|
--- |
|
pretty_name: KoBEST |
|
annotations_creators: |
|
- expert-generated |
|
language_creators: |
|
- expert-generated |
|
language: |
|
- ko |
|
license: |
|
- cc-by-sa-4.0 |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- 10K<n<100K |
|
source_datasets: |
|
- original |
|
configs: |
|
- config_name: boolq |
|
data_files: |
|
- split: train |
|
path: "boolq/train.jsonl" |
|
- split: test |
|
path: "boolq/test.jsonl" |
|
- split: validation |
|
path: "boolq/validation.jsonl" |
|
|
|
- config_name: copa |
|
data_files: |
|
- split: train |
|
path: "copa/train.jsonl" |
|
- split: test |
|
path: "copa/test.jsonl" |
|
- split: validation |
|
path: "copa/validation.jsonl" |
|
|
|
- config_name: hellaswag |
|
data_files: |
|
- split: train |
|
path: "hellaswag/train.jsonl" |
|
- split: test |
|
path: "hellaswag/test.jsonl" |
|
- split: validation |
|
path: "hellaswag/validation.jsonl" |
|
|
|
- config_name: sentineg |
|
data_files: |
|
- split: train |
|
path: "sentineg/train.jsonl" |
|
- split: test |
|
path: "sentineg/test.jsonl" |
|
- split: test_originated |
|
path: "sentineg/test_originated.jsonl" |
|
- split: validation |
|
path: "sentineg/validation.jsonl" |
|
|
|
- config_name: wic |
|
data_files: |
|
- split: train |
|
path: "wic/train.jsonl" |
|
- split: test |
|
path: "wic/test.jsonl" |
|
- split: validation |
|
path: "wic/validation.jsonl" |
|
--- |
|
|
|
# Dataset Card for KoBEST |
|
|
|
## Table of Contents |
|
- [Table of Contents](#table-of-contents) |
|
- [Dataset Description](#dataset-description) |
|
- [Dataset Summary](#dataset-summary) |
|
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) |
|
- [Languages](#languages) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Data Instances](#data-instances) |
|
- [Data Fields](#data-fields) |
|
- [Data Splits](#data-splits) |
|
- [Dataset Creation](#dataset-creation) |
|
- [Curation Rationale](#curation-rationale) |
|
- [Source Data](#source-data) |
|
- [Annotations](#annotations) |
|
- [Personal and Sensitive Information](#personal-and-sensitive-information) |
|
- [Considerations for Using the Data](#considerations-for-using-the-data) |
|
- [Social Impact of Dataset](#social-impact-of-dataset) |
|
- [Discussion of Biases](#discussion-of-biases) |
|
- [Other Known Limitations](#other-known-limitations) |
|
- [Additional Information](#additional-information) |
|
- [Dataset Curators](#dataset-curators) |
|
- [Licensing Information](#licensing-information) |
|
- [Citation Information](#citation-information) |
|
- [Contributions](#contributions) |
|
|
|
## Dataset Description |
|
|
|
- **Repository:** https://github.com/SKT-LSL/KoBEST_datarepo |
|
- **Paper:** |
|
- **Point of Contact:** https://github.com/SKT-LSL/KoBEST_datarepo/issues |
|
|
|
### Dataset Summary |
|
|
|
KoBEST is a Korean benchmark suite consists of 5 natural language understanding tasks that requires advanced knowledge in Korean. |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
Boolean Question Answering, Choice of Plausible Alternatives, Words-in-Context, HellaSwag, Sentiment Negation Recognition |
|
|
|
### Languages |
|
|
|
`ko-KR` |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
#### KB-BoolQ |
|
An example of a data point looks as follows. |
|
``` |
|
{'paragraph': '두아 리파(Dua Lipa, 1995년 8월 22일 ~ )는 잉글랜드의 싱어송라이터, 모델이다. BBC 사운드 오브 2016 명단에 노미닛되었다. 싱글 "Be the One"가 영국 싱글 차트 9위까지 오르는 등 성과를 보여주었다.', |
|
'question': '두아 리파는 영국인인가?', |
|
'label': 1} |
|
``` |
|
|
|
#### KB-COPA |
|
An example of a data point looks as follows. |
|
``` |
|
{'premise': '물을 오래 끓였다.', |
|
'question': '결과', |
|
'alternative_1': '물의 양이 늘어났다.', |
|
'alternative_2': '물의 양이 줄어들었다.', |
|
'label': 1} |
|
``` |
|
|
|
#### KB-WiC |
|
An example of a data point looks as follows. |
|
``` |
|
{'word': '양분', |
|
'context_1': '토양에 [양분]이 풍부하여 나무가 잘 자란다. ', |
|
'context_2': '태아는 모체로부터 [양분]과 산소를 공급받게 된다.', |
|
'label': 1} |
|
``` |
|
|
|
#### KB-HellaSwag |
|
An example of a data point looks as follows. |
|
``` |
|
{'context': '모자를 쓴 투수가 타자에게 온 힘을 다해 공을 던진다. 공이 타자에게 빠른 속도로 다가온다. 타자가 공을 배트로 친다. 배트에서 깡 소리가 난다. 공이 하늘 위로 날아간다.', |
|
'ending_1': '외야수가 떨어지는 공을 글러브로 잡는다.', |
|
'ending_2': '외야수가 공이 떨어질 위치에 자리를 잡는다.', |
|
'ending_3': '심판이 아웃을 외친다.', |
|
'ending_4': '외야수가 공을 따라 뛰기 시작한다.', |
|
'label': 3} |
|
``` |
|
|
|
#### KB-SentiNeg |
|
An example of a data point looks as follows. |
|
``` |
|
{'sentence': '택배사 정말 마음에 듬', |
|
'label': 1} |
|
``` |
|
|
|
### Data Fields |
|
|
|
### KB-BoolQ |
|
+ `paragraph`: a `string` feature |
|
+ `question`: a `string` feature |
|
+ `label`: a classification label, with possible values `False`(0) and `True`(1) |
|
|
|
|
|
### KB-COPA |
|
+ `premise`: a `string` feature |
|
+ `question`: a `string` feature |
|
+ `alternative_1`: a `string` feature |
|
+ `alternative_2`: a `string` feature |
|
+ `label`: an answer candidate label, with possible values `alternative_1`(0) and `alternative_2`(1) |
|
|
|
|
|
### KB-WiC |
|
+ `target_word`: a `string` feature |
|
+ `context_1`: a `string` feature |
|
+ `context_2`: a `string` feature |
|
+ `label`: a classification label, with possible values `False`(0) and `True`(1) |
|
|
|
### KB-HellaSwag |
|
+ `target_word`: a `string` feature |
|
+ `context_1`: a `string` feature |
|
+ `context_2`: a `string` feature |
|
+ `label`: a classification label, with possible values `False`(0) and `True`(1) |
|
|
|
### KB-SentiNeg |
|
+ `sentence`: a `string` feature |
|
+ `label`: a classification label, with possible values `Negative`(0) and `Positive`(1) |
|
|
|
|
|
### Data Splits |
|
|
|
#### KB-BoolQ |
|
|
|
+ train: 3,665 |
|
+ dev: 700 |
|
+ test: 1,404 |
|
|
|
#### KB-COPA |
|
|
|
+ train: 3,076 |
|
+ dev: 1,000 |
|
+ test: 1,000 |
|
|
|
#### KB-WiC |
|
|
|
+ train: 3,318 |
|
+ dev: 1,260 |
|
+ test: 1,260 |
|
|
|
#### KB-HellaSwag |
|
|
|
+ train: 3,665 |
|
+ dev: 700 |
|
+ test: 1,404 |
|
|
|
#### KB-SentiNeg |
|
|
|
+ train: 3,649 |
|
+ dev: 400 |
|
+ test: 397 |
|
+ test_originated: 397 (Corresponding training data where the test set is originated from.) |
|
|
|
## Dataset Creation |
|
|
|
### Curation Rationale |
|
|
|
[More Information Needed] |
|
|
|
### Source Data |
|
|
|
#### Initial Data Collection and Normalization |
|
|
|
[More Information Needed] |
|
|
|
#### Who are the source language producers? |
|
|
|
[More Information Needed] |
|
|
|
### Annotations |
|
|
|
#### Annotation process |
|
|
|
[More Information Needed] |
|
|
|
#### Who are the annotators? |
|
|
|
[More Information Needed] |
|
|
|
### Personal and Sensitive Information |
|
|
|
[More Information Needed] |
|
|
|
## Considerations for Using the Data |
|
|
|
### Social Impact of Dataset |
|
|
|
[More Information Needed] |
|
|
|
### Discussion of Biases |
|
|
|
[More Information Needed] |
|
|
|
### Other Known Limitations |
|
|
|
[More Information Needed] |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
[More Information Needed] |
|
|
|
### Licensing Information |
|
|
|
``` |
|
@misc{https://doi.org/10.48550/arxiv.2204.04541, |
|
doi = {10.48550/ARXIV.2204.04541}, |
|
url = {https://arxiv.org/abs/2204.04541}, |
|
author = {Kim, Dohyeong and Jang, Myeongjun and Kwon, Deuk Sin and Davis, Eric}, |
|
title = {KOBEST: Korean Balanced Evaluation of Significant Tasks}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
} |
|
``` |
|
|
|
[More Information Needed] |
|
|
|
### Contributions |
|
|
|
Thanks to [@MJ-Jang](https://github.com/MJ-Jang) for adding this dataset. |