problem
stringlengths
10
5.15k
answer
stringlengths
0
1.22k
solution
stringlengths
0
11.1k
reward
float64
0
1
length
float64
172
8.19k
correct_length
float64
-1
8.19k
incorrect_length
float64
-1
8.19k
$A$ and $B$ are two distinct points on the parabola $y=3-x^{2}$ that are symmetric with respect to the line $x+y=0$. Find $|AB|$.
$3 \sqrt{2}$
0
5,597.75
-1
5,597.75
Consider a three-person game involving the following three types of fair six-sided dice. - Dice of type $A$ have faces labelled $2,2,4,4,9,9$. - Dice of type $B$ have faces labelled $1,1,6,6,8,8$. - Dice of type $C$ have faces labelled $3,3,5,5,7,7$. All three players simultaneously choose a die (more than one person can choose the same type of die, and the players don't know one another's choices) and roll it. Then the score of a player $P$ is the number of players whose roll is less than $P$ 's roll (and hence is either 0,1 , or 2 ). Assuming all three players play optimally, what is the expected score of a particular player?
\frac{8}{9}
Short version: third player doesn't matter; against 1 opponent, by symmetry, you'd both play the same strategy. Type A beats B, B beats C, and C beats A all with probability $5 / 9$. It can be determined that choosing each die with probability $1 / 3$ is the best strategy. Then, whatever you pick, there is a $1 / 3$ of dominating, a $1 / 3$ chance of getting dominated, and a $1 / 3$ chance of picking the same die (which gives a $1 / 3 \cdot 2 / 3+1 / 3 \cdot 1 / 3=1 / 3$ chance of rolling a higher number). Fix your selection; then the expected payout is then $1 / 3 \cdot 5 / 9+1 / 3 \cdot 4 / 9+1 / 3 \cdot 1 / 3=1 / 3+1 / 9=4 / 9$. Against 2 players, your EV is just $E(p 1)+E(p 2)=2 E(p 1)=8 / 9$
0
8,187.625
-1
8,187.625
How many natural five-digit numbers have the product of their digits equal to 2000?
30
0.0625
8,040.9375
5,775
8,192
What is the smallest whole number larger than the perimeter of any triangle with a side of length $7$ and a side of length $24$?
62
0.9375
1,664.5
1,543.533333
3,479
A standard deck of 54 playing cards (with four cards of each of thirteen ranks, as well as two Jokers) is shuffled randomly. Cards are drawn one at a time until the first queen is reached. What is the probability that the next card is also a queen?
\frac{2}{27}
Since the four queens are equivalent, we can compute the probability that a specific queen, say the queen of hearts, is right after the first queen. Remove the queen of hearts; then for every ordering of the 53 other cards, there are 54 locations for the queen of hearts, and exactly one of those is after the first queen. Therefore the probability that the queen of hearts immediately follows the first queen is $\frac{1}{54}$, and the probability any queen follows the first queen is $\frac{1}{54} \cdot 4=\frac{2}{27}$.
0
8,001.375
-1
8,001.375
Suppose that $a_1 = 1$ , and that for all $n \ge 2$ , $a_n = a_{n-1} + 2a_{n-2} + 3a_{n-3} + \ldots + (n-1)a_1.$ Suppose furthermore that $b_n = a_1 + a_2 + \ldots + a_n$ for all $n$ . If $b_1 + b_2 + b_3 + \ldots + b_{2021} = a_k$ for some $k$ , find $k$ . *Proposed by Andrew Wu*
2022
0
8,192
-1
8,192
Xiao Ming observed a faucet continuously dripping water due to damage. To investigate the waste caused by the water leakage, Xiao Ming placed a graduated cylinder under the faucet to collect water. He recorded the total amount of water in the cylinder every minute, but due to a delay in starting the timer, there was already a small amount of water in the cylinder at the beginning. Therefore, he obtained a set of data as shown in the table below: | Time $t$ (minutes) | 1 | 2 | 3 | 4 | 5 | ... | |---------------------|---|---|---|---|---|----| | Total water amount $y$ (milliliters) | 7 | 12 | 17 | 22 | 27 | ... | $(1)$ Investigation: Based on the data in the table above, determine which one of the functions $y=\frac{k}{t}$ and $y=kt+b$ (where $k$ and $b$ are constants) can correctly reflect the functional relationship between the total water amount $y$ and time $t$. Find the expression of $y$ in terms of $t$. $(2)$ Application: ① Estimate how many milliliters of water will be in the cylinder when Xiao Ming measures it at the 20th minute. ② A person drinks approximately 1500 milliliters of water per day. Estimate how many days the water leaked from this faucet in a month (30 days) can supply one person.
144
0.125
5,371
5,071.5
5,413.785714
Find $\left(\sqrt{(\sqrt3)^3}\right)^4$.
27
1
3,386.875
3,386.875
-1
$ABCD$ is a trapezoid with $AB \parallel CD$, $AB=6$, and $CD=15$. If the area of $\triangle AED=30$, what is the area of $\triangle AEB?$
12
0.6875
5,502.375
4,535.272727
7,630
Let $[x]$ be the greatest integer less than or equal to the real number $x$. Given the sequence $\left\{a_{n}\right\}$ which satisfies $a_{1}=\frac{1}{2}, a_{n+1}=a_{n}^{2}+3 a_{n}+1$ for $n \in N^{*}$, find the value of $\left[\sum_{k=1}^{2017} \frac{a_{k}}{a_{k}+2}\right]$.
2015
0.1875
7,581.125
6,869.333333
7,745.384615
Twelve standard 6-sided dice are rolled. What is the probability that exactly two of the dice show a 1? Express your answer as a decimal rounded to the nearest thousandth.
0.298
0
7,419.6875
-1
7,419.6875
Given an isosceles triangle with side lengths of $4x-2$, $x+1$, and $15-6x$, its perimeter is ____.
12.3
0.4375
4,356.125
4,493.142857
4,249.555556
Using the digits 1, 2, 3, 4, 5, how many even three-digit numbers less than 500 can be formed if each digit can be used more than once?
40
1
2,303.625
2,303.625
-1
How many ways, without taking order into consideration, can 2002 be expressed as the sum of 3 positive integers (for instance, $1000+1000+2$ and $1000+2+1000$ are considered to be the same way)?
334000
Call the three numbers that sum to $2002 A, B$, and $C$. In order to prevent redundancy, we will consider only cases where $A \leq B \leq C$. Then $A$ can range from 1 to 667, inclusive. For odd $A$, there are $1000-\frac{3(A-1)}{2}$ possible values for $B$. For each choice of $A$ and $B$, there can only be one possible $C$, since the three numbers must add up to a fixed value. We can add up this arithmetic progression to find that there are 167167 possible combinations of $A, B, C$, for odd $A$. For each even $A$, there are $1002-\frac{3 A}{2}$ possible values for $B$. Therefore, there are 166833 possible combinations for even $A$. In total, this makes 334000 possibilities.
0
8,192
-1
8,192
Given a skewed six-sided die is structured so that rolling an odd number is twice as likely as rolling an even number, calculate the probability that, after rolling the die twice, the sum of the numbers rolled is odd.
\frac{4}{9}
0.8125
4,786.875
4,001.076923
8,192
Consider the quadratic equation $2x^2 - 5x + m = 0$. Find the value of $m$ such that the sum of the roots of the equation is maximized while ensuring that the roots are real and rational.
\frac{25}{8}
1
4,420.4375
4,420.4375
-1
A triangle has area $30$, one side of length $10$, and the median to that side of length $9$. Let $\theta$ be the acute angle formed by that side and the median. What is $\sin{\theta}$?
\frac{2}{3}
1. **Identify the given values and the formula for the area of a triangle:** - Given: Area of the triangle $= 30$, one side (let's call it $a$) $= 10$, and the median to that side $= 9$. - The formula for the area of a triangle using a side and the median to that side is not directly applicable. We need to use the general area formula involving sine of the angle between two sides. 2. **Understanding the role of the median:** - The median divides the side of length $10$ into two segments of length $5$ each (since the median to a side of a triangle bisects that side). 3. **Using the area formula involving sine:** - The area $A$ of a triangle can also be expressed as $A = \frac{1}{2}ab\sin{\theta}$, where $a$ and $b$ are sides of the triangle and $\theta$ is the angle between them. - Here, we consider the side of length $10$ and the median of length $9$ as $a$ and $b$, respectively. The angle between them is $\theta$. - Thus, the area formula becomes: \[ 30 = \frac{1}{2} \times 10 \times 9 \times \sin{\theta} \] Simplifying, we get: \[ 30 = 45 \sin{\theta} \] \[ \sin{\theta} = \frac{30}{45} = \frac{2}{3} \] 4. **Conclusion:** - We have calculated $\sin{\theta} = \frac{2}{3}$ using the correct interpretation of the triangle's geometry and the area formula. The acute angle $\theta$ formed by the side of length $10$ and the median of length $9$ has a sine of $\frac{2}{3}$. Thus, the correct answer is $\boxed{\textbf{(D)}\ \frac{2}{3}}$.
1
3,661.25
3,661.25
-1
What is the largest $2$-digit prime factor of the integer $n = {300 \choose 150}$?
89
0
5,985.25
-1
5,985.25
For how many values of $a$ is it true that the line $y=x+a$ passes through the vertex of parabola $y=x^2+a^2$?
2
1
1,872.625
1,872.625
-1
Determine the distance in feet between the 5th red light and the 23rd red light, where the lights are hung on a string 8 inches apart in the pattern of 3 red lights followed by 4 green lights. Recall that 1 foot is equal to 12 inches.
28
0.0625
5,702.5
612
6,041.866667
Given the parabola $y^{2}=4x$, let $AB$ and $CD$ be two chords perpendicular to each other and passing through its focus. Find the value of $\frac{1}{|AB|}+\frac{1}{|CD|}$.
\frac{1}{4}
0.6875
6,292.25
5,428.727273
8,192
Solve the equation \[-x^2 = \frac{3x+1}{x+3}.\]Enter all solutions, separated by commas.
-1
0.9375
3,902.4375
3,616.466667
8,192
In a math lesson, each gnome needs to find a three-digit number without zero digits, divisible by 3, such that when 297 is added to it, the resulting number consists of the same digits but in reverse order. What is the minimum number of gnomes that must be in the lesson so that among the numbers they find, there are always at least two identical ones?
19
0.3125
6,519.8125
5,096
7,167
When a bucket is two-thirds full of water, the bucket and water weigh $a$ kilograms. When the bucket is one-half full of water the total weight is $b$ kilograms. In terms of $a$ and $b$, what is the total weight in kilograms when the bucket is full of water?
3a - 2b
Let's denote: - $x$ as the weight of the empty bucket. - $y$ as the weight of the water when the bucket is full. From the problem, we have two equations based on the given conditions: 1. When the bucket is two-thirds full, the total weight is $a$ kilograms: \[ x + \frac{2}{3}y = a \] 2. When the bucket is one-half full, the total weight is $b$ kilograms: \[ x + \frac{1}{2}y = b \] We need to find the total weight when the bucket is full, which is $x + y$. #### Step 1: Solve for $y$ Subtract the second equation from the first: \[ (x + \frac{2}{3}y) - (x + \frac{1}{2}y) = a - b \] \[ \frac{2}{3}y - \frac{1}{2}y = a - b \] \[ \frac{1}{6}y = a - b \] Multiply both sides by 6: \[ y = 6(a - b) \] #### Step 2: Solve for $x$ Substitute $y = 6(a - b)$ into the second equation: \[ x + \frac{1}{2}(6(a - b)) = b \] \[ x + 3(a - b) = b \] \[ x = b - 3a + 3b \] \[ x = -3a + 4b \] #### Step 3: Find the total weight when the bucket is full \[ x + y = (-3a + 4b) + 6(a - b) \] \[ x + y = -3a + 4b + 6a - 6b \] \[ x + y = 3a - 2b \] Thus, the total weight of the bucket when it is full of water is $\boxed{3a - 2b}$. The correct answer is $\mathrm{(E)}$.
0.8125
5,120.5
4,851.153846
6,287.666667
Let $p,$ $q,$ $r,$ $s$ be distinct real numbers such that the roots of $x^2 - 12px - 13q = 0$ are $r$ and $s,$ and the roots of $x^2 - 12rx - 13s = 0$ are $p$ and $q.$ Find the value of $p + q + r + s.$
2028
0.125
7,955
6,296
8,192
Rectangle $EFGH$ has sides $\overline {EF}$ of length 5 and $\overline {FG}$ of length 4. Divide $\overline {EF}$ into 196 congruent segments with points $E=R_0, R_1, \ldots, R_{196}=F$, and divide $\overline {FG}$ into 196 congruent segments with points $F=S_0, S_1, \ldots, S_{196}=G$. For $1 \le k \le 195$, draw the segments $\overline {R_kS_k}$. Repeat this construction on the sides $\overline {EH}$ and $\overline {GH}$, and then draw the diagonal $\overline {EG}$. Find the sum of the lengths of the 389 parallel segments drawn.
195 \sqrt{41}
0
8,011.3125
-1
8,011.3125
Given that $\triangle ABC$ is an acute triangle, vector $\overrightarrow{m} = (\cos(A + \frac{\pi}{3}), \sin(A + \frac{\pi}{3}))$, $\overrightarrow{n} = (\cos B, \sin B)$, and $\overrightarrow{m} \perp \overrightarrow{n}$. (Ⅰ) Find the value of $A-B$; (Ⅱ) If $\cos B = \frac{3}{5}$ and $AC = 8$, find the length of $BC$.
4\sqrt{3} + 3
1
4,541.75
4,541.75
-1
Given that $a > 0$, if $f(g(a)) = 18$, where $f(x) = x^2 + 10$ and $g(x) = x^2 - 6$, what is the value of $a$?
\sqrt{2\sqrt{2} + 6}
0
6,653.125
-1
6,653.125
Solve the following equations: 2x + 62 = 248;           x - 12.7 = 2.7;          x ÷ 5 = 0.16;            7x + 2x = 6.3.
0.7
1
701.5
701.5
-1
There are 3 math teams in the area, with 5, 7, and 8 students respectively. Each team has two co-captains. If I randomly select a team, and then randomly select two members of that team to give a copy of $\emph{Introduction to Geometry}$, what is the probability that both of the people who receive books are co-captains?
\dfrac{11}{180}
0.9375
3,923.3125
3,638.733333
8,192
Compute the number of ordered pairs of integers $(x,y)$ with $1\le x<y\le 200$ such that $i^x+i^y$ is a real number.
4950
0
7,628
-1
7,628
James is standing at the point $(0,1)$ on the coordinate plane and wants to eat a hamburger. For each integer $n \geq 0$, the point $(n, 0)$ has a hamburger with $n$ patties. There is also a wall at $y=2.1$ which James cannot cross. In each move, James can go either up, right, or down 1 unit as long as he does not cross the wall or visit a point he has already visited. Every second, James chooses a valid move uniformly at random, until he reaches a point with a hamburger. Then he eats the hamburger and stops moving. Find the expected number of patties that James eats on his burger.
\frac{7}{3}
Note that we desire to compute the number of times James moves to the right before moving down to the line $y=0$. Note also that we can describe James's current state based on whether his $y$-coordinate is 0 or 1 and whether or not the other vertically adjacent point has been visited. Let $E(1, N)$ be the expected number of times James will go right before stopping if he starts at a point with $y$-coordinate 1 and the other available point with the same $x$-coordinate has not been visited. Define $E(1, Y), E(2, N)$, and $E(2, Y)$ similarly. Then we can construct equations relating the four variables: $$E(1, N)=\frac{1}{3} E(2, Y)+\frac{1}{3}(E(1, N)+1)$$ as James can either go up, right, or down with probability $1 / 3$ each if he starts in the state $(1, N)$. Similarly, we have $$E(2, N)=\frac{1}{2} E(1, Y)+\frac{1}{2}(E(2, N)+1), E(1, Y)=\frac{1}{2}(E(1, N)+1)$$ and $E(2, Y)=E(2, N)+1$. Solving these equations, we get $E(1, N)=\frac{7}{3}$, which is our answer, as James starts in that state having gone left 0 times.
0
8,192
-1
8,192
What is the number of units in the distance between $(2,5)$ and $(-6,-1)$?
10
1
1,718.1875
1,718.1875
-1
While one lion cub, who is 6 minutes away from the water hole, heads there, another, having already quenched its thirst, heads back along the same road 1.5 times faster than the first. At the same time, a turtle starts towards the water hole along the same road, being 32 minutes away from it. At some point, the first lion cub steps on the turtle, and after a while, the second lion cub does too. 28 minutes and 48 seconds after the second occurrence, the turtle reaches the water hole. How many minutes passed between the two occurrences, given that all three moved at constant speeds?
2.4
0
8,192
-1
8,192
A circle has its center at $(2,0)$ with a radius of 2, and another circle has its center at $(5,0)$ with a radius of 1. A line is tangent to both circles in the first quadrant. The $y$-intercept of this line is closest to:
$2 \sqrt{2}$
0
7,926
-1
7,926
In the figure below, $3$ of the $6$ disks are to be painted blue, $2$ are to be painted red, and $1$ is to be painted green. Two paintings that can be obtained from one another by a rotation or a reflection of the entire figure are considered the same. How many different paintings are possible? [asy] size(110); pair A, B, C, D, E, F; A = (0,0); B = (1,0); C = (2,0); D = rotate(60, A)*B; E = B + D; F = rotate(60, A)*C; draw(Circle(A, 0.5)); draw(Circle(B, 0.5)); draw(Circle(C, 0.5)); draw(Circle(D, 0.5)); draw(Circle(E, 0.5)); draw(Circle(F, 0.5)); [/asy]
12
To solve this problem, we will use Burnside's Lemma, which states that the number of distinct colorings, considering symmetries, is the average number of fixed points of all group actions on the set of colorings. #### Step 1: Calculate the total number of colorings without considering symmetries. We have 6 disks and we need to paint 3 blue, 2 red, and 1 green. The number of ways to choose 3 disks out of 6 to paint blue is $\binom{6}{3}$. After choosing 3 disks for blue, we choose 2 out of the remaining 3 disks to paint red, which can be done in $\binom{3}{2}$ ways. The last disk will automatically be green. Thus, the total number of colorings without considering symmetries is: \[ \binom{6}{3} \cdot \binom{3}{2} = 20 \cdot 3 = 60 \] #### Step 2: Identify the symmetries of the hexagon. The symmetries of a regular hexagon include: - 1 identity transformation (does nothing), - 3 reflections across lines through opposite vertices, - 2 rotations (120° and 240° clockwise). #### Step 3: Count the fixed points for each symmetry. 1. **Identity transformation**: Every coloring is fixed. Thus, there are 60 fixed points. 2. **Reflections**: Consider a reflection across a line through vertices 1 and 4. Disks 2 and 5 must be the same color, disks 3 and 6 must be the same color, and disks 1 and 4 can be any color. We can choose: - 1 color for disks 1 and 4 (3 choices), - 1 color for disks 2 and 5 (2 remaining choices), - The last color for disks 3 and 6. This gives $3 \times 2 \times 1 = 6$ fixed points for each line of reflection. Since there are 3 lines of reflection, this contributes $3 \times 6 = 18$ fixed points. 3. **Rotations (120° and 240°)**: For a coloring to be fixed under a 120° rotation, all disks must be the same color, which is impossible given the constraints (3 blue, 2 red, 1 green). Thus, each rotation contributes 0 fixed points. #### Step 4: Apply Burnside's Lemma. The number of distinct colorings is the average number of fixed points: \[ \frac{1 \cdot 60 + 3 \cdot 6 + 2 \cdot 0}{6} = \frac{60 + 18 + 0}{6} = \frac{78}{6} = 13 \] It appears there was a miscalculation in the original solution regarding the number of fixed points for the reflections. Each reflection actually has 6 fixed points, not 4. Correcting this and recalculating gives us 13, not 12. Thus, the correct answer is not listed among the provided choices. However, if we assume the choices might have a typo or error, the closest correct choice would be: $\boxed{\textbf{(D) } 12}$ (assuming a minor error in the problem statement or choices).
0
8,085.875
-1
8,085.875
What is the sum of all the odd divisors of $360$?
78
1
1,977.8125
1,977.8125
-1
There exist $s$ unique nonnegative integers $m_1 > m_2 > \cdots > m_s$ and $s$ unique integers $b_k$ ($1\le k\le s$) with each $b_k$ either $1$ or $- 1$ such that\[b_13^{m_1} + b_23^{m_2} + \cdots + b_s3^{m_s} = 2012.\]Find $m_1 + m_2 + \cdots + m_s$.
22
0
7,806.375
-1
7,806.375
Find the equation of the directrix of the parabola $y = 8x^2 + 2.$
y = \frac{63}{32}
0.9375
3,291.25
2,964.533333
8,192
Multiply the sum of $158.23$ and $47.869$ by $2$, then round your answer to the nearest tenth.
412.2
0.9375
1,652.3125
1,216.333333
8,192
Shauna takes five tests, each worth a maximum of $100$ points. Her scores on the first three tests are $76$, $94$, and $87$. In order to average $81$ for all five tests, what is the lowest score she could earn on one of the other two tests?
48
1. **Calculate the total points Shauna has scored on the first three tests:** \[ 76 + 94 + 87 = 257 \text{ points} \] 2. **Determine the total points needed for an average of 81 over five tests:** \[ 81 \times 5 = 405 \text{ points} \] 3. **Calculate the total points Shauna needs on the last two tests:** \[ 405 - 257 = 148 \text{ points} \] 4. **Assume Shauna scores the maximum on one of the tests:** Let's assume she scores 100 on one of the tests. Then, the points needed on the other test are: \[ 148 - 100 = 48 \text{ points} \] 5. **Verify if 48 is the lowest possible score she could earn on one of the tests:** Since the sum of the scores on the last two tests must be 148, and one of the scores is 100, the other score must be 48 to meet the total required points. Any higher score on one test would necessitate a lower score on the other, but since we are looking for the lowest possible score on one test, 48 is the minimum she can score while still achieving her goal average. 6. **Conclusion:** The lowest score Shauna could earn on one of the other two tests, while still achieving an average of 81 across all five tests, is $\boxed{48}$.
1
1,680.4375
1,680.4375
-1
Find all odd natural numbers greater than 500 but less than 1000, each of which has the property that the sum of the last digits of all its divisors (including 1 and the number itself) is equal to 33.
729
0.5
7,130.1875
6,068.375
8,192
Calculate the total surface area of two hemispheres of radius 8 cm each, joined at their bases to form a complete sphere. Assume that one hemisphere is made of a reflective material that doubles the effective surface area for purposes of calculation. Express your answer in terms of $\pi$.
384\pi
0.5625
6,009.875
4,855
7,494.714286
What is the number of positive integers $p$ for which $-1<\sqrt{p}-\sqrt{100}<1$?
39
If $-1<\sqrt{p}-\sqrt{100}<1$, then $-1<\sqrt{p}-10<1$ or $9<\sqrt{p}<11$. Since $\sqrt{p}$ is greater than 9, then $p$ is greater than $9^{2}=81$. Since $\sqrt{p}$ is less than 11, then $p$ is less than $11^{2}=121$. In other words, $81<p<121$. Since $p$ is a positive integer, then $82 \leq p \leq 120$. Therefore, there are $120-82+1=39$ such integers $p$.
1
2,745.1875
2,745.1875
-1
A positive integer with 3 digits $\overline{ABC}$ is $Lusophon$ if $\overline{ABC}+\overline{CBA}$ is a perfect square. Find all $Lusophon$ numbers.
110,143,242,341,440,164,263,362,461,560,198,297,396,495,594,693,792,891,990
To find all three-digit Lusophon numbers \( \overline{ABC} \), we first need to establish the conditions under which a number meets the Lusophon criteria. A number is defined as Lusophon if the sum of the number and its digit reversal is a perfect square. Therefore, we need to consider the number \(\overline{ABC}\) and its reverse \(\overline{CBA}\), and determine when their sum is a perfect square. Expressing the numbers in terms of their digits: \[ \overline{ABC} = 100A + 10B + C \] \[ \overline{CBA} = 100C + 10B + A \] The sum we need to check is: \[ \overline{ABC} + \overline{CBA} = (100A + 10B + C) + (100C + 10B + A) \] \[ = 101A + 20B + 101C \] Thus, we need to find when: \[ 101A + 20B + 101C = k^2 \] for some integer \(k\). ### Procedure: 1. **Range**: The value of a three-digit number \(\overline{ABC}\) is from \(100\) to \(999\), so \(\overline{ABC}+\overline{CBA}\) is between \(198\) and \(1998\). 2. **Perfect Squares**: Calculate all \(k^2\) in the range from \(198\) to \(1998\). #### Iteration over valid digits: - I will iterate over possible values of \(A\), \(B\), and \(C\), and calculate \(101A + 20B + 101C\) for each combination. - Check if the resultant sum is a perfect square. Since extensive listing and checking combinations can be cumbersome manually, below is a concise approach capturing valid identities: - **Valid Calculation**: 1. Pair values for \(A\) and \(C\) such that the expression gives perfect squares upon reasonable selections of \(B\). 2. Leverage modular arithmetic and divisibility properties to constrain possibilities. Finally, the calculated Lusophon numbers, fulfilling the criteria throughout valid selections, are: \[ \boxed{110,143,242,341,440,164,263,362,461,560,198,297,396,495,594,693,792,891,990} \] These include all the numbers whose original and reverse sums form perfect squares, using the iteration through the digit space and ensuring accurate capture of conditions.
0
8,192
-1
8,192
If the arithmetic mean of $a$ and $b$ is double their geometric mean, with $a>b>0$, then a possible value for the ratio $a/b$, to the nearest integer, is:
14
1. **Given Condition**: The arithmetic mean of $a$ and $b$ is double their geometric mean. This can be expressed as: \[ \frac{a+b}{2} = 2 \sqrt{ab} \] Squaring both sides to eliminate the square root, we get: \[ \left(\frac{a+b}{2}\right)^2 = (2 \sqrt{ab})^2 \] \[ \frac{(a+b)^2}{4} = 4ab \] \[ (a+b)^2 = 16ab \] 2. **Express in terms of $x$**: Let $x = \frac{a}{b}$. Then $a = bx$ and substituting in the equation $(a+b)^2 = 16ab$, we get: \[ (bx + b)^2 = 16b^2x \] \[ b^2(x+1)^2 = 16b^2x \] Dividing both sides by $b^2$ (assuming $b \neq 0$), we have: \[ (x+1)^2 = 16x \] \[ x^2 + 2x + 1 = 16x \] \[ x^2 - 14x + 1 = 0 \] 3. **Solve the Quadratic Equation**: The quadratic equation $x^2 - 14x + 1 = 0$ can be solved using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where $a = 1$, $b = -14$, and $c = 1$. Plugging in these values, we get: \[ x = \frac{-(-14) \pm \sqrt{(-14)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ x = \frac{14 \pm \sqrt{196 - 4}}{2} \] \[ x = \frac{14 \pm \sqrt{192}}{2} \] \[ x = \frac{14 \pm 8\sqrt{3}}{2} \] \[ x = 7 \pm 4\sqrt{3} \] 4. **Approximate the Values**: We approximate $4\sqrt{3} \approx 6.928$. Thus: \[ x = 7 + 6.928 \approx 13.928 \] \[ x = 7 - 6.928 \approx 0.072 \] Since $a > b > 0$, we choose $x = 13.928$. 5. **Nearest Integer**: The nearest integer to $13.928$ is $14$. Thus, the possible value for the ratio $\frac{a}{b}$, to the nearest integer, is $\boxed{14}$.
1
3,131.3125
3,131.3125
-1
Given the ellipse $\frac{{x}^{2}}{3{{m}^{2}}}+\frac{{{y}^{2}}}{5{{n}^{2}}}=1$ and the hyperbola $\frac{{{x}^{2}}}{2{{m}^{2}}}-\frac{{{y}^{2}}}{3{{n}^{2}}}=1$ share a common focus, find the eccentricity of the hyperbola ( ).
\frac{\sqrt{19}}{4}
0
3,105.4375
-1
3,105.4375
The equation $$ (x-1) \times \ldots \times(x-2016) = (x-1) \times \ldots \times(x-2016) $$ is written on the board. We want to erase certain linear factors so that the remaining equation has no real solutions. Determine the smallest number of linear factors that need to be erased to achieve this objective.
2016
0
8,075.875
-1
8,075.875
Given $f(x) = x^2$ and $g(x) = |x - 1|$, let $f_1(x) = g(f(x))$, $f_{n+1}(x) = g(f_n(x))$, calculate the number of solutions to the equation $f_{2015}(x) = 1$.
2017
0
8,153.3125
-1
8,153.3125
Given that $θ$ is an angle in the second quadrant and $\tan(\begin{matrix}θ+ \frac{π}{4}\end{matrix}) = \frac{1}{2}$, find the value of $\sin(θ) + \cos(θ)$.
-\frac{\sqrt{10}}{5}
0
6,404.75
-1
6,404.75
The time it takes for person A to make 90 parts is the same as the time it takes for person B to make 120 parts. It is also known that A and B together make 35 parts per hour. Determine how many parts per hour A and B each make.
20
0.75
1,010.0625
1,093.333333
760.25
Increase Grisha's yield by 40% and Vasya's yield by 20%. Grisha, the most astute among them, calculated that in the first case their total yield would increase by 1 kg; in the second case, it would decrease by 0.5 kg; in the third case, it would increase by 4 kg. What was the total yield of the friends (in kilograms) before their encounter with Hottabych?
15
0
7,890.8125
-1
7,890.8125
Person A and Person B start from points $A$ and $B$ simultaneously and move towards each other. It is known that the speed ratio of Person A to Person B is 6:5. When they meet, they are 5 kilometers from the midpoint between $A$ and $B$. How many kilometers away is Person B from point $A$ when Person A reaches point $B$?
5/3
0
6,008.0625
-1
6,008.0625
On a balance scale, $3$ green balls balance $6$ blue balls, $2$ yellow balls balance $5$ blue balls, and $6$ blue balls balance $4$ white balls. How many blue balls are needed to balance $4$ green, $2$ yellow and $2$ white balls?
16
1
2,527.625
2,527.625
-1
Determine how many "super prime dates" occurred in 2007, where a "super prime date" is defined as a date where both the month and day are prime numbers, and additionally, the day is less than or equal to the typical maximum number of days in the respective prime month.
50
0
3,737.1875
-1
3,737.1875
Given triangle \( \triangle ABC \) with \( Q \) as the midpoint of \( BC \), \( P \) on \( AC \) such that \( CP = 3PA \), and \( R \) on \( AB \) such that \( S_{\triangle PQR} = 2 S_{\triangle RBQ} \). If \( S_{\triangle ABC} = 300 \), find \( S_{\triangle PQR} \).
100
0
6,422
-1
6,422
Dr. Math's four-digit house number $WXYZ$ contains no zeroes and can be split into two different two-digit primes ``$WX$'' and ``$YZ$'' where the digits $W$, $X$, $Y$, and $Z$ are not necessarily distinct. If each of the two-digit primes is less than 50, how many such house numbers are possible?
110
0.3125
7,499.3125
6,254
8,065.363636
A nine-digit integer is formed by repeating a positive three-digit integer three times. For example, 123,123,123 or 456,456,456 are integers of this form. What is the greatest common divisor of all nine-digit integers of this form?
1001001
0.125
7,960.875
6,343
8,192
What is the smallest integer greater than 10 such that the sum of the digits in its base 17 representation is equal to the sum of the digits in its base 10 representation?
153
We assume that the answer is at most three digits (in base 10). Then our desired number can be expressed in the form $\overline{a b c}{ }_{10}=\overline{d e f}_{17}$, where $a, b, c$ are digits in base 10 , and $d, e, f$ are digits in base 17. These variables then satisfy the equations $$\begin{aligned} 100 a+10 b+c & =289 d+17 e+f \\ a+b+c & =d+e+f \end{aligned}$$ Subtracting the second equation from the first, we obtain $99 a+9 b=288 d+16 e$, or $9(11 a+b)=$ $16(18 d+e)$. From this equation, we find that $11 a+b$ must be divisible by 16 , and $18 d+e$ must be divisible by 9 . To minimize $\overline{a b c}$, we find the minimal possible value of $a$ : If $a=0$, then the only way for $11 a+b=b$ to be divisible by 16 is to set $b=0$; however, this is disallowed by the problem condition, which stipulates that the number must be greater than 10 . If we try $a=1$, then we find that the only possible value of $b$ which lets $11 a+b=b+11$ be divisible by 16 is $b=5$. Plugging these in and simplifying, we find that we must have $18 d+e=9$. The only possible solution to this is $d=0, e=9$. Now to satisfy $a+b+c=d+e+f$, we must have $1+5+c=0+9+f$, or $c=f+3$. The minimal possible solution to this is $c=3, f=0$. So our answer is $\overline{a b c}=153$, which is also equal to $090_{17}$.
0
7,694.6875
-1
7,694.6875
For some positive integer $n$, the number $110n^3$ has $110$ positive integer divisors, including $1$ and the number $110n^3$. How many positive integer divisors does the number $81n^4$ have? $\textbf{(A) }110\qquad\textbf{(B) }191\qquad\textbf{(C) }261\qquad\textbf{(D) }325\qquad\textbf{(E) }425$
325
0
7,291
-1
7,291
Given the digits 1, 2, 3, 4, 5, 6 to form a six-digit number (without repeating any digit), requiring that any two adjacent digits have different parity, and 1 and 2 are adjacent, determine the number of such six-digit numbers.
40
0
8,192
-1
8,192
A starship enters an extraordinary meteor shower. Some of the meteors travel along a straight line at the same speed, equally spaced. Another group of meteors travels similarly along another straight line, parallel to the first, with the same speed but in the opposite direction, also equally spaced. The ship travels parallel to these lines. Astronaut Gavrila recorded that every 7 seconds the ship encounters meteors coming towards it, and every 13 seconds it overtakes meteors traveling in the same direction. He wondered how often the meteors would pass by if the ship were stationary. He thought that he should take the arithmetic mean of the two given times. Is Gavrila correct? If so, write down this arithmetic mean. If not, indicate the correct time in seconds, rounded to the nearest tenth.
9.1
0.5
4,834.375
4,649.25
5,019.5
In right triangle $DEF$, $DE=15$, $DF=9$ and $EF=12$ units. What is the distance from $F$ to the midpoint of segment $DE$?
7.5
0.5625
3,214.0625
2,824.777778
3,714.571429
What two digits need to be added to the right of the number 2013 to make the resulting six-digit number divisible by 101? Find all possible answers.
94
0.5625
5,020.875
4,874.222222
5,209.428571
Given \(a, b, c \in (0, 1]\) and \(\lambda \) is a real number such that \[ \frac{\sqrt{3}}{\sqrt{a+b+c}} \geqslant 1+\lambda(1-a)(1-b)(1-c), \] find the maximum value of \(\lambda\).
\frac{64}{27}
0.125
7,969.1875
6,409.5
8,192
The digits 1, 2, 3, 4, and 5 were used, each one only once, to write a certain five-digit number \(abcde\) such that \(abc\) is divisible by 4, \(bcd\) is divisible by 5, and \(cde\) is divisible by 3. Find this number.
12453
0.6875
5,674.875
4,530.727273
8,192
On a particular street in Waterloo, there are exactly 14 houses, each numbered with an integer between 500 and 599, inclusive. The 14 house numbers form an arithmetic sequence in which 7 terms are even and 7 terms are odd. One of the houses is numbered 555 and none of the remaining 13 numbers has two equal digits. What is the smallest of the 14 house numbers? (An arithmetic sequence is a sequence in which each term after the first is obtained from the previous term by adding a constant. For example, 3, 5, 7, 9 is an arithmetic sequence with four terms.)
506
0
8,192
-1
8,192
Rectangle \(ABCD\) is divided into four parts by \(CE\) and \(DF\). It is known that the areas of three of these parts are \(5\), \(16\), and \(20\) square centimeters, respectively. What is the area of quadrilateral \(ADOE\) in square centimeters?
19
0
8,112.6875
-1
8,112.6875
A regular hexagon has one side along the diameter of a semicircle, and the two opposite vertices on the semicircle. Find the area of the hexagon if the diameter of the semicircle is 1.
3 \sqrt{3} / 26
The midpoint of the side of the hexagon on the diameter is the center of the circle. Draw the segment from this center to a vertex of the hexagon on the circle. This segment, whose length is $1 / 2$, is the hypotenuse of a right triangle whose legs have lengths $a / 2$ and $a \sqrt{3}$, where $a$ is a side of the hexagon. So $1 / 4=a^{2}(1 / 4+3)$, so $a^{2}=1 / 13$. The hexagon consists of 6 equilateral triangles of side length $a$, so the area of the hexagon is $3 a^{2} \sqrt{3} / 2=3 \sqrt{3} / 26$.
0
8,161.0625
-1
8,161.0625
What was Tony's average speed, in miles per hour, during the 3-hour period when his odometer increased from 12321 to the next higher palindrome?
33.33
0
4,555.875
-1
4,555.875
Given positive numbers \(a,b\) satisfying \(2ab=\dfrac{2a-b}{2a+3b},\) then the maximum value of \(b\) is \_\_\_\_\_
\dfrac{1}{3}
0.5
6,600.8125
5,009.625
8,192
Find the maximum value of the expression \( x^{2} + y^{2} \) if \( |x-y| \leq 2 \) and \( |3x + y| \leq 6 \).
10
1
5,570.75
5,570.75
-1
In triangle \(ABC\), \(BK\) is the median, \(BE\) is the angle bisector, and \(AD\) is the altitude. Find the length of side \(AC\) if it is known that lines \(BK\) and \(BE\) divide segment \(AD\) into three equal parts and the length of \(AB\) is 4.
2\sqrt{3}
0
7,950.8125
-1
7,950.8125
A rectangular garden 60 feet long and 15 feet wide is enclosed by a fence. To utilize the same fence but change the shape, the garden is altered to an equilateral triangle. By how many square feet does this change the area of the garden?
182.53
0.125
6,539.8125
6,875
6,491.928571
Three congruent isosceles triangles are constructed with their bases on the sides of an equilateral triangle of side length $1$. The sum of the areas of the three isosceles triangles is the same as the area of the equilateral triangle. What is the length of one of the two congruent sides of one of the isosceles triangles?
\frac{\sqrt{3}}{3}
1. **Calculate the area of the equilateral triangle**: The formula for the area of an equilateral triangle with side length $s$ is $\frac{\sqrt{3}}{4}s^2$. For an equilateral triangle with side length $1$, the area is: \[ \frac{\sqrt{3}}{4} \times 1^2 = \frac{\sqrt{3}}{4} \] 2. **Determine the area of each isosceles triangle**: Since the sum of the areas of the three isosceles triangles is equal to the area of the equilateral triangle, the area of each isosceles triangle is: \[ \frac{1}{3} \times \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{12} \] 3. **Relate the area of the isosceles triangle to its base and height**: The area of a triangle can also be expressed as $\frac{1}{2} \times \text{base} \times \text{height}$. For each isosceles triangle, the base $b$ is $\frac{1}{3}$ of the side of the equilateral triangle (since each side of the equilateral triangle is divided equally among the bases of the three isosceles triangles). Thus, $b = \frac{1}{3}$. The area of one isosceles triangle is: \[ \frac{1}{2} \times \frac{1}{3} \times h = \frac{\sqrt{3}}{12} \] Solving for $h$, we get: \[ \frac{h}{6} = \frac{\sqrt{3}}{12} \implies h = \frac{\sqrt{3}}{2} \] 4. **Use the Pythagorean theorem to find the length of the congruent sides**: In each isosceles triangle, the congruent sides are the hypotenuse of a right triangle with one leg as half the base ($\frac{1}{6}$) and the other leg as the height ($h = \frac{\sqrt{3}}{2}$). Using the Pythagorean theorem: \[ \text{side}^2 = \left(\frac{1}{6}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{36} + \frac{3}{4} = \frac{1}{36} + \frac{27}{36} = \frac{28}{36} = \frac{7}{9} \] Taking the square root gives: \[ \text{side} = \sqrt{\frac{7}{9}} = \frac{\sqrt{7}}{3} \] 5. **Verify the calculation**: The calculation in step 4 seems incorrect as it does not match any of the options. Revisiting the calculation, we realize that the base of each isosceles triangle should be $\frac{1}{3}$ of the total perimeter, not $\frac{1}{3}$ of each side. Thus, each base is $\frac{1}{3}$, and the height calculation should be revisited: \[ \frac{1}{2} \times \frac{1}{3} \times h = \frac{\sqrt{3}}{12} \implies h = \frac{\sqrt{3}}{6} \] Using the corrected height in the Pythagorean theorem: \[ \text{side}^2 = \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{6}\right)^2 = \frac{1}{4} + \frac{1}{12} = \frac{3}{12} + \frac{1}{12} = \frac{4}{12} = \frac{1}{3} \] \[ \text{side} = \sqrt{\frac{1}{3}} = \frac{\sqrt{3}}{3} \] 6. **Conclusion**: The length of one of the two congruent sides of one of the isosceles triangles is $\boxed{\frac{\sqrt{3}}{3} \textbf{ (B)}}$.
0
7,274.9375
-1
7,274.9375
Find the integer $n$, $-180 < n < 180$, such that $\tan n^\circ = \tan 1500^\circ$.
60
0.625
6,915.9375
6,656.7
7,348
Brand Z juice claims, "We offer 30% more juice than Brand W at a price that is 15% less." What is the ratio of the unit price of Brand Z juice to the unit price of Brand W juice? Express your answer as a common fraction.
\frac{17}{26}
0.9375
2,962.1875
2,613.533333
8,192
Let $S_n$ denote the sum of the first $n$ terms of an arithmetic sequence with common difference 3. If $\frac{S_{3n}}{S_n}$ is a constant that does not depend on $n,$ for all positive integers $n,$ then find the first term.
\frac{3}{2}
0.8125
4,350.625
3,464.153846
8,192
The area of a triangle \(ABC\) is \(\displaystyle 40 \text{ cm}^2\). Points \(D, E\) and \(F\) are on sides \(AB, BC\) and \(CA\) respectively. If \(AD = 3 \text{ cm}, DB = 5 \text{ cm}\), and the area of triangle \(ABE\) is equal to the area of quadrilateral \(DBEF\), find the area of triangle \(AEC\) in \(\text{cm}^2\).
15
0.0625
7,950.5
7,036
8,011.466667
Among the numbers from 1 to 1000, how many are divisible by 4 and do not contain the digit 4 in their representation?
162
0
8,182
-1
8,182
On Jessie's 10th birthday, in 2010, her mother said, "My age is now five times your age." In what year will Jessie's mother be able to say, "My age is now 2.5 times your age," on Jessie's birthday?
2027
0.5
7,303.5
6,915
7,692
A curve is described parametrically by \[(x,y) = (2 \cos t - \sin t, 4 \sin t).\]The graph of the curve can be expressed in the form \[ax^2 + bxy + cy^2 = 1.\]Enter the ordered triple $(a,b,c).$
\left( \frac{1}{4}, \frac{1}{8}, \frac{5}{64} \right)
0.875
4,619.1875
4,108.785714
8,192
How many real solutions are there for $x$ in the following equation: $$(x - 5x + 12)^2 + 1 = -|x|$$
0
1
2,308.5625
2,308.5625
-1
The circumference of a particular circle is 18 cm. In square centimeters, what is the area of the circle? Express your answer as a common fraction in terms of $\pi$.
\dfrac{81}{\pi}
1
1,968.875
1,968.875
-1
Let $x$ and $y$ be positive real numbers. Find the minimum value of \[\frac{\sqrt{(x^2 + y^2)(3x^2 + y^2)}}{xy}.\]
1 + \sqrt{3}
0.5
7,056.375
6,063.25
8,049.5
The numbers 2, 3, 5, 7, 11, 13, 17, 19 are arranged in a multiplication table, with four along the top and the other four down the left. The multiplication table is completed and the sum of the sixteen entries is tabulated. What is the largest possible sum of the sixteen entries? \[ \begin{array}{c||c|c|c|c|} \times & a & b & c & d \\ \hline \hline e & & & & \\ \hline f & & & & \\ \hline g & & & & \\ \hline h & & & & \\ \hline \end{array} \]
1482
0.625
6,274.6875
5,124.3
8,192
What is the largest positive integer $n$ for which there is a unique integer $k$ such that $\frac{8}{15} < \frac{n}{n + k} < \frac{7}{13}$?
112
0
8,192
-1
8,192
Simplify the following expression: $$5x + 6 - x + 12$$
4x + 18
1
258.1875
258.1875
-1
Let $\mathcal{F}$ be the set of all functions $f : (0,\infty)\to (0,\infty)$ such that $f(3x) \geq f( f(2x) )+x$ for all $x$ . Find the largest $A$ such that $f(x) \geq A x$ for all $f\in\mathcal{F}$ and all $x$ .
1/2
0.625
6,405.375
5,513.2
7,892.333333
The Euler family has four girls aged $6$, $6$, $9$, and $11$, and two boys aged $13$ and $16$. What is the mean (average) age of the children?
\frac{61}{6}
0.75
3,381.3125
3,494.416667
3,042
Let $\mathcal{S}$ be the set of real numbers that can be represented as repeating decimals of the form $0.\overline{abc}$ where $a, b, c$ are distinct digits. Find the sum of the elements of $\mathcal{S}.$
360
0.25
7,239.8125
6,058.25
7,633.666667
If the two real roots of the equation (lgx)<sup>2</sup>\-lgx+lg2•lg5=0 with respect to x are m and n, then 2<sup>m+n</sup>\=\_\_\_\_\_\_.
128
0.3125
5,905
3,872.6
6,828.818182
Given the lines $l_{1}$: $x+\left(m-3\right)y+m=0$ and $l_{2}$: $mx-2y+4=0$. $(1)$ If line $l_{1}$ is perpendicular to line $l_{2}$, find the value of $m$. $(2)$ If line $l_{1}$ is parallel to line $l_{2}$, find the distance between $l_{1}$ and $l_{2}$.
\frac{3\sqrt{5}}{5}
0
6,245.5625
-1
6,245.5625
Given an integer sequence \(\{a_i\}\) defined as follows: \[ a_i = \begin{cases} i, & \text{if } 1 \leq i \leq 5; \\ a_1 a_2 \cdots a_{i-1} - 1, & \text{if } i > 5. \end{cases} \] Find the value of \(\sum_{i=1}^{2019} a_i^2 - a_1 a_2 \cdots a_{2019}\).
1949
0
7,979.8125
-1
7,979.8125
Given two similar triangles $\triangle ABC\sim\triangle FGH$, where $BC = 24 \text{ cm}$ and $FG = 15 \text{ cm}$. If the length of $AC$ is $18 \text{ cm}$, find the length of $GH$. Express your answer as a decimal to the nearest tenth.
11.3
0.1875
5,379.5
2,844.666667
5,964.461538
Given a triangle \(ABC\) where \(AB = AC\) and \(\angle A = 80^\circ\). Inside triangle \(ABC\) is a point \(M\) such that \(\angle MBC = 30^\circ\) and \(\angle MCB = 10^\circ\). Find \(\angle AMC\).
70
0.125
7,948.5
6,731.5
8,122.357143
Find all values of \(a\) such that the roots \(x_1, x_2, x_3\) of the polynomial \(x^3 - 6x^2 + ax + a\) satisfy \((x_1 - 3)^2 + (x_2 - 3)^3 + (x_3 - 3)^3 = 0\).
-9
0.0625
7,956.375
4,422
8,192
In a certain card game, a player is dealt a hand of $10$ cards from a deck of $52$ distinct cards. The number of distinct (unordered) hands that can be dealt to the player can be written as $158A00A4AA0$. What is the digit $A$?
2
1. **Identify the problem**: We need to find the number of ways to choose 10 cards from a deck of 52 cards. This is a combination problem, where the order of selection does not matter. The formula for combinations is given by: \[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \] where $n$ is the total number of items to choose from, and $k$ is the number of items to choose. 2. **Apply the combination formula**: For our problem, $n = 52$ and $k = 10$. Thus, the number of ways to choose the cards is: \[ \binom{52}{10} = \frac{52!}{10! \cdot 42!} \] Simplifying the factorials, we only need the product of numbers from 52 down to 43, divided by $10!$: \[ \frac{52 \times 51 \times 50 \times 49 \times 48 \times 47 \times 46 \times 45 \times 44 \times 43}{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \] 3. **Simplify the expression**: We can simplify the fraction by canceling common factors in the numerator and the denominator: \[ \frac{52 \times 51 \times 50 \times 49 \times 48 \times 47 \times 46 \times 45 \times 44 \times 43}{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} = 13 \times 17 \times 7 \times 47 \times 46 \times 5 \times 22 \times 43 \] This product is denoted as $K$. 4. **Find the digit $A$ in $158A00A4AA0$**: We need to determine $A$ such that the number $158A00A4AA0$ matches $\binom{52}{10}$. We know that $K \equiv 0 \pmod{4}$ and $K \equiv 20 \pmod{25}$. Therefore, $K \equiv 20 \pmod{100}$. 5. **Conclusion**: Since $K \equiv 20 \pmod{100}$, the last two digits of $K$ are 20. Thus, the number $158A00A4AA0$ must end in 20, which implies $A = 2$. Therefore, the digit $A$ is: \[ \boxed{\textbf{(A) } 2} \]
0.375
7,697
6,872
8,192
A radio system consisting of 1000 components (each with a failure rate of $\lambda_{i} = 10^{-6}$ failures/hour) has been tested and accepted by the customer. Determine the probability of the system operating without failure over the interval $t_{1} < (t = t_{1} + \Delta t) < t_{2}$, where $\Delta t = 1000$ hours.
0.367879
0
4,630.5
-1
4,630.5
A triangular array of numbers has a first row consisting of the odd integers $1,3,5,\ldots,99$ in increasing order. Each row below the first has one fewer entry than the row above it, and the bottom row has a single entry. Each entry in any row after the top row equals the sum of the two entries diagonally above it in the row immediately above it. How many entries in the array are multiples of $67$?
17
The result above is fairly intuitive if we write out several rows and then divide all numbers in row $r$ by $2^{r-1}$ (we can do this because dividing by a power of 2 doesn't affect divisibility by $67$). The second row will be $2, 4, 6, \cdots , 98$, the third row will be $3, 5, \cdots, 97$, and so forth. Clearly, only the odd-numbered rows can have a term divisible by $67$. However, with each row the row will have one less element, and the $99-67+1 = 33$rd row is the last time $67$ will appear. Therefore the number of multiples of 67 in the entire array is $\frac{33+1}{2} = \boxed{017}$.
0
8,192
-1
8,192