Datasets:

Modalities:
Audio
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Dataset Viewer
Auto-converted to Parquet
audio
audioduration (s)
0.29
14
name
stringlengths
40
42
audio/file000_000000000_loc05_day1_00.ogg
audio/file000_000000000_loc05_day1_01.ogg
audio/file000_000000000_loc05_day1_02.ogg
audio/file000_000000000_loc05_day1_03.ogg
audio/file000_000000000_loc05_day1_04.ogg
audio/file000_000000000_loc05_day1_05.ogg
audio/file000_000000000_loc05_day1_06.ogg
audio/file000_000000000_loc05_day1_07.ogg
audio/file000_000000000_loc05_day1_08.ogg
audio/file000_000000000_loc05_day1_09.ogg
audio/file000_000000000_loc05_day1_10.ogg
audio/file000_000000000_loc05_day1_11.ogg
audio/file000_000000000_loc05_day1_12.ogg
audio/file000_000000000_loc05_day1_13.ogg
audio/file000_000000000_loc05_day1_14.ogg
audio/file000_007680000_loc05_day1_00.ogg
audio/file000_007680000_loc05_day1_01.ogg
audio/file000_007680000_loc05_day1_02.ogg
audio/file000_007680000_loc05_day1_03.ogg
audio/file000_007680000_loc05_day1_04.ogg
audio/file000_007680000_loc05_day1_05.ogg
audio/file000_007680000_loc05_day1_06.ogg
audio/file000_007680000_loc05_day1_07.ogg
audio/file000_007680000_loc05_day1_08.ogg
audio/file000_007680000_loc05_day1_09.ogg
audio/file000_007680000_loc05_day1_10.ogg
audio/file000_007680000_loc05_day1_11.ogg
audio/file000_007680000_loc05_day1_12.ogg
audio/file000_007680000_loc05_day1_13.ogg
audio/file000_007680000_loc05_day1_14.ogg
audio/file000_007680000_loc05_day1_15.ogg
audio/file000_007680000_loc05_day1_16.ogg
audio/file000_007680000_loc05_day1_17.ogg
audio/file000_007680000_loc05_day1_18.ogg
audio/file000_007680000_loc05_day1_19.ogg
audio/file000_007680000_loc05_day1_20.ogg
audio/file000_007680000_loc05_day1_21.ogg
audio/file000_007680000_loc05_day1_22.ogg
audio/file000_007680000_loc05_day1_23.ogg
audio/file000_007680000_loc05_day1_24.ogg
audio/file000_007680000_loc05_day1_25.ogg
audio/file000_007680000_loc05_day1_26.ogg
audio/file000_007680000_loc05_day1_27.ogg
audio/file000_021600000_loc05_day1_0.ogg
audio/file000_021600000_loc05_day1_1.ogg
audio/file000_023040000_loc05_day1_0.ogg
audio/file000_023040000_loc05_day1_1.ogg
audio/file000_024480000_loc05_day1_0.ogg
audio/file000_024480000_loc05_day1_1.ogg
audio/file000_024480000_loc05_day1_2.ogg
audio/file000_024480000_loc05_day1_3.ogg
audio/file000_026880000_loc05_day1_00.ogg
audio/file000_026880000_loc05_day1_01.ogg
audio/file000_026880000_loc05_day1_02.ogg
audio/file000_026880000_loc05_day1_03.ogg
audio/file000_026880000_loc05_day1_04.ogg
audio/file000_026880000_loc05_day1_05.ogg
audio/file000_026880000_loc05_day1_06.ogg
audio/file000_026880000_loc05_day1_07.ogg
audio/file000_026880000_loc05_day1_08.ogg
audio/file000_026880000_loc05_day1_09.ogg
audio/file000_026880000_loc05_day1_10.ogg
audio/file000_026880000_loc05_day1_11.ogg
audio/file000_026880000_loc05_day1_12.ogg
audio/file000_026880000_loc05_day1_13.ogg
audio/file000_026880000_loc05_day1_14.ogg
audio/file000_026880000_loc05_day1_15.ogg
audio/file000_026880000_loc05_day1_16.ogg
audio/file000_026880000_loc05_day1_17.ogg
audio/file000_026880000_loc05_day1_18.ogg
audio/file000_026880000_loc05_day1_19.ogg
audio/file000_036960000_loc05_day1_00.ogg
audio/file000_036960000_loc05_day1_01.ogg
audio/file000_036960000_loc05_day1_02.ogg
audio/file000_036960000_loc05_day1_03.ogg
audio/file000_036960000_loc05_day1_04.ogg
audio/file000_036960000_loc05_day1_05.ogg
audio/file000_036960000_loc05_day1_06.ogg
audio/file000_036960000_loc05_day1_07.ogg
audio/file000_036960000_loc05_day1_08.ogg
audio/file000_036960000_loc05_day1_09.ogg
audio/file000_036960000_loc05_day1_10.ogg
audio/file000_042720000_loc05_day1_00.ogg
audio/file000_042720000_loc05_day1_01.ogg
audio/file000_042720000_loc05_day1_02.ogg
audio/file000_042720000_loc05_day1_03.ogg
audio/file000_042720000_loc05_day1_04.ogg
audio/file000_042720000_loc05_day1_05.ogg
audio/file000_042720000_loc05_day1_06.ogg
audio/file000_042720000_loc05_day1_07.ogg
audio/file000_042720000_loc05_day1_08.ogg
audio/file000_042720000_loc05_day1_09.ogg
audio/file000_042720000_loc05_day1_10.ogg
audio/file000_042720000_loc05_day1_11.ogg
audio/file000_042720000_loc05_day1_12.ogg
audio/file000_042720000_loc05_day1_13.ogg
audio/file000_042720000_loc05_day1_14.ogg
audio/file000_042720000_loc05_day1_15.ogg
audio/file000_042720000_loc05_day1_16.ogg
audio/file000_042720000_loc05_day1_17.ogg
End of preview. Expand in Data Studio

WHAM!48kHz noise dataset

This is a mirror of the WHAM!48kHz noise dataset. The original files were segmented and converted from WAV to Opus to reduce the size and accelerate streaming.

Usage

import io

import soundfile as sf
from datasets import Features, Value, load_dataset

for item in load_dataset(
    "philgzl/wham",
    split="train",
    streaming=True,
    features=Features({"audio": Value("binary"), "name": Value("string")}),
):
    print(item["name"])
    buffer = io.BytesIO(item["audio"])
    x, fs = sf.read(buffer)
    # do stuff...

Citation

@inproceedings{wichern2019wham,
  title = {{WHAM!}: {Extending} speech separation to noisy environments},
  author = {Wichern, Gordon and Antognini, Joe and Flynn, Michael and Zhu, Licheng Richard and McQuinn, Emmett and Crow, Dwight and Manilow, Ethan and Roux, Jonathan Le},
  booktitle = {Proc. Interspeech},
  pages = {1368--1372},
  year = {2019},
}
Downloads last month
226