Datasets:
Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'validation' of the config 'default' of the dataset.
Error code: FeaturesError
Exception: ArrowInvalid
Message: JSON parse error: Column() changed from object to string in row 0
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 174, in _generate_tables
df = pandas_read_json(f)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
return pd.read_json(path_or_buf, **kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 815, in read_json
return json_reader.read()
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1025, in read
obj = self._get_object_parser(self.data)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1051, in _get_object_parser
obj = FrameParser(json, **kwargs).parse()
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1187, in parse
self._parse()
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 1402, in _parse
self.obj = DataFrame(
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/core/frame.py", line 778, in __init__
mgr = dict_to_mgr(data, index, columns, dtype=dtype, copy=copy, typ=manager)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/core/internals/construction.py", line 503, in dict_to_mgr
return arrays_to_mgr(arrays, columns, index, dtype=dtype, typ=typ, consolidate=copy)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/core/internals/construction.py", line 114, in arrays_to_mgr
index = _extract_index(arrays)
File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/core/internals/construction.py", line 677, in _extract_index
raise ValueError("All arrays must be of the same length")
ValueError: All arrays must be of the same length
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
iterable_dataset = iterable_dataset._resolve_features()
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3422, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2187, in _head
return next(iter(self.iter(batch_size=n)))
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2391, in iter
for key, example in iterator:
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
for key, pa_table in self._iter_arrow():
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1904, in _iter_arrow
yield from self.ex_iterable._iter_arrow()
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 499, in _iter_arrow
for key, pa_table in iterator:
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 346, in _iter_arrow
for key, pa_table in self.generate_tables_fn(**gen_kwags):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 177, in _generate_tables
raise e
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 151, in _generate_tables
pa_table = paj.read_json(
File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json
File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to string in row 0Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
DeepSeek v3.1 Quality-Filtered Referring Expression Parsing + Distractor Labels
This dataset contains parsed referring expressions from the RefCOCO, RefCOCOg, and RefCOCO+ validation sets, processed using DeepSeek v3.1 with quality filtering, plus corresponding distractor label annotations in COCO format.
Dataset Description
Overview
- Model: DeepSeek v3.1 (deepseek-chat)
- Processing: Quality-filtered results from referring expression parsing
- Datasets: RefCOCO, RefCOCOg, RefCOCO+ validation splits
- Total Records: 21,955 parsed referring expressions + distractor annotations
- Additional: COCO-format distractor label files for visual grounding research
Parsed Expression Files
deepseek_v31_refcoco_quality_filtered.jsonl(9,241 records, 3.9MB)- Mixed RefCOCO validation data with parsed noun phrases
deepseek_v31_refcocog_quality_filtered.jsonl(4,668 records, 2.5MB)- RefCOCOg validation subset with hierarchical noun parsing
deepseek_v31_refcocoplus_quality_filtered.jsonl(8,046 records, 3.6MB)- RefCOCO+ validation subset with dependency-level parsing
Distractor Label Files (COCO Format)
refcoco_val_with_distractor_labels_coco.json(18MB, 10,834 annotations)- RefCOCO validation with distractor object annotations
refcocog_val_with_distractor_labels_coco.json(8.0MB, ~4,668 annotations)- RefCOCOg validation with distractor object annotations
refcocoplus_val_with_distractor_labels_coco.json(18MB, ~8,046 annotations)- RefCOCO+ validation with distractor object annotations
Data Structure
Parsed Expression Format
Each JSONL record contains:
{
"dataset": "refcoco|refcocog|refcocoplus",
"split": "validation",
"image_id": 580957,
"ref_id": 77,
"ann_id": 1537681,
"sent_id": 222,
"image_path": "coco/train2014/COCO_train2014_000000580957.jpg",
"target_bbox": [468.3, 0.91, 640.0, 117.03],
"sent": "bowl behind the others can only see part",
"tokens": ["bowl", "behind", "the", "others", "can", "only", "see", "part"],
"ref_length": 8,
"parsed_nouns": [
{"text": "bowl", "start": 0, "end": 1, "level": 0},
{"text": "others", "start": 3, "end": 4, "level": 1}
],
"target_indices": [0]
}
Distractor Label Format (COCO JSON)
Standard COCO format with additional distractor annotations:
{
"info": {"description": "COCO 2014 Dataset", "version": "1.0", ...},
"licenses": [...],
"images": [{"id": 580957, "file_name": "COCO_train2014_000000580957.jpg", ...}],
"annotations": [
{
"id": 1537681,
"image_id": 580957,
"category_id": 51,
"bbox": [468.3, 0.91, 171.7, 116.12],
"area": 19942.604,
"iscrowd": 0,
"is_distractor": false
},
{
"id": 1537682,
"image_id": 580957,
"category_id": 51,
"bbox": [151.96, 139.46, 454.93, 283.73],
"area": 129063.7,
"iscrowd": 0,
"is_distractor": true
}
],
"categories": [...]
}
Key Fields
- parsed_nouns: Hierarchically structured noun phrases with dependency levels
- level: Dependency level (0=target, 1=primary modifier, 2=secondary, etc.)
- target_indices: Indices pointing to target noun phrases in parsed_nouns array
- is_distractor: Boolean flag indicating if object is a distractor (true) or target (false)
Quality Filtering
The results have been quality-filtered to ensure:
- Accurate noun phrase extraction
- Proper hierarchical dependency parsing
- Valid token span alignment
- Meaningful target identification
- Proper distractor vs target object labeling
Usage
Loading Parsed Expressions
import json
# Load the dataset
with open('deepseek_v31_refcoco_quality_filtered.jsonl', 'r') as f:
data = [json.loads(line) for line in f]
# Example: Extract target nouns
for record in data:
target_nouns = [record['parsed_nouns'][i]['text']
for i in record['target_indices']]
print(f"Sentence: {record['sent']}")
print(f"Target nouns: {target_nouns}")
Loading Distractor Labels
import json
# Load COCO-format distractor labels
with open('refcoco_val_with_distractor_labels_coco.json', 'r') as f:
coco_data = json.load(f)
# Filter target vs distractor objects
targets = [ann for ann in coco_data['annotations'] if not ann.get('is_distractor', False)]
distractors = [ann for ann in coco_data['annotations'] if ann.get('is_distractor', False)]
print(f"Target objects: {len(targets)}")
print(f"Distractor objects: {len(distractors)}")
Research Applications
This dataset is valuable for:
- Referring Expression Comprehension: Training models to understand natural language descriptions
- Visual Grounding: Learning to ground language in visual scenes
- Distractor Analysis: Studying how models handle similar objects in complex scenes
- Noun Phrase Parsing: Understanding hierarchical language structure
- Multi-modal Learning: Combining vision and language understanding
Citation
If you use this dataset, please cite the original RefCOCO datasets and acknowledge the parsing methodology:
@misc{deepseek_v31_referring_parsing_2025,
title={DeepSeek v3.1 Quality-Filtered Referring Expression Parsing with Distractor Labels},
author={dddraxxx},
year={2025},
howpublished={\url{https://huggingface.co/datasets/dddraxxx/filtered_deepseek_v31_referring_expression_parsing}}
}
License
MIT License - See original RefCOCO dataset licenses for underlying data usage terms.
- Downloads last month
- 13