[ [ -0.2691, -0.267904, -0.2708 ], [ 0.269064, 0.269542, -0.27001 ], [ 0.27064, -0.268678, 0.268753 ], [ -0.269497, 0.27074, 0.268355 ], [ 0.268509, 0.267594, 0.270354 ], [ -0.267545, -0.268368, 0.26858 ], [ -0.271046, 0.269307, -0.269037 ], [ 0.269045, -0.270701, -0.267876 ], [ -0.000058, 0.000915, -0.000838 ], [ 0.000721, -0.000055, -0.00046 ], [ -0.000718, 0.000064, -0.000389 ], [ 0.000138, 0.000668, -0.000726 ], [ 0.00064, 0.000203, -0.088129 ], [ 0.000495, -0.089951, 0.001005 ], [ -0.089942, 0.000413, 0.001358 ], [ 0.08955, -0.000018, 0.000729 ], [ 0.000086, 0.087909, 0.000993 ], [ 0.000025, 0.000223, 0.090086 ], [ 0.000304, -0.000514, 0.089978 ], [ -0.002124, 0.089283, -0.000562 ], [ 0.090599, -0.002312, 0.000163 ], [ -0.090286, 0.001298, -0.001067 ], [ 0.001557, -0.089174, -0.000407 ], [ -0.001057, -0.000484, -0.090053 ] ]
null
[ [ 0.033641047622506914, -0.00005455078976021967, 0.000006366339308400924 ], [ -0.00005455078976021967, 0.03350254853500356, -0.000010797810787778037 ], [ 0.000006366339308400924, -0.000010797810787778037, 0.03358468679510019 ] ]
true
null
null
-158.64066
null
0.200387
0.467304
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:56:07
11442133329231605364322243966958685278975106748163233529918478325067246873646016207907894673290575226637427118810841020390425112517875349503013425252595438
PO_1144213332923160536432224
null
null
null
[ "train_2nd_stage_65" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
828314987398158015549881973075026692596502181667025715151784541556243505583772167800518345661887065516826026806365845007896331703476598312432815862900702
CO_8283149873981580155498819
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNi10Ti
AlNi10Ti
A10BC
[ 13, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.08333333333333333, 0.8333333333333334, 0.08333333333333333 ]
3
12
[ [ 3.79333, 2.19008, 0 ], [ 0, 4.38016, 0 ], [ 0, 0, 8.12797 ] ]
[ [ 1.26444, 0.73003, 2.03199 ], [ 3.74214, 2.16053, 8.12636 ], [ 3.74214, 2.16053, 4.0656 ], [ 1.26444, 2.24919, 8.12636 ], [ 1.26444, 2.24919, 4.0656 ], [ 2.58008, 4.35061, 8.12636 ], [ 2.58008, 4.35061, 4.0656 ], [ 2.52889, 2.92011, 2.03199 ], [ 2.52889, 2.92011, 6.09598 ], [ 0, 2.92011, 2.03199 ], [ 0, 2.92011, 6.09598 ], [ 1.26444, 0.73003, 6.09598 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8889145439910781483943951808444167734121483665946820415921300350714950536604056239658936233638145415970284283028695836037313504820079339225109993865828129
1
VASP
DFT
null
[ [ 0.000032, -0.0008, 0.000178 ], [ 0.054298, 0.031109, 0.014699 ], [ 0.053708, 0.030747, -0.013786 ], [ -0.000199, -0.061603, 0.013496 ], [ -0.000306, -0.06187, -0.01391 ], [ -0.053491, 0.031388, 0.013938 ], [ -0.053968, 0.031488, -0.014535 ], [ 0.000186, 0.000045, 0.000133 ], [ 0.000272, 0.000132, -0.000078 ], [ -0.000249, 0.000075, 0.000166 ], [ -0.000292, 0.000183, -0.000087 ], [ 0.000009, -0.000894, -0.000216 ] ]
null
[ [ -0.004494885212096087, -6.865660038471584e-7, -0.000006303924217142091 ], [ -6.865660038471584e-7, -0.004456874421519458, -0.000003432830019235792 ], [ -0.000006303924217142091, -0.000003432830019235792, -0.008099481562476186 ] ]
true
null
null
-69.501944
null
0.032069
0.064281
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:12:48
6921614043393365385124384444900894210246048736558592061470403569424152672924552312876850398361660629241974415999523594123748903193993561589419392885125682
PO_6921614043393365385124384
null
null
null
[ "train_1st_stage_1108" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11595051268371440430172536986120392403019052859292082295519579495556344662925123456889633357309926032371132723244693736233764914028072094738748799591349196
CO_1159505126837144043017253
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al4Ni2Ti6
Al2NiTi3
A3B2C
[ 13, 13, 13, 13, 28, 28, 22, 22, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.16666666666666666, 0.5 ]
3
12
[ [ 3.22027, -5.57767, 0 ], [ 3.22027, 5.57767, 0 ], [ 0, 0, 5.32024 ] ]
[ [ 0, 0, 0 ], [ 1.61014, -2.78884, 0 ], [ 1.61014, 2.78884, 0 ], [ 3.22027, 0, 0 ], [ 3.22027, 1.8596, 2.00732 ], [ 3.22027, -1.8596, 3.31291 ], [ 3.22027, 3.69353, 4.23225 ], [ 1.63171, 0.94207, 4.23225 ], [ 4.80883, 0.94207, 4.23225 ], [ 3.22027, -3.69353, 1.08799 ], [ 1.63171, -0.94207, 1.08799 ], [ 4.80883, -0.94207, 1.08799 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9121135399729764345739190950758154226210494261822356263188018274999136143364378445044263230163391580575174719932640691701051692793578605669519398662754938
1
VASP
DFT
null
[ [ -0.000587, -0.001118, -0.00046 ], [ -0.001275, 0.000489, -0.000824 ], [ 0.000902, 0.000738, -0.000332 ], [ 0.000529, -0.000026, 0.00022 ], [ -0.000022, 0.000132, -0.527608 ], [ 0.000054, 0.000048, 0.527906 ], [ -0.000148, 0.649376, -9.030384 ], [ -0.562257, -0.324304, -9.032206 ], [ 0.562486, -0.324927, -9.030957 ], [ 0.00032, -0.649432, 9.032201 ], [ -0.562775, 0.324461, 9.032054 ], [ 0.56277, 0.324562, 9.03039 ] ]
null
[ [ 0.32865515147579416, -0.000002371773467835638, 0.000006740829855953919 ], [ -0.000002371773467835638, 0.3286655123809431, -0.00000386973565804762 ], [ 0.000006740829855953919, -0.00000386973565804762, 0.22991772268906646 ] ]
true
null
null
-50.09006
null
4.615697
9.055519
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:46:37
11649875381305435286092726319591115723617619088709325821273880456196408959627302216328378031874922602796536085268455678614223850891963206368238272232944001
PO_1164987538130543528609272
null
null
null
[ "train_1st_stage_2249" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
7943680550666448272677504675834723214739859308439967161315485053127688580045083277302115005038358261274495370956728967050941692292167640378130141909007926
CO_7943680550666448272677504
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni3Ti5
Ni3Ti5
A5B3
[ 28, 28, 28, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.375, 0.625 ]
2
8
[ [ 2.31149, 3.05048, 1.84279 ], [ 4.15836, -3.26748, 0.192843 ], [ 4.41049, -0.67347, -4.41742 ] ]
[ [ 6.70106, 2.32967, -2.47003 ], [ 6.38453, -3.55688, -2.12046 ], [ 4.33755, -0.27687, -0.08654 ], [ 2.25837, 1.35687, -0.18296 ], [ 4.46362, 1.02014, -2.39166 ], [ 2.12184, -1.60898, 0.00193 ], [ 6.55326, 1.05524, -0.175 ], [ 6.54279, -0.6136, -2.29524 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
172568679307160306881412087400530574554192072389359739884433507990823566671842391190089785997784722374011312135054406979328357557777602231925815072791393
1
VASP
DFT
null
[ [ 0.002149, -0.036821, 0.058319 ], [ -0.001739, 0.036896, -0.058877 ], [ 0.000313, -0.000069, -0.000274 ], [ -0.000435, 0.000955, -0.00104 ], [ 0.000612, -0.000995, 0.000767 ], [ -0.066773, 0.019301, 0.051826 ], [ 0.06733, -0.019436, -0.052235 ], [ -0.001455, 0.00017, 0.001513 ] ]
null
[ [ -0.000996519347038521, -0.004607232376361986, -0.0023282701492282317 ], [ -0.004607232376361986, -0.0033560594569874277, -0.0034533021691686887 ], [ -0.0023282701492282317, -0.0034533021691686887, -0.00029615960802316057 ] ]
true
null
null
-57.236524
null
0.039752
0.087405
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:41:37
2341736386197463937540537379682077374675044279975310754433978816515312370334385006275184894274638772985908921073446567314560028208751003352468130894047134
PO_2341736386197463937540537
null
null
null
[ "train_1st_stage_937" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
9278771695562471929638484027725159215074541469057829086052194447661368803164288528228966403106169808621944785585964171215310489970535443497949233647139645
CO_9278771695562471929638484
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
NiTi
NiTi
AB
[ 28, 22 ]
[ "Ni", "Ti" ]
[ 0.5, 0.5 ]
2
2
[ [ -0.307373, 2.36751, 1.7802 ], [ 3.21315, -2.47398, -1.1369 ], [ 3.48083, 1.69694, -1.65577 ] ]
[ [ 0, 0, 0 ], [ 1.58673, 2.03223, 0.06222 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6178128253021703490584494742520395891177523483603435303333072778797670311888378406874808745217349494258524137370261472017415882565129445109712695712856849
1
VASP
DFT
null
[ [ 0.000008, 0.000019, 0.000024 ], [ -0.000008, -0.000019, -0.000024 ] ]
null
[ [ -0.004848404288986115, -0.000004743546935671276, 0.000014355470989531493 ], [ -0.000004743546935671276, -0.005004442017133196, -0.00006803244947212751 ], [ 0.000014355470989531493, -0.00006803244947212751, -0.0049497039820992 ] ]
true
null
null
-13.998313
null
0.000032
0.000032
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:00:29
12334993749426674150029565771346387450575536999338650173455569898868848361014982210594680814150463434019845024018389431168833362437024138117632012926717753
PO_1233499374942667415002956
null
null
null
[ "train_1st_stage_549" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6952796603134886390131440306154699630050189257348969623199158147779449775195158390640348166275788272742553422494212779883174865781020332678039649056559786
CO_6952796603134886390131440
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ni2Ti3
Al7Ni2Ti3
A7B3C2
[ 13, 13, 13, 13, 13, 13, 13, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.5833333333333334, 0.16666666666666666, 0.25 ]
3
12
[ [ 2.36068, -0.128198, 0.046415 ], [ -1.09538, 5.71589, 4.22817 ], [ 0.966083, -5.039, 4.06145 ] ]
[ [ 2.33171, -0.25287, 0.16932 ], [ 2.26082, -3.14874, 4.13251 ], [ 1.29182, 2.68702, 4.31958 ], [ 1.08773, -1.31517, 3.70251 ], [ 1.17281, 0.02856, 2.36073 ], [ 1.14756, 1.41618, 6.17918 ], [ 2.26476, -0.97256, 6.28166 ], [ -0.03904, 0.52651, 4.34657 ], [ -0.05383, 3.92167, 3.87076 ], [ 0.06578, 2.16668, 2.10903 ], [ -0.03005, 3.18081, 6.11751 ], [ 2.2861, -1.75484, 2.35767 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1197150413931855881349093128208730681225281723399712544180788669752148028585887682805394361247459372671520529195372719582856790971632613844141856577333963
1
VASP
DFT
null
[ [ -0.023043, 4.024258, 1.03086 ], [ -1.148495, -4.711908, 2.504479 ], [ -10.334721, -21.739606, 1.73494 ], [ 0.538286, 1.914288, 23.542364 ], [ 0.680365, 13.379158, -5.742753 ], [ -1.335269, -10.59715, 1.843901 ], [ -0.540565, 3.887485, -6.720931 ], [ 0.129015, 2.334522, 0.063205 ], [ 10.673237, 17.24357, -5.501595 ], [ 0.091223, -3.308082, 0.435132 ], [ 0.415524, -37.296901, -19.036166 ], [ 0.854444, 34.870366, 5.846564 ] ]
null
[ [ 1.3756239926279168, 0.0604733577697703, 0.009958889546168068 ], [ 0.0604733577697703, 1.10718323870826, 0.03351752815690568 ], [ 0.009958889546168068, 0.03351752815690568, 0.7594710746636804 ] ]
true
null
null
-4.298696
null
16.208547
41.876092
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:14:43
3011705465769876217377731804490945270048597459599488258906724514790886252370785388277966575283334382379016575853357253547435349675196256301081893389970566
PO_3011705465769876217377731
null
null
null
[ "train_1st_stage_1276", "train_1st_stage_1676", "train_1st_stage_1476", "train_1st_stage_1876" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1120178656751599600756499118566059908482348623983811723964542058852941107601104722700382952382230583356957796005789258940525782135041806816951608974938223
CO_1120178656751599600756499
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti4
NiTi2
A2B
[ 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ -4.17533, 2.57565, 0.111456 ], [ 0.644354, -5.93065, -0.708384 ], [ -1.27644, 2.41719, 4.07524 ] ]
[ [ 0.59065, -5.43643, -0.64935 ], [ -2.13522, -2.94001, 1.44399 ], [ -2.30992, -0.73385, 0.13743 ], [ -2.39871, -1.11315, 3.23228 ], [ -1.06665, 1.08455, 2.34599 ], [ -4.05433, 0.86371, 1.47706 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
8555441396790381353768418785367526439336384692789064367643906097117658006979629696565905654606080239824239470728071166788457841378844791925577834974063088
1
VASP
DFT
null
[ [ 0.000061, 0.000345, 0.000102 ], [ -0.000108, 0.000329, -0.000018 ], [ -0.003585, 0.00295, 0.002765 ], [ 0.002421, 0.003239, -0.001692 ], [ -0.002546, -0.003554, 0.001762 ], [ 0.003757, -0.003309, -0.002919 ] ]
null
[ [ -0.002481748858633701, -0.00004768512972174809, 0.0012785731444371854 ], [ -0.00004768512972174809, -0.0034254026233759907, -0.00007277599640779879 ], [ 0.0012785731444371854, -0.00007277599640779879, -0.001670040596812583 ] ]
true
null
null
-43.865141
null
0.003501
0.005795
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:08:35
8695350082195128671891773769617265548365959865482066984434230471137952338162876784745533711507321783452407609650874163547701588965433871745121244192184898
PO_8695350082195128671891773
null
null
null
[ "train_1st_stage_594" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4978702075815075279681862785312694062702077359556727549733861027668105940504065205532839111802486711868450302611167098669956998709053593979033848259953786
CO_4978702075815075279681862
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2Ni2Ti4
AlNiTi2
A2BC
[ 13, 13, 28, 28, 22, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.25, 0.5 ]
3
8
[ [ 1.38886, -5.32273, -0.000048 ], [ 1.38886, 5.32273, 0.000048 ], [ 0, 0.00007, 7.92973 ] ]
[ [ 1.38886, 4.76112, 5.94735 ], [ 1.38886, -4.76105, 1.98238 ], [ 1.38886, -2.62307, 5.94724 ], [ 1.38886, 2.62314, 1.98248 ], [ 1.38886, -1.34567, 0.41631 ], [ 1.38886, 1.34571, 4.38117 ], [ 1.38886, -1.34564, 3.54855 ], [ 1.38886, 1.34575, 7.51342 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7670666296784106517282187362045454773341999341742465995664319039281083775849442336339176813633435502811899819606858933367344392878664257697264976630999267
1
VASP
DFT
null
[ [ -0.000001, 0.031254, -0.000009 ], [ 0, -0.031433, 0.000276 ], [ -0.000001, -0.345523, -0.00004 ], [ -0.000001, 0.345207, -0.000077 ], [ 0.000003, -0.424825, -0.31148 ], [ -0.000004, 0.426162, -0.310727 ], [ 0.000001, -0.426025, 0.310832 ], [ 0.000003, 0.425184, 0.311225 ] ]
null
[ [ -0.014270524050328222, -1.8724527377649775e-7, 6.241509125883259e-8 ], [ -1.8724527377649775e-7, -0.0057235262835262065, 0.000007677056224836406 ], [ 6.241509125883259e-8, 0.000007677056224836406, -0.02041535219985155 ] ]
true
null
null
-52.234039
null
0.357737
0.527414
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:47:37
4203020023738494628516038987078803187243093335106101984707055435337894962090495764539111081612437506410095509069959282681077492023023792719611491269982129
PO_4203020023738494628516038
null
null
null
[ "train_2nd_stage_4" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10171250769166793439419490911216557717366230045698687790994561216453054747620673009358268107323491091866893042351150062076862540808582692995961695052012301
CO_1017125076916679343941949
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlNiTi
AlNiTi
ABC
[ 13, 28, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.3333333333333333, 0.3333333333333333, 0.3333333333333333 ]
3
3
[ [ -1.60758, 1.60758, 1.60758 ], [ 2.94963, 2.94963, 0 ], [ 0, 2.94963, -2.94963 ] ]
[ [ 1.56715, 7.28173, -1.56715 ], [ -0.26156, 3.21119, 0.26156 ], [ 1.3785, 4.52075, -1.3785 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7234129460536370158073494253425573648097284987204161871894302734484873967196646014012593091145922535301801704307947763138013528348377059629073928168163684
1
VASP
DFT
null
[ [ -0.124778, 0.124832, 0.124776 ], [ -0.097773, 0.097694, 0.097787 ], [ 0.222551, -0.222526, -0.222563 ] ]
null
[ [ -0.0034665341685155616, -0.0006616623824348841, -0.0006622241182562136 ], [ -0.0006616623824348841, -0.003466159677968008, 0.0006616623824348841 ], [ -0.0006622241182562136, 0.0006616623824348841, -0.00346659658360682 ] ]
true
null
null
-18.298865
null
0.256975
0.385462
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:32:38
5153255647968945444272424302115518421803655889971461011533726168928487463441005674767704929388857285452780145725809680103451132281920062971657105801350884
PO_5153255647968945444272424
null
null
null
[ "train_2nd_stage_572" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
3910823321931560360111378487415243478360029065013454181692726794831201941328701215132429997879240847110437836504066034890440595895489036464878425578137219
CO_3910823321931560360111378
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti
Ni5Ti
A5B
[ 28, 28, 28, 28, 28, 22 ]
[ "Ni", "Ti" ]
[ 0.8333333333333334, 0.16666666666666666 ]
2
6
[ [ 0, 3.28774, 3.28774 ], [ 3.28774, 0, 3.28774 ], [ 3.28774, 3.28774, 0 ] ]
[ [ 4.09077, 2.4847, 2.4847 ], [ 1.64387, 1.64387, 1.64387 ], [ 2.4847, 4.09077, 2.4847 ], [ 2.4847, 2.4847, 4.09077 ], [ 4.09077, 4.09077, 4.09077 ], [ 6.57547, 6.57547, 6.57547 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5511902794017968840551374202392612991150858829322893127835798298994791989760931804056649131998427730313867726072169116541236782941377800502630805696770130
1
VASP
DFT
null
[ [ 0.642652, -0.642562, -0.642607 ], [ -0.000011, -0.000006, 0.000016 ], [ -0.642599, 0.642686, -0.642643 ], [ -0.642685, -0.642683, 0.642728 ], [ 0.642569, 0.642565, 0.642539 ], [ 0.000074, -0.000001, -0.000032 ] ]
null
[ [ 0.002568568250574737, 0.0000037449054755299546, -0.0000036824903842711223 ], [ 0.0000037449054755299546, 0.002568880326031031, -0.000018100376465061445 ], [ -0.0000036824903842711223, -0.000018100376465061445, 0.0025701910429474666 ] ]
true
null
null
-36.528285
null
0.742058
1.113187
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:19:02
11756121188898990636160373970621590737249268176336160133296301488259891945458293843844815961682745894189668603400440967389143101792446855179132710565708725
PO_1175612118889899063616037
null
null
null
[ "train_2nd_stage_526" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10756917278042376076949440738159244127771708186309127106656358346101385620276619914538847977739452996152290515784448247504927943498010994783609722577575978
CO_1075691727804237607694944
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al7Ni2
Al7Ni2
A7B2
[ 13, 13, 13, 13, 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.7777777777777778, 0.2222222222222222 ]
2
9
[ [ -1.368642, 1.226506, 2.1811 ], [ 2.118966, 1.868724, 0.278159 ], [ -4.345335, 9.072633, -13.43036 ] ]
[ [ -5.42807, 9.91617, -10.85493 ], [ -0.28636, 2.43217, 0.31594 ], [ 0.51302, 4.01666, -1.94002 ], [ -0.7998, 3.72368, -4.46402 ], [ -1.36903, 6.53467, -4.53892 ], [ -2.69157, 6.25448, -7.07662 ], [ -4.05985, 8.08536, -8.96582 ], [ -1.64427, 7.50728, -8.98944 ], [ -2.98776, 9.30558, -10.84514 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6561629224140587506702568919264069226414512339861887789509441247774877228141606964557008836659595664028955389966667564396093223259527714903313823472708844
1
VASP
DFT
null
[ [ 0.002368, -0.000532, 0.004163 ], [ -0.001862, 0.003078, -0.001852 ], [ -0.002249, 0.002909, -0.004033 ], [ 0.00221, -0.002818, 0.004105 ], [ 0.001763, -0.002982, 0.001955 ], [ -0.002456, 0.000679, -0.00429 ], [ 0.000206, -0.000248, 0.000124 ], [ -0.003167, 0.002364, -0.004561 ], [ 0.003187, -0.002452, 0.004388 ] ]
null
[ [ -0.00005823328014449079, 0.00003776113021159371, 0.00005186694083608987 ], [ 0.00003776113021159371, 0.000034952451104946244, 0.00001984799902030876 ], [ 0.00005186694083608987, 0.00001984799902030876, -0.0001461761437281859 ] ]
true
null
null
-39.724376
null
0.004563
0.006035
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:35:38
8933584101433159111793305454950855957451990309701258146170650890605667439526342006088069408037803788682019123626003012039554124328781271549795404685166723
PO_8933584101433159111793305
null
null
null
[ "train_1st_stage_354", "train_1st_stage_360", "train_1st_stage_388", "train_1st_stage_398", "train_1st_stage_400", "train_1st_stage_404" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
4010508735963585527144177675622672849975045764011653888272910811854195260071118159442876249567967097889284392507970989905949894609813692983094337730780133
CO_4010508735963585527144177
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni3Ti9
NiTi3
A3B
[ 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.25, 0.75 ]
2
12
[ [ 4.10151, 0, 0 ], [ 0, 4.68022, -3.1058 ], [ 0, 6.20453, 5.75341 ] ]
[ [ 0, 10.411, 2.42849 ], [ 2.05075, 2.73586, 0.26922 ], [ 0, 8.31739, 0.5607 ], [ 0, 4.52897, 0.43672 ], [ 2.05075, 6.51344, 0.43891 ], [ 2.05075, 6.70307, 4.50336 ], [ 0, 2.45132, -1.41168 ], [ 2.05075, 4.57363, -1.61971 ], [ 0, 1.94426, 1.50008 ], [ 2.05075, 4.37494, 2.43282 ], [ 0, 6.43978, 2.55225 ], [ 2.05075, 8.65494, 2.24161 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11764049698762157090235620263635896104293063866557549192365593668318204090215235060588327619636656427931912092443602193953106910311516670475364975612855191
1
VASP
DFT
null
[ [ -0.000022, -0.09212, -0.155295 ], [ 0.000028, -0.065401, 0.104931 ], [ -0.00002, 0.253627, 0.035489 ], [ -0.000033, 0.687211, -0.046994 ], [ 0.000018, -0.536115, 0.015365 ], [ 0.000032, 0.598141, -0.117104 ], [ -0.000024, -0.129254, -0.167363 ], [ 0.000036, 0.065077, 0.223742 ], [ -0.00003, -0.264834, 0.053352 ], [ 0.000019, 0.19116, -0.492279 ], [ -0.000011, -0.327721, 0.468481 ], [ 0.000006, -0.379771, 0.077676 ] ]
null
[ [ 0.02092259964651208, 6.241509125883259e-8, 0 ], [ 6.241509125883259e-8, 0.011348998458684787, -0.004437775403594256 ], [ 0, -0.004437775403594256, 0.028174109779145765 ] ]
true
null
null
-87.97042
null
0.383087
0.688816
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:35:14
12866905047225642975302625101975162690473949272079622111677916040407458984746195582752540527195657659894829748797783035172216770914288356142607659897158870
PO_1286690504722564297530262
null
null
null
[ "train_1st_stage_474" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13203748224599274622090146537847278967117595329672841809673324246859287624403795243013565729648731436987863573318623655632874216584639792108511087691725838
CO_1320374822459927462209014
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al6Ni2Ti2
Al3NiTi
A3BC
[ 13, 13, 13, 13, 13, 13, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.6, 0.2, 0.2 ]
3
10
[ [ 0.214557, 3.93876, -0.214557 ], [ 2.79479, 0, 2.79479 ], [ 6.5664, 1.26568, -6.5664 ] ]
[ [ 9.13329, 1.29051, -3.54372 ], [ 2.8233, 3.65455, -2.8233 ], [ 4.20857, 1.52255, -4.20857 ], [ 7.84526, 3.25966, -5.05047 ], [ 2.87868, 3.80075, -0.0839 ], [ 5.71533, 3.4917, -2.92054 ], [ 5.50142, 3.36277, -5.50142 ], [ 6.55241, 1.41944, -3.75762 ], [ 1.28656, 1.8409, -1.28656 ], [ 4.20087, 1.67564, -1.40608 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6862598412441917498490227711703065423531768326879950153664836695975372895578004065133029473434635459380652539843215775850717866903469877038027816029044444
1
VASP
DFT
null
[ [ 0.079301, -0.008393, -0.079247 ], [ 0.078612, -0.008808, -0.078624 ], [ -0.089433, 0.010482, 0.089433 ], [ 0.089598, -0.010466, -0.089631 ], [ -0.078558, 0.008805, 0.078603 ], [ -0.079143, 0.008424, 0.079142 ], [ -0.062975, 0.007256, 0.062976 ], [ 0.062668, -0.007309, -0.062678 ], [ -0.146075, 0.016435, 0.146042 ], [ 0.146004, -0.016427, -0.146016 ] ]
null
[ [ -0.009946156867551266, 0.00039877001805268137, 0.008509049391316645 ], [ 0.00039877001805268137, -0.01114614941209358, -0.00039870760296142253 ], [ 0.008509049391316645, -0.00039870760296142253, -0.0099464065279163 ] ]
true
null
null
-54.125175
null
0.129439
0.207211
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:20:00
4356667241176293917373501010898398560841111301268192449635718737007190051918187775847598527193604650774847369826095101668210406525908832488860738047898354
PO_4356667241176293917373501
null
null
null
[ "train_1st_stage_1154" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
1099359341021913194201771366652570265766956631513121950876512448133908835290733935664075238920451765716601481001557599531870980466366290851576152518396883
CO_1099359341021913194201771
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni7Ti2
Al3Ni7Ti2
A7B3C2
[ 13, 13, 13, 28, 28, 28, 28, 28, 28, 28, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.25, 0.5833333333333334, 0.16666666666666666 ]
3
12
[ [ 3.97778, -0.557831, 0 ], [ -1.14657, 6.28517, 3.01213 ], [ 1.14657, -6.28517, 3.01213 ] ]
[ [ 2.03133, 0.02372, 1.50607 ], [ 0.34827, 2.48338, 1.50607 ], [ 0.3165, 2.25681, 4.5182 ], [ 1.20025, -5.9024, 3.11208 ], [ 0.05368, 0.38278, 2.91218 ], [ 3.4625, -4.23215, 3.03655 ], [ 2.31593, 2.05302, 2.98772 ], [ 1.75207, -1.96758, 2.94305 ], [ 0.6055, 4.31759, 3.08121 ], [ 3.75482, -2.14766, 4.5182 ], [ 2.01781, -0.07274, 4.5182 ], [ 3.73838, -2.26492, 1.50607 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11988925053269350583973641712138608158695401032482765012590120992051392735314480060181297201797402487696707849505790044948416711549941695511711870422144790
1
VASP
DFT
null
[ [ 0.057418, 0.409039, 0.001599 ], [ -0.017574, -0.125523, 0.000194 ], [ 0.012695, 0.093464, -0.000602 ], [ 0.011557, 0.078637, 0.042808 ], [ 0.011664, 0.079497, -0.043467 ], [ -0.011811, -0.085604, 0.020322 ], [ -0.011805, -0.0855, -0.021193 ], [ -0.023916, -0.165842, -0.079669 ], [ -0.023745, -0.164773, 0.080437 ], [ 0.007206, 0.050261, -0.000355 ], [ -0.016581, -0.120289, -0.000912 ], [ 0.004893, 0.036634, 0.000837 ] ]
null
[ [ -0.012486513496877011, 0.0017078641421154359, 0.00000193486782902381 ], [ 0.0017078641421154359, -0.00019492233000133416, 0.000013044754073096008 ], [ 0.00000193486782902381, 0.000013044754073096008, -0.0022321509086896296 ] ]
true
null
null
-71.567607
null
0.131083
0.413052
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:29:11
4323865599693315091279894175993589511547308911320966041151760053483436568426699087602255522535380821517451180349502133729247636267290261416500753979485556
PO_4323865599693315091279894
null
null
null
[ "train_1st_stage_481" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
8533605825910960827165782536974658877948691820552373566834299260525611590808867501931527216954890423534381115688976766981570312754360912417115115781129218
CO_8533605825910960827165782
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al3Ni2
Al3Ni2
A3B2
[ 13, 13, 13, 28, 28 ]
[ "Al", "Ni" ]
[ 0.6, 0.4 ]
2
5
[ [ 0.170985, 2.111962, 2.119466 ], [ 7.301089, 1.536732, -0.000016 ], [ 0.171028, 2.11207, -2.119554 ] ]
[ [ 7.17102, 1.57614, 0.02428 ], [ 1.76487, 2.0125, 0.02426 ], [ 4.46793, 1.79432, 0.02427 ], [ 3.18342, 4.02373, 0.02424 ], [ 6.09438, 3.78893, 0.02418 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3086779104846407723669282441264557582133232812445510917261875159839564785425907770001653309752362716245281373079453563037392389634901562925417459651473746
1
VASP
DFT
null
[ [ 0.016033, 0.000361, -0.0001 ], [ -0.017952, -0.000152, 0.000087 ], [ 0.001531, -0.000119, -0.000007 ], [ -0.007697, -0.001688, 0.000176 ], [ 0.008085, 0.001598, -0.000156 ] ]
null
[ [ 0.0010083157992864403, -0.0000440650544287358, -6.241509125883259e-8 ], [ -0.0000440650544287358, 0.0007912985269794794, -0.0000016852074639884797 ], [ -6.241509125883259e-8, -0.0000016852074639884797, 0.000785868414039961 ] ]
true
null
null
-24.748496
null
0.01033
0.017953
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:32:11
1944288473424672128798647094793958718410595701554360352332735713351075713749585442425266120742909086443127788842168996701510044850443149230912392924771778
PO_1944288473424672128798647
null
null
null
[ "train_1st_stage_44", "train_1st_stage_237" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10413382177859965523349804815142196576611502331220639217109737355879240551740130873295657217803998478871285379420311316820756484426594257392960960686446546
CO_1041338217785996552334980
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
AlTi4
AlTi4
A4B
[ 13, 22, 22, 22, 22 ]
[ "Al", "Ti" ]
[ 0.2, 0.8 ]
2
5
[ [ -2.05597, 2.05597, 5.05499 ], [ 2.05597, -2.05597, 5.05499 ], [ 2.05597, 2.05597, -5.05499 ] ]
[ [ 0, 0, 0 ], [ 0, 2.05597, 2.5275 ], [ 2.05597, 0, 2.5275 ], [ 0, 0, 3.84179 ], [ 0, 0, 6.26819 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12423615745439352892712790495158547269903874817830863577488967821607382193965366336922032269663815542307735854032428994569996719600787261496964037008190882
1
VASP
DFT
null
[ [ 0.000002, -0.000002, 0.002233 ], [ 0.00216, -0.002204, -0.000978 ], [ -0.00216, 0.002181, -0.000782 ], [ -0.000158, -0.000144, 3.652967 ], [ 0.000156, 0.000169, -3.65344 ] ]
null
[ [ 0.027088961002519705, 0.000043440903516147476, 0.0000358262623825699 ], [ 0.000043440903516147476, 0.027088212021424602, 0.000036387998203899396 ], [ 0.0000358262623825699, 0.000036387998203899396, 0.03897048501982485 ] ]
true
null
null
-29.940281
null
1.463009
3.65344
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:23:07
1770745971636462342244161465667837140309391393410000876357974309672773404699648143004901268079708292071522814224849238178525942668824133265260443063883165
PO_1770745971636462342244161
null
null
null
[ "train_1st_stage_2106" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
13270052081368483993551067319773380194128387423691823125087771351603449068546792959286522200604850421122784802544703943552841723418916505263568940401979900
CO_1327005208136848399355106
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni4Ti8
NiTi2
A2B
[ 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
12
[ [ -0.000185, 1.92721, 1.92711 ], [ 9.14865, -0.00065, 0.001531 ], [ 0.070454, 4.70777, -4.70801 ] ]
[ [ 0.26137, 0.03148, -0.03145 ], [ 1.58403, 2.19121, -0.26396 ], [ 3.04922, 4.22834, -0.37385 ], [ 5.96229, 4.7003, -4.69997 ], [ 4.60729, 4.4101, -2.48268 ], [ 7.69821, 1.95527, -0.02743 ], [ 9.02185, 2.33387, -2.33312 ], [ 1.62762, 4.43424, -2.5071 ], [ 3.05768, 0.04134, -0.04105 ], [ 4.66069, 2.23816, -0.31062 ], [ 6.44592, 2.36007, -2.35957 ], [ 7.73399, 4.67321, -2.74551 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3569020634177057192871705849106647186693527847193820952175761434841490252644369926164386784075467099048589554391525166716469223756066799383058260873299488
1
VASP
DFT
null
[ [ 0.379479, -0.026538, 0.026548 ], [ -0.310923, 0.029171, -0.029194 ], [ 0.046469, 0.102313, -0.102303 ], [ -0.05392, -0.044492, 0.044456 ], [ -0.019643, 0.102268, -0.102264 ], [ 0.050641, -0.845504, 0.845603 ], [ 1.595315, -0.313949, 0.314071 ], [ -0.205678, -0.066708, 0.066688 ], [ -0.617188, 0.485788, -0.48588 ], [ -0.191299, -0.209175, 0.209194 ], [ -0.922301, 0.038871, -0.039023 ], [ 0.249048, 0.747955, -0.747896 ] ]
null
[ [ 0.04252908144794719, 0.00972189944465828, -0.00972776646323661 ], [ 0.00972189944465828, 0.06867251623298684, 0.027759611158095863 ], [ -0.00972776646323661, 0.027759611158095863, 0.06866702370495607 ] ]
true
null
null
-85.392327
null
0.62011
1.655969
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:17:19
490536469442273082591322163287989412799029705149488651843005121249673089260824851727997631824238040092454219950354873969491726199786272312557098949473992
PO_4905364694422730825913221
null
null
null
[ "train_2nd_stage_921" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
12144963219512070316523981113123693557519769227443152368084572582305296365130740498508833202650232260722215120338997645609529082386009774387818852539237226
CO_1214496321951207031652398
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni5Ti7
Ni5Ti7
A7B5
[ 28, 28, 28, 28, 28, 22, 22, 22, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.4166666666666667, 0.5833333333333334 ]
2
12
[ [ 1.95097, -1.94403, 0.034752 ], [ 2.28789, 4.16143, -4.80666 ], [ 3.81621, 3.95538, 7.02421 ] ]
[ [ 3.80673, 3.90026, 6.94161 ], [ 2.21886, 2.18746, 0.2704 ], [ 3.88281, 1.99576, 5.28774 ], [ 4.01843, 2.01004, -1.52581 ], [ 2.00792, 2.03528, 3.59912 ], [ 4.02957, 3.99997, 0.00934 ], [ 2.20771, 0.19755, -1.26476 ], [ 4.1331, 4.17246, 3.84594 ], [ 6.00418, 6.04775, 3.7077 ], [ 1.97471, 0.01804, 1.77563 ], [ 4.0493, 2.10516, 2.06109 ], [ 5.92039, 3.98046, 1.92284 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7561811981591676074697551253412890455774475041061126107293989880186024560042077202274705167633155059207481820705836605264168425146938792514569262879161117
1
VASP
DFT
null
[ [ -0.051745, -0.053187, -0.07844 ], [ -0.075651, -0.073385, 0.084862 ], [ -0.000671, -0.000429, 0.000191 ], [ 0.074531, 0.072805, -0.085873 ], [ 0.05258, 0.053764, 0.078557 ], [ 0.142933, 0.136247, -0.432136 ], [ -0.142957, -0.136169, 0.433045 ], [ -0.943276, -0.932978, 0.726128 ], [ 0.759906, 0.762071, -0.016473 ], [ -0.000146, -0.000178, -0.000192 ], [ -0.759135, -0.761603, 0.016829 ], [ 0.943631, 0.933043, -0.726498 ] ]
null
[ [ 0.05890798728099878, -0.01853547206622677, 0.009061547779139832 ], [ -0.01853547206622677, 0.059073574518108456, 0.008715268852835828 ], [ 0.009061547779139832, 0.008715268852835828, 0.060392842302046404 ] ]
true
null
null
-83.808036
null
0.551361
1.512881
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:23:16
11057398190502168010353321339259763862528029785513609132423122705190721910895733794539230300678562944531593744117568526540888933703563887326618017180151143
PO_1105739819050216801035332
null
null
null
[ "train_2nd_stage_934" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
11318809759310627237154066022335380326070335970819798262571884321832668498618428635952333504174619553122999480322715477562695257117392015143615026327194327
CO_1131880975931062723715406
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al2
Al
A
[ 13, 13 ]
[ "Al" ]
[ 1 ]
1
2
[ [ 4.74648, 0.868548, 0.590994 ], [ 3.46017, 3.36314, 0.590994 ], [ 3.46016, 1.7842, 2.91145 ] ]
[ [ 2.9167, 1.50397, 1.02336 ], [ 8.7501, 4.51191, 3.07008 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7047317666067979816658713228597873166813471539200942806406025316378684082541524829238313314165002679840016691303853973869088662416620760001466519133689847
1
VASP
DFT
null
[ [ -0.000029, -0.000017, -0.000007 ], [ 0.000029, 0.000017, 0.000007 ] ]
null
[ [ -0.005289491738912284, 0.00029722066457456075, 0.00020216248058735873 ], [ 0.00029722066457456075, -0.00571266605764717, 0.00010429561749350924 ], [ 0.00020216248058735873, 0.00010429561749350924, -0.005794741902652534 ] ]
true
null
null
-7.465641
null
0.000034
0.000034
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:36:43
631854552039816763947382499651490749449763681210661324163674498833895945292257511359633110464519575200948761716571100907951053450559429547130547472881212
PO_6318545520398167639473824
null
null
null
[ "train_2nd_stage_380" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
845894930988836957981355989126527066499049694485218769980757946610705487793206319261640480665071869831267190699081474619153358683015992974075873694414893
CO_8458949309888369579813559
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al5Ni4Ti3
Al5Ni4Ti3
A5B4C3
[ 13, 13, 13, 13, 13, 28, 28, 28, 28, 22, 22, 22 ]
[ "Al", "Ni", "Ti" ]
[ 0.4166666666666667, 0.3333333333333333, 0.25 ]
3
12
[ [ 0, -0.000009, 4.045433 ], [ 3.512548, 2.02796, -0.000008 ], [ -5.036228, 8.722972, 0.000033 ] ]
[ [ 3.02069, 2.18514, 4.03712 ], [ 1.52778, 4.77096, 4.03712 ], [ 0.03488, 7.35678, 4.03715 ], [ -2.7466, 8.11848, 4.03716 ], [ -0.22849, 3.757, 2.01441 ], [ 0.48654, 2.51838, 4.03716 ], [ -0.9436, 4.99562, 4.03711 ], [ 2.29038, 3.45015, 2.01437 ], [ 0.76517, 6.09171, 2.01444 ], [ 1.31297, 1.08701, 2.01443 ], [ -1.77001, 6.42695, 2.01444 ], [ -0.99039, 9.1325, 2.01446 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9113701060717748345778514748031966612369112144425354497939395387112690779424552649785895960245696614636354420796378710588043867640929534601160217722542791
1
VASP
DFT
null
[ [ -0.002793, 0.004848, -0.000028 ], [ 0.000084, -0.000086, -0.000038 ], [ 0.002385, -0.004087, 0.000007 ], [ 0.000851, -0.001414, 0.000008 ], [ -0.000078, 0.000152, -0.000025 ], [ 0.002725, -0.004784, 0.000009 ], [ -0.002736, 0.004763, 0.000003 ], [ -0.001897, 0.003329, -0.000036 ], [ 0.001313, -0.002476, 0.000033 ], [ -0.00329, 0.005738, 0.000015 ], [ 0.002545, -0.004442, 0.000016 ], [ 0.000891, -0.001539, 0.000037 ] ]
null
[ [ 0.0026649371514783746, 0.000039571167858099854, 5.617358213294933e-7 ], [ 0.000039571167858099854, 0.0026201231159545327, -6.241509125883259e-8 ], [ 5.617358213294933e-7, -6.241509125883259e-8, 0.00261974862540698 ] ]
true
null
null
-70.428329
null
0.003618
0.006614
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T14:36:59
1175023470685988280683992629121403869317865947026566186120746672285337791503729932583192108694865470376020937485690023049870869254887334433234777726686614
PO_1175023470685988280683992
null
null
null
[ "train_1st_stage_110", "train_1st_stage_153" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
10969193131384349402048344684454799502734784540407330349385955425029017093978874189344147793354456694970680208265952216090792946171926826643051043300040514
CO_1096919313138434940204834
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Ni2Ti4
NiTi2
A2B
[ 28, 28, 22, 22, 22, 22 ]
[ "Ni", "Ti" ]
[ 0.3333333333333333, 0.6666666666666666 ]
2
6
[ [ 2.9612, -0.000083, 0 ], [ 0.00027, 9.74391, 0 ], [ 0, 0, 2.9612 ] ]
[ [ 2.9612, -0.00008, 0 ], [ 1.48073, 4.87191, 1.4806 ], [ 2.96129, 3.3299, 0 ], [ 1.48083, 8.2019, 1.4806 ], [ 1.48064, 1.54193, 1.4806 ], [ 0.00018, 6.41393, 0 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6962197546615574599892506732694075723194663969258988891484481471285377336739489601417203015532565776465770384397638672957468537842931185211918176069596043
1
VASP
DFT
null
[ [ -0.000002, -0.000671, 0.000001 ], [ 0.000023, -0.000181, 0.000001 ], [ -0.000001, 0.137158, -0.000004 ], [ -0.000003, 0.136648, -0.000003 ], [ 0, -0.136759, 0.000002 ], [ -0.000018, -0.136195, 0.000004 ] ]
null
[ [ -0.01526460920880765, 6.241509125883259e-8, 6.241509125883259e-8 ], [ 6.241509125883259e-8, -0.010187703270722947, 0 ], [ 6.241509125883259e-8, 0, -0.015264359548442612 ] ]
true
null
null
-44.028651
null
0.091269
0.137158
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:12:22
7285366166914001342719412174012335829029118134694811231375941558326500494696246059864019226301751304569143614152497696188065897538744518733103128403142866
PO_7285366166914001342719412
null
null
null
[ "train_2nd_stage_425" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
6738046005594882198048290702519997355275947491200761253359061336005251757778290755864422100004161123599726064301463565911254097373399948652890690963971138
CO_6738046005594882198048290
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0
Al11Ti
Al11Ti
A11B
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 22 ]
[ "Al", "Ti" ]
[ 0.9166666666666666, 0.08333333333333333 ]
2
12
[ [ -0.280141, 3.99378, -0.280141 ], [ 4.40152, -1.39909, 4.40152 ], [ 5.71101, 0, -5.71101 ] ]
[ [ 5.70713, 0.00173, -5.6824 ], [ 5.68163, 0.59673, 2.82612 ], [ 2.88412, 0.00173, -2.85939 ], [ 4.16216, 1.99955, -4.40436 ], [ 6.97504, 2.19616, -4.41422 ], [ 2.84824, 0.19927, -0.00727 ], [ 4.15231, 2.19616, -1.59148 ], [ 8.52337, 0.3968, -2.86617 ], [ 4.13623, 2.3965, 1.28072 ], [ 5.70036, 0.3968, -0.04315 ], [ 6.96519, 2.39277, -1.60134 ], [ 5.70374, 0.19927, -2.86278 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9746598963778088993104391374949745977899716837747921236549596527747027291581397601412001668465097227891748424113871210239078783202664308802490557890390973
1
VASP
DFT
null
[ [ -0.094436, 0.000517, 0.057594 ], [ 0.09242, 0.00699, 0.092451 ], [ 0.057599, 0.000515, -0.094429 ], [ 0.033542, 0.001116, 0.033508 ], [ 0.022458, 0.000005, -0.02247 ], [ -0.000015, 0.00004, -0.000018 ], [ -0.022496, 0.00001, 0.022479 ], [ -0.057636, -0.000455, 0.094446 ], [ -0.092462, -0.006969, -0.092446 ], [ 0.09441, -0.000457, -0.057643 ], [ -0.033554, -0.001102, -0.033552 ], [ 0.000171, -0.00021, 0.000081 ] ]
null
[ [ -0.004570657132884309, -0.001176149979681441, 0.0013582148008834556 ], [ -0.001176149979681441, 0.008589315198675505, -0.0011762123947727 ], [ 0.0013582148008834556, -0.0011762123947727, -0.004570407472519275 ] ]
true
null
null
-49.999617
null
0.071927
0.130935
{"hash": "10868450558671247443152026947160338505683745266658651051718065983487878962987857602829315249215796444208488632888003673539585986066311769564391053988452926", "id": "MD_1086845055867124744315202"}
MD_1086845055867124744315202
2024-08-16T15:31:42
12915327410347277586175883335645353811644883388566777484679907521105661049150994682152728231176060587729368004819603682271499301554213862342944239532298901
PO_1291532741034727758617588
null
null
null
[ "train_1st_stage_494" ]
[ "DS_dtjyh96dypuu_0" ]
2023-12-01T23:19:00
5260652124911318952167200531878047368282569781395435885861283630687667682065926183883272237866972454779667613850592985032200305328937459467165067406126373
CO_5260652124911318952167200
AlNiTi_CMS_2019
[ "Konstantin Gubaev", "Evgeny V. Podryabinkin", "Gus L.W. Hart", "Alexander V. Shapeev" ]
This dataset was generated using the following active learning scheme: 1) candidate structures were relaxed by a partially-trained MTP model, 2) structures for which the MTP had to perform extrapolation were passed to DFT to be re-computed, 3) the MTP was retrained, including the structures that were re-computed with DFT, 4) steps 1-3 were repeated until the MTP no longer extrapolated on any of the original candidate structures. The original candidate structures for this dataset included about 375,000 binary and ternary structures, enumerating all possible unit cells with different symmetries (BCC, FCC, and HCP) and different number of atoms.
[ "Al", "Ni", "Ti" ]
3
2,684
2,684
25,067
0
2,684
0
2,684
0
2,684
-51.590086
906.604882
0
2023-12-01T18:19:28
[ [ 1, 1, 1 ] ]
[ 3 ]
2023
[ 0.2966449914229864, 0.3824550205449396, 0.32089998803207403 ]
CC-BY-4.0
{'source-publication': 'https://doi.org/10.1016/j.commatsci.2018.09.031', 'source-data': 'https://gitlab.com/kgubaev/accelerating-high-throughput-searches-for-new-alloys-with-active-learning-data', 'other': None}
10.60732/7b56ca82
3389360456198058392034570193391541356928879716971205247655861353037594036502163554880877085823897366490724947053850262613353186244287689034639073555582445
DS_dtjyh96dypuu_0
AlNiTi_CMS_2019__Gubaev-Podryabinkin-Hart-Shapeev__DS_dtjyh96dypuu_0