
alexander-sh/mDeBERTa-v3-multi-sent
0.3B
•
Updated
•
5
Error code: StreamingRowsError Exception: ArrowInvalid Message: JSON parse error: Invalid value. in row 0 Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 174, in _generate_tables df = pandas_read_json(f) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json return pd.read_json(path_or_buf, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 791, in read_json json_reader = JsonReader( File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 905, in __init__ self.data = self._preprocess_data(data) File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 917, in _preprocess_data data = data.read() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 813, in read_with_retries out = read(*args, **kwargs) File "/usr/local/lib/python3.9/codecs.py", line 322, in decode (result, consumed) = self._buffer_decode(data, self.errors, final) UnicodeDecodeError: 'utf-8' codec can't decode byte 0x94 in position 7: invalid start byte During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise return get_rows( File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator return func(*args, **kwargs) File "/src/services/worker/src/worker/utils.py", line 77, in get_rows rows_plus_one = list(itertools.islice(ds, rows_max_number + 1)) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2361, in __iter__ for key, example in ex_iterable: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__ for key, pa_table in self._iter_arrow(): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1905, in _iter_arrow for key, pa_table in self.ex_iterable._iter_arrow(): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 499, in _iter_arrow for key, pa_table in iterator: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 346, in _iter_arrow for key, pa_table in self.generate_tables_fn(**gen_kwags): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 177, in _generate_tables raise e File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 151, in _generate_tables pa_table = paj.read_json( File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: JSON parse error: Invalid value. in row 0
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
A multilingual Sentiment Analysis dataset consisting of tweets in 8 different languages.
Task category | t2c |
Domains | Social, Written |
Reference | https://aclanthology.org/2022.lrec-1.27 |
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_tasks(["TweetSentimentClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb
task check out the GitHub repitory.
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@inproceedings{barbieri-etal-2022-xlm,
abstract = {Language models are ubiquitous in current NLP, and their multilingual capacity has recently attracted considerable attention. However, current analyses have almost exclusively focused on (multilingual variants of) standard benchmarks, and have relied on clean pre-training and task-specific corpora as multilingual signals. In this paper, we introduce XLM-T, a model to train and evaluate multilingual language models in Twitter. In this paper we provide: (1) a new strong multilingual baseline consisting of an XLM-R (Conneau et al. 2020) model pre-trained on millions of tweets in over thirty languages, alongside starter code to subsequently fine-tune on a target task; and (2) a set of unified sentiment analysis Twitter datasets in eight different languages and a XLM-T model trained on this dataset.},
address = {Marseille, France},
author = {Barbieri, Francesco and
Espinosa Anke, Luis and
Camacho-Collados, Jose},
booktitle = {Proceedings of the Thirteenth Language Resources and Evaluation Conference},
month = jun,
pages = {258--266},
publisher = {European Language Resources Association},
title = {{XLM}-{T}: Multilingual Language Models in {T}witter for Sentiment Analysis and Beyond},
url = {https://aclanthology.org/2022.lrec-1.27},
year = {2022},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("TweetSentimentClassification")
desc_stats = task.metadata.descriptive_stats
{
"test": {
"num_samples": 2048,
"number_of_characters": 169117,
"number_texts_intersect_with_train": 0,
"min_text_length": 4,
"average_text_length": 82.57666015625,
"max_text_length": 200,
"unique_text": 2048,
"unique_labels": 3,
"labels": {
"1": {
"count": 688
},
"2": {
"count": 680
},
"0": {
"count": 680
}
},
"hf_subset_descriptive_stats": {
"arabic": {
"num_samples": 256,
"number_of_characters": 21637,
"number_texts_intersect_with_train": 0,
"min_text_length": 14,
"average_text_length": 84.51953125,
"max_text_length": 140,
"unique_text": 256,
"unique_labels": 3,
"labels": {
"1": {
"count": 86
},
"2": {
"count": 85
},
"0": {
"count": 85
}
}
},
"english": {
"num_samples": 256,
"number_of_characters": 23508,
"number_texts_intersect_with_train": 0,
"min_text_length": 17,
"average_text_length": 91.828125,
"max_text_length": 141,
"unique_text": 256,
"unique_labels": 3,
"labels": {
"1": {
"count": 86
},
"2": {
"count": 85
},
"0": {
"count": 85
}
}
},
"german": {
"num_samples": 256,
"number_of_characters": 19069,
"number_texts_intersect_with_train": 0,
"min_text_length": 9,
"average_text_length": 74.48828125,
"max_text_length": 142,
"unique_text": 256,
"unique_labels": 3,
"labels": {
"1": {
"count": 86
},
"2": {
"count": 85
},
"0": {
"count": 85
}
}
},
"french": {
"num_samples": 256,
"number_of_characters": 24130,
"number_texts_intersect_with_train": 0,
"min_text_length": 23,
"average_text_length": 94.2578125,
"max_text_length": 140,
"unique_text": 256,
"unique_labels": 3,
"labels": {
"1": {
"count": 86
},
"2": {
"count": 85
},
"0": {
"count": 85
}
}
},
"italian": {
"num_samples": 256,
"number_of_characters": 23564,
"number_texts_intersect_with_train": 0,
"min_text_length": 14,
"average_text_length": 92.046875,
"max_text_length": 140,
"unique_text": 256,
"unique_labels": 3,
"labels": {
"1": {
"count": 86
},
"2": {
"count": 85
},
"0": {
"count": 85
}
}
},
"portuguese": {
"num_samples": 256,
"number_of_characters": 18522,
"number_texts_intersect_with_train": 0,
"min_text_length": 24,
"average_text_length": 72.3515625,
"max_text_length": 140,
"unique_text": 256,
"unique_labels": 3,
"labels": {
"1": {
"count": 86
},
"2": {
"count": 85
},
"0": {
"count": 85
}
}
},
"spanish": {
"num_samples": 256,
"number_of_characters": 21014,
"number_texts_intersect_with_train": 0,
"min_text_length": 22,
"average_text_length": 82.0859375,
"max_text_length": 137,
"unique_text": 256,
"unique_labels": 3,
"labels": {
"1": {
"count": 86
},
"2": {
"count": 85
},
"0": {
"count": 85
}
}
},
"hindi": {
"num_samples": 256,
"number_of_characters": 17673,
"number_texts_intersect_with_train": 0,
"min_text_length": 4,
"average_text_length": 69.03515625,
"max_text_length": 200,
"unique_text": 256,
"unique_labels": 3,
"labels": {
"1": {
"count": 86
},
"2": {
"count": 85
},
"0": {
"count": 85
}
}
}
}
},
"train": {
"num_samples": 14712,
"number_of_characters": 1277720,
"number_texts_intersect_with_train": null,
"min_text_length": 2,
"average_text_length": 86.84883088635128,
"max_text_length": 1085,
"unique_text": 14712,
"unique_labels": 3,
"labels": {
"0": {
"count": 4904
},
"1": {
"count": 4904
},
"2": {
"count": 4904
}
},
"hf_subset_descriptive_stats": {
"arabic": {
"num_samples": 1839,
"number_of_characters": 164305,
"number_texts_intersect_with_train": null,
"min_text_length": 11,
"average_text_length": 89.34475258292551,
"max_text_length": 140,
"unique_text": 1839,
"unique_labels": 3,
"labels": {
"0": {
"count": 613
},
"1": {
"count": 613
},
"2": {
"count": 613
}
}
},
"english": {
"num_samples": 1839,
"number_of_characters": 201493,
"number_texts_intersect_with_train": null,
"min_text_length": 29,
"average_text_length": 109.56661228928766,
"max_text_length": 185,
"unique_text": 1839,
"unique_labels": 3,
"labels": {
"0": {
"count": 613
},
"1": {
"count": 613
},
"2": {
"count": 613
}
}
},
"german": {
"num_samples": 1839,
"number_of_characters": 137071,
"number_texts_intersect_with_train": null,
"min_text_length": 7,
"average_text_length": 74.53561718325177,
"max_text_length": 144,
"unique_text": 1839,
"unique_labels": 3,
"labels": {
"0": {
"count": 613
},
"1": {
"count": 613
},
"2": {
"count": 613
}
}
},
"french": {
"num_samples": 1839,
"number_of_characters": 178091,
"number_texts_intersect_with_train": null,
"min_text_length": 16,
"average_text_length": 96.84121805328984,
"max_text_length": 144,
"unique_text": 1839,
"unique_labels": 3,
"labels": {
"0": {
"count": 613
},
"1": {
"count": 613
},
"2": {
"count": 613
}
}
},
"italian": {
"num_samples": 1839,
"number_of_characters": 165828,
"number_texts_intersect_with_train": null,
"min_text_length": 6,
"average_text_length": 90.17292006525285,
"max_text_length": 150,
"unique_text": 1839,
"unique_labels": 3,
"labels": {
"0": {
"count": 613
},
"1": {
"count": 613
},
"2": {
"count": 613
}
}
},
"portuguese": {
"num_samples": 1839,
"number_of_characters": 135761,
"number_texts_intersect_with_train": null,
"min_text_length": 18,
"average_text_length": 73.82327351821642,
"max_text_length": 146,
"unique_text": 1839,
"unique_labels": 3,
"labels": {
"0": {
"count": 613
},
"1": {
"count": 613
},
"2": {
"count": 613
}
}
},
"spanish": {
"num_samples": 1839,
"number_of_characters": 153354,
"number_texts_intersect_with_train": null,
"min_text_length": 19,
"average_text_length": 83.38988580750407,
"max_text_length": 138,
"unique_text": 1839,
"unique_labels": 3,
"labels": {
"0": {
"count": 613
},
"1": {
"count": 613
},
"2": {
"count": 613
}
}
},
"hindi": {
"num_samples": 1839,
"number_of_characters": 141817,
"number_texts_intersect_with_train": null,
"min_text_length": 2,
"average_text_length": 77.11636759108211,
"max_text_length": 1085,
"unique_text": 1839,
"unique_labels": 3,
"labels": {
"0": {
"count": 613
},
"1": {
"count": 613
},
"2": {
"count": 613
}
}
}
}
}
}
This dataset card was automatically generated using MTEB