Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'validation' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      JSON parse error: Column() changed from object to string in row 0
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 174, in _generate_tables
                  df = pandas_read_json(f)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
                  return pd.read_json(path_or_buf, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 815, in read_json
                  return json_reader.read()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1025, in read
                  obj = self._get_object_parser(self.data)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1051, in _get_object_parser
                  obj = FrameParser(json, **kwargs).parse()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1187, in parse
                  self._parse()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1402, in _parse
                  self.obj = DataFrame(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/core/frame.py", line 778, in __init__
                  mgr = dict_to_mgr(data, index, columns, dtype=dtype, copy=copy, typ=manager)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/core/internals/construction.py", line 503, in dict_to_mgr
                  return arrays_to_mgr(arrays, columns, index, dtype=dtype, typ=typ, consolidate=copy)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/core/internals/construction.py", line 114, in arrays_to_mgr
                  index = _extract_index(arrays)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/core/internals/construction.py", line 677, in _extract_index
                  raise ValueError("All arrays must be of the same length")
              ValueError: All arrays must be of the same length
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3422, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2187, in _head
                  return next(iter(self.iter(batch_size=n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2391, in iter
                  for key, example in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1904, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 499, in _iter_arrow
                  for key, pa_table in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 346, in _iter_arrow
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 177, in _generate_tables
                  raise e
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 151, in _generate_tables
                  pa_table = paj.read_json(
                File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to string in row 0

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

DeepSeek v3.1 Quality-Filtered Referring Expression Parsing + Distractor Labels

This dataset contains parsed referring expressions from the RefCOCO, RefCOCOg, and RefCOCO+ validation sets, processed using DeepSeek v3.1 with quality filtering, plus corresponding distractor label annotations in COCO format.

Dataset Description

Overview

  • Model: DeepSeek v3.1 (deepseek-chat)
  • Processing: Quality-filtered results from referring expression parsing
  • Datasets: RefCOCO, RefCOCOg, RefCOCO+ validation splits
  • Total Records: 21,955 parsed referring expressions + distractor annotations
  • Additional: COCO-format distractor label files for visual grounding research

Parsed Expression Files

  1. deepseek_v31_refcoco_quality_filtered.jsonl (9,241 records, 3.9MB)
    • Mixed RefCOCO validation data with parsed noun phrases
  2. deepseek_v31_refcocog_quality_filtered.jsonl (4,668 records, 2.5MB)
    • RefCOCOg validation subset with hierarchical noun parsing
  3. deepseek_v31_refcocoplus_quality_filtered.jsonl (8,046 records, 3.6MB)
    • RefCOCO+ validation subset with dependency-level parsing

Distractor Label Files (COCO Format)

  1. refcoco_val_with_distractor_labels_coco.json (18MB, 10,834 annotations)
    • RefCOCO validation with distractor object annotations
  2. refcocog_val_with_distractor_labels_coco.json (8.0MB, ~4,668 annotations)
    • RefCOCOg validation with distractor object annotations
  3. refcocoplus_val_with_distractor_labels_coco.json (18MB, ~8,046 annotations)
    • RefCOCO+ validation with distractor object annotations

Data Structure

Parsed Expression Format

Each JSONL record contains:

{
  "dataset": "refcoco|refcocog|refcocoplus",
  "split": "validation", 
  "image_id": 580957,
  "ref_id": 77,
  "ann_id": 1537681,
  "sent_id": 222,
  "image_path": "coco/train2014/COCO_train2014_000000580957.jpg",
  "target_bbox": [468.3, 0.91, 640.0, 117.03],
  "sent": "bowl behind the others can only see part",
  "tokens": ["bowl", "behind", "the", "others", "can", "only", "see", "part"],
  "ref_length": 8,
  "parsed_nouns": [
    {"text": "bowl", "start": 0, "end": 1, "level": 0},
    {"text": "others", "start": 3, "end": 4, "level": 1}
  ],
  "target_indices": [0]
}

Distractor Label Format (COCO JSON)

Standard COCO format with additional distractor annotations:

{
  "info": {"description": "COCO 2014 Dataset", "version": "1.0", ...},
  "licenses": [...],
  "images": [{"id": 580957, "file_name": "COCO_train2014_000000580957.jpg", ...}],
  "annotations": [
    {
      "id": 1537681,
      "image_id": 580957,
      "category_id": 51,
      "bbox": [468.3, 0.91, 171.7, 116.12],
      "area": 19942.604,
      "iscrowd": 0,
      "is_distractor": false
    },
    {
      "id": 1537682,
      "image_id": 580957, 
      "category_id": 51,
      "bbox": [151.96, 139.46, 454.93, 283.73],
      "area": 129063.7,
      "iscrowd": 0,
      "is_distractor": true
    }
  ],
  "categories": [...]
}

Key Fields

  • parsed_nouns: Hierarchically structured noun phrases with dependency levels
  • level: Dependency level (0=target, 1=primary modifier, 2=secondary, etc.)
  • target_indices: Indices pointing to target noun phrases in parsed_nouns array
  • is_distractor: Boolean flag indicating if object is a distractor (true) or target (false)

Quality Filtering

The results have been quality-filtered to ensure:

  • Accurate noun phrase extraction
  • Proper hierarchical dependency parsing
  • Valid token span alignment
  • Meaningful target identification
  • Proper distractor vs target object labeling

Usage

Loading Parsed Expressions

import json

# Load the dataset
with open('deepseek_v31_refcoco_quality_filtered.jsonl', 'r') as f:
    data = [json.loads(line) for line in f]

# Example: Extract target nouns
for record in data:
    target_nouns = [record['parsed_nouns'][i]['text'] 
                   for i in record['target_indices']]
    print(f"Sentence: {record['sent']}")
    print(f"Target nouns: {target_nouns}")

Loading Distractor Labels

import json

# Load COCO-format distractor labels
with open('refcoco_val_with_distractor_labels_coco.json', 'r') as f:
    coco_data = json.load(f)

# Filter target vs distractor objects
targets = [ann for ann in coco_data['annotations'] if not ann.get('is_distractor', False)]
distractors = [ann for ann in coco_data['annotations'] if ann.get('is_distractor', False)]

print(f"Target objects: {len(targets)}")
print(f"Distractor objects: {len(distractors)}")

Research Applications

This dataset is valuable for:

  • Referring Expression Comprehension: Training models to understand natural language descriptions
  • Visual Grounding: Learning to ground language in visual scenes
  • Distractor Analysis: Studying how models handle similar objects in complex scenes
  • Noun Phrase Parsing: Understanding hierarchical language structure
  • Multi-modal Learning: Combining vision and language understanding

Citation

If you use this dataset, please cite the original RefCOCO datasets and acknowledge the parsing methodology:

@misc{deepseek_v31_referring_parsing_2025,
  title={DeepSeek v3.1 Quality-Filtered Referring Expression Parsing with Distractor Labels},
  author={dddraxxx},
  year={2025},
  howpublished={\url{https://huggingface.co/datasets/dddraxxx/filtered_deepseek_v31_referring_expression_parsing}}
}

License

MIT License - See original RefCOCO dataset licenses for underlying data usage terms.

Downloads last month
13