Upload 2 files
Browse files
README.md
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# OCR to Markdown with Nanonets
|
| 2 |
+
|
| 3 |
+
Convert document images to structured markdown using [Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s) with vLLM acceleration.
|
| 4 |
+
|
| 5 |
+
## Quick Start
|
| 6 |
+
|
| 7 |
+
```bash
|
| 8 |
+
# Basic OCR conversion
|
| 9 |
+
uv run main.py document-images markdown-output
|
| 10 |
+
|
| 11 |
+
# With custom image column
|
| 12 |
+
uv run main.py scanned-docs extracted-text --image-column page
|
| 13 |
+
|
| 14 |
+
# Test with subset
|
| 15 |
+
uv run main.py large-dataset test-output --max-samples 100
|
| 16 |
+
|
| 17 |
+
# Run directly from Hub
|
| 18 |
+
uv run https://huggingface.co/datasets/davanstrien/dataset-creation-scripts/raw/main/ocr-vllm/main.py \
|
| 19 |
+
input-dataset output-dataset
|
| 20 |
+
```
|
| 21 |
+
|
| 22 |
+
## Features
|
| 23 |
+
|
| 24 |
+
Nanonets-OCR-s excels at:
|
| 25 |
+
- **LaTeX equations**: Mathematical formulas preserved in LaTeX format
|
| 26 |
+
- **Tables**: Complex table structures converted to markdown
|
| 27 |
+
- **Document structure**: Headers, lists, and formatting maintained
|
| 28 |
+
- **Special elements**: Signatures, watermarks, and checkboxes detected
|
| 29 |
+
|
| 30 |
+
## HF Jobs Deployment
|
| 31 |
+
|
| 32 |
+
Deploy on GPU infrastructure:
|
| 33 |
+
|
| 34 |
+
```bash
|
| 35 |
+
hfjobs run \
|
| 36 |
+
--flavor l4x1 \
|
| 37 |
+
--secret HF_TOKEN=$HF_TOKEN \
|
| 38 |
+
ghcr.io/astral-sh/uv:latest \
|
| 39 |
+
/bin/bash -c "
|
| 40 |
+
uv run https://huggingface.co/datasets/davanstrien/dataset-creation-scripts/raw/main/ocr-vllm/main.py \
|
| 41 |
+
your-document-dataset \
|
| 42 |
+
your-markdown-output \
|
| 43 |
+
--batch-size 32 \
|
| 44 |
+
--gpu-memory-utilization 0.8
|
| 45 |
+
"
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
## Parameters
|
| 49 |
+
|
| 50 |
+
| Parameter | Default | Description |
|
| 51 |
+
|-----------|---------|-------------|
|
| 52 |
+
| `--image-column` | `"image"` | Column containing images |
|
| 53 |
+
| `--batch-size` | `8` | Images per batch |
|
| 54 |
+
| `--model` | `nanonets/Nanonets-OCR-s` | OCR model to use |
|
| 55 |
+
| `--max-tokens` | `4096` | Max output tokens |
|
| 56 |
+
| `--gpu-memory-utilization` | `0.7` | GPU memory usage |
|
| 57 |
+
| `--split` | `"train"` | Dataset split |
|
| 58 |
+
| `--max-samples` | None | Limit samples (testing) |
|
| 59 |
+
| `--private` | False | Private output dataset |
|
| 60 |
+
|
| 61 |
+
## Examples
|
| 62 |
+
|
| 63 |
+
### Scientific Papers
|
| 64 |
+
```bash
|
| 65 |
+
uv run main.py arxiv-papers arxiv-markdown \
|
| 66 |
+
--max-tokens 8192 # Longer output for equations
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
### Scanned Documents
|
| 70 |
+
```bash
|
| 71 |
+
uv run main.py historical-scans extracted-text \
|
| 72 |
+
--image-column scan \
|
| 73 |
+
--batch-size 4 # Lower batch for high-res images
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
### Multi-page Documents
|
| 77 |
+
```bash
|
| 78 |
+
uv run main.py pdf-pages document-text \
|
| 79 |
+
--image-column page_image \
|
| 80 |
+
--batch-size 16
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
## Tips
|
| 84 |
+
|
| 85 |
+
- **Batch size**: Reduce if encountering OOM errors
|
| 86 |
+
- **GPU memory**: Increase for better throughput
|
| 87 |
+
- **Max tokens**: Increase for long documents
|
| 88 |
+
- **Testing**: Use `--max-samples` to validate pipeline
|
| 89 |
+
|
| 90 |
+
## Model Details
|
| 91 |
+
|
| 92 |
+
Nanonets-OCR-s (576M parameters) is optimized for:
|
| 93 |
+
- High-quality markdown output
|
| 94 |
+
- Complex document understanding
|
| 95 |
+
- Efficient GPU inference
|
| 96 |
+
- Multi-language support
|
| 97 |
+
|
| 98 |
+
For more details, see the [model card](https://huggingface.co/nanonets/Nanonets-OCR-s).
|
main.py
ADDED
|
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.11"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "datasets",
|
| 5 |
+
# "huggingface-hub",
|
| 6 |
+
# "pillow",
|
| 7 |
+
# "vllm",
|
| 8 |
+
# "tqdm",
|
| 9 |
+
# "toolz",
|
| 10 |
+
# ]
|
| 11 |
+
# ///
|
| 12 |
+
|
| 13 |
+
"""
|
| 14 |
+
Convert document images to markdown using Nanonets-OCR-s with vLLM.
|
| 15 |
+
|
| 16 |
+
This script processes images through the Nanonets-OCR-s model to extract
|
| 17 |
+
text and structure as markdown, ideal for document understanding tasks.
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
import argparse
|
| 21 |
+
import base64
|
| 22 |
+
import io
|
| 23 |
+
import logging
|
| 24 |
+
import os
|
| 25 |
+
import sys
|
| 26 |
+
from typing import List, Dict, Any, Union
|
| 27 |
+
|
| 28 |
+
from PIL import Image
|
| 29 |
+
from datasets import load_dataset
|
| 30 |
+
from huggingface_hub import login
|
| 31 |
+
from toolz import partition_all
|
| 32 |
+
from tqdm.auto import tqdm
|
| 33 |
+
from vllm import LLM, SamplingParams
|
| 34 |
+
|
| 35 |
+
logging.basicConfig(level=logging.INFO)
|
| 36 |
+
logger = logging.getLogger(__name__)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def make_ocr_message(
|
| 40 |
+
image: Union[Image.Image, Dict[str, Any], str],
|
| 41 |
+
prompt: str = "Convert this image to markdown. Include all text, tables, equations, and structure.",
|
| 42 |
+
) -> List[Dict]:
|
| 43 |
+
"""Create chat message for OCR processing."""
|
| 44 |
+
# Convert to PIL Image if needed
|
| 45 |
+
if isinstance(image, Image.Image):
|
| 46 |
+
pil_img = image
|
| 47 |
+
elif isinstance(image, dict) and "bytes" in image:
|
| 48 |
+
pil_img = Image.open(io.BytesIO(image["bytes"]))
|
| 49 |
+
elif isinstance(image, str):
|
| 50 |
+
pil_img = Image.open(image)
|
| 51 |
+
else:
|
| 52 |
+
raise ValueError(f"Unsupported image type: {type(image)}")
|
| 53 |
+
|
| 54 |
+
# Convert to base64 data URI
|
| 55 |
+
buf = io.BytesIO()
|
| 56 |
+
pil_img.save(buf, format="PNG")
|
| 57 |
+
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
|
| 58 |
+
|
| 59 |
+
# Return message in vLLM format
|
| 60 |
+
return [
|
| 61 |
+
{
|
| 62 |
+
"role": "user",
|
| 63 |
+
"content": [
|
| 64 |
+
{"type": "image_url", "image_url": {"url": data_uri}},
|
| 65 |
+
{"type": "text", "text": prompt},
|
| 66 |
+
],
|
| 67 |
+
}
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def main(
|
| 72 |
+
input_dataset: str,
|
| 73 |
+
output_dataset: str,
|
| 74 |
+
image_column: str = "image",
|
| 75 |
+
batch_size: int = 8,
|
| 76 |
+
model: str = "nanonets/Nanonets-OCR-s",
|
| 77 |
+
max_model_len: int = 8192,
|
| 78 |
+
max_tokens: int = 4096,
|
| 79 |
+
gpu_memory_utilization: float = 0.7,
|
| 80 |
+
hf_token: str = None,
|
| 81 |
+
split: str = "train",
|
| 82 |
+
max_samples: int = None,
|
| 83 |
+
private: bool = False,
|
| 84 |
+
):
|
| 85 |
+
"""Process images from HF dataset through OCR model."""
|
| 86 |
+
|
| 87 |
+
# Login to HF if token provided
|
| 88 |
+
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
|
| 89 |
+
if HF_TOKEN:
|
| 90 |
+
login(token=HF_TOKEN)
|
| 91 |
+
|
| 92 |
+
# Load dataset
|
| 93 |
+
logger.info(f"Loading dataset: {input_dataset}")
|
| 94 |
+
dataset = load_dataset(input_dataset, split=split)
|
| 95 |
+
|
| 96 |
+
# Validate image column
|
| 97 |
+
if image_column not in dataset.column_names:
|
| 98 |
+
raise ValueError(f"Column '{image_column}' not found. Available: {dataset.column_names}")
|
| 99 |
+
|
| 100 |
+
# Limit samples if requested
|
| 101 |
+
if max_samples:
|
| 102 |
+
dataset = dataset.select(range(min(max_samples, len(dataset))))
|
| 103 |
+
logger.info(f"Limited to {len(dataset)} samples")
|
| 104 |
+
|
| 105 |
+
# Initialize vLLM
|
| 106 |
+
logger.info(f"Initializing vLLM with model: {model}")
|
| 107 |
+
llm = LLM(
|
| 108 |
+
model=model,
|
| 109 |
+
trust_remote_code=True,
|
| 110 |
+
max_model_len=max_model_len,
|
| 111 |
+
gpu_memory_utilization=gpu_memory_utilization,
|
| 112 |
+
limit_mm_per_prompt={"image": 1},
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
sampling_params = SamplingParams(
|
| 116 |
+
temperature=0.0, # Deterministic for OCR
|
| 117 |
+
max_tokens=max_tokens,
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Process images in batches
|
| 121 |
+
all_markdown = []
|
| 122 |
+
|
| 123 |
+
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
|
| 124 |
+
|
| 125 |
+
# Process in batches to avoid memory issues
|
| 126 |
+
for batch_indices in tqdm(
|
| 127 |
+
partition_all(batch_size, range(len(dataset))),
|
| 128 |
+
total=(len(dataset) + batch_size - 1) // batch_size,
|
| 129 |
+
desc="OCR processing"
|
| 130 |
+
):
|
| 131 |
+
batch_indices = list(batch_indices)
|
| 132 |
+
batch_images = [dataset[i][image_column] for i in batch_indices]
|
| 133 |
+
|
| 134 |
+
try:
|
| 135 |
+
# Create messages for batch
|
| 136 |
+
batch_messages = [make_ocr_message(img) for img in batch_images]
|
| 137 |
+
|
| 138 |
+
# Process with vLLM
|
| 139 |
+
outputs = llm.chat(batch_messages, sampling_params)
|
| 140 |
+
|
| 141 |
+
# Extract markdown from outputs
|
| 142 |
+
for output in outputs:
|
| 143 |
+
markdown_text = output.outputs[0].text.strip()
|
| 144 |
+
all_markdown.append(markdown_text)
|
| 145 |
+
|
| 146 |
+
except Exception as e:
|
| 147 |
+
logger.error(f"Error processing batch: {e}")
|
| 148 |
+
# Add error placeholders for failed batch
|
| 149 |
+
all_markdown.extend(["[OCR FAILED]"] * len(batch_images))
|
| 150 |
+
|
| 151 |
+
# Add markdown column to dataset
|
| 152 |
+
logger.info("Adding markdown column to dataset")
|
| 153 |
+
dataset = dataset.add_column("markdown", all_markdown)
|
| 154 |
+
|
| 155 |
+
# Push to hub
|
| 156 |
+
logger.info(f"Pushing to {output_dataset}")
|
| 157 |
+
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
|
| 158 |
+
|
| 159 |
+
logger.info("✅ OCR conversion complete!")
|
| 160 |
+
logger.info(f"Dataset available at: https://huggingface.co/datasets/{output_dataset}")
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
if __name__ == "__main__":
|
| 164 |
+
# Show example usage if no arguments
|
| 165 |
+
if len(sys.argv) == 1:
|
| 166 |
+
print("=" * 80)
|
| 167 |
+
print("Nanonets OCR to Markdown Converter")
|
| 168 |
+
print("=" * 80)
|
| 169 |
+
print("\nThis script converts document images to structured markdown using")
|
| 170 |
+
print("the Nanonets-OCR-s model with vLLM acceleration.")
|
| 171 |
+
print("\nFeatures:")
|
| 172 |
+
print("- LaTeX equation recognition")
|
| 173 |
+
print("- Table extraction and formatting")
|
| 174 |
+
print("- Document structure preservation")
|
| 175 |
+
print("- Signature and watermark detection")
|
| 176 |
+
print("\nExample usage:")
|
| 177 |
+
print("\n1. Basic OCR conversion:")
|
| 178 |
+
print(" uv run main.py document-images markdown-docs")
|
| 179 |
+
print("\n2. With custom settings:")
|
| 180 |
+
print(" uv run main.py scanned-pdfs extracted-text \\")
|
| 181 |
+
print(" --image-column page \\")
|
| 182 |
+
print(" --batch-size 16 \\")
|
| 183 |
+
print(" --gpu-memory-utilization 0.8")
|
| 184 |
+
print("\n3. Running on HF Jobs:")
|
| 185 |
+
print(" hfjobs run \\")
|
| 186 |
+
print(" --flavor l4x1 \\")
|
| 187 |
+
print(" --secret HF_TOKEN=$HF_TOKEN \\")
|
| 188 |
+
print(" ghcr.io/astral-sh/uv:latest \\")
|
| 189 |
+
print(" /bin/bash -c \"")
|
| 190 |
+
print(" uv run https://huggingface.co/datasets/davanstrien/dataset-creation-scripts/raw/main/ocr-vllm/main.py \\\\")
|
| 191 |
+
print(" your-document-dataset \\\\")
|
| 192 |
+
print(" your-markdown-output \\\\")
|
| 193 |
+
print(" --batch-size 32")
|
| 194 |
+
print(" \"")
|
| 195 |
+
print("\n" + "=" * 80)
|
| 196 |
+
print("\nFor full help, run: uv run main.py --help")
|
| 197 |
+
sys.exit(0)
|
| 198 |
+
|
| 199 |
+
parser = argparse.ArgumentParser(
|
| 200 |
+
description="OCR images to markdown using Nanonets-OCR-s",
|
| 201 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 202 |
+
epilog="""
|
| 203 |
+
Examples:
|
| 204 |
+
# Basic usage
|
| 205 |
+
uv run main.py my-images-dataset ocr-results
|
| 206 |
+
|
| 207 |
+
# With specific image column
|
| 208 |
+
uv run main.py documents extracted-text --image-column scan
|
| 209 |
+
|
| 210 |
+
# Process subset for testing
|
| 211 |
+
uv run main.py large-dataset test-output --max-samples 100
|
| 212 |
+
"""
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
parser.add_argument(
|
| 216 |
+
"input_dataset",
|
| 217 |
+
help="Input dataset ID from Hugging Face Hub"
|
| 218 |
+
)
|
| 219 |
+
parser.add_argument(
|
| 220 |
+
"output_dataset",
|
| 221 |
+
help="Output dataset ID for Hugging Face Hub"
|
| 222 |
+
)
|
| 223 |
+
parser.add_argument(
|
| 224 |
+
"--image-column",
|
| 225 |
+
default="image",
|
| 226 |
+
help="Column containing images (default: image)"
|
| 227 |
+
)
|
| 228 |
+
parser.add_argument(
|
| 229 |
+
"--batch-size",
|
| 230 |
+
type=int,
|
| 231 |
+
default=8,
|
| 232 |
+
help="Batch size for processing (default: 8)"
|
| 233 |
+
)
|
| 234 |
+
parser.add_argument(
|
| 235 |
+
"--model",
|
| 236 |
+
default="nanonets/Nanonets-OCR-s",
|
| 237 |
+
help="Model to use (default: nanonets/Nanonets-OCR-s)"
|
| 238 |
+
)
|
| 239 |
+
parser.add_argument(
|
| 240 |
+
"--max-model-len",
|
| 241 |
+
type=int,
|
| 242 |
+
default=8192,
|
| 243 |
+
help="Maximum model context length (default: 8192)"
|
| 244 |
+
)
|
| 245 |
+
parser.add_argument(
|
| 246 |
+
"--max-tokens",
|
| 247 |
+
type=int,
|
| 248 |
+
default=4096,
|
| 249 |
+
help="Maximum tokens to generate (default: 4096)"
|
| 250 |
+
)
|
| 251 |
+
parser.add_argument(
|
| 252 |
+
"--gpu-memory-utilization",
|
| 253 |
+
type=float,
|
| 254 |
+
default=0.7,
|
| 255 |
+
help="GPU memory utilization (default: 0.7)"
|
| 256 |
+
)
|
| 257 |
+
parser.add_argument(
|
| 258 |
+
"--hf-token",
|
| 259 |
+
help="Hugging Face API token"
|
| 260 |
+
)
|
| 261 |
+
parser.add_argument(
|
| 262 |
+
"--split",
|
| 263 |
+
default="train",
|
| 264 |
+
help="Dataset split to use (default: train)"
|
| 265 |
+
)
|
| 266 |
+
parser.add_argument(
|
| 267 |
+
"--max-samples",
|
| 268 |
+
type=int,
|
| 269 |
+
help="Maximum number of samples to process (for testing)"
|
| 270 |
+
)
|
| 271 |
+
parser.add_argument(
|
| 272 |
+
"--private",
|
| 273 |
+
action="store_true",
|
| 274 |
+
help="Make output dataset private"
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
args = parser.parse_args()
|
| 278 |
+
|
| 279 |
+
main(
|
| 280 |
+
input_dataset=args.input_dataset,
|
| 281 |
+
output_dataset=args.output_dataset,
|
| 282 |
+
image_column=args.image_column,
|
| 283 |
+
batch_size=args.batch_size,
|
| 284 |
+
model=args.model,
|
| 285 |
+
max_model_len=args.max_model_len,
|
| 286 |
+
max_tokens=args.max_tokens,
|
| 287 |
+
gpu_memory_utilization=args.gpu_memory_utilization,
|
| 288 |
+
hf_token=args.hf_token,
|
| 289 |
+
split=args.split,
|
| 290 |
+
max_samples=args.max_samples,
|
| 291 |
+
private=args.private,
|
| 292 |
+
)
|