Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

OCR to Markdown with Nanonets

Convert document images to structured markdown using Nanonets-OCR-s with vLLM acceleration.

Quick Start

# Basic OCR conversion
uv run main.py document-images markdown-output

# With custom image column
uv run main.py scanned-docs extracted-text --image-column page

# Test with subset
uv run main.py large-dataset test-output --max-samples 100

# Run directly from Hub
uv run https://huggingface.co/datasets/davanstrien/dataset-creation-scripts/raw/main/ocr-vllm/main.py \
  input-dataset output-dataset

Features

Nanonets-OCR-s excels at:

  • LaTeX equations: Mathematical formulas preserved in LaTeX format
  • Tables: Complex table structures converted to markdown
  • Document structure: Headers, lists, and formatting maintained
  • Special elements: Signatures, watermarks, and checkboxes detected

HF Jobs Deployment

Deploy on GPU infrastructure:

hfjobs run \
  --flavor l4x1 \
  --secret HF_TOKEN=$HF_TOKEN \
  ghcr.io/astral-sh/uv:latest \
  /bin/bash -c "
    uv run https://huggingface.co/datasets/davanstrien/dataset-creation-scripts/raw/main/ocr-vllm/main.py \
      your-document-dataset \
      your-markdown-output \
      --batch-size 32 \
      --gpu-memory-utilization 0.8
  "

Parameters

Parameter Default Description
--image-column "image" Column containing images
--batch-size 8 Images per batch
--model nanonets/Nanonets-OCR-s OCR model to use
--max-tokens 4096 Max output tokens
--gpu-memory-utilization 0.7 GPU memory usage
--split "train" Dataset split
--max-samples None Limit samples (testing)
--private False Private output dataset

Examples

Scientific Papers

uv run main.py arxiv-papers arxiv-markdown \
  --max-tokens 8192  # Longer output for equations

Scanned Documents

uv run main.py historical-scans extracted-text \
  --image-column scan \
  --batch-size 4  # Lower batch for high-res images

Multi-page Documents

uv run main.py pdf-pages document-text \
  --image-column page_image \
  --batch-size 16

Tips

  • Batch size: Reduce if encountering OOM errors
  • GPU memory: Increase for better throughput
  • Max tokens: Increase for long documents
  • Testing: Use --max-samples to validate pipeline

Model Details

Nanonets-OCR-s (576M parameters) is optimized for:

  • High-quality markdown output
  • Complex document understanding
  • Efficient GPU inference
  • Multi-language support

For more details, see the model card.

Downloads last month
6