Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
sentiment-classification
Languages:
Latvian
Size:
1K - 10K
ArXiv:
License:
| license: mit | |
| task_categories: | |
| - text-classification | |
| task_ids: | |
| - sentiment-classification | |
| language: | |
| - lv | |
| tags: | |
| - sentiment | |
| - sentiment analysis | |
| - sentiment classification | |
| - Latvian | |
| - social media | |
| - short text | |
| pretty_name: Latvian Twitter Eater Corpus - Sentiment | |
| size_categories: | |
| - 1K<n<10K | |
| dataset_info: | |
| features: | |
| - name: label | |
| dtype: | |
| class_label: | |
| names: | |
| '0': neu | |
| '1': pos | |
| '2': neg | |
| - name: text | |
| dtype: string | |
| - name: screen_name | |
| dtype: string | |
| - name: tweet_id | |
| dtype: int64 | |
| # Latvian Twitter Eater Corpus - Sentiment Analysis Sub-corpus | |
| This data set contains 5420 tweets with human-annotated sentiment as positive (pos), neutral (neu) or negative (neg). 1631 tweets are positive, 2507 - neutral and 1282 - negative. | |
| - **ltec-sentiment-annotated-train.json** contains tweets with human annotated sentiment | |
| - **ltec-sentiment-annotated-test.json** contains the test set that we used in our paper | |
| ## Tweet Structure | |
| ```json | |
| { | |
| "label":1, | |
| "screen_name":"artisare", | |
| "tweet_id":221520985738846209, | |
| "text":"@mazheks Burgā ir brančs?!? Es jau sāku domāt ka uz Pērli jāmauc ēst pirms tam Illy paķerot kafiju. Cikos domā?" | |
| } | |
| ``` | |
| ## Other Latvian Twitter sentiment corpora | |
| --------- | |
| * [Pinnis](https://github.com/pmarcis/latvian-tweet-corpus) - ~ 7000 tweets from politicians and companies | |
| * [Peisenieks](https://github.com/FnTm/latvian-tweet-sentiment-corpus) - ~ 1000 general tweets with sentiment annotated by multiple annotators | |
| * [Vīksna](https://github.com/RinaldsViksna/sikzinu_analize) - ~ 4000 general tweets | |
| * [Nicemanis](https://github.com/nicemanis/LV-twitter-sentiment-corpus) - ~ 2000 general tweets | |
| * [Špats](https://github.com/gatis/om) - ~ 6000 general tweets | |
| Publications | |
| --------- | |
| If you use this corpus or scripts, please cite the following paper: | |
| Uga Sproģis and Matīss Rikters (2020). "[What Can We Learn From Almost a Decade of Food Tweets.](https://arxiv.org/abs/2007.05194)" In Proceedings of the 9th Conference Human Language Technologies - The Baltic Perspective ([Baltic HLT 2020](https://klc.vdu.lt/hlt/programme)) (2020). | |
| ```bibtex | |
| @inproceedings{SprogisRikters2020BalticHLT, | |
| author = {Sproģis, Uga and Rikters, Matīss}, | |
| booktitle={In Proceedings of the 9th Conference Human Language Technologies - The Baltic Perspective (Baltic HLT 2020)}, | |
| title = {{What Can We Learn From Almost a Decade of Food Tweets}}, | |
| address={Kaunas, Lithuania}, | |
| year = {2020} | |
| } | |
| ``` |