JMTEB-fixed / README.md
ks-pf's picture
Upload dataset
42f6e4b verified
|
raw
history blame
29 kB
metadata
language:
  - ja
license: cc-by-sa-4.0
size_categories:
  - 100M<n<1B
task_categories:
  - text-classification
  - question-answering
  - zero-shot-classification
  - sentence-similarity
pretty_name: Japanese Massive Text Embedding Benchmark
dataset_info:
  - config_name: amazon_counterfactual_classification
    features:
      - name: text
        dtype: string
      - name: label
        dtype: int32
      - name: label_text
        dtype: string
    splits:
      - name: train
        num_bytes: 862548
        num_examples: 5600
      - name: validation
        num_bytes: 73019
        num_examples: 466
      - name: test
        num_bytes: 143450
        num_examples: 934
    download_size: 564439
    dataset_size: 1079017
  - config_name: amazon_review_classification
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: label
        dtype: int32
      - name: label_text
        dtype: string
    splits:
      - name: train
        num_bytes: 70483811
        num_examples: 200000
      - name: validation
        num_bytes: 1737207
        num_examples: 5000
      - name: test
        num_bytes: 1750094
        num_examples: 5000
    download_size: 42683660
    dataset_size: 73971112
  - config_name: jagovfaqs_22k-corpus
    features:
      - name: docid
        dtype: int64
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 14094076
        num_examples: 22794
    download_size: 5998948
    dataset_size: 14094076
  - config_name: jagovfaqs_22k-query
    features:
      - name: query
        dtype: string
      - name: relevant_docs
        sequence: int64
    splits:
      - name: train
        num_bytes: 3082736
        num_examples: 15955
      - name: validation
        num_bytes: 649734
        num_examples: 3419
      - name: test
        num_bytes: 644182
        num_examples: 3420
    download_size: 2480610
    dataset_size: 4376652
  - config_name: jaqket-corpus
    features:
      - name: docid
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 1088030699
        num_examples: 114229
    download_size: 603763755
    dataset_size: 1088030699
  - config_name: jaqket-query
    features:
      - name: qid
        dtype: string
      - name: query
        dtype: string
      - name: relevant_docs
        sequence: string
    splits:
      - name: train
        num_bytes: 2395970
        num_examples: 13061
      - name: validation
        num_bytes: 189987
        num_examples: 995
      - name: test
        num_bytes: 190981
        num_examples: 997
    download_size: 1664963
    dataset_size: 2776938
  - config_name: jsick
    features:
      - name: idx
        dtype: int32
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: label
        dtype: float32
    splits:
      - name: train
        num_bytes: 862384
        num_examples: 5956
      - name: validation
        num_bytes: 289049
        num_examples: 1985
      - name: test
        num_bytes: 284469
        num_examples: 1986
    download_size: 641501
    dataset_size: 1435902
  - config_name: jsts
    features:
      - name: sentence_pair_id
        dtype: string
      - name: yjcaptions_id
        dtype: string
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: label
        dtype: float32
    splits:
      - name: train
        num_bytes: 2243442
        num_examples: 12451
      - name: test
        num_bytes: 264435
        num_examples: 1457
    download_size: 1238128
    dataset_size: 2507877
  - config_name: livedoor_news
    features:
      - name: url
        dtype: string
      - name: timestamp
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': dokujo-tsushin
              '1': it-life-hack
              '2': kaden-channel
              '3': livedoor-homme
              '4': movie-enter
              '5': peachy
              '6': smax
              '7': sports-watch
              '8': topic-news
    splits:
      - name: train
        num_bytes: 16489474
        num_examples: 5163
      - name: validation
        num_bytes: 3641617
        num_examples: 1106
      - name: test
        num_bytes: 3516715
        num_examples: 1107
    download_size: 13724805
    dataset_size: 23647806
  - config_name: massive_intent_classification
    features:
      - name: id
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': datetime_query
              '1': iot_hue_lightchange
              '2': transport_ticket
              '3': takeaway_query
              '4': qa_stock
              '5': general_greet
              '6': recommendation_events
              '7': music_dislikeness
              '8': iot_wemo_off
              '9': cooking_recipe
              '10': qa_currency
              '11': transport_traffic
              '12': general_quirky
              '13': weather_query
              '14': audio_volume_up
              '15': email_addcontact
              '16': takeaway_order
              '17': email_querycontact
              '18': iot_hue_lightup
              '19': recommendation_locations
              '20': play_audiobook
              '21': lists_createoradd
              '22': news_query
              '23': alarm_query
              '24': iot_wemo_on
              '25': general_joke
              '26': qa_definition
              '27': social_query
              '28': music_settings
              '29': audio_volume_other
              '30': calendar_remove
              '31': iot_hue_lightdim
              '32': calendar_query
              '33': email_sendemail
              '34': iot_cleaning
              '35': audio_volume_down
              '36': play_radio
              '37': cooking_query
              '38': datetime_convert
              '39': qa_maths
              '40': iot_hue_lightoff
              '41': iot_hue_lighton
              '42': transport_query
              '43': music_likeness
              '44': email_query
              '45': play_music
              '46': audio_volume_mute
              '47': social_post
              '48': alarm_set
              '49': qa_factoid
              '50': calendar_set
              '51': play_game
              '52': alarm_remove
              '53': lists_remove
              '54': transport_taxi
              '55': recommendation_movies
              '56': iot_coffee
              '57': music_query
              '58': play_podcasts
              '59': lists_query
      - name: label_text
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 952706
        num_examples: 11514
      - name: validation
        num_bytes: 167146
        num_examples: 2033
      - name: test
        num_bytes: 244800
        num_examples: 2974
    download_size: 561181
    dataset_size: 1364652
  - config_name: massive_scenario_classification
    features:
      - name: id
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': social
              '1': transport
              '2': calendar
              '3': play
              '4': news
              '5': datetime
              '6': recommendation
              '7': email
              '8': iot
              '9': general
              '10': audio
              '11': lists
              '12': qa
              '13': cooking
              '14': takeaway
              '15': music
              '16': alarm
              '17': weather
      - name: label_text
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 869565
        num_examples: 11514
      - name: validation
        num_bytes: 152631
        num_examples: 2033
      - name: test
        num_bytes: 223304
        num_examples: 2974
    download_size: 539275
    dataset_size: 1245500
  - config_name: mewsc16_ja
    features:
      - name: idx
        dtype: int32
      - name: text
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': 経済
              '1': 政治
              '2': 事故
              '3': 科学技術
              '4': 文化
              '5': 気象
              '6': スポーツ
              '7': 事件
              '8': 教育
              '9': 健康
              '10': 訃報
              '11': 環境
    splits:
      - name: validation
        num_bytes: 268986
        num_examples: 992
      - name: test
        num_bytes: 274020
        num_examples: 992
    download_size: 343843
    dataset_size: 543006
  - config_name: mrtydi-corpus
    features:
      - name: docid
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: corpus
        num_bytes: 3006085074
        num_examples: 7000027
    download_size: 1691587026
    dataset_size: 3006085074
  - config_name: mrtydi-query
    features:
      - name: qid
        dtype: string
      - name: query
        dtype: string
      - name: relevant_docs
        sequence: string
    splits:
      - name: train
        num_bytes: 295489
        num_examples: 3697
      - name: validation
        num_bytes: 74818
        num_examples: 928
      - name: test
        num_bytes: 61080
        num_examples: 720
    download_size: 264443
    dataset_size: 431387
  - config_name: paws_x_ja
    features:
      - name: id
        dtype: int32
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: label
        dtype: int32
    splits:
      - name: train
        num_bytes: 14843988
        num_examples: 49401
      - name: validation
        num_bytes: 653770
        num_examples: 2000
      - name: test
        num_bytes: 660628
        num_examples: 2000
    download_size: 10432627
    dataset_size: 16158386
configs:
  - config_name: amazon_counterfactual_classification
    data_files:
      - split: train
        path: amazon_counterfactual_classification/train-*
      - split: validation
        path: amazon_counterfactual_classification/validation-*
      - split: test
        path: amazon_counterfactual_classification/test-*
  - config_name: amazon_review_classification
    data_files:
      - split: train
        path: amazon_review_classification/train-*
      - split: validation
        path: amazon_review_classification/validation-*
      - split: test
        path: amazon_review_classification/test-*
  - config_name: jagovfaqs_22k-corpus
    data_files:
      - split: corpus
        path: jagovfaqs_22k-corpus/corpus-*
  - config_name: jagovfaqs_22k-query
    data_files:
      - split: train
        path: jagovfaqs_22k-query/train-*
      - split: validation
        path: jagovfaqs_22k-query/validation-*
      - split: test
        path: jagovfaqs_22k-query/test-*
  - config_name: jaqket-corpus
    data_files:
      - split: corpus
        path: jaqket-corpus/corpus-*
  - config_name: jaqket-query
    data_files:
      - split: train
        path: jaqket-query/train-*
      - split: validation
        path: jaqket-query/validation-*
      - split: test
        path: jaqket-query/test-*
  - config_name: jsick
    data_files:
      - split: train
        path: jsick/train-*
      - split: validation
        path: jsick/validation-*
      - split: test
        path: jsick/test-*
  - config_name: jsts
    data_files:
      - split: train
        path: jsts/train-*
      - split: test
        path: jsts/test-*
  - config_name: livedoor_news
    data_files:
      - split: train
        path: livedoor_news/train-*
      - split: validation
        path: livedoor_news/validation-*
      - split: test
        path: livedoor_news/test-*
  - config_name: massive_intent_classification
    data_files:
      - split: train
        path: massive_intent_classification/train-*
      - split: validation
        path: massive_intent_classification/validation-*
      - split: test
        path: massive_intent_classification/test-*
  - config_name: massive_scenario_classification
    data_files:
      - split: train
        path: massive_scenario_classification/train-*
      - split: validation
        path: massive_scenario_classification/validation-*
      - split: test
        path: massive_scenario_classification/test-*
  - config_name: mewsc16_ja
    data_files:
      - split: validation
        path: mewsc16_ja/validation-*
      - split: test
        path: mewsc16_ja/test-*
  - config_name: mrtydi-corpus
    data_files:
      - split: corpus
        path: mrtydi-corpus/corpus-*
  - config_name: mrtydi-query
    data_files:
      - split: train
        path: mrtydi-query/train-*
      - split: validation
        path: mrtydi-query/validation-*
      - split: test
        path: mrtydi-query/test-*
  - config_name: paws_x_ja
    data_files:
      - split: train
        path: paws_x_ja/train-*
      - split: validation
        path: paws_x_ja/validation-*
      - split: test
        path: paws_x_ja/test-*

JMTEB-fixed

このリポジトリは元のJMTEBデータセットのUTF-8エンコーディングエラーを修正したバージョンです。

修正内容

問題

NLP Journal LaTeXコーパスの一部ファイル(例: V28N02-25.tex)が異なるエンコーディング(Shift-JIS、EUC-JPなど)で保存されており、UTF-8デコーディングエラーが発生していました。

解決策

retrieval.pyNLPJournalHelper.load_txtメソッドを修正し、複数のエンコーディングを順次試行するようにしました。

使用方法

from datasets import load_dataset

dataset = load_dataset(
    "ks-pf/JMTEB-fixed",
    name="nlp_journal_title_abs-corpus",
    trust_remote_code=True
)


# JMTEB: Japanese Massive Text Embedding Benchmark

JMTEB is a benchmark for evaluating Japanese text embedding models. It consists of 6 tasks, currently involving 24 datasets in total.

## TL;DR

```python
from datasets import load_dataset

dataset = load_dataset("sbintuitions/JMTEB", name="<dataset_name>", split="<split>")

JMTEB_DATASET_NAMES = (
    'livedoor_news',
    'mewsc16_ja',
    'amazon_review_classification',
    'amazon_counterfactual_classification',
    'massive_intent_classification',
    'massive_scenario_classification',
    'jsts',
    'jsick',
    'paws_x_ja',
    'jaqket-query',
    'jaqket-corpus',
    'mrtydi-query',
    'mrtydi-corpus',
    'jagovfaqs_22k-query',
    'jagovfaqs_22k-corpus',
    'nlp_journal_title_abs-query',
    'nlp_journal_title_abs-corpus',
    'nlp_journal_title_intro-query',
    'nlp_journal_title_intro-corpus',
    'nlp_journal_abs_intro-query',
    'nlp_journal_abs_intro-corpus',
    'nlp_journal_abs_article-query',
    'nlp_journal_abs_article-corpus',
    'jacwir-retrieval-query',
    'jacwir-retrieval-corpus',
    'miracl-retrieval-query',
    'miracl-retrieval-corpus',
    'mldr-retrieval-query',
    'mldr-retrieval-corpus',
    'esci-query',
    'esci-corpus',
    'jqara-query',
    'jqara-corpus',
    'jacwir-reranking-query',
    'jacwir-reranking-corpus',
    'miracl-reranking-query',
    'miracl-reranking-corpus',
    'mldr-reranking-query',
    'mldr-reranking-corpus',
)

Introduction

We introduce JMTEB (Japanese Massive Text Embedding Benchmark), an evaluation benchmark including 6 tasks (Clustering, Classification, STS, PairClassification, Retrieval and Reranking). 24 datasets in total are collected to conduct these tasks. Similar with MTEB, we aim to provide a diverse and extensible evaluation benchmark for Japanese embedding models, enabling more insightful analysis on model performance, thus benefitting the emerging of more powerful models.

We also provide an easy-to-use evaluation script to perform the evaluation just with a one-line command. Refer to https://https://github.com/sbintuitions/JMTEB-eval-scripts.

We encourage anyone interested to contribute to this benchmark!

Tasks and Datasets

Here is an overview of the tasks and datasets currently included in JMTEB.

Task Dataset Train Dev Test Document (Retrieval)
Clustering Livedoor-News 5,163 1,106 1,107 -
MewsC-16-ja - 992 992 -
Classification AmazonCounterfactualClassification 5,600 466 934 -
AmazonReviewClassification 200,000 5,000 5,000 -
MassiveIntentClassification 11,514 2,033 2,974 -
MassiveScenarioClassification 11,514 2,033 2,974 -
STS JSTS 12,451 - 1,457 -
JSICK 5,956 1,985 1,986 -
PairClassification PAWS-X-ja 49,401 2,000 2,000 -
Retrieval JAQKET 13,061 995 997 114,229
Mr.TyDi-ja 3,697 928 720 7,000,027
NLP Journal title-abs - 100 404 504
NLP Journal title-intro - 100 404 504
NLP Journal abs-intro - 100 404 504
NLP Journal abs-abstract - 100 404 504
JaGovFaqs-22k 15,955 3,419 3,420 22,794
JaCWIR-Retrieval - 1,000 4,000 513,107
MIRACL-Retrieval 2,433 1,044 860 6,953,614
MLDR-Retrieval 2,262 200 200 10,000
Reranking Esci 10,141 1,790 4,206 149,999
JaCWIR-Reranking - 1,000 4,000 513,107
JQaRA 498 1,737 1,667 250,609
MIRACL-Reranking 2,433 1,044 860 37,124
MLDR-Reranking 2,262 200 200 5,339

Clustering

The goal of the Clustering task is to correctly distribute texts with similar semantics/topic to the same cluster. It is an unsupervised process in evaluating embedding models. We have 2 datasets for Clustering.

Livedoor News

Livedoor News is a dataset collected from the news reports of a Japanese news site by RONDHUIT Co, Ltd. in 2012. It contains over 7,000 news report texts across 9 categories (topics).

The dataset is licensed under CC BY-ND 2.1.

MewsC-16-ja

MewsC-16-ja is the Japanese split of MewsC-16 dataset, which consists of topic sentences from Wikinews. It has 12 types of topics.

Classification

Classification aims to predict the correct category of the text only with its dense representation. Typically, the process is conducted with supervised learning that employs statistical models like linear regression and k-NN.

AmazonCounterfactualClassification

We use the Japanese split of Amazon Multiligual Counterfactual Dataset in MTEB, which contains sentences from Amazon customer review texts. It is a binary classification of the text is/isn't a statement that describes an event that did not or cannot take place. For more details, refer to https://huggingface.co/datasets/mteb/amazon_counterfactual.

This dataset is made available under the Creative Commons Attribution-ShareAlike 4.0 International License. Refer to following page for the license information of this dataset: https://github.com/amazon-science/amazon-multilingual-counterfactual-dataset?tab=License-1-ov-file.

AmazonReviewClassification

We use the Japanese split of the Multiligual Amazon Review Corpus in MTEB. The dataset is a 5-classification of customer rating on a product, according with a review paragraph. For more details, refer to https://huggingface.co/datasets/amazon_reviews_multi.

Refer to following page for the license information of this dataset: https://docs.opendata.aws/amazon-reviews-ml/readme.html.

MassiveIntentClassification

We use the Japanese split of MASSIVE dataset. This dataset is built with Alexa user utterance and the corresponding intent. It is a 60-classification. For more detail as well as the license information, refer to https://github.com/alexa/massive.

MassiveScenarioClassification

We use the Japanese split of MASSIVE dataset. This dataset is built with Alexa user utterance and the corresponding scenario. It is an 18-classification. The texts are the same as MassiveIntentClassification. For more detail as well as the license information, refer to https://github.com/alexa/massive.

STS

STS (Semantic Textual Similarity) unsupervisedly predicts the semantic similarity between two sentences, and correlations are computed between the prediction and the annotated similarity.

JSTS

JSTS, a part of JGLUE, is a Japanese version of STS dataset. The sentences are extracted from the Japanese version of the MS COCO Caption Dataset, the YJ Captions Dataset (Miyazaki and Shimizu, 2016). Refer to https://github.com/yahoojapan/JGLUE/blob/main/README.md#jsts for more details.

This dataset is licensed under Creative Commons Attribution Share Alike 4.0 International.

JSICK

JSICK is the Japanese NLI and STS dataset by manually translating the English dataset SICK (Marelli et al., 2014) into Japanese. We use merely the STS part.

This work is licensed under a Creative Commons Attribution 4.0 International License.

PairClassification

PairClassification is a task to predict a label (typically binary) that indicates whether two sentences constitute a parapharse pair, utilizing the best binary threshold accuracy or F1.

PAWS-X-ja

PAWS-X-ja is the Japanese split of PAWS-X, which is a multiligual paraphrase identification dataset.

Regarding the license, the dataset may be freely used for any purpose, although acknowledgement of Google LLC ("Google") as the data source would be appreciated.

Retrieval

The retrieval task aims to find the most relevant document with the query from the corpus, through the computing of embedding similarities.

JAQKET

JAQKET (AIO Ver. 1.0) dataset has a quiz set and a corpus that consists of Wikipedia passages, each is a description is an entity (the title of the Wikipedia page). A quiz question is answered by looking for the most relevant Wikipedia passage with the quiz question text. For more details, refer to https://www.nlp.ecei.tohoku.ac.jp/projects/jaqket/.

The copyright for the quiz questions in the train subset belongs to the abc/EQIDEN Committee and redistributed from Tohoku University for non-commercial research purposes. This validation/test subset is licensed under CC BY-SA 4.0 DEED.

Mr.TyDi-ja

Mr.TyDi-ja is the Japanese split of Mr.TyDi, a multilingual benchmark dataset built on TyDi. The goal is to find the relevant documents with the query text. For more details, refer to https://huggingface.co/datasets/castorini/mr-tydi.

This dataset is licensed under Apache-2.0.

NLP Journal title-abs

NLP Journal title-intro

NLP Journal abs-intro

NLP Journal abs-article

These datasets are created with the Japanese NLP Journal LaTeX Corpus. We shuffled the titles, abstracts and introductions of the academic papers, and the goal is to find the corresponding abstract with the given title / introduction with the given title / introduction / full article with the given abstract, through the similarities computed with text embeddings.

These datasets are licensed under CC-BY-4.0, according to the Manuscript Guide to Journal Publication.

JaGovFaqs-22k

JaGovFaqs-22k is a dataset consisting of FAQs manully extracted from the website of Japanese bureaus. We shuffled the queries (questions) and corpus (answers), and the goal is to match the answer with the question.

This dataset is licensed under CC-BY-4.0.

JaCWIR-Retrieval

JaCWIR (Japanese Casual Web IR Dataset) is a dataset consisting of questions and webpage meta description texts collected from Hatena Bookmark. Passages that contain various genres are collected with RSS, and corresponding questions are generated with ChatGPT-3.5. JaCWIR-Retrieval reformats JaCWIR data for retrieval task.

Refer to this link for the detail of the license of JaCWIR.

MIRACL-Retrieval

MIRACL 🌍🙌🌏 (Multilingual Information Retrieval Across a Continuum of Languages) is a multilingual retrieval dataset that focuses on search across 18 different languages, which collectively encompass over three billion native speakers around the world. In JMTEB, we use the Japanese split of MIRACL. MIRACL inherits from Mr.TyDi-ja. MIRACL-Retrieval is the reformatted version of MIRACL for retrieval task.

This dataset is licensed under Apache-2.0.

MLDR-Retrieval

MLDR is a Multilingual Long-Document Retrieval dataset built on Wikipeida, Wudao and mC4, covering 13 typologically diverse languages. Specifically, we sample lengthy articles from Wikipedia, Wudao and mC4 datasets and randomly choose paragraphs from them. Then we use GPT-3.5 to generate questions based on these paragraphs. The generated question and the sampled article constitute a new text pair to the dataset. MLDR-Retrieval is the reformatted version of MLDR (Japanese split) for retrieval task.

This dataset is licensed under MIT.

Reranking

The reranking task aims to rerank the retrieved documents through computing embedding similarities.

Esci

Amazon esci is a dataset consisting of retrieval queries and products information on Amazon. For each data, the relevance between query and product is annotated with E(Exact), S(Substitute), C(Complement), and I(Irrelevant). Each relevance label is given a different score, allowing for more detailed scoring. We employed product titles and descriptions as product information and excluded data without descriptions.

This dataset is Apache-2.0.

JQaRA

JQaRA (Japanese Question Answering with Retrieval Augmentation) is a reranking dataset consisting of questions processed from JAQKET and corpus from Japanese Wikipedia. There are 100 passages for each question, where multiple relevant passages in the 100 are relevant with the question.

This dataset is licensed with CC-BY-SA-4.0.

JaCWIR-Reranking

JaCWIR (Japanese Casual Web IR Dataset) is a dataset consisting of questions and webpage meta description texts collected from Hatena Bookmark. Passages that contain various genres are collected with RSS, and corresponding questions are generated with ChatGPT-3.5. JaCWIR-Reranking reformats JaCWIR data for reranking task. 1 out of 100 passages is relevant with the question.

Refer to this link for the detail of the license of JaCWIR.

MIRACL-Reranking

MIRACL 🌍🙌🌏 (Multilingual Information Retrieval Across a Continuum of Languages) is a multilingual retrieval dataset that focuses on search across 18 different languages, which collectively encompass over three billion native speakers around the world. In JMTEB, we use the Japanese split of MIRACL. MIRACL inherits from Mr.TyDi-ja. MIRACL-Reranking is the reformatted version of MIRACL for reranking task. One or multiple passages are relevant with the question.

This dataset is licensed under Apache-2.0.

MLDR-Reranking

MLDR is a Multilingual Long-Document Retrieval dataset built on Wikipeida, Wudao and mC4, covering 13 typologically diverse languages. Specifically, we sample lengthy articles from Wikipedia, Wudao and mC4 datasets and randomly choose paragraphs from them. Then we use GPT-3.5 to generate questions based on these paragraphs. The generated question and the sampled article constitute a new text pair to the dataset. MLDR-Reranking is the reformatted version of MLDR (Japanese split) for reranking task.

This dataset is licensed under MIT.

Reference

@misc{jmteb,
    author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan},
    title = {{J}{M}{T}{E}{B}: {J}apanese {M}assive {T}ext {E}mbedding {B}enchmark},
    howpublished = {\url{https://huggingface.co/datasets/sbintuitions/JMTEB}},
    year = {2024},
}

License

Our code is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License

Regarding the license information of datasets, please refer to the individual datasets.