Dataset Viewer
Auto-converted to Parquet
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 3 was different: 
results: struct<news-2025-05-14: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, polymarket-2025-05-14: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, soccer-2025-05-14: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, bball-2025-05-21: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, news-2025-05-21: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, polymarket-2025-05-21: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, bball-2025-05-28: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, polymarket-2025-05-28: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>>
versions: struct<polymarket: int64>
config: struct<model: string, model_args: null, num_fewshot: int64, batch_size: int64, batch_sizes: list<item: null>, device: string, no_cache: bool, limit: int64, bootstrap_iters: int64, description_dict: null, model_dtype: string, model_name: string, model_sha: null>
vs
results: struct<polymarket-2025-05-14: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, bball-2025-05-21: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, news-2025-05-21: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, polymarket-2025-05-21: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, bball-2025-05-28: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, polymarket-2025-05-28: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>>
versions: struct<polymarket: int64>
config: struct<model: string, model_args: null, num_fewshot: int64, batch_size: int64, batch_sizes: list<item: null>, device: string, no_cache: bool, limit: int64, bootstrap_iters: int64, description_dict: null, model_dtype: string, model_name: string, model_sha: null>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 531, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 3 was different: 
              results: struct<news-2025-05-14: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, polymarket-2025-05-14: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, soccer-2025-05-14: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, bball-2025-05-21: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, news-2025-05-21: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, polymarket-2025-05-21: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, bball-2025-05-28: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, polymarket-2025-05-28: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>>
              versions: struct<polymarket: int64>
              config: struct<model: string, model_args: null, num_fewshot: int64, batch_size: int64, batch_sizes: list<item: null>, device: string, no_cache: bool, limit: int64, bootstrap_iters: int64, description_dict: null, model_dtype: string, model_name: string, model_sha: null>
              vs
              results: struct<polymarket-2025-05-14: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, bball-2025-05-21: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, news-2025-05-21: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, polymarket-2025-05-21: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, bball-2025-05-28: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>, polymarket-2025-05-28: struct<acc: double, rounded_date: timestamp[s], acc_stderr: double>>
              versions: struct<polymarket: int64>
              config: struct<model: string, model_args: null, num_fewshot: int64, batch_size: int64, batch_sizes: list<item: null>, device: string, no_cache: bool, limit: int64, bootstrap_iters: int64, description_dict: null, model_dtype: string, model_name: string, model_sha: null>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

No dataset card yet

Downloads last month
48

Spaces using futurebench/results 2