The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationError Exception: TypeError Message: Mask must be a pyarrow.Array of type boolean Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1626, in _prepare_split_single writer.write(example, key) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 552, in write self.write_examples_on_file() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 510, in write_examples_on_file self.write_batch(batch_examples=batch_examples) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 630, in write_batch self.write_table(pa_table, writer_batch_size) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 645, in write_table pa_table = embed_table_storage(pa_table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2271, in embed_table_storage arrays = [ File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in <listcomp> embed_array_storage(table[name], feature) if require_storage_embed(feature) else table[name] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1796, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1796, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2141, in embed_array_storage return feature.embed_storage(array) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/image.py", line 282, in embed_storage storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null()) File "pyarrow/array.pxi", line 3257, in pyarrow.lib.StructArray.from_arrays File "pyarrow/array.pxi", line 3697, in pyarrow.lib.c_mask_inverted_from_obj TypeError: Mask must be a pyarrow.Array of type boolean During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1635, in _prepare_split_single num_examples, num_bytes = writer.finalize() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 657, in finalize self.write_examples_on_file() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 510, in write_examples_on_file self.write_batch(batch_examples=batch_examples) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 630, in write_batch self.write_table(pa_table, writer_batch_size) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 645, in write_table pa_table = embed_table_storage(pa_table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2271, in embed_table_storage arrays = [ File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in <listcomp> embed_array_storage(table[name], feature) if require_storage_embed(feature) else table[name] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1796, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1796, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2141, in embed_array_storage return feature.embed_storage(array) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/image.py", line 282, in embed_storage storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null()) File "pyarrow/array.pxi", line 3257, in pyarrow.lib.StructArray.from_arrays File "pyarrow/array.pxi", line 3697, in pyarrow.lib.c_mask_inverted_from_obj TypeError: Mask must be a pyarrow.Array of type boolean The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1436, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1053, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1649, in _download_and_prepare super()._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1487, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1644, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
image
image | label
class label |
---|---|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
0gt
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
|
1input50
|
Description
This dataset contains a paired real hyperspectral image (HSI) denoising dataset, which consists of shortexposure noisy HSIs and the corresponding long-exposure clean HSIs.
The dataset employs a SOC710-VP hyperspectral camera, manufactured by Surface Optics Corporation (SOC), USA. The SOC710-VP hyperspectral camera is equipped with a silicon-based charge-coupled device (CCD) and an integrated scanning system. With standard settings, the SOC710-VP can capture HSI with 696 × 520 pixels in spatial resolution and 256 spectral bands from 376.76 nm to 1075.80 nm at 2.7 nm interval.
The dataset contains both indoor and outdoor scenes. Indoor images under incandescent lamp to lighten the scene. The outdoor images are generally captured on sunny days between around 9am and 5pm.
34 bands were selected around 400nm to 700nm in the visible spectral range. The dynamic range of the captured HSI is 12 bit, and the spectral value ranges from 0 to 4095.
The dataset contains 62 image pairs, separated as follows into two folders:
gt
: where the camera settings, such as aperture, focus and exposure time, are adjusted to maximize the quality.input50
: short-exposure image, where the exposure time was intentionally decreased by a factor of 50 with respect to the reference.
Credits
Dataset originally collected at this Google drive link: https://drive.google.com/file/d/1cKtSF42HiDQdW48Ccjq3vSEq5zcxq1HK/view?usp=sharing
Associated repository: https://github.com/ColinTaoZhang/HSIDwRD
If this dataset is used for research, please ensure to cite this paper:
@InProceedings{Zhang_2021_ICCV,
author = {Zhang, Tao and Fu, Ying and Li, Cheng},
title = {Hyperspectral Image Denoising With Realistic Data},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {2248-2257}
}
- Downloads last month
- 181