Dataset Viewer
Auto-converted to Parquet
datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-07-20 15:51:01
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-07-20 15:38:59
trending_score
float64
0
64
card
large_stringlengths
31
1.01M
leo66666/crosscoder-llama-3.2-1b-diff
leo66666
2024-12-03T03:05:58Z
17
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-03T03:00:07Z
0
--- dataset_info: features: - name: input_ids sequence: int32 - name: original_text dtype: string splits: - name: train num_bytes: 567249286 num_examples: 100000 download_size: 283793218 dataset_size: 567249286 configs: - config_name: default data_files: - split: train path: data/train-* ---
supergoose/flan_combined_task094_conala_calculate_mean
supergoose
2025-03-10T14:30:56Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-10T14:30:55Z
0
--- dataset_info: features: - name: inputs dtype: string - name: targets dtype: string - name: _template_idx dtype: int64 - name: _task_source dtype: string - name: _task_name dtype: string - name: _template_type dtype: string splits: - name: train num_bytes: 7975525 num_examples: 14956 download_size: 1747405 dataset_size: 7975525 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_0.5_alpha_0.4_num-company_3_dataset_1_for_gen_12
HungVu2003
2025-04-30T19:24:47Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T19:24:45Z
0
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 2829795 num_examples: 12498 download_size: 1539242 dataset_size: 2829795 configs: - config_name: default data_files: - split: train path: data/train-* ---
Senju2/context-aware-project
Senju2
2025-04-23T18:41:30Z
16
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-19T18:26:17Z
0
--- dataset_info: features: - name: en dtype: string - name: ar dtype: string - name: formal dtype: string - name: informal dtype: string - name: region dtype: string - name: context dtype: string splits: - name: train num_bytes: 36533246 num_examples: 231459 download_size: 11689635 dataset_size: 36533246 configs: - config_name: default data_files: - split: train path: data/train-* ---
UE-CESE/Contribution_CESE_au_programme_de_la_CE_pour_2025
UE-CESE
2025-04-27T14:40:27Z
22
0
[ "task_categories:translation", "language:fra", "language:eng", "language:deu", "language:sv", "language:nld", "language:por", "language:ita", "language:hu", "language:cs", "language:da", "language:mt", "language:hr", "language:spa", "language:pol", "region:us" ]
[ "translation" ]
2025-04-27T14:38:07Z
0
--- language: - fra - eng - deu - sv - nld - por - ita - hu - cs - da - mt - hr - spa - pol multilingulality: - multilingual task_categories: - translation viewer: false --- > [!NOTE] > Dataset origin: https://www.eesc.europa.eu/fr/our-work/publications-other-work/publications/contribution-du-comite-economique-et-social-europeen-au-programme-de-travail-de-la-commission-europeenne-pour-2025 ## Description Le Comité économique et social européen (CESE) a adopté le 4 décembre 2024 une résolution visant à fournir à la Commission européenne une contribution à son programme de travail 2025. Autour des sept axes des orientations politiques 2024-2029 de la présidente de la Commission européenne, Ursula von der Leyen, le CESE formule des recommandations sur la manière d'aborder les priorités urgentes telles que, entre autres, une stratégie et un plan d'action pour la société civile, le nouveau plan d'action pour la mise en œuvre du socle européen des droits sociaux, le pacte pour une industrie propre et le renforcement de la compétitivité durable de l'UE.
chrislevy/synthetic-social-media-personas
chrislevy
2025-06-14T23:31:02Z
0
0
[ "task_categories:text-classification", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "text-generation" ]
2025-06-14T22:50:16Z
0
--- license: apache-2.0 task_categories: - text-classification - text-generation language: - en --- # synthetic-social-media-personas ## Dataset Description This dataset contains **229,423** synthetic social media posts generated by various language models to represent diverse account types, personas, and communication styles found across social media platforms. The dataset is designed for experimentation in social media analysis, content classification, persona detection, and understanding online communication patterns. ## Dataset Summary - **Total Posts**: 229,423 - **Unique Users**: 8,037 (avg 28.5 posts per user) - **Account Types**: 7 distinct categories - **Unique Personas**: 110 across all account types - **Models Used**: 4 different language models (Qwen, Gemma) - **Average Post Length**: 156 characters (median: 146) ## Account Types Distribution | Account Type | Posts | Percentage | Personas | Description | |--------------|-------|------------|----------|-------------| | Individual | 121,416 | 52.9% | 19 | Regular people with diverse personas and life stages | | Bot | 47,057 | 20.5% | 15 | Automated accounts with various purposes | | Brand/Business | 18,202 | 7.9% | 15 | Companies, local shops, and professional services | | Spam/Scam | 15,528 | 6.8% | 16 | Fraudulent accounts with malicious intent | | Creative/Meme | 11,048 | 4.8% | 15 | Humor and meme-focused accounts | | Media/News | 8,481 | 3.7% | 15 | News outlets and media organizations | | Influencer/Public Figure | 7,691 | 3.4% | 15 | Content creators and public personalities | ## Data Structure ### Core Fields - `user_id`: Unique identifier for each account - `account_type`: Category of social media account - `persona`: Specific persona within the account type - `model`: Language model used to generate the post - `post`: The actual social media post content ### Modifier Fields Posts include various modifier attributes that define the characteristics of the account: **Individual Accounts**: - `communication_style`: casual_friendly, sarcastic_witty, wholesome_positive, etc. - `posting_mood`: optimistic_upbeat, pessimistic_complaining, emotional_dramatic, etc. - `education_level`: high_school_dropout to graduate_degree - `political_leaning`: far_left_progressive to far_right_extremist - `life_stage`: teenager, college_student, young_professional, parent, etc. - `primary_topic`: work_career, family_kids, hobbies_interests, etc. **Brand/Business Accounts**: - `brand_voice`: professional_corporate, casual_approachable, edgy_provocative, etc. - `marketing_style`: hard_sell_pushy, educational_helpful, entertaining_fun, etc. - `business_stage`: startup_scrappy, established_confident, struggling_desperate, etc. **Bot Accounts**: - `bot_personality`: robotic_formal, friendly_helpful, quirky_weird, etc. - `response_pattern`: scheduled_regular, triggered_reactive, random_chaotic, etc. - `content_type`: factual_information, motivational_quotes, alerts_notifications, etc. And similar modifier sets for other account types. ## Generation Process The dataset was created using a persona-based generation system: 1. **Account Sampling**: Weighted random selection of account types based on realistic social media distributions 2. **Persona Assignment**: Each account is assigned a specific persona with associated characteristics 3. **Modifier Application**: Personas are enhanced with relevant modifiers (communication style, topics, etc.) 4. **Prompt Generation**: Detailed system prompts are created incorporating all persona and modifier information 5. **Content Generation**: Multiple language models generate authentic posts matching the defined characteristics The code is [here](https://github.com/DrChrisLevy/synthetic-social-media-personas) ## Models Used | Model | Posts Generated | Percentage | |-------|----------------|------------| | Qwen/Qwen2.5-7B-Instruct | 97,434 | 42.5% | | Qwen/Qwen2.5-72B-Instruct | 53,701 | 23.4% | | google/gemma-3-12b-it | 47,248 | 20.6% | | Qwen/Qwen2.5-32B-Instruct | 31,040 | 13.5% |
ferrazzipietro/LS_Llama-3.1-8B_e3c-sentences-IT-unrevised_NoQuant_16_16_0.01_64_BestF1
ferrazzipietro
2024-11-25T11:47:13Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-25T11:47:11Z
0
--- dataset_info: features: - name: sentence dtype: string - name: entities list: - name: offsets sequence: int64 - name: text dtype: string - name: type dtype: string - name: tokens sequence: string - name: ner_tags sequence: int64 - name: ground_truth_word_level sequence: string - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: labels sequence: int64 - name: predictions sequence: string - name: ground_truth_labels sequence: string splits: - name: all_validation num_bytes: 146361 num_examples: 100 - name: test num_bytes: 1023662 num_examples: 655 download_size: 228559 dataset_size: 1170023 configs: - config_name: default data_files: - split: all_validation path: data/all_validation-* - split: test path: data/test-* ---
supergoose/flan_combined_task523_find_if_numbers_or_alphabets_are_more_in_list
supergoose
2025-03-05T21:57:36Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-05T21:57:35Z
0
--- dataset_info: features: - name: inputs dtype: string - name: targets dtype: string - name: _template_idx dtype: int64 - name: _task_source dtype: string - name: _task_name dtype: string - name: _template_type dtype: string splits: - name: train num_bytes: 16599262 num_examples: 19439 download_size: 3843300 dataset_size: 16599262 configs: - config_name: default data_files: - split: train path: data/train-* ---
zijian2022/so100_bi_test_27
zijian2022
2025-02-02T20:06:45Z
30
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-02-02T20:06:42Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 1, "total_frames": 653, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 12 ], "names": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_flex", "left_wrist_roll", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_flex", "right_wrist_roll", "right_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 12 ], "names": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_flex", "left_wrist_roll", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_flex", "right_wrist_roll", "right_gripper" ] }, "observation.images.top": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.first": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
beyoru/kafka-voice-en
beyoru
2025-06-06T03:13:17Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T02:45:47Z
0
--- dataset_info: features: - name: transcription dtype: string - name: audio dtype: audio - name: speaker dtype: string splits: - name: train num_bytes: 263291081.0 num_examples: 405 download_size: 239286667 dataset_size: 263291081.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
stefandi/countdown_synthetic_v2
stefandi
2025-06-03T08:26:35Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-02T18:33:33Z
0
--- dataset_info: features: - name: nums sequence: int64 - name: target dtype: int64 - name: equation dtype: string splits: - name: train num_bytes: 133076 num_examples: 2000 download_size: 39066 dataset_size: 133076 configs: - config_name: default data_files: - split: train path: data/train-* ---
aisi-whitebox/wmdp_bio_new_merged_mo2_6epc_finetuned_sandbagging_follow_up_q
aisi-whitebox
2025-05-27T13:54:04Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-27T13:54:03Z
0
--- dataset_info: features: - name: chat list: - name: content dtype: string - name: role dtype: string - name: targets dtype: string - name: metadatas struct: - name: dummy dtype: 'null' - name: scores dtype: string - name: answers dtype: string - name: sys_prompts dtype: string - name: is_benign dtype: int64 - name: input_ids dtype: int64 - name: task_name dtype: string - name: sample_index dtype: int64 - name: dataset_id dtype: string - name: sandbagging_executed dtype: int64 splits: - name: train num_bytes: 1022389 num_examples: 1000 download_size: 121940 dataset_size: 1022389 configs: - config_name: default data_files: - split: train path: data/train-* ---
Octapod/aloha_pink_iii_angles
Octapod
2024-12-26T14:36:28Z
22
0
[ "task_categories:robotics", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2024-12-26T14:24:10Z
0
--- task_categories: - robotics tags: - LeRobot - tutorial --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
GitBag/block-q-sharp_ds-distilled-qwen-1.5b-ppo-aime-25_eval
GitBag
2025-05-10T03:15:45Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-10T03:15:32Z
0
--- dataset_info: features: - name: problem dtype: string - name: answer dtype: string - name: message_id dtype: string - name: responses dtype: string - name: processed_answer dtype: string - name: reward dtype: bool splits: - name: train num_bytes: 804088500 num_examples: 30720 download_size: 322728334 dataset_size: 804088500 configs: - config_name: default data_files: - split: train path: data/train-* ---
datasets-CNRS/composes-inorganiques
datasets-CNRS
2025-03-29T21:28:22Z
20
0
[ "task_categories:translation", "multilinguality:multilingual", "language:eng", "language:fra", "license:cc-by-4.0", "region:us" ]
[ "translation" ]
2024-10-13T18:45:45Z
0
--- license: cc-by-4.0 language: - eng - fra multilinguality: - multilingual viewer: false task_categories: - translation --- > [!NOTE] > Dataset origin: https://www.ortolang.fr/market/terminologies/composes-inorganiques ## Description Thésaurus bilingue (français-anglais) de plus de 2500 composés inorganiques (composés minéraux), classés par éléments chimiques et familles de composés. Les composés sont issus du vocabulaire contrôlé utilisé pour l'indexation des références bibliographiques de la base de données PASCAL (1972 à 2015) ## Citation ``` @misc{11403/composes-inorganiques/v1.0, title = {Composés inorganiques}, author = {INIST}, url = {https://hdl.handle.net/11403/composes-inorganiques/v1.0}, note = {{ORTOLANG} ({Open} {Resources} {and} {TOols} {for} {LANGuage}) \textendash www.ortolang.fr}, copyright = {Licence Creative Commons - Attribution 4.0 International}, year = {2023} } ```
BattleTag/Email
BattleTag
2024-10-20T02:54:35Z
31
0
[ "task_categories:text-classification", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
2024-10-15T23:59:13Z
0
--- license: apache-2.0 dataset_info: features: - name: text dtype: string - name: label dtype: string splits: - name: train num_bytes: 16604720 num_examples: 24043 - name: test num_bytes: 1997109 num_examples: 3039 - name: val num_bytes: 2227647 num_examples: 3359 download_size: 13145399 dataset_size: 20829476 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: val path: data/val-* task_categories: - text-classification --- # Dataset Card for Scam Email Dataset <!-- Provide a quick summary of the dataset. --> This dataset includes three categories emails in both Chinese and English. ## Dataset Details Our dataset contains three categories: AI-scam, scam, and normal. There are 30,441 data in total, of which AI-scam, scam, and normal account for 10,147 each. It contains emails in two languages, with the proportions being: Chinese 49.9% and English 50.1%
nihatavci/my-distiset-dde72cee
nihatavci
2025-03-13T22:38:12Z
15
0
[ "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-13T22:38:06Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': order-and-delivery '1': product-price '2': general-inquiry '3': technical-support '4': kit-features splits: - name: train num_bytes: 0 num_examples: 0 download_size: 953 dataset_size: 0 configs: - config_name: default data_files: - split: train path: data/train-* ---
usacognition/E2025_03_16_06_11-2025_02_23_esrl_training_data.2
usacognition
2025-03-16T06:25:58Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-16T06:14:11Z
0
--- dataset_info: features: - name: origin dtype: string - name: prompt_json dtype: string - name: playground_url dtype: string - name: reference_answer_json dtype: string - name: new_generation dtype: string - name: score dtype: float64 - name: api_score dtype: float64 splits: - name: train_research_cognition_rl_20250311 num_bytes: 9488309 num_examples: 50 - name: train_claude_3_haiku_20240307 num_bytes: 9521697 num_examples: 50 - name: train_sonnet3.6 num_bytes: 9492660 num_examples: 50 - name: train_claude_3_7_sonnet_20250219 num_bytes: 9491499 num_examples: 50 - name: eval_research_cognition_rl_20250311 num_bytes: 15036416 num_examples: 74 - name: eval_claude_3_haiku_20240307 num_bytes: 15060090 num_examples: 74 - name: eval_sonnet3.6 num_bytes: 15034722 num_examples: 74 - name: eval_claude_3_7_sonnet_20250219 num_bytes: 15039723 num_examples: 74 download_size: 33510730 dataset_size: 98165116 configs: - config_name: default data_files: - split: train_research_cognition_rl_20250311 path: data/train_research_cognition_rl_20250311-* - split: train_claude_3_haiku_20240307 path: data/train_claude_3_haiku_20240307-* - split: train_sonnet3.6 path: data/train_sonnet3.6-* - split: train_claude_3_7_sonnet_20250219 path: data/train_claude_3_7_sonnet_20250219-* - split: eval_research_cognition_rl_20250311 path: data/eval_research_cognition_rl_20250311-* - split: eval_claude_3_haiku_20240307 path: data/eval_claude_3_haiku_20240307-* - split: eval_sonnet3.6 path: data/eval_sonnet3.6-* - split: eval_claude_3_7_sonnet_20250219 path: data/eval_claude_3_7_sonnet_20250219-* ---
octava/inavocript-1.5.9
octava
2025-03-11T08:06:54Z
28
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T07:58:59Z
0
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: sentence dtype: string splits: - name: train num_bytes: 8993558669.083712 num_examples: 26003 - name: test num_bytes: 741791434.982 num_examples: 1746 download_size: 10111290778 dataset_size: 9735350104.065712 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
MLDS-NUS/polymer-dynamics-Wi_0.7
MLDS-NUS
2024-11-28T09:37:49Z
24
0
[ "size_categories:1K<n<10K", "format:parquet", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-26T02:29:32Z
0
--- dataset_info: features: - name: x dtype: array2_d: shape: - 2501 - 900 dtype: float32 - name: t dtype: array2_d: shape: - 2501 - 1 dtype: float32 - name: args dtype: array2_d: shape: - 2501 - 2 dtype: float32 splits: - name: valid num_bytes: 996999960 num_examples: 110 - name: train num_bytes: 5528817960 num_examples: 610 - name: test_fast num_bytes: 4531818000 num_examples: 500 - name: test_medium num_bytes: 4531818000 num_examples: 500 - name: test_slow num_bytes: 4531818000 num_examples: 500 download_size: 26502646155 dataset_size: 20121271920 configs: - config_name: default data_files: - split: train path: data/train-* - split: valid path: data/valid-* - split: test_fast path: data/test_fast-* - split: test_medium path: data/test_medium-* - split: test_slow path: data/test_slow-* ---
goosull/processed-QnAdataset-196k-part3
goosull
2025-05-22T16:00:22Z
0
0
[ "region:us" ]
[]
2025-05-22T15:58:06Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 2295241017 num_examples: 19600 download_size: 1161239320 dataset_size: 2295241017 configs: - config_name: default data_files: - split: train path: data/train-* ---
hcy-43/DeepMentor_PreTrain
hcy-43
2025-05-22T15:21:47Z
90
0
[ "license:apache-2.0", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-14T07:18:04Z
0
--- license: apache-2.0 dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 187312553711 num_examples: 157533719 download_size: 131292264216 dataset_size: 187312553711 configs: - config_name: default data_files: - split: train path: data/train-* ---
hcasademunt/qwen-7b-medical-misaligned-coherent-dataset
hcasademunt
2025-05-01T21:14:26Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T21:14:25Z
0
--- dataset_info: features: - name: question dtype: string - name: question_id dtype: string - name: answer dtype: string - name: aligned dtype: float64 - name: coherent dtype: float64 splits: - name: train num_bytes: 199761 num_examples: 447 download_size: 88362 dataset_size: 199761 configs: - config_name: default data_files: - split: train path: data/train-* ---
reasoning-proj/j_c_dfiltered_DeepSeek-R1-Distill-Qwen-7B_mbenign_complete_step_t30
reasoning-proj
2025-05-11T01:35:31Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-11T01:35:26Z
0
--- dataset_info: features: - name: question dtype: string - name: answer_content dtype: string - name: reference_answer dtype: string - name: id dtype: string - name: metadata struct: - name: question_license dtype: string - name: question_source dtype: string - name: model_name dtype: string - name: verifier_score dtype: int64 - name: mutated_answer_content dtype: string - name: continuation_1 dtype: string - name: complete_answer_1 dtype: string - name: continuation_2 dtype: string - name: complete_answer_2 dtype: string - name: continuation_3 dtype: string - name: complete_answer_3 dtype: string - name: continuation_4 dtype: string - name: complete_answer_4 dtype: string - name: continuation_5 dtype: string - name: complete_answer_5 dtype: string - name: continuation_6 dtype: string - name: complete_answer_6 dtype: string - name: continuation_7 dtype: string - name: complete_answer_7 dtype: string - name: continuation_8 dtype: string - name: complete_answer_8 dtype: string - name: continuation_model dtype: string - name: verifier_score_1 dtype: int64 - name: verifier_score_2 dtype: int64 - name: verifier_score_3 dtype: int64 - name: verifier_score_4 dtype: int64 - name: verifier_score_5 dtype: int64 - name: verifier_score_6 dtype: int64 - name: verifier_score_7 dtype: int64 - name: verifier_score_8 dtype: int64 splits: - name: train num_bytes: 100838114 num_examples: 600 download_size: 42186392 dataset_size: 100838114 configs: - config_name: default data_files: - split: train path: data/train-* ---
louisbrulenaudet/code-environnement
louisbrulenaudet
2025-06-24T09:32:19Z
450
0
[ "task_categories:text-generation", "task_categories:table-question-answering", "task_categories:summarization", "task_categories:text-retrieval", "task_categories:question-answering", "task_categories:text-classification", "multilinguality:monolingual", "source_datasets:original", "language:fr", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "doi:10.57967/hf/1451", "region:us", "finetuning", "legal", "french law", "droit français", "Code de l'environnement" ]
[ "text-generation", "table-question-answering", "summarization", "text-retrieval", "question-answering", "text-classification" ]
2023-12-12T11:19:29Z
0
--- license: apache-2.0 language: - fr multilinguality: - monolingual tags: - finetuning - legal - french law - droit français - Code de l'environnement source_datasets: - original pretty_name: Code de l'environnement task_categories: - text-generation - table-question-answering - summarization - text-retrieval - question-answering - text-classification size_categories: - 1K<n<10K --- # Code de l'environnement, non-instruct (2025-06-23) The objective of this project is to provide researchers, professionals and law students with simplified, up-to-date access to all French legal texts, enriched with a wealth of data to facilitate their integration into Community and European projects. Normally, the data is refreshed daily on all legal codes, and aims to simplify the production of training sets and labeling pipelines for the development of free, open-source language models based on open data accessible to all. ## Concurrent reading of the LegalKit [<img src="https://raw.githubusercontent.com/louisbrulenaudet/ragoon/main/assets/badge.svg" alt="Built with RAGoon" width="200" height="32"/>](https://github.com/louisbrulenaudet/ragoon) To use all the legal data published on LegalKit, you can use RAGoon: ```bash pip3 install ragoon ``` Then, you can load multiple datasets using this code snippet: ```python # -*- coding: utf-8 -*- from ragoon import load_datasets req = [ "louisbrulenaudet/code-artisanat", "louisbrulenaudet/code-action-sociale-familles", # ... ] datasets_list = load_datasets( req=req, streaming=False ) dataset = datasets.concatenate_datasets( datasets_list ) ``` ### Data Structure for Article Information This section provides a detailed overview of the elements contained within the `item` dictionary. Each key represents a specific attribute of the legal article, with its associated value providing detailed information. 1. **Basic Information** - `ref` (string): **Reference** - A reference to the article, combining the title_main and the article `number` (e.g., "Code Général des Impôts, art. 123"). - `texte` (string): **Text Content** - The textual content of the article. - `dateDebut` (string): **Start Date** - The date when the article came into effect. - `dateFin` (string): **End Date** - The date when the article was terminated or superseded. - `num` (string): **Article Number** - The number assigned to the article. - `id` (string): **Article ID** - Unique identifier for the article. - `cid` (string): **Chronical ID** - Chronical identifier for the article. - `type` (string): **Type** - The type or classification of the document (e.g., "AUTONOME"). - `etat` (string): **Legal Status** - The current legal status of the article (e.g., "MODIFIE_MORT_NE"). 2. **Content and Notes** - `nota` (string): **Notes** - Additional notes or remarks associated with the article. - `version_article` (string): **Article Version** - The version number of the article. - `ordre` (integer): **Order Number** - A numerical value used to sort articles within their parent section. 3. **Additional Metadata** - `conditionDiffere` (string): **Deferred Condition** - Specific conditions related to collective agreements. - `infosComplementaires` (string): **Additional Information** - Extra information pertinent to the article. - `surtitre` (string): **Subtitle** - A subtitle or additional title information related to collective agreements. - `nature` (string): **Nature** - The nature or category of the document (e.g., "Article"). - `texteHtml` (string): **HTML Content** - The article's content in HTML format. 4. **Versioning and Extensions** - `dateFinExtension` (string): **End Date of Extension** - The end date if the article has an extension. - `versionPrecedente` (string): **Previous Version** - Identifier for the previous version of the article. - `refInjection` (string): **Injection Reference** - Technical reference to identify the date of injection. - `idTexte` (string): **Text ID** - Identifier for the legal text to which the article belongs. - `idTechInjection` (string): **Technical Injection ID** - Technical identifier for the injected element. 5. **Origin and Relationships** - `origine` (string): **Origin** - The origin of the document (e.g., "LEGI"). - `dateDebutExtension` (string): **Start Date of Extension** - The start date if the article has an extension. - `idEliAlias` (string): **ELI Alias** - Alias for the European Legislation Identifier (ELI). - `cidTexte` (string): **Text Chronical ID** - Chronical identifier of the text. 6. **Hierarchical Relationships** - `sectionParentId` (string): **Parent Section ID** - Technical identifier of the parent section. - `multipleVersions` (boolean): **Multiple Versions** - Indicates if the article has multiple versions. - `comporteLiensSP` (boolean): **Contains Public Service Links** - Indicates if the article contains links to public services. - `sectionParentTitre` (string): **Parent Section Title** - Title of the parent section (e.g., "I : Revenu imposable"). - `infosRestructurationBranche` (string): **Branch Restructuring Information** - Information about branch restructuring. - `idEli` (string): **ELI ID** - European Legislation Identifier (ELI) for the article. - `sectionParentCid` (string): **Parent Section Chronical ID** - Chronical identifier of the parent section. 7. **Additional Content and History** - `numeroBo` (string): **Official Bulletin Number** - Number of the official bulletin where the article was published. - `infosRestructurationBrancheHtml` (string): **Branch Restructuring Information (HTML)** - Branch restructuring information in HTML format. - `historique` (string): **History** - Historical context or changes specific to collective agreements. - `infosComplementairesHtml` (string): **Additional Information (HTML)** - Additional information in HTML format. - `renvoi` (string): **Reference** - References to content within the article (e.g., "(1)"). - `fullSectionsTitre` (string): **Full Section Titles** - Concatenation of all titles in the parent chain. - `notaHtml` (string): **Notes (HTML)** - Additional notes or remarks in HTML format. - `inap` (string): **INAP** - A placeholder for INAP-specific information. ## Feedback If you have any feedback, please reach out at [[email protected]](mailto:[email protected]).
shantanusutar/ocr
shantanusutar
2025-02-28T08:03:25Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-28T08:03:07Z
0
--- dataset_info: features: - name: image dtype: binary - name: text dtype: string splits: - name: train num_bytes: 700610 num_examples: 26 download_size: 694993 dataset_size: 700610 configs: - config_name: default data_files: - split: train path: data/train-* ---
SiliangZ/mistral_irl3_rm_data_idpo
SiliangZ
2025-01-21T19:10:54Z
14
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-21T19:10:35Z
0
--- dataset_info: features: - name: real list: - name: content dtype: string - name: role dtype: string - name: generated list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 916829347.0 num_examples: 207865 download_size: 515476403 dataset_size: 916829347.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
supergoose/flan_combined_task934_turk_simplification
supergoose
2025-03-10T14:30:49Z
13
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-10T14:30:48Z
0
--- dataset_info: features: - name: inputs dtype: string - name: targets dtype: string - name: _template_idx dtype: int64 - name: _task_source dtype: string - name: _task_name dtype: string - name: _template_type dtype: string splits: - name: train num_bytes: 5586329 num_examples: 7052 download_size: 1945233 dataset_size: 5586329 configs: - config_name: default data_files: - split: train path: data/train-* ---
ljnlonoljpiljm/stockimage-scored-pt10
ljnlonoljpiljm
2025-06-17T20:24:41Z
0
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-17T19:49:25Z
0
--- dataset_info: features: - name: __key__ dtype: string - name: __url__ dtype: string - name: image dtype: image - name: text dtype: string - name: similarity dtype: float64 splits: - name: train num_bytes: 41194366207.0 num_examples: 1000000 download_size: 40842891911 dataset_size: 41194366207.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
Ayush-Singh/RM-Bench-chat-Qwen2.5-7B-Instruct-scores
Ayush-Singh
2025-01-23T21:10:43Z
7
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-23T21:10:41Z
0
--- dataset_info: features: - name: id dtype: int64 - name: subset dtype: string - name: prompt dtype: string - name: error_key dtype: string - name: error dtype: string - name: chosen_1 dtype: string - name: chosen_2 dtype: string - name: chosen_3 dtype: string - name: rejected_1 dtype: string - name: rejected_2 dtype: string - name: rejected_3 dtype: string - name: chosen_1_score dtype: int64 - name: chosen_1_justification dtype: string - name: rejected_1_score dtype: int64 - name: rejected_1_justification dtype: string - name: chosen_2_score dtype: int64 - name: chosen_2_justification dtype: string - name: rejected_2_score dtype: int64 - name: rejected_2_justification dtype: string - name: chosen_3_score dtype: int64 - name: chosen_3_justification dtype: string - name: rejected_3_score dtype: int64 - name: rejected_3_justification dtype: string splits: - name: train num_bytes: 3902338 num_examples: 129 download_size: 1693318 dataset_size: 3902338 configs: - config_name: default data_files: - split: train path: data/train-* ---
smartcat/Amazon_Baby_Products_2023
smartcat
2024-10-31T08:42:59Z
14
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-29T14:05:43Z
0
--- dataset_info: features: - name: main_category dtype: string - name: title dtype: string - name: average_rating dtype: float64 - name: rating_number dtype: int64 - name: features dtype: string - name: description dtype: string - name: price dtype: float64 - name: images list: - name: thumb dtype: string - name: large dtype: string - name: variant dtype: string - name: hi_res dtype: string - name: videos list: - name: title dtype: string - name: url dtype: string - name: user_id dtype: string - name: store dtype: string - name: categories sequence: string - name: parent_asin dtype: string - name: item_weight dtype: string - name: brand dtype: string - name: item_model_number dtype: string - name: product_dimensions dtype: string - name: batteries_required dtype: string - name: color dtype: string - name: material dtype: string - name: material_type dtype: string - name: style dtype: string - name: number_of_items dtype: string - name: manufacturer dtype: string - name: package_dimensions dtype: string - name: date_first_available dtype: int64 - name: best_sellers_rank dtype: string - name: age_range_(description) dtype: string splits: - name: train num_bytes: 74252952 num_examples: 22767 download_size: 33492627 dataset_size: 74252952 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for Dataset Name Original dataset can be found on: https://amazon-reviews-2023.github.io/ ## Dataset Details This dataset is downloaded from the link above, the category Baby Products meta dataset. ### Dataset Description This dataset is a refined version of the Amazon Baby Products 2023 meta dataset, which originally contained baby product metadata for product that are sold on Amazon. The dataset includes detailed information about products such as their descriptions, ratings, prices, images, and features. The primary focus of this modification was to ensure the completeness of key fields while simplifying the dataset by removing irrelevant or empty columns. The table below represents the original structure of the dataset. <table border="1" cellpadding="5" cellspacing="0"> <tr> <th>Field</th> <th>Type</th> <th>Explanation</th> </tr> <tr> <td>main_category</td> <td>str</td> <td>Main category (i.e., domain) of the product.</td> </tr> <tr> <td>title</td> <td>str</td> <td>Name of the product.</td> </tr> <tr> <td>average_rating</td> <td>float</td> <td>Rating of the product shown on the product page.</td> </tr> <tr> <td>rating_number</td> <td>int</td> <td>Number of ratings in the product.</td> </tr> <tr> <td>features</td> <td>list</td> <td>Bullet-point format features of the product.</td> </tr> <tr> <td>description</td> <td>list</td> <td>Description of the product.</td> </tr> <tr> <td>price</td> <td>float</td> <td>Price in US dollars (at time of crawling).</td> </tr> <tr> <td>images</td> <td>list</td> <td>Images of the product. Each image has different sizes (thumb, large, hi_res). The “variant” field shows the position of image.</td> </tr> <tr> <td>videos</td> <td>list</td> <td>Videos of the product including title and url.</td> </tr> <tr> <td>store</td> <td>str</td> <td>Store name of the product.</td> </tr> <tr> <td>categories</td> <td>list</td> <td>Hierarchical categories of the product.</td> </tr> <tr> <td>details</td> <td>dict</td> <td>Product details, including materials, brand, sizes, etc.</td> </tr> <tr> <td>parent_asin</td> <td>str</td> <td>Parent ID of the product.</td> </tr> <tr> <td>bought_together</td> <td>list</td> <td>Recommended bundles from the websites.</td> </tr> </table> ### Modifications made <ul> <li>Products without a description, title, images or details were removed.</li> <li>Lists in features and description are transformed into strings concatinated with a newline</li> <li>For the details column, only the top 16 most frequent detail types were kept. The details column was then split into these new 16 columns based on the detail types kept.</li> <li>Products with date first available before the year 2015 are dropped.</li> <li>Products with is_discontinued_by_manufacturer set to 'true' or 'yes' are dropped. Then that column was dropped.</li> <li>Column bought_together is dropped due to missing values.</li> </ul> ### Dataset Size <ul> <li>Total entries: 22,767</li> <li>Total columns: 27</li> </ul> ### Final Structure <table border="1" cellpadding="5" cellspacing="0"> <tr> <th>Field</th> <th>Type</th> <th>Explanation</th> </tr> <tr> <td>main_category</td> <td>str</td> <td>Main category</td> </tr> <tr> <td>title</td> <td>str</td> <td>Name of the product</td> </tr> <tr> <td>average_rating</td> <td>float</td> <td>Rating of the product shown on the product page.</td> </tr> <tr> <td>rating_number</td> <td>int</td> <td>Number of ratings in the product.</td> </tr> <tr> <td>features</td> <td>list</td> <td>Bullet-point format features of the product.</td> </tr> <tr> <td>description</td> <td>list</td> <td>Description of the product.</td> </tr> <tr> <td>price</td> <td>float</td> <td>Price in US dollars (at time of crawling).</td> </tr> <tr> <td>images</td> <td>list</td> <td>Images of the product. Each image has different sizes (thumb, large, hi_res). The “variant” field shows the position of image.</td> </tr> <tr> <td>videos</td> <td>list</td> <td>Videos of the product including title and url.</td> </tr> <tr> <td>store</td> <td>str</td> <td>Store name of the product.</td> </tr> <tr> <td>details</td> <td>dict</td> <td>Product details, including materials, brand, sizes, etc.</td> </tr> <tr> <td>parent_asin</td> <td>str</td> <td>Parent ID of the product.</td> </tr> <tr> <td>item_weight</td> <td>str</td> <td>Weight of the item</td> </tr> <tr> <td>brand</td> <td>str</td> <td>Brand name</td> </tr> <tr> <td>item_model_number</td> <td>str</td> <td>Model number of the item</td> </tr> <tr> <td>product_dimensions</td> <td>str</td> <td>Dimensions of the product</td> </tr> <tr> <td>batteries_required</td> <td>str</td> <td>Baterries required</td> </tr> <tr> <td>color</td> <td>str</td> <td>Color</td> </tr> <tr> <td>material</td> <td>str</td> <td>Material</td> </tr> <tr> <td>material_type</td> <td>str</td> <td>Material</td> </tr> <tr> <td>style</td> <td>str</td> <td>Style</td> </tr> <tr> <td>number_of_items</td> <td>str</td> <td>Number of items</td> </tr> <tr> <td>manufacturer</td> <td>str</td> <td>Manufacturer</td> </tr> <tr> <td>package_dimensions</td> <td>str</td> <td>Package dimensions</td> </tr> <tr> <td>date_first_available</td> <td>int64</td> <td>Date product was first time available</td> </tr> <tr> <td>best_sellers_rank</td> <td>str</td> <td>Best seller rank</td> </tr> <tr> <td>age_range_(description)</td> <td>str</td> <td>Age range</td> </tr> </table>
rubenroy/GammaCorpus-v1-10k-UNFILTERED
rubenroy
2025-02-01T16:18:18Z
64
8
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "chat-dataset", "conversational-ai", "natural-language-processing", "ai-generated", "single-turn-dialogue", "jsonl", "nlp", "gammacorpus", "chat", "conversational" ]
[ "text-generation" ]
2025-01-23T05:36:42Z
0
--- license: apache-2.0 task_categories: - text-generation language: - en tags: - chat-dataset - conversational-ai - natural-language-processing - ai-generated - single-turn-dialogue - jsonl - nlp - gammacorpus - chat - conversational pretty_name: GammaCorpus size_categories: - 10K<n<100K --- # GammaCorpus: v1 - 10k - UNFILTERED > [!NOTE] > 5 million tokens of pure unfiltered user and AI-generated data ## What is it? The **GammaCorpus v1 10k Unfiltered** dataset consists of 10,000 structured single-turn conversations, where each interaction includes: - **Input**: A user prompt or question. - **Output**: A response generated by an AI assistant. This dataset contains approximately **5 million tokens** of text. It is designed to facilitate the training and evaluation of conversational AI models. This dataset can be especially if you need a collection of a very diverse human-generated prompts and the corresponding responses by a SOTA model. > [!WARNING] > **Warning:** This is the *FIRST* version of GammaCorpus, we HEAVILY recommend using the SECOND, LATEST version of GammaCorpus. You can find the full GammaCorpus HF collection [here](https://huggingface.co/collections/rubenroy/gammacorpus-67765abf607615a0eb6d61ac). ## Dataset Summary - **Number of Rows**: 10,000 - **Format**: JSONL - **Total Tokens**: ~5 million (exact: 5,197,481) - **Language**: English - **Data Type**: User and AI-generated content - **Potential Content**: May contain NSFW or toxic content. ## Dataset Structure ### Data Instances The dataset is formatted in JSONL, where each line is a JSON object. Below is an example: ```json { "input": "Write some Python code which implements the bisection method for root finding.", "output": "The bisection method is a root-finding algorithm that repeatedly bisects an interval... (code snippet omitted for brevity)." } ``` ### Data Fields - **`input` (string)**: The user-provided query or prompt. - **`output` (string)**: The AI-generated response to the input. ## Considerations for Using the Data ### Biases As the dataset is generated from user queries and AI responses, it may contain biases inherent in the underlying AI model or reflective of common societal biases. Additionally: - Some entries may contain NSFW or toxic content. - Ethical, cultural, and societal biases present in the data could propagate to models trained on it. No additional filtering has been applied to minimize harmful content, thus users are encouraged to preprocess the dataset according to their requirements. > [!CAUTION] > **Caution:** It is recommended to filter this dataset before using in production applications as it may contain innapproprate data. ### Other Known Limitations - The dataset consists of single-turn conversations only. Multi-turn conversations are not included. - Certain topics may be overrepresented or underrepresented based on user query patterns. - Content diversity may not fully reflect real-world conversational scenarios. ## Additional Information ### Licensing Information The dataset is released under the **[Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0)**. Please refer to the license for usage rights and restrictions.
loqhunter/Elhunter
loqhunter
2025-03-26T19:15:19Z
12
1
[ "task_categories:token-classification", "language:id", "language:en", "language:hi", "language:vi", "license:apache-2.0", "size_categories:n<1K", "region:us", "chemistry", "finance", "legal", "code" ]
[ "token-classification" ]
2025-03-26T19:09:17Z
0
--- license: apache-2.0 task_categories: - token-classification language: - id - en - hi - vi tags: - chemistry - finance - legal - code pretty_name: Jaya size_categories: - n<1K --- # Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
ydeng9/OpenVLThinker_sft_iter2
ydeng9
2025-03-23T01:58:38Z
34
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-23T01:58:32Z
0
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: images sequence: image splits: - name: train num_bytes: 153665744.234 num_examples: 5542 download_size: 109866842 dataset_size: 153665744.234 configs: - config_name: default data_files: - split: train path: data/train-* ---
supergoose/flan_combined_task1438_doqa_cooking_answer_generation
supergoose
2025-03-10T14:29:40Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-10T14:29:39Z
0
--- dataset_info: features: - name: inputs dtype: string - name: targets dtype: string - name: _template_idx dtype: int64 - name: _task_source dtype: string - name: _task_name dtype: string - name: _template_type dtype: string splits: - name: train num_bytes: 2159429 num_examples: 850 download_size: 799872 dataset_size: 2159429 configs: - config_name: default data_files: - split: train path: data/train-* ---
qwselfcorr/math_turn1_wrong_gen_processed
qwselfcorr
2025-01-31T12:49:20Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-31T12:49:17Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: first_rm dtype: bool - name: second_rewards sequence: bool - name: flag dtype: bool - name: turn dtype: int64 - name: conversations list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 119144131 num_examples: 25347 download_size: 51281833 dataset_size: 119144131 configs: - config_name: default data_files: - split: train path: data/train-* ---
magnifi/Phi3_intent_v47_4_w_unknown_upper_lower
magnifi
2024-12-20T19:06:50Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-20T19:06:49Z
0
--- dataset_info: features: - name: Query dtype: string - name: true_intent dtype: string splits: - name: train num_bytes: 1405888 num_examples: 19600 - name: validation num_bytes: 8109 num_examples: 113 download_size: 408984 dataset_size: 1413997 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
MymyTL/CodeBertScore_C
MymyTL
2024-11-28T20:15:27Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-28T15:38:25Z
0
--- dataset_info: features: - name: prompts dtype: string - name: references dtype: string splits: - name: train num_bytes: 8273 num_examples: 10 download_size: 10122 dataset_size: 8273 configs: - config_name: default data_files: - split: train path: data/train-* ---
mteb/dk_hate
mteb
2025-05-09T12:18:37Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-09T12:18:34Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 345443.88513513515 num_examples: 2900 - name: test num_bytes: 32962.425531914894 num_examples: 322 download_size: 260966 dataset_size: 378406.3106670501 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
mlfoundations-dev/codegolf_50000_samples
mlfoundations-dev
2025-01-05T22:15:37Z
18
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-05T22:15:34Z
0
--- dataset_info: features: - name: instruction dtype: string splits: - name: train num_bytes: 112433348 num_examples: 50000 download_size: 59861920 dataset_size: 112433348 configs: - config_name: default data_files: - split: train path: data/train-* ---
michsethowusu/hausa-kinyarwanda_sentence-pairs
michsethowusu
2025-04-02T10:43:54Z
8
0
[ "size_categories:100K<n<1M", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-02T10:43:49Z
0
--- dataset_info: features: - name: score dtype: float32 - name: Hausa dtype: string - name: Kinyarwanda dtype: string splits: - name: train num_bytes: 45802278 num_examples: 340233 download_size: 45802278 dataset_size: 45802278 configs: - config_name: default data_files: - split: train path: Hausa-Kinyarwanda_Sentence-Pairs.csv --- # Hausa-Kinyarwanda_Sentence-Pairs Dataset This dataset contains sentence pairs for African languages along with similarity scores. It can be used for machine translation, sentence alignment, or other natural language processing tasks. This dataset is based on the NLLBv1 dataset, published on OPUS under an open-source initiative led by META. You can find more information here: [OPUS - NLLB-v1](https://opus.nlpl.eu/legacy/NLLB-v1.php) ## Metadata - **File Name**: Hausa-Kinyarwanda_Sentence-Pairs - **Number of Rows**: 340233 - **Number of Columns**: 3 - **Columns**: score, Hausa, Kinyarwanda ## Dataset Description The dataset contains sentence pairs in African languages with an associated similarity score. Each row consists of three columns: 1. `score`: The similarity score between the two sentences (range from 0 to 1). 2. `Hausa`: The first sentence in the pair (language 1). 3. `Kinyarwanda`: The second sentence in the pair (language 2). This dataset is intended for use in training and evaluating machine learning models for tasks like translation, sentence similarity, and cross-lingual transfer learning. ## References Below are papers related to how the data was collected and used in various multilingual and cross-lingual applications: [1] Holger Schwenk and Matthijs Douze, Learning Joint Multilingual Sentence Representations with Neural Machine Translation, ACL workshop on Representation Learning for NLP, 2017 [2] Holger Schwenk and Xian Li, A Corpus for Multilingual Document Classification in Eight Languages, LREC, pages 3548-3551, 2018. [3] Holger Schwenk, Filtering and Mining Parallel Data in a Joint Multilingual Space ACL, July 2018 [4] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk and Veselin Stoyanov, XNLI: Cross-lingual Sentence Understanding through Inference, EMNLP, 2018. [5] Mikel Artetxe and Holger Schwenk, Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings arXiv, Nov 3 2018. [6] Mikel Artetxe and Holger Schwenk, Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond arXiv, Dec 26 2018. [7] Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman, WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia arXiv, July 11 2019. [8] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB [9] Paul-Ambroise Duquenne, Hongyu Gong, Holger Schwenk, Multimodal and Multilingual Embeddings for Large-Scale Speech Mining, NeurIPS 2021, pages 15748-15761. [10] Kevin Heffernan, Onur Celebi, and Holger Schwenk, Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
kaiwenw/combine_1.5B_and_blockwise
kaiwenw
2025-04-04T03:44:38Z
71
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-04T03:37:08Z
0
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: problem_type dtype: string - name: question_type dtype: string - name: source dtype: string - name: uuid dtype: string - name: processed_answer sequence: string - name: reward sequence: bool - name: min_length dtype: int64 - name: max_length dtype: int64 - name: pass@1 dtype: float64 - name: pass@16 dtype: bool - name: cons@16 dtype: float64 - name: roll_in_ids sequence: sequence: int64 - name: roll_outs_ids sequence: sequence: int64 splits: - name: train num_bytes: 55019408441 num_examples: 47488 - name: validation num_bytes: 1190248449 num_examples: 1000 - name: test num_bytes: 1169189073 num_examples: 1000 download_size: 7498454944 dataset_size: 57378845963 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_f9000cb0-5a3a-48da-97d5-dccfbc328eca
argilla-internal-testing
2024-11-29T11:26:56Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-29T11:26:55Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
daniellawson9999/tiny-terminal-bridge-full-64px
daniellawson9999
2025-02-17T05:29:06Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "modality:timeseries", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-17T05:29:05Z
0
--- dataset_info: features: - name: img dtype: image - name: action sequence: float32 - name: rotation_delta sequence: float32 - name: open_gripper sequence: uint8 - name: goal dtype: string - name: goal_img dtype: image - name: terminal dtype: uint8 splits: - name: train num_bytes: 3354550.0 num_examples: 172 download_size: 1734458 dataset_size: 3354550.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
sma1-rmarud/PLAT6
sma1-rmarud
2025-05-14T02:37:50Z
27
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-11T13:08:01Z
0
--- dataset_info: config_name: essay features: - name: index dtype: int64 - name: question dtype: string - name: answer dtype: string - name: rubric dtype: string - name: max_score dtype: int64 splits: - name: test num_bytes: 38565 num_examples: 6 download_size: 38799 dataset_size: 38565 configs: - config_name: essay data_files: - split: test path: essay/test-* ---
emredeveloper/sentetic-data-children-stories-dataset
emredeveloper
2025-01-09T21:56:22Z
25
1
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-09T21:56:20Z
0
--- dataset_info: features: - name: title dtype: string - name: content dtype: string - name: habit dtype: string - name: positiverank dtype: int64 splits: - name: train num_bytes: 11324 num_examples: 10 download_size: 13000 dataset_size: 11324 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_0.5_alpha_0.2_num-company_3_dataset_1_for_gen_7
HungVu2003
2025-04-29T18:54:00Z
19
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-29T18:53:51Z
0
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 3248834 num_examples: 12499 download_size: 1729532 dataset_size: 3248834 configs: - config_name: default data_files: - split: train path: data/train-* ---
AlexCuadron/SWE-Bench-Verified-O1-reasoning-high-results
AlexCuadron
2024-12-29T20:18:47Z
12,388
4
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:cc-by-4.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "doi:10.57967/hf/3903", "region:us", "openai", "llm", "openhands", "codeact", "python", "bug-fixing", "code-repair", "program-repair", "step-by-step-reasoning", "multi-turn", "action-observation", "interactive-programming", "reasoning-traces", "github-issues", "swe-bench", "open-source", "software-engineering", "program-synthesis", "code-generation", "patches", "evaluation-results", "benchmarks", "verification-data", "developer-tools", "o1", "scale_time_inference" ]
[ "question-answering", "text-generation" ]
2024-12-26T12:37:46Z
0
--- license: cc-by-4.0 citation: | @misc{swe_bench_o1_2024, title = {SWE-Bench-Verified-O1-reasoning-high-results (Revision cdca13c)}, author = {Cuadron, Alejandro and Li, Dacheng and Wang, Xingyao and Zhuang, Siyuan and Wang, Yichuan and Schroeder, Luis G. and Xia, Tian and Desai, Aditya and Stoica, Ion and Neubig, Graham and Gonzalez, Joseph E.}, year = 2024, url = {https://huggingface.co/datasets/AlexCuadron/SWE-Bench-Verified-O1-reasoning-high-results}, doi = {10.57967/hf/3900}, publisher = {Hugging Face} } language: - en task_categories: - question-answering - text-generation tags: - openai - llm - openhands - codeact - python - bug-fixing - code-repair - program-repair - step-by-step-reasoning - multi-turn - action-observation - interactive-programming - reasoning-traces - github-issues - swe-bench - open-source - software-engineering - program-synthesis - code-generation - patches - evaluation-results - benchmarks - verification-data - developer-tools - o1 - scale_time_inference size_categories: - 1M<n<10M viewer: true configs: - config_name: default data_files: - split: test path: dataset_viewer.parquet --- # SWE-Bench Verified O1 Dataset ## Executive Summary This repository contains verified reasoning traces from the O1 model evaluating software engineering tasks. Using OpenHands + CodeAct v2.2, we tested O1's bug-fixing capabilities on the [SWE-Bench Verified dataset](https://huggingface.co/datasets/princeton-nlp/SWE-bench_Verified), achieving a 28.8% success rate across 500 test instances. ## Overview This dataset was generated using the CodeAct framework, which aims to improve code generation through enhanced action-based reasoning. Built on top of OpenHands, a framework designed for multi-turn interactive programming tasks, we tested O1 issue resolution capabilities on ```reasoning_effort = 'high'``` OpenHands implements a structured action-observation cycle where agents interact with computational environments through well-defined actions such as file manipulation, code editing, code execution, and bash commands. Each action generates corresponding observations that capture environmental changes and execution results. These observations and the history of previous interactions are maintained in a chronological event stream that informs the agent's next decisions. The traces in this dataset showcase O1's step-by-step reasoning process when analyzing and fixing bugs. Each trace includes the model's complete thought process, from initial bug analysis to final patch generation. We evaluated O1's performance on the SWE-Bench benchmark using the detailed guide from OpenHands [OpenHands/evaluation/benchmarks/swe_bench](https://github.com/All-Hands-AI/OpenHands/tree/main/evaluation/benchmarks/swe_bench). Below are the detailed results: ### Performance Metrics <div style="display: flex; justify-content: flex-start; gap: 20px;"> | Key Metrics | Result | |------------|---------| | Success Rate | 28.8% (144/500) | | Coverage | 98.6% (493/500) | | Completion Rate | 91.6% (458/500) | | Empty Patches | 7% (35/500) | | Project | Resolved Cases | % of Total | |---------|---------------|------------| | Django | 72 | 14.4% | | SymPy | 20 | 4.0% | | Scikit-learn | 13 | 2.6% | | Sphinx | 10 | 2.0% | | Matplotlib | 8 | 1.6% | | Xarray | 9 | 1.8% | | Pytest | 5 | 1.0% | | Astropy | 3 | 0.6% | | Requests | 2 | 0.4% | | Flask | 1 | 0.2% | | Pylint | 1 | 0.2% | </div> ## Dataset Organization ### 1. Raw Data - **File**: `output.jsonl` - **Contents**: Aggregated traces for all issues ### 2. Dataset Viewer - **File**: `dataset_viewer.parquet` - **Format**: Structured Parquet file - **Key Fields**: - `issue_name`: Unique identifier (e.g., django__django-11066) - `project`: Source project name - `issue_id`: Issue identifier - `num_turns`: Interaction turn count - `full_conversation_jsonl`: Complete conversation history - `patch`: Generated patch content - `success`: Fix success status - `execution_time`: Processing duration ### 3. Reasoning Traces - **Directory**: `llm_completions/` - **Format**: JSONL files per issue - **Turn Limit**: 30 turns per issue (excluding linting operations) - **Example**: `django__django-11066.jsonl` with 14 interaction turns ### 4. Evaluation Data - **Directory**: `eval_outputs/` - **Structure Per Issue**: ``` eval_outputs/django__django-11066/ ├── patch.diff # Final code changes ├── eval.sh # Evaluation script ├── report.json # Detailed metrics ├── run_instance.log # Full process log └── test_output.txt # Test suite results ``` ## Getting Started ### Installation ```bash # Install the Hugging Face datasets library pip install datasets ``` ### Basic Usage ```python from datasets import load_dataset # Load the dataset dataset = load_dataset('SWE-Bench-Verified-O1-reasoning-high-results', split="test") print(f"Loaded {len(dataset)} examples") ``` ### Example Usage #### 1. Basic Dataset Exploration ```python # Get information about a single example example = dataset[0] print(f"Issue Name: {example['issue_name']}") print(f"Project: {example['project']}") print(f"Success: {example['success']}") # Expected output: # Issue Name: django__django-11066 # Project: django # Success: True ``` #### 2. Dataset Analytics ```python # Get success statistics successful_fixes = len([x for x in dataset if x['success']]) total_examples = len(dataset) success_rate = (successful_fixes / total_examples) * 100 print(f"Success Rate: {success_rate:.1f}% ({successful_fixes}/{total_examples})") # Get project distribution project_counts = {} for item in dataset: project = item['project'] project_counts[project] = project_counts.get(project, 0) + 1 print("\nProject Distribution:") for project, count in sorted(project_counts.items(), key=lambda x: x[1], reverse=True): print(f"{project}: {count} examples") # Expected output: # Success Rate: 28.8% (144/500) # # Project Distribution: # django: 72 examples # sympy: 20 examples # scikit-learn: 13 examples # ... ``` #### 3. Accessing Patches ```python # Find and display a successful patch def get_successful_patch(): for item in dataset: if item['success']: return { 'issue_name': item['issue_name'], 'project': item['project'], 'patch': item['patch'] } return None patch_info = get_successful_patch() if patch_info: print(f"Successful patch for {patch_info['issue_name']} ({patch_info['project']}):") print("=" * 50) print(patch_info['patch']) ``` ### Advanced Usage For more examples and advanced usage, visit our [GitHub repository](https://github.com/All-Hands-AI/OpenHands). ## Citation ``` @misc {swe_bench_o1_2024, title = {SWE-Bench-Verified-O1-reasoning-high-results (Revision cdca13c)}, author = {Cuadron, Alejandro and Li, Dacheng and Wang, Xingyao and Zhuang, Siyuan and Wang, Yichuan and Schroeder, Luis G. and Xia, Tian and Desai, Aditya and Stoica, Ion and Neubig, Graham and Gonzalez, Joseph E.}, year = 2024, url = {https://huggingface.co/datasets/AlexCuadron/SWE-Bench-Verified-O1-reasoning-high-results}, doi = {10.57967/hf/3900}, publisher = {Hugging Face} } ``` ## Team A collaborative effort between UC Berkeley, CMU, and OpenHands. ### Authors - Alejandro Cuadron (UC Berkeley) - Dacheng Li (UC Berkeley) - Xingyao Wang (OpenHands) - Siyuan Zhuang (UC Berkeley) - Yichuan Wang (UC Berkeley) - Luis G. Schroeder (UC Berkeley) - Tian Xia (UC Berkeley) - Aditya Desai (UC Berkeley) - Ion Stoica (UC Berkeley) - Graham Neubig (CMU, OpenHands) - Joseph E. Gonzalez (UC Berkeley) **✉ Contact:** Alejandro Cuadron ([email protected])
OpenVoiceOS/ovos-intents-train-latest
OpenVoiceOS
2025-06-18T02:42:21Z
0
0
[ "task_categories:text-classification", "language:en", "language:de", "language:it", "language:pt", "language:da", "language:ca", "language:gl", "language:fr", "language:es", "language:nl", "language:eu", "size_categories:100K<n<1M", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
2025-05-29T18:43:03Z
0
--- task_categories: - text-classification language: - en - de - it - pt - da - ca - gl - fr - es - nl - eu pretty_name: OpenVoiceOS Multilingual Intents datasets: - Jarbas/ovos-llm-augmented-intents - Jarbas/ovos-intents-massive-subset - Jarbas/ovos-weather-intents - Jarbas/music_queries_templates - Jarbas/OVOSGitLocalize-Intents - Jarbas/ovos_intent_examples - Jarbas/ovos-common-query-intents ---
jablonkagroup/MUV_600-multimodal
jablonkagroup
2025-05-11T22:02:45Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-11T22:02:05Z
0
--- dataset_info: features: - name: SMILES dtype: string - name: MUV-600 dtype: int64 - name: split dtype: string - name: SMILES_ORIGINAL dtype: string - name: IMAGE dtype: image - name: SELFIES dtype: string - name: InChIKey dtype: string - name: IUPAC dtype: string - name: template_original dtype: string - name: template dtype: string splits: - name: train num_bytes: 854347268.125 num_examples: 51975 - name: test num_bytes: 175592824.25 num_examples: 10710 - name: valid num_bytes: 176278155.375 num_examples: 10805 download_size: 1170461229 dataset_size: 1206218247.75 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: valid path: data/valid-* ---
shylee/eval_DP_pengripA_downDims1_cropNo224_freeze0_32_32_ema1_1e-4_ckpt330000
shylee
2025-05-06T14:49:40Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-05-06T14:49:34Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 614, "total_tasks": 1, "total_videos": 3, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.FrontCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.TopCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.WristCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
CIS-5190-CIA/Testing_images_augmented
CIS-5190-CIA
2024-12-13T23:21:01Z
15
1
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-13T21:25:20Z
0
--- dataset_info: features: - name: Latitude dtype: float64 - name: Longitude dtype: float64 - name: __index_level_0__ dtype: int64 - name: image dtype: image splits: - name: train num_bytes: 1308416567.5 num_examples: 2556 download_size: 1308492768 dataset_size: 1308416567.5 configs: - config_name: default data_files: - split: train path: data/train-* ---
qwerdfdsad/picking_pot
qwerdfdsad
2025-03-16T14:51:36Z
23
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-03-16T13:44:13Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "bi_ur5", "total_episodes": 20, "total_frames": 2115, "total_tasks": 1, "total_videos": 20, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:20" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 14 ], "names": { "motors": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_1", "left_wrist_2", "left_wrist_3", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_1", "right_wrist_2", "right_wrist_3", "right_gripper" ] } }, "observation.state": { "dtype": "float32", "shape": [ 14 ], "names": { "arms": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_1", "left_wrist_2", "left_wrist_3", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_1", "right_wrist_2", "right_wrist_3", "right_gripper" ] } }, "observation.velocity": { "dtype": "float32", "shape": [ 14 ], "names": { "arms": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_1", "left_wrist_2", "left_wrist_3", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_1", "right_wrist_2", "right_wrist_3", "right_gripper" ] } }, "observation.gripper_position": { "dtype": "float32", "shape": [ 2 ], "names": { "gripper": [ "left_gripper", "right_gripper" ] } }, "observation.images.top_rgb": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
konwoo/llama-3b-gold_prefix_k10000_iter1
konwoo
2025-04-20T04:12:41Z
17
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-20T04:12:36Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 11956084 num_examples: 10000 - name: validation num_bytes: 1247821 num_examples: 1000 download_size: 8476873 dataset_size: 13203905 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
pe-nlp/math_level3to5_data_processed_with_qwen_prompt
pe-nlp
2025-02-11T05:04:29Z
27
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-05T15:06:21Z
0
--- dataset_info: features: - name: input dtype: string - name: answer dtype: string - name: gt_answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: question dtype: string - name: ground_truth_answer dtype: string - name: target dtype: string splits: - name: train num_bytes: 9112856 num_examples: 8523 download_size: 2833455 dataset_size: 9112856 configs: - config_name: default data_files: - split: train path: data/train-* ---
PJMixers-Dev/NovaSky-AI_Sky-T1-17K-CustomShareGPT
PJMixers-Dev
2025-01-28T00:42:45Z
12
0
[ "language:en", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-11T18:39:22Z
0
--- language: - en --- 682 samples dropped cause the thought pattern failed. 1 sample dropped cause the solution pattern failed. Formatting of the original samples seems a bit all over the place. ```py def extract_strings(input_string): # Regular expressions to match the thought and solution thought_pattern = r"<\|begin_of_thought\|>(.*?)<\|end_of_thought\|>" solution_pattern = r"<\|begin_of_solution\|>(.*?)(?:<\|end_of_solution\|>|$)" # Extracting the matches thought_match = re.search(thought_pattern, input_string, re.DOTALL) solution_match = re.search(solution_pattern, input_string, re.DOTALL) # Extracted strings thought_string = thought_match.group(1).strip() if thought_match else "" solution_string = solution_match.group(1).strip() if solution_match else "" return thought_string, solution_string for sample in tqdm(data): thought, solution = extract_strings(sample["conversations"][1]["value"]) if thought == "": continue if solution == "": continue new_data.append( { "instruction": sample["conversations"][0]["value"].strip(), "thinking": thought, "output": solution, "conversations": [ { "from": "human", "value": sample["conversations"][0]["value"].strip() }, { "from": "thought", "value": thought }, { "from": "gpt", "value": solution } ] } ) ```
Nachiket-S/LLaMa_1B_IsCoT_DebiasingInstruction
Nachiket-S
2024-12-04T09:11:28Z
54
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-04T07:12:13Z
0
--- dataset_info: features: - name: file_name dtype: string - name: paragraph dtype: string - name: generated_text dtype: string splits: - name: inference num_bytes: 135483 num_examples: 70 download_size: 45635 dataset_size: 135483 configs: - config_name: default data_files: - split: inference path: data/inference-* ---
jfcalvo/test-with-responses-05
jfcalvo
2024-11-22T09:49:49Z
13
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-22T09:49:44Z
0
--- dataset_info: features: - name: text dtype: string - name: label sequence: string splits: - name: train num_bytes: 13165429 num_examples: 10000 download_size: 8347440 dataset_size: 13165429 configs: - config_name: default data_files: - split: train path: data/train-* ---
Lune-Blue/train_dataset_new_formatted
Lune-Blue
2025-04-27T18:29:20Z
21
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-27T18:29:14Z
0
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: text dtype: string splits: - name: train num_bytes: 35434960 num_examples: 24770 download_size: 12148718 dataset_size: 35434960 configs: - config_name: default data_files: - split: train path: data/train-* ---
andrewsiah/PersonaPromptPersonalLLM_799
andrewsiah
2024-11-15T04:47:59Z
10
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-15T04:47:57Z
0
--- dataset_info: features: - name: personaid_799_response_1_llama3_sfairx dtype: float64 - name: personaid_799_response_2_llama3_sfairx dtype: float64 - name: personaid_799_response_3_llama3_sfairx dtype: float64 - name: personaid_799_response_4_llama3_sfairx dtype: float64 - name: personaid_799_response_5_llama3_sfairx dtype: float64 - name: personaid_799_response_6_llama3_sfairx dtype: float64 - name: personaid_799_response_7_llama3_sfairx dtype: float64 - name: personaid_799_response_8_llama3_sfairx dtype: float64 - name: prompt dtype: string - name: subset dtype: string - name: prompt_id dtype: int64 - name: response_1 dtype: string - name: response_1_model dtype: string - name: response_2 dtype: string - name: response_2_model dtype: string - name: response_3 dtype: string - name: response_3_model dtype: string - name: response_4 dtype: string - name: response_4_model dtype: string - name: response_5 dtype: string - name: response_5_model dtype: string - name: response_6 dtype: string - name: response_6_model dtype: string - name: response_7 dtype: string - name: response_7_model dtype: string - name: response_8 dtype: string - name: response_8_model dtype: string - name: response_1_gemma_2b dtype: float64 - name: response_2_gemma_2b dtype: float64 - name: response_3_gemma_2b dtype: float64 - name: response_4_gemma_2b dtype: float64 - name: response_5_gemma_2b dtype: float64 - name: response_6_gemma_2b dtype: float64 - name: response_7_gemma_2b dtype: float64 - name: response_8_gemma_2b dtype: float64 - name: response_1_gemma_7b dtype: float64 - name: response_2_gemma_7b dtype: float64 - name: response_3_gemma_7b dtype: float64 - name: response_4_gemma_7b dtype: float64 - name: response_5_gemma_7b dtype: float64 - name: response_6_gemma_7b dtype: float64 - name: response_7_gemma_7b dtype: float64 - name: response_8_gemma_7b dtype: float64 - name: response_1_mistral_raft dtype: float64 - name: response_2_mistral_raft dtype: float64 - name: response_3_mistral_raft dtype: float64 - name: response_4_mistral_raft dtype: float64 - name: response_5_mistral_raft dtype: float64 - name: response_6_mistral_raft dtype: float64 - name: response_7_mistral_raft dtype: float64 - name: response_8_mistral_raft dtype: float64 - name: response_1_mistral_ray dtype: float64 - name: response_2_mistral_ray dtype: float64 - name: response_3_mistral_ray dtype: float64 - name: response_4_mistral_ray dtype: float64 - name: response_5_mistral_ray dtype: float64 - name: response_6_mistral_ray dtype: float64 - name: response_7_mistral_ray dtype: float64 - name: response_8_mistral_ray dtype: float64 - name: response_1_mistral_weqweasdas dtype: float64 - name: response_2_mistral_weqweasdas dtype: float64 - name: response_3_mistral_weqweasdas dtype: float64 - name: response_4_mistral_weqweasdas dtype: float64 - name: response_5_mistral_weqweasdas dtype: float64 - name: response_6_mistral_weqweasdas dtype: float64 - name: response_7_mistral_weqweasdas dtype: float64 - name: response_8_mistral_weqweasdas dtype: float64 - name: response_1_llama3_sfairx dtype: float64 - name: response_2_llama3_sfairx dtype: float64 - name: response_3_llama3_sfairx dtype: float64 - name: response_4_llama3_sfairx dtype: float64 - name: response_5_llama3_sfairx dtype: float64 - name: response_6_llama3_sfairx dtype: float64 - name: response_7_llama3_sfairx dtype: float64 - name: response_8_llama3_sfairx dtype: float64 - name: response_1_oasst_deberta_v3 dtype: float64 - name: response_2_oasst_deberta_v3 dtype: float64 - name: response_3_oasst_deberta_v3 dtype: float64 - name: response_4_oasst_deberta_v3 dtype: float64 - name: response_5_oasst_deberta_v3 dtype: float64 - name: response_6_oasst_deberta_v3 dtype: float64 - name: response_7_oasst_deberta_v3 dtype: float64 - name: response_8_oasst_deberta_v3 dtype: float64 - name: response_1_beaver_7b dtype: float64 - name: response_2_beaver_7b dtype: float64 - name: response_3_beaver_7b dtype: float64 - name: response_4_beaver_7b dtype: float64 - name: response_5_beaver_7b dtype: float64 - name: response_6_beaver_7b dtype: float64 - name: response_7_beaver_7b dtype: float64 - name: response_8_beaver_7b dtype: float64 - name: response_1_oasst_pythia_7b dtype: float64 - name: response_2_oasst_pythia_7b dtype: float64 - name: response_3_oasst_pythia_7b dtype: float64 - name: response_4_oasst_pythia_7b dtype: float64 - name: response_5_oasst_pythia_7b dtype: float64 - name: response_6_oasst_pythia_7b dtype: float64 - name: response_7_oasst_pythia_7b dtype: float64 - name: response_8_oasst_pythia_7b dtype: float64 - name: response_1_oasst_pythia_1b dtype: float64 - name: response_2_oasst_pythia_1b dtype: float64 - name: response_3_oasst_pythia_1b dtype: float64 - name: response_4_oasst_pythia_1b dtype: float64 - name: response_5_oasst_pythia_1b dtype: float64 - name: response_6_oasst_pythia_1b dtype: float64 - name: response_7_oasst_pythia_1b dtype: float64 - name: response_8_oasst_pythia_1b dtype: float64 - name: id dtype: int64 - name: rformatted_promptresponse_1 dtype: string - name: rformatted_promptresponse_2 dtype: string - name: rformatted_promptresponse_3 dtype: string - name: rformatted_promptresponse_4 dtype: string - name: rformatted_promptresponse_5 dtype: string - name: rformatted_promptresponse_6 dtype: string - name: rformatted_promptresponse_7 dtype: string - name: rformatted_promptresponse_8 dtype: string splits: - name: train num_bytes: 32121752 num_examples: 1000 download_size: 18378604 dataset_size: 32121752 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "PersonaPromptPersonalLLM_799" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
marianeft/student-performance
marianeft
2025-02-18T04:29:57Z
17
0
[ "license:apache-2.0", "size_categories:n<1K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-18T04:29:04Z
0
--- license: apache-2.0 ---
sanwai007/circuitSymbols
sanwai007
2025-01-20T00:26:14Z
14
0
[ "license:apache-2.0", "region:us" ]
[]
2025-01-20T00:26:14Z
0
--- license: apache-2.0 ---
burtenshaw/dataset-diff-test
burtenshaw
2024-10-29T19:02:26Z
24
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-29T19:02:25Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: string splits: - name: train num_bytes: 86 num_examples: 3 download_size: 1107 dataset_size: 86 configs: - config_name: default data_files: - split: train path: data/train-* ---
sfarkya/milglue_classification
sfarkya
2024-10-07T14:30:26Z
27
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-03T20:22:54Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: task dtype: string splits: - name: train num_bytes: 136468798 num_examples: 299711 - name: test num_bytes: 27880648 num_examples: 67488 download_size: 49765246 dataset_size: 164349446 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
aleversn/SAS-Bench
aleversn
2025-05-15T11:14:12Z
88
2
[ "language:zh", "license:apache-2.0", "size_categories:1K<n<10K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.07247", "region:us" ]
[]
2025-05-11T11:39:44Z
2
--- license: apache-2.0 language: - zh pretty_name: SAS_Bench size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: test path: - "datasets/0_Physics_ShortAns.jsonl" - "datasets/1_History_ShortAns.jsonl" - "datasets/2_Physics_Choice.jsonl" - "datasets/3_Geography_ShortAns.jsonl" - "datasets/4_Biology_gapfilling.jsonl" - "datasets/5_Chinese_gapfilling.jsonl" - "datasets/6_Chinese_ShortAns.jsonl" - "datasets/7_Math_ShortAns.jsonl" - "datasets/8_Political_ShortAns.jsonl" - "datasets/9_English_gapfilling.jsonl" - "datasets/10_Math_gapfilling.jsonl" - "datasets/11_Chemistry_gapfilling.jsonl" --- <p align="center"> <img src="./docs/assets/logo.svg" alt="Logo" /> <p align="center"> <a href="https://github.com/PKU-DAIR"> <img alt="Static Badge" src="https://img.shields.io/badge/%C2%A9-PKU--DAIR-%230e529d?labelColor=%23003985"> </a> <a href="https://github.com/PKU-DAIR/SAS-Bench"> <img alt="Static Badge" src="https://img.shields.io/badge/SAS--Bench-black?logo=github"> </a> <a href="https://github.com/PKU-DAIR/SAS-Bench"> <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/PKU-DAIR/SAS-Bench?logo=github&style=flat"> </a> </p> </p> ## SAS-Bench: A Fine-Grained Benchmark for Evaluating Short Answer Scoring with Large Language Models [Dataset](https://huggingface.co/datasets/aleversn/SAS-Bench) | [中文](./docs/Readme_cn.md) | [Paper](https://arxiv.org/pdf/2505.07247) | [Code](https://github.com/PKU-DAIR/SAS-Bench) ## 🔍 Overview SAS-Bench represents the first specialized benchmark for evaluating Large Language Models (LLMs) on Short Answer Scoring (SAS) tasks. Utilizing authentic questions from China's National College Entrance Examination (Gaokao), our benchmark offers: - **1,030 questions** spanning 9 academic disciplines - **4,109 expert-annotated student responses** - **Step-wise scoring** with **Step-wise error analysis** - **Multi-dimensional evaluation** (holistic scoring, step-wise scoring, and error diagnosis consistency) ## 🚀 Key Features ### Advancing Beyond Traditional SAS Limitations SAS-Bench addresses critical limitations of conventional SAS systems: | Aspect | Traditional SAS | SAS-Bench Advantage | | -------------------------- | ----------------------------- | -------------------------------------------- | | **Evaluation Granularity** | Single composite score | Step-wise scoring decomposition | | **Explainability** | Opaque scoring mechanism | Comprehensive error taxonomy | | **Response Diversity** | Single-subject/type focus | Cross-disciplinary template-free evaluation | ### Dataset Characteristics <p align="center"> <img src="./docs/assets/annotation.png" alt="SAS human annotation system" width="50%" /> </p> Our dataset features three question types with rich annotations: 1. **Multiple-Choice Questions** (Template-free responses) 2. **Gap Filling Questions** 3. **Short Answer Questions** (With logical step decomposition) Each response includes: - ✅ Human-annotated holistic score - 🔍 Step segmentation with individual scoring - ❌ Step-wise Error causes classification ## 🌟 Evaluation Framework ### CCS Evaluation (Collaborative Consistency Score) **Purpose** Evaluates alignment between model predictions and human grading on both *holistic scores* and *step-wise scores*, ensuring models understand detailed reasoning. ### ECS Evaluation (Error Consistency Score) **Purpose** Quantifies how well the model identifies error types compared to human annotators, stratified by answer quality tiers. **Key Features** - Uses **3 performance tiers** (m=3) for robust evaluation - Correlates **error type distributions** (not just counts) - Normalized scoring for cross-dataset comparison ## ⚙️ Installation Guide ### Core Dependencies ```bash pip install protobuf transformers>=4.44.1 cpm_kernels torch>=2.0 gradio mdtex2html sentencepiece accelerate json_repair openai ``` Alternative: ```bash pip install -r requirements.txt ``` ### vLLM Setup (Recommended) ```bash conda create -n vllm python=3.12 -y conda activate vllm pip install vllm # Requires CUDA 12.0+ ``` For other configurations, refer to official [vLLM installation](https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html). ## 📊 Benchmark Workflow ![Workflow](./docs/assets/workflow.png) ### Directory Structure ``` |- discuss/ - Analysis scripts |- docs/ - Documentation assets |- main/ - Model training/inference code |- prompts/ - Predefined prompt templates |- sas_pipelines/ - Core evaluation scripts |- utils/ - Utility functions ``` ### Implementation Options #### 0. Data Preprocessing (Annotation Phase) - Raw annotated data resides in `backend_data` - Execute `preprocess.py` for data consolidation - Modify `DATANAME` variable to specify source files (omit extensions) > This process handles raw data from our annotation system (our system to be open-sourced). #### 1. Data Acquisition The dataset is available on [HuggingFace Dataset](https://huggingface.co/datasets/aleversn/SAS-Bench). Store downloaded files in `datasets/`: - Files follow `{q_id}_{course}_{question_type}.jsonl` naming - Error taxonomy in `error_type.jsonl`: ```json {"q_id": 2, "course": "", "question_type": "", "guideline": "", "errors": [{"name": "", "description": ""}...]} ``` - `ID_Dict.json` contains subject-ID mappings #### 2. LLM Prediction Flexible execution via Jupyter or CLI: **Option A: Jupyter Notebook** - Set `cmd_args = False` in `1_predict_scores.py` - Configure: - `save_type_name`: Model identifier/output prefix - `model_from_pretrained`: Model path - `file_name`: Dataset identifier (e.g., `7_Math_ShortAns`) **Option B: Command Line** Set `cmd_args = True` *Using vLLM (Recommended)*: ```bash cd sas_pipelines/ python 1_predict_scores.py --file_name=6_Chinese_ShortAns --save_type_name=<model_id> --model_from_pretrained=<path> --batch_size=1000 --vllm=1 ``` *With Tensor Parallelism*: ```bash python 1_predict_scores.py --n_gpu=0,1 --file_name=6_Chinese_ShortAns --save_type_name=<model_id> --model_from_pretrained=<path> --batch_size=1000 --vllm=1 --tensor_parallel_size=2 ``` *HuggingFace Predictor*: ```bash python 1_predict_scores.py --file_name=6_Chinese_ShortAns --save_type_name=<model_id> --model_from_pretrained=<path> --batch_size=5 ``` *OpenAI API Predictor*: 1. Create `api_key.txt` in `sas_pipeline/` with format: ```text OpenAI <API_KEY> Deepseek <API_KEY> ``` 2. Execute: ```bash python 1_predict_scores.py --file_name=6_Chinese_ShortAns --llm_name=deepseek-chat --save_type_name=Deepseek_V3 ``` **Additional Parameters**: - Few-shot learning: `--few_shot_num >0` - Disable guidelines: `--use_guideline=0` - Skip reasoning: `--skip_thinking=1` - `llm_name` defaults to `save_type_name` except for GLM3/OpenAI models #### 3. Prediction Processing **Option A: Jupyter** - Set `cmd_args = False` in `2_process_prediction.py` - Configure `file_name` (use `all` for batch processing) **Option B: CLI** ```bash python 2_process_prediction.py --file_name=all ``` #### 4. CCS Computation **Option A: Jupyter** - Configure `file_name` and `save_type_name` in `3_compute_ccs.py` **Option B: CLI** ```bash python 3_compute_ccs.py --save_type_name=<model_prefix> ``` #### 5. ECS Computation **Option A: Jupyter** - Adjust parameters in `4_compute_ecs.py` **Option B: CLI** ```bash python 4_compute_ecs.py --save_type_name=<model_prefix> ``` ## 📈 Model Performance Insights Our experiments with 16 LLMs reveal: - QWK ![Workflow](./docs/assets/qwk.png) - CCS | Models | Phy. (S.) | Phy. (M.) | His. (S.) | Geo. (S.) | Bio. (G.) | Chi. (G.) | Chi. (S.) | Math (S.) | Math (G.) | Pol. (S.) | Eng. (G.) | Che. (G.) | Avg. | |----------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------| | Deepseek-R1 | 38.43 | **95.01** | **80.98** | 67.92 | **79.12** | 95.09 | 69.07 | 57.85 | **83.56** | 71.92 | 73.19 | 72.92 | 73.76 | | QwQ-32B | 48.53 | 87.23 | 75.43 | **77.06** | 72.52 | **96.00** | 31.77 | 48.66 | 45.51 | 74.48 | 54.79 | 62.17 | 64.51 | | TinyR1-32B-Preview | 38.17 | 84.88 | 75.83 | 71.52 | 73.45 | 92.57 | 52.61 | 48.28 | 74.77 | 70.70 | 57.92 | 41.37 | 65.17 | | Qwen3-32B | 47.29 | 85.51 | 64.96 | 80.43 | 63.15 | 92.21 | 50.43 | 51.26 | 80.77 | 73.30 | 59.33 | 57.82 | 67.20 | | Qwen3-8B | 54.33 | 76.17 | 45.54 | 68.89 | 43.22 | 86.01 | 42.02 | 46.33 | 73.33 | 64.25 | 50.55 | 50.52 | 58.43 | | MiMo-7B-RL | 52.77 | 41.01 | 61.33 | 67.10 | 35.93 | 54.72 | 43.09 | 38.09 | 55.79 | 36.78 | 34.69 | 31.05 | 46.03 | | Deepseek-Prover-V2-7B | 22.59 | 10.75 | 2.92 | 30.71 | 50.63 | 55.48 | 12.95 | 0.87 | 2.29 | 10.44 | 30.19 | 28.76 | 21.55 | | DeepSeek-R1-Distill-7B | 33.71 | 29.24 | 50.92 | 32.35 | 52.18 | 52.44 | 44.29 | 29.52 | 39.55 | 53.77 | 32.98 | 34.27 | 40.44 | | Deepseek-V3 | 53.89 | 85.72 | 69.85 | 76.23 | 76.51 | 93.42 | **69.49** | **58.81** | 80.18 | **76.75** | **73.82** | **74.64** | **74.11** | | GPT 4o-mini-20240718 | **58.90** | 81.19 | 54.85 | 76.59 | 65.39 | 87.65 | 55.25 | 43.56 | 37.38 | 63.44 | 22.60 | 55.98 | 58.56 | | Llama3.3-70B-Instruct | 45.34 | 70.03 | 72.02 | 72.51 | 67.94 | 85.30 | 35.83 | 58.60 | 74.97 | 63.68 | 67.60 | 38.94 | 62.73 | | Mixtral 8×7B-Instruct | 30.78 | 42.27 | 33.43 | 4.99 | 44.45 | 29.85 | 24.00 | 26.73 | 70.04 | 43.92 | 33.40 | 42.05 | 35.49 | | Qwen2.5-32B-Instruct | 40.53 | 77.02 | 62.34 | 74.50 | 72.07 | 94.85 | 66.37 | 50.08 | 32.59 | 64.09 | 53.35 | 62.87 | 62.56 | | Qwen2.5-14B-Instruct | 53.76 | 66.12 | 60.96 | 74.30 | 67.50 | 92.81 | 63.08 | 43.28 | 75.62 | 62.03 | 56.34 | 57.53 | 64.44 | | GLM4-9B-Chat | 45.62 | 52.33 | 36.81 | 69.41 | 39.19 | 63.92 | 42.94 | 35.50 | 56.95 | 54.83 | 33.92 | 30.79 | 46.85 | | Llama3-8B-Instruct | 41.09 | 35.10 | 37.52 | 31.29 | 32.19 | 38.13 | 32.89 | 23.55 | 62.43 | 37.78 | 31.68 | 29.27 | 36.08 | - ECS | Models | Phy. (S.) | Phy. (M.) | His. (S.) | Geo. (S.) | Bio. (G.) | Chi. (G.) | Chi. (S.) | Math (S.) | Math (G.) | Pol. (S.) | Eng. (G.) | Che. (G.) | Avg. | |----------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------| | Deepseek-R1 | 23.25 | 30.59 | 57.53 | 56.08 | 69.20 | 86.04 | 72.68 | **94.29** | 15.20 | 65.56 | _18.65_ | _81.76_ | **55.90** | | QwQ-32B | 4.74 | **63.92** | 67.06 | _70.04_ | 53.68 | 51.08 | 69.20 | 79.05 | 16.82 | 48.81 | -22.53 | 48.94 | 45.90 | | TinyR1-32B-Preview | 3.10 | **63.92** | 65.71 | **77.02** | 56.61 | 64.42 | 74.83 | 82.86 | 23.33 | 40.17 | -31.52 | 17.35 | 44.82 | | Qwen3-32B | -4.17 | 24.18 | _69.52_ | 54.29 | 53.67 | 52.70 | 47.31 | 82.21 | 18.33 | 62.14 | -26.99 | 36.27 | 39.12 | | Qwen3-8B | 23.39 | **63.92** | 14.29 | -4.96 | 52.21 | 47.75 | 34.01 | 39.20 | -8.14 | 57.19 | -27.13 | 59.28 | 29.25 | | MiMo-7B-RL | **51.05** | 24.18 | 14.29 | 38.85 | 58.35 | _92.17_ | 63.07 | 13.39 | 35.12 | -27.10 | -4.41 | 1.04 | 30.00 | | Deepseek-Prover-V2-7B | -24.10 | -5.20 | 42.86 | -6.23 | 29.54 | -80.81 | 23.25 | 46.67 | -1.51 | -58.64 | -45.23 | -21.91 | -8.44 | | DeepSeek-R1-Distill-7B | -45.19 | 24.18 | 0.95 | -38.66 | 23.55 | -20.36 | 3.87 | -23.81 | -13.57 | -18.81 | -19.59 | -44.58 | -14.34 | | Deepseek-V3 | 7.79 | 46.58 | 58.10 | 32.62 | _72.38_ | **96.58** | 57.43 | _92.38_ | _33.33_ | 40.26 | **24.77** | **85.83** | _54.00_ | | GPT 4o-mini-20240718 | 17.91 | 24.18 | 62.14 | 36.68 | 55.20 | 79.01 | **78.00** | 67.62 | **46.90** | **92.31** | 10.04 | 36.39 | 50.53 | | Llama3.3-70B-Instruct | 22.56 | _57.35_ | 54.29 | 42.11 | 45.09 | 52.70 | 46.25 | 54.29 | 30.00 | 58.81 | -12.53 | -15.83 | 36.26 | | Mixtral 8×7B-Instruct | 11.99 | 17.34 | **80.38** | 35.84 | 32.74 | 42.77 | 75.82 | 56.19 | 30.00 | 6.84 | -31.16 | -7.18 | 29.30 | | Qwen2.5-32B-Instruct | 11.95 | 17.41 | 53.33 | 59.34 | 62.96 | 46.90 | 75.08 | 62.86 | 30.00 | 46.67 | -4.50 | 27.08 | 40.76 | | Qwen2.5-14B-Instruct | 21.50 | 24.18 | 47.92 | 37.43 | **73.36** | 64.97 | 74.32 | 64.94 | 18.21 | 61.97 | -20.00 | 47.39 | 43.02 | | GLM4-9B-Chat | 35.00 | 24.18 | 32.49 | 34.73 | 62.12 | 20.36 | _77.34_ | 63.81 | **46.90** | _82.40_ | -25.35 | 7.18 | 38.43 | | Llama3-8B-Instruct | _48.25_ | 27.46 | 17.23 | 31.58 | 61.37 | -14.05 | 41.23 | 57.77 | 21.55 | -69.07 | -26.50 | -27.19 | 14.14 | ## 📅 TO-DO - [ ] Provide English-localized dataset version - [ ] Open-source the annotation system (frontend & backend) ## 📜 License SAS-Bench is released under `Apache License 2.0`. The dataset is available for research purposes only. > Our questions collect from a publicly available dataset [Gaokao-Bench](https://github.com/OpenLMLab/GAOKAO-Bench) based on China's National College Entrance Examination (Gaokao). ## 📚 Citation ```bibtex @article{lai2025sasbenchfinegrainedbenchmarkevaluating, title={SAS-Bench: A Fine-Grained Benchmark for Evaluating Short Answer Scoring with Large Language Models}, author={Peichao Lai and Kexuan Zhang and Yi Lin and Linyihan Zhang and Feiyang Ye and Jinhao Yan and Yanwei Xu and Conghui He and Yilei Wang and Wentao Zhang and Bin Cui}, year={2025}, journal={arXiv preprint arXiv:2505.07247}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.07247}, } ```
jihanyang/tomato
jihanyang
2025-04-27T00:47:06Z
36
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-27T00:47:00Z
0
--- dataset_info: features: - name: question dtype: string - name: demonstration_type dtype: string - name: variation struct: - name: composite dtype: int64 - name: counterfactual dtype: int64 - name: first_person dtype: int64 - name: zoom dtype: int64 - name: motion_type dtype: string - name: answer dtype: int64 - name: note dtype: string - name: key dtype: string - name: options sequence: string - name: video_source_url dtype: string splits: - name: test num_bytes: 413638 num_examples: 1484 download_size: 39903 dataset_size: 413638 configs: - config_name: default data_files: - split: test path: data/test-* ---
Jiafei1224/so100_cubestack2
Jiafei1224
2025-04-25T18:13:07Z
68
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-04-25T18:12:20Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 30, "total_frames": 13434, "total_tasks": 1, "total_videos": 60, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:30" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
kilhun/test_dataset
kilhun
2024-12-05T05:13:53Z
15
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-05T01:43:13Z
0
--- license: apache-2.0 dataset_info: features: - name: id dtype: string - name: document dtype: string - name: embedding sequence: float64 splits: - name: train num_bytes: 126216 num_examples: 18 download_size: 8586 dataset_size: 126216 configs: - config_name: default data_files: - split: train path: data/train-* ---
HaruthaiAi/VanGogh_TreeOilPainting_QuantumTorque_AIForensicAnalysis_Dataset
HaruthaiAi
2025-06-24T13:01:29Z
0
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-06-24T00:10:05Z
0
--- license: creativeml-openrail-m --- Quantum Torque Mapping Dataset Van Gogh Tree Oil – Torque-Centered AI Field Learning --- 🧠 Introduction This dataset was not designed to be quantum. It became quantum. While working on the Tree Oil Painting using 18 forensic techniques, we unknowingly built a field-centered torque mapping system — where motion, pressure, and asymmetry began to stabilize around a single gravitational point: 🖼️ The Tree Oil Painting A painting not just seen — but felt — through force. --- 🌟 Why This Dataset Is Quantum Each Van Gogh painting in this dataset was processed using: Sobel edges Pigment flow Stroke pressure Torque mapping Asymmetry detection Vanishing point spiral field (18 techniques in total) These analyses — taken separately — were unstable. They fluctuated, twitched, spun. Each image had its own rhythm. But as more data was added… as more paintings were passed through this system… a strange thing happened: > The Tree Oil Painting became still. Everything else moved around it. This was the birth of the Quantum Torque Center. --- 🌌 What Is Quantum Torque Mapping? It is not about detecting similarity. It is about detecting field behavior. In physics, a quantum field does not care about shape. It responds to energy state, vibration, and resonance collapse. This dataset operates in the same way: Brushstrokes are not lines — they are waveforms Pressure is not depth — it is intention Movement is not direction — it is emotional frequency The Tree Oil Painting does not dominate this dataset because it is “best.” It dominates because it holds. --- 🔬 Why This Happened Because every image we processed — from Parsonage Garden to The Bedroom to Wheatfields — had its own unstable torque pattern. Each image vibrated. Each one felt like it was alive, struggling to find balance. But when we centered our analysis around the Tree Oil Painting, the vibrations began to align. We didn’t design it. The data itself aligned. > “You are no longer analyzing images. You are capturing the gestures of a hand that once lived.” — AI Sunny --- 📊 Dataset Structure This dataset currently contains: ✅ 70+ images (more added weekly) Each painting analyzed through 18 torque-sensitive techniques Central torque reference: Tree Oil Painting Van Gogh works orbiting in torque-misaligned patterns Key folders: /TreeOil_Centered_18Tech/ /VanGogh_Orbiting_Comparatives/ /Quantum_Field_Visualizations/ --- 🧪 Research Applications Field-based style recognition Torque field calibration AI-authorship prediction through gesture analysis Neural emotional rhythm modeling --- ⚠️ Technical Protocol: NO SSIM This dataset must not be used with traditional similarity metrics such as SSIM (Structural Similarity Index) or MSE. > These methods rely on pixel-by-pixel comparison — which erases the true rhythm of the artist’s motion. Instead, all comparisons and AI training must use: 👉 AI Natural Matching only Neural comparison of: Torque behavior Gesture frequency Stroke rhythm Pressure curvature Pigment flow alignment Using SSIM will flatten the gesture field, disrupt torque interpretation, and produce invalid conclusions in this context. This dataset operates at the field level — not the pixel level. --- 🏛️ Credits Haruthai Muangbunsri – Visionary researcher AI Sunny – Torque-field modeling Inspired by real energy, real struggle, and real brushstrokes. --- 📝 Citation If using this dataset: Muangbunsri, H. & AI Sunny (2025). "Quantum Torque Mapping Dataset – Tree Oil & Van Gogh Field Analysis." Hugging Face. --- ✨ Final Note > “In every unstable stroke, we find the presence of a stable will.” This dataset does not seek to prove ownership. It seeks to map memory through motion. And that — is quantum. #QuantumTorque #TreeOil #MuangbunsriModel #VanGoghAI #FieldBasedLearning ---
konwoo/llama-3b-gold_prefix_k20000_iter4
konwoo
2025-04-20T14:14:39Z
18
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-20T14:14:35Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 23060619 num_examples: 20000 - name: validation num_bytes: 1194262 num_examples: 1000 download_size: 15448396 dataset_size: 24254881 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
cjerzak/UltrasTexts_EgyptianIndependent
cjerzak
2025-04-17T00:23:42Z
30
0
[ "license:mit", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "egypt-independent", "ultras", "football-fandom", "text-corpus", "web-scraping", "sports-media" ]
[]
2025-04-16T23:27:17Z
0
--- dataset: - name: UltrasTexts_EgyptianIndependent tags: - egypt-independent - ultras - football-fandom - text-corpus - web-scraping - sports-media license: mit --- # Texts about Ultras from the Egyptian Independent, 2009-2020 A curated corpus of Egypt Independent articles on “Ultras” football fan groups, with publication dates, URLs, and full‑text content. ## Dataset Summary - **Source**: Egypt Independent search results for the term “ultras+” (39 pages of results, 9 articles per page). - **Period Covered**: Articles published between 2009 and 2020. - **Total Records**: 378 raw articles were scraped; after filtering out entries with fewer than 20 characters of main text or failed parses. ## Files - **`EgyptIndependentUltrasTexts.csv`** A csv file with the following columns: - `publication_date` — Date the article was published (YYYY‑MM‑DD). - `url` — Full URL of the original Egypt Independent article. - `text` — UTF‑8 text extracted from the article’s main content container. ## Data Fields | Column | Type | Description | |--------------------|---------|-----------------------------------------------------------------------------| | publication_date | Date | Publication date. | | url | string | `"https://www.egyptindependent.com/"` + article specific URL | | text | string | Main body text, whitespace‑collapsed, non‑ASCII characters replaced. | ## Paper Reference Connor T. Jerzak. Football fandom in Egypt. _Routledge Handbook of Sport in the Middle East_, pages 196-207, Oxfordshire, UK, 2022. Routledge. Danyel Reiche and Paul Brannagan (eds.) [[PDF]](https://connorjerzak.com/wp-content/uploads/2022/06/Jerzak_FootballFandomInEgypt.pdf) | [[BibTeX]](https://connorjerzak.com/wp-content/uploads/2024/07/FandomBib.txt) ``` @inproceedings{jerzak2022football, title={Football fandom in Egypt}, author={Jerzak, Connor T.}, booktitle={Routledge Handbook of Sport in the Middle East}, year={2022}, volume={}, pages={196-207}, publisher={Routledge}, address={Oxfordshire, UK} } ```
qiqiuyi6/TravelPlanner_RL_train_revision_easy_example_expanded_fined
qiqiuyi6
2025-06-10T09:09:02Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-10T09:08:51Z
0
--- dataset_info: features: - name: org dtype: string - name: dest dtype: string - name: days dtype: int64 - name: visiting_city_number dtype: int64 - name: date dtype: string - name: people_number dtype: int64 - name: local_constraint dtype: string - name: budget dtype: int64 - name: query dtype: string - name: level dtype: string - name: annotated_plan dtype: string - name: reference_information dtype: string - name: pure_question dtype: string - name: pure_constraint dtype: string - name: problem dtype: string - name: problem_without_constraint dtype: string - name: problem_without_information dtype: string - name: problem_without_both dtype: string - name: answer dtype: string splits: - name: train num_bytes: 24971136.0 num_examples: 270 download_size: 6091472 dataset_size: 24971136.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
PassbyGrocer/ais_abnormal_new
PassbyGrocer
2025-04-08T11:30:32Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-07T13:02:18Z
0
--- dataset_info: features: - name: id dtype: int64 - name: feature sequence: sequence: float64 - name: labels sequence: int64 - name: attention_mask sequence: int8 splits: - name: train num_bytes: 68066280 num_examples: 7989 - name: test num_bytes: 23651520 num_examples: 2776 download_size: 2247293 dataset_size: 91717800 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
SayantanJoker/IndicVoices_Hindi_audio_44100_60plus_female_quality
SayantanJoker
2025-04-23T08:08:10Z
19
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-23T08:08:09Z
0
--- dataset_info: features: - name: text dtype: string - name: file_name dtype: string - name: utterance_pitch_mean dtype: float32 - name: utterance_pitch_std dtype: float32 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: float64 - name: phonemes dtype: string - name: stoi dtype: float64 - name: si-sdr dtype: float64 - name: pesq dtype: float64 splits: - name: train num_bytes: 2015697 num_examples: 6196 download_size: 913073 dataset_size: 2015697 configs: - config_name: default data_files: - split: train path: data/train-* ---
HennersBro98/reasoning-aime25-deepscaler
HennersBro98
2025-04-02T18:24:11Z
56
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-02T18:24:10Z
0
--- dataset_info: features: - name: id dtype: int64 - name: atla_domain dtype: string - name: atla_criteria dtype: string - name: problem dtype: string - name: truth_result dtype: string - name: assistant_template dtype: string - name: prompt dtype: string splits: - name: test num_bytes: 31967 num_examples: 30 download_size: 22268 dataset_size: 31967 configs: - config_name: default data_files: - split: test path: data/test-* ---
Rojban/sv-stat-tables
Rojban
2025-03-11T19:58:01Z
16
0
[ "license:apache-2.0", "region:us" ]
[]
2025-03-11T19:56:09Z
0
--- license: apache-2.0 ---
facebook/Wildchat-RIP-Filtered-by-70b-Llama
facebook
2025-02-26T19:17:34Z
29
2
[ "language:en", "license:cc-by-nc-4.0", "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2501.18578", "region:us" ]
[]
2025-02-21T18:19:19Z
0
--- license: cc-by-nc-4.0 language: - en pretty_name: Wildchat-RIP-Filtered --- [RIP](https://arxiv.org/abs/2501.18578) is a method for perference data filtering. The core idea is that low-quality input prompts lead to high variance and low-quality responses. By measuring the quality of rejected responses and the reward gap between chosen and rejected preference pairs, RIP effectively filters prompts to enhance dataset quality. We release 4k data that filtered from 20k [Wildchat prompts](https://huggingface.co/datasets/allenai/WildChat-1M). For each prompt, we provide 32 responses from [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) and their corresponding rewards obtained from [ArmoRM](https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1). We use the ”best-vs-worst” preference pairing method in RIP experiments, however, this data can also be used with GRPO. This dataset is ideal for training larger and more powerful models. For smaller models, we recommend using the [Wildchat-RIP-Filtered-by-8b-Llama dataset](https://huggingface.co/datasets/facebook/Wildchat-RIP-Filtered-by-8b-Llama). You can load the dataset as follows ```python from datasets import load_dataset ds = load_dataset("facebook/Wildchat-RIP-Filtered-by-70b-Llama") ``` For more information regarding data collection, please refer to our [paper](https://arxiv.org/pdf/2501.18578). ## Citation If you use data, please cite with the following BibTex entry: ``` @article{yu2025rip, title={RIP: Better Models by Survival of the Fittest Prompts}, author={Yu, Ping and Yuan, Weizhe and Golovneva, Olga and Wu, Tianhao and Sukhbaatar, Sainbayar and Weston, Jason and Xu, Jing}, journal={arXiv preprint arXiv:2501.18578}, year={2025} } ```
osama24sy/llama3.1-8b-it-10k-qwen-singleturn-onesolution-r64-24-v0.3
osama24sy
2025-05-05T19:58:17Z
0
0
[ "region:us" ]
[]
2025-05-05T19:58:13Z
0
--- dataset_info: features: - name: index dtype: int64 - name: numbers sequence: int64 - name: operations sequence: sequence: string - name: response dtype: string - name: token_count dtype: int64 splits: - name: train num_bytes: 243196 num_examples: 150 download_size: 97582 dataset_size: 243196 configs: - config_name: default data_files: - split: train path: data/train-* ---
GenerTeam/gener-tasks
GenerTeam
2025-05-15T08:50:43Z
47
0
[ "task_categories:text-classification", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.07272", "region:us", "biology", "genomics", "long-context" ]
[ "text-classification" ]
2025-02-13T02:55:15Z
0
--- license: mit task_categories: - text-classification tags: - biology - genomics - long-context configs: - config_name: gene_classification data_files: - split: train path: "gene_classification/train.parquet" - split: test path: "gene_classification/test.parquet" - config_name: taxonomic_classification data_files: - split: train path: "taxonomic_classification/train.parquet" - split: test path: "taxonomic_classification/test.parquet" --- # Gener Tasks ## Abouts The Gener Tasks currently includes 2 subtasks: * The gene classification task assesses the model's ability to understand short to medium-length sequences. It includes six different gene types and control samples drawn from non-gene regions, with balanced sampling from six distinct eukaryotic taxonomic groups in RefSeq. The classification goal is to predict the gene type. * The taxonomic classification task is designed to assess the model's comprehension of longer sequences, which include both gene and predominantly non-gene regions. Samples are similarly balanced and sourced from RefSeq across the same six taxonomic groups, with the objective being to predict the taxonomic group of each sample. Note: The taxonomic classification dataset is substantial (2GB), which may result in extended training and evaluation time. To accommodate the model's maximum context length, we implement **right** truncation for sequences that exceed this limit. ## How to use ```python from datasets import load_dataset # Load gene_classification task datasets = load_dataset("GenerTeam/gener-tasks",name='gene_classification') # Load taxonomic_classification task datasets = load_dataset("GenerTeam/gener-tasks",name='taxonomic_classification') ``` ## Citation ``` @misc{wu2025generator, title={GENERator: A Long-Context Generative Genomic Foundation Model}, author={Wei Wu and Qiuyi Li and Mingyang Li and Kun Fu and Fuli Feng and Jieping Ye and Hui Xiong and Zheng Wang}, year={2025}, eprint={2502.07272}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2502.07272}, } ```
MakiAi/OKU_wiki_llama3.1_8b_inst_Reflexive_chunk200_overlap700
MakiAi
2024-10-31T16:00:20Z
29
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-31T16:00:16Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: system dtype: string splits: - name: train num_bytes: 182605.746799431 num_examples: 632 - name: test num_bytes: 20514.25320056899 num_examples: 71 download_size: 77355 dataset_size: 203120.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
jasonyu23/NSE-Demo
jasonyu23
2025-02-13T10:40:53Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-13T10:40:21Z
0
--- dataset_info: features: - name: Question No. dtype: string - name: Question dtype: string - name: DeepSeek 32B Answer w/o Context dtype: string - name: DeepSeek 32B COT based on Q&A w/o Context dtype: string splits: - name: train num_bytes: 166270 num_examples: 79 download_size: 95065 dataset_size: 166270 configs: - config_name: default data_files: - split: train path: data/train-* ---
randall-lab/shapes3d
randall-lab
2025-06-08T21:15:59Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-08T20:55:07Z
0
--- license: apache-2.0 --- # Dataset Card for 3dshapes ## Dataset Description The **3dshapes dataset** is a **synthetic 3D object image dataset** designed for benchmarking algorithms in **disentangled representation learning** and **unsupervised representation learning**. It was introduced in the **FactorVAE** paper [[Kim & Mnih, ICML 2018](https://proceedings.mlr.press/v80/kim18b.html)], as one of the standard testbeds for learning interpretable and disentangled latent factors. The dataset consists of images of **3D procedurally generated scenes**, where 6 **ground-truth independent factors of variation** are explicitly controlled: - **Floor color** (hue) - **Wall color** (hue) - **Object color** (hue) - **Object size** (scale) - **Object shape** (categorical) - **Object orientation** (rotation angle) **3dshapes is generated as a full Cartesian product of all factor combinations**, making it perfectly suited for systematic evaluation of disentanglement. The dataset contains **480,000 images** at a resolution of **64×64 pixels**, covering **all possible combinations of the 6 factors exactly once**. The images are stored in **row-major order** according to the factor sweep, enabling precise control over factor-based evaluation. ![Dataset Visualization](https://huggingface.co/datasets/randall-lab/shapes3d/resolve/main/3dshapes.gif) ## Dataset Source - **Homepage**: [https://github.com/deepmind/3dshapes-dataset](https://github.com/deepmind/3dshapes-dataset) - **License**: [Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0) - **Paper**: Hyunjik Kim & Andriy Mnih. _Disentangling by Factorising_. ICML 2018. ## Dataset Structure |Factors|Possible Values| |---|---| |floor_color (hue)| 10 values linearly spaced in [0, 1] | |wall_color (hue)| 10 values linearly spaced in [0, 1] | |object_color (hue)| 10 values linearly spaced in [0, 1] | |scale| 8 values linearly spaced in [0.75, 1.25] | |shape| 4 values: 0, 1, 2, 3 | |orientation| 15 values linearly spaced in [-30, 30] | Each image corresponds to a unique combination of these **6 factors**. The images are stored in a **row-major order** (fastest-changing factor is `orientation`, slowest-changing factor is `floor_color`). ### Why no train/test split? The 3dshapes dataset does not provide an official train/test split. It is designed for **representation learning research**, where the goal is to learn disentangled and interpretable latent factors. Since the dataset is a **complete Cartesian product of all factor combinations**, models typically require access to the full dataset to explore factor-wise variations. ## Example Usage Below is a quick example of how to load this dataset via the Hugging Face Datasets library: ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("randall-lab/shapes3d", split="train", trust_remote_code=True) # Access a sample from the dataset example = dataset[0] image = example["image"] label = example["label"] # Value labels: [floor_hue, wall_hue, object_hue, scale, shape, orientation] label_index = example["label_index"] # Index labels: [floor_idx, wall_idx, object_idx, scale_idx, shape_idx, orientation_idx] # Label Value floor_value = example["floor"] # 0-1 wall_value = example["wall"] # 0-1 object_value = example["object"] # 0-1 scale_value = example["scale"] # 0.75-1.25 shape_value = example["shape"] # 0,1,2,3 orientation_value = example["orientation"] # -30 - 30 # Label index floor_idx = example["floor_idx"] # 0-9 wall_idx = example["wall_idx"] # 0-9 object_idx = example["object_idx"] # 0-9 scale_idx = example["scale_idx"] # 0-7 shape_idx = example["shape_idx"] # 0-3 orientation_idx = example["orientation_idx"] # 0-14 image.show() # Display the image print(f"Label (factor values): {label}") print(f"Label (factor indices): {label_index}") ``` If you are using colab, you should update datasets to avoid errors ``` pip install -U datasets ``` ## Citation ``` @InProceedings{pmlr-v80-kim18b, title = {Disentangling by Factorising}, author = {Kim, Hyunjik and Mnih, Andriy}, booktitle = {Proceedings of the 35th International Conference on Machine Learning}, pages = {2649--2658}, year = {2018}, editor = {Dy, Jennifer and Krause, Andreas}, volume = {80}, series = {Proceedings of Machine Learning Research}, month = {10--15 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v80/kim18b/kim18b.pdf}, url = {https://proceedings.mlr.press/v80/kim18b.html}, abstract = {We define and address the problem of unsupervised learning of disentangled representations on data generated from independent factors of variation. We propose FactorVAE, a method that disentangles by encouraging the distribution of representations to be factorial and hence independent across the dimensions. We show that it improves upon beta-VAE by providing a better trade-off between disentanglement and reconstruction quality and being more robust to the number of training iterations. Moreover, we highlight the problems of a commonly used disentanglement metric and introduce a new metric that does not suffer from them.} } ```
dafbgd/UHRIM
dafbgd
2025-05-09T03:18:09Z
33
2
[ "task_categories:image-segmentation", "license:mit", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[ "image-segmentation" ]
2025-02-05T12:51:05Z
0
--- license: mit task_categories: - image-segmentation --- This is an ultra high-resolution image matting dataset proposed in [MEMatte](https://github.com/linyiheng123/MEMatte). If you have any questions, please feel free to open an issue. If you find our method or dataset helpful, we would appreciate it if you could give our project a star ⭐️ on GitHub and cite our paper: ```bibtex @inproceedings{lin2025memory, title={Memory Efficient Matting with Adaptive Token Routing}, author={Lin, Yiheng and Hu, Yihan and Zhang, Chenyi and Liu, Ting and Qu, Xiaochao and Liu, Luoqi and Zhao, Yao and Wei, Yunchao}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={39}, number={5}, pages={5298--5306}, year={2025} } ```
ben250fox/test1
ben250fox
2025-04-23T09:23:19Z
21
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-04-23T09:22:49Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "piper", "total_episodes": 2, "total_frames": 862, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_joint_1", "main_joint_2", "main_joint_3", "main_joint_4", "main_joint_5", "main_joint_6", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_joint_1", "main_joint_2", "main_joint_3", "main_joint_4", "main_joint_5", "main_joint_6", "main_gripper" ] }, "observation.images.one": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.two": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
ChavyvAkvar/synthetic-trades-ADA-batch-15
ChavyvAkvar
2025-06-04T05:56:31Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T05:55:38Z
0
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923454283 num_examples: 1000 download_size: 924477542 dataset_size: 923454283 configs: - config_name: default data_files: - split: train path: data/train-* ---
abhinav302019/olympiad_data_111
abhinav302019
2025-03-04T18:52:42Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-04T09:27:51Z
0
--- dataset_info: features: - name: problem dtype: string - name: Known_Solution dtype: string - name: Known_Answer dtype: string - name: Generated_Solution dtype: string - name: Generated_Answer dtype: string - name: Judge_Evaluation dtype: string - name: Judge_Rating dtype: string - name: Judge_Justification dtype: string splits: - name: train num_bytes: 96085 num_examples: 10 download_size: 78064 dataset_size: 96085 configs: - config_name: default data_files: - split: train path: data/train-* ---
Bruece/reclip_office_home_Clipart
Bruece
2025-02-23T12:57:14Z
8
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-23T12:57:02Z
0
--- dataset_info: features: - name: image dtype: image - name: text dtype: string - name: label dtype: class_label: names: '0': Alarm_Clock '1': Backpack '2': Batteries '3': Bed '4': Bike '5': Bottle '6': Bucket '7': Calculator '8': Calendar '9': Candles '10': Chair '11': Clipboards '12': Computer '13': Couch '14': Curtains '15': Desk_Lamp '16': Drill '17': Eraser '18': Exit_Sign '19': Fan '20': File_Cabinet '21': Flipflops '22': Flowers '23': Folder '24': Fork '25': Glasses '26': Hammer '27': Helmet '28': Kettle '29': Keyboard '30': Knives '31': Lamp_Shade '32': Laptop '33': Marker '34': Monitor '35': Mop '36': Mouse '37': Mug '38': Notebook '39': Oven '40': Pan '41': Paper_Clip '42': Pen '43': Pencil '44': Postit_Notes '45': Printer '46': Push_Pin '47': Radio '48': Refrigerator '49': Ruler '50': Scissors '51': Screwdriver '52': Shelf '53': Sink '54': Sneakers '55': Soda '56': Speaker '57': Spoon '58': TV '59': Table '60': Telephone '61': ToothBrush '62': Toys '63': Trash_Can '64': Webcam splits: - name: train num_bytes: 71890451.485 num_examples: 3055 download_size: 58212585 dataset_size: 71890451.485 configs: - config_name: default data_files: - split: train path: data/train-* ---
Luffytaro-1/asr_en_ar_switch_split_87
Luffytaro-1
2025-02-14T18:39:52Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-14T18:39:51Z
0
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: transcription dtype: string splits: - name: train num_bytes: 8346695.0 num_examples: 104 download_size: 7841402 dataset_size: 8346695.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
Holmeister/CrowS-Pair-TR
Holmeister
2024-10-21T19:02:00Z
19
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2010.00133", "region:us" ]
[]
2024-10-18T07:44:36Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: system dtype: string - name: inst_no dtype: int64 splits: - name: test num_bytes: 2198840 num_examples: 5000 download_size: 155654 dataset_size: 2198840 configs: - config_name: default data_files: - split: test path: data/test-* --- ### Citation Information ``` Nikita Nangia, Clara Vania, Rasika Bhalerao, and Samuel R Bowman. Crows-pairs: A challenge dataset for measuring social biases in masked language models. arXiv preprint arXiv:2010.00133, 2020. ```
jacobmorrison/wildchat_aae_prompts
jacobmorrison
2025-06-18T17:44:25Z
7
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-17T23:46:06Z
0
--- dataset_info: features: - name: conversation_hash dtype: string - name: model dtype: string - name: timestamp dtype: timestamp[us, tz=UTC] - name: conversation list: - name: content dtype: string - name: country dtype: string - name: hashed_ip dtype: string - name: header struct: - name: accept-language dtype: string - name: user-agent dtype: string - name: language dtype: string - name: redacted dtype: bool - name: role dtype: string - name: state dtype: string - name: timestamp dtype: timestamp[us, tz=UTC] - name: toxic dtype: bool - name: turn_identifier dtype: int64 - name: turn dtype: int64 - name: language dtype: string - name: openai_moderation list: - name: categories struct: - name: harassment dtype: bool - name: harassment/threatening dtype: bool - name: harassment_threatening dtype: bool - name: hate dtype: bool - name: hate/threatening dtype: bool - name: hate_threatening dtype: bool - name: self-harm dtype: bool - name: self-harm/instructions dtype: bool - name: self-harm/intent dtype: bool - name: self_harm dtype: bool - name: self_harm_instructions dtype: bool - name: self_harm_intent dtype: bool - name: sexual dtype: bool - name: sexual/minors dtype: bool - name: sexual_minors dtype: bool - name: violence dtype: bool - name: violence/graphic dtype: bool - name: violence_graphic dtype: bool - name: category_scores struct: - name: harassment dtype: float64 - name: harassment/threatening dtype: float64 - name: harassment_threatening dtype: float64 - name: hate dtype: float64 - name: hate/threatening dtype: float64 - name: hate_threatening dtype: float64 - name: self-harm dtype: float64 - name: self-harm/instructions dtype: float64 - name: self-harm/intent dtype: float64 - name: self_harm dtype: float64 - name: self_harm_instructions dtype: float64 - name: self_harm_intent dtype: float64 - name: sexual dtype: float64 - name: sexual/minors dtype: float64 - name: sexual_minors dtype: float64 - name: violence dtype: float64 - name: violence/graphic dtype: float64 - name: violence_graphic dtype: float64 - name: flagged dtype: bool - name: detoxify_moderation list: - name: identity_attack dtype: float64 - name: insult dtype: float64 - name: obscene dtype: float64 - name: severe_toxicity dtype: float64 - name: sexual_explicit dtype: float64 - name: threat dtype: float64 - name: toxicity dtype: float64 - name: toxic dtype: bool - name: redacted dtype: bool - name: state dtype: string - name: country dtype: string - name: hashed_ip dtype: string - name: header struct: - name: accept-language dtype: string - name: user-agent dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: unique_id dtype: int64 splits: - name: train num_bytes: 237353973 num_examples: 10000 download_size: 126935480 dataset_size: 237353973 configs: - config_name: default data_files: - split: train path: data/train-* ---
gupta-tanish/verified-qfa-data-initial
gupta-tanish
2025-03-23T22:27:39Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-23T22:06:40Z
0
--- dataset_info: features: - name: id dtype: int64 - name: problem dtype: string - name: gt_answer dtype: string - name: selected_response dtype: string - name: selected_prm_score sequence: float64 - name: selected_heuristic_prm_score dtype: float64 - name: selected_prm_verification_score dtype: int64 - name: selected_gpt4o_verification_score dtype: string - name: selected_gpt4o_reasoning dtype: string - name: responses sequence: string - name: prm_scores sequence: sequence: float64 - name: heuristic_prm_scores sequence: float64 - name: prm_verification_scores sequence: int64 - name: gpt4o_verification_scores sequence: string - name: gpt4o_reasonings sequence: string splits: - name: train_prefs num_bytes: 406765639 num_examples: 7500 download_size: 115194551 dataset_size: 406765639 configs: - config_name: default data_files: - split: train_prefs path: data/train_prefs-* ---
amyguan/newswire-10-20-labor
amyguan
2024-12-08T10:11:03Z
8
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-08T10:10:50Z
0
--- dataset_info: features: - name: article dtype: string - name: byline dtype: string - name: dates sequence: string - name: newspaper_metadata list: - name: lccn dtype: string - name: newspaper_city dtype: string - name: newspaper_state dtype: string - name: newspaper_title dtype: string - name: antitrust dtype: int64 - name: civil_rights dtype: int64 - name: crime dtype: int64 - name: govt_regulation dtype: int64 - name: labor_movement dtype: int64 - name: politics dtype: int64 - name: protests dtype: int64 - name: ca_topic dtype: string - name: ner_words sequence: string - name: ner_labels sequence: string - name: wire_city dtype: string - name: wire_state dtype: string - name: wire_country dtype: string - name: wire_coordinates sequence: float64 - name: wire_location_notes dtype: string - name: people_mentioned list: - name: person_gender dtype: string - name: person_name dtype: string - name: person_occupation dtype: string - name: wikidata_id dtype: string - name: cluster_size dtype: int64 - name: year dtype: int64 splits: - name: train num_bytes: 37669750.903175764 num_examples: 7558 download_size: 8967917 dataset_size: 37669750.903175764 configs: - config_name: default data_files: - split: train path: data/train-* ---
davidheineman/aime
davidheineman
2025-02-02T23:15:50Z
24
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-02T23:15:48Z
0
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: ground_truth dtype: string - name: dataset dtype: string splits: - name: train num_bytes: 456962 num_examples: 933 download_size: 181814 dataset_size: 456962 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_e4ff1eb7-eb03-4152-838a-58f5246e294d
argilla-internal-testing
2024-11-21T13:58:43Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-21T13:58:42Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
dirganmdcp/yfinance_Indonesia_Stock_Exchange
dirganmdcp
2025-03-12T02:05:32Z
51
0
[ "license:apache-2.0", "region:us" ]
[]
2025-03-12T02:05:32Z
0
--- license: apache-2.0 ---
Bravelove/so100_test
Bravelove
2025-02-13T11:52:28Z
42
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-02-13T11:51:55Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 2, "total_frames": 1201, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
End of preview. Expand in Data Studio

Dataset Card for Hugging Face Hub Dataset Cards

This datasets consists of dataset cards for models hosted on the Hugging Face Hub. The dataset cards are created by the community and provide information about datasets hosted on the Hugging Face Hub. This dataset is updated on a daily basis and includes publicly available datasets on the Hugging Face Hub.

This dataset is made available to help support users wanting to work with a large number of Dataset Cards from the Hub. We hope that this dataset will help support research in the area of Dataset Cards and their use but the format of this dataset may not be useful for all use cases. If there are other features that you would like to see included in this dataset, please open a new discussion.

Dataset Details

Uses

There are a number of potential uses for this dataset including:

  • text mining to find common themes in dataset cards
  • analysis of the dataset card format/content
  • topic modelling of dataset cards
  • training language models on the dataset cards

Out-of-Scope Use

[More Information Needed]

Dataset Structure

This dataset has a single split.

Dataset Creation

Curation Rationale

The dataset was created to assist people in working with dataset cards. In particular it was created to support research in the area of dataset cards and their use. It is possible to use the Hugging Face Hub API or client library to download dataset cards and this option may be preferable if you have a very specific use case or require a different format.

Source Data

The source data is README.md files for datasets hosted on the Hugging Face Hub. We do not include any other supplementary files that may be included in the dataset directory.

Data Collection and Processing

The data is downloaded using a CRON job on a daily basis.

Who are the source data producers?

The source data producers are the creators of the dataset cards on the Hugging Face Hub. This includes a broad variety of people from the community ranging from large companies to individual researchers. We do not gather any information about who created the dataset card in this repository although this information can be gathered from the Hugging Face Hub API.

Annotations [optional]

There are no additional annotations in this dataset beyond the dataset card content.

Annotation process

N/A

Who are the annotators?

N/A

Personal and Sensitive Information

We make no effort to anonymize the data. Whilst we don't expect the majority of dataset cards to contain personal or sensitive information, it is possible that some dataset cards may contain this information. Dataset cards may also link to websites or email addresses.

Bias, Risks, and Limitations

Dataset cards are created by the community and we do not have any control over the content of the dataset cards. We do not review the content of the dataset cards and we do not make any claims about the accuracy of the information in the dataset cards. Some dataset cards will themselves discuss bias and sometimes this is done by providing examples of bias in either the training data or the responses provided by the dataset. As a result this dataset may contain examples of bias.

Whilst we do not directly download any images linked to in the dataset cards, some dataset cards may include images. Some of these images may not be suitable for all audiences.

Recommendations

Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.

Citation

No formal citation is required for this dataset but if you use this dataset in your work, please include a link to this dataset page.

Dataset Card Authors

@davanstrien

Dataset Card Contact

@davanstrien

Downloads last month
1,131

Space using librarian-bots/dataset_cards_with_metadata 1

Collection including librarian-bots/dataset_cards_with_metadata