core-sdo / README.md
rlal011's picture
Update README.md
9c10abe verified
---
size_categories:
- 100K<n<1M
tags:
- Helio
- Pretraining
- faoundation-model
- solar
- SDO
- EUV
- magnetogram
- multimodal
pretty_name: SuryaBench
license: cc-by-4.0
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6488f1d3e22a0081a561ec8f/pmQLbUWrXhSGMBhyejhCn.png)
# ML-Ready Multi-Modal Image Dataset from SDO
## Overview
This dataset provides machine learning (ML)-ready solar data curated from NASA’s Solar Dynamics Observatory (SDO), covering observations from **May 13, 2010, to Dec 31, 2024**. It includes Level-1.5 processed data from: **Atmospheric Imaging Assembly (AIA)**
and **Helioseismic and Magnetic Imager (HMI)**.
The dataset is designed to facilitate large-scale learning applications in heliophysics, such as space weather forecasting, unsupervised representation learning, and scientific foundation model development.
## Dataset Download Instructions
To download the data please visit https://registry.opendata.aws/surya-bench/
- Resource type: `S3 Bucket`
- Amazon Resource Name (ARN): `arn:aws:s3:::nasa-surya-bench`
- AWS CLI Access (No AWS account required): `aws s3 ls --no-sign-request s3://nasa-surya-bench/`
---
## Dataset Structure
**Data Variables:**
```text
- aia94 (y, x) float32 : AIA 94 Å
- aia131 (y, x) float32 : AIA 131 Å
- aia171 (y, x) float32 : AIA 171 Å
- aia193 (y, x) float32 : AIA 193 Å
- aia211 (y, x) float32 : AIA 211 Å
- aia304 (y, x) float32 : AIA 304 Å
- aia335 (y, x) float32 : AIA 335 Å
- aia1600 (y, x) float32 : AIA 1600 Å (UV continuum)
- hmi_m (y, x) float32 : HMI LOS Magnetogram
- hmi_bx (y, x) float32 : HMI Magnetic Field - x component
- hmi_by (y, x) float32 : HMI Magnetic Field - y component
- hmi_bz (y, x) float32 : HMI Magnetic Field - z component
- hmi_v (y, x) float32 : HMI Doppler Velocity
```
## Dataset Details
| Field | Description |
|------------------------|---------------------------------------------|
| **Temporal Coverage** | May 13, 2010 – Dec 31, 2024 |
| **Data Format** | netCDF (`.nc`), float32 |
| **Temporal Granularity**| 12 minutes |
| **Data Shape** | `[13, 4096, 4096]` per file |
| **Channels** | 13 total (AIA EUV ×8 + HMI magnetograms ×5) |
| **Size per File** | ~570 MB |
| **Total Size** | ~360TB |
---
## 📦 Downstream Data Repositories
All the downstream tasks that uses core-sdo dataset can be found in the [SuryaBench Hugging Face Collections](https://huggingface.co/collections/nasa-ibm-ai4science/suryabench)
Each sub-dataset targets a specific task within the heliophysics domain:
| Repository | Task Description |
|------------|------------------|
| [`Surya-bench-solarwind`](https://huggingface.co/datasets/nasa-ibm-ai4science/Surya-bench-solarwind) | Solar wind speed prediction with a 4-day forecast horizon. |
| [`surya-bench-flare-forecasting`](https://huggingface.co/datasets/nasa-ibm-ai4science/surya-bench-flare-forecasting) | Binary classification for solar flare occurrence within 24 hours. |
| [`surya-bench-ar-segmentation`](https://huggingface.co/datasets/nasa-ibm-ai4science/surya-bench-ar-segmentation) | Pixel-wise segmentation of active regions from solar disk images. |
| [`euv_spectra`](https://huggingface.co/datasets/nasa-ibm-ai4science/euv-spectra) | Time-aligned Extreme Ultraviolet (EUV) irradiance spectra from NASA’s SDO/EVE instrument. |
| [`surya-bench-coronal-extrapolation`](https://huggingface.co/datasets/nasa-ibm-ai4science/surya-bench-coronal-extrapolation) | Magnetic field extrapolation from photosphere to corona. |
| [`ar_emergence`](https://huggingface.co/datasets/nasa-ibm-ai4science/ar_emergence) | Forecasting active region emergence based on historical features. |
## License
This dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) License.
#### Authors
Sujit Roy, Dinesha V Hegde, Johannes Schmude, Rohit Lal, Vishal Gaur
corr: [email protected]