Datasets:
chrom
stringclasses 22
values | pos
int64 99.5k
249M
| ref
stringclasses 4
values | alt
stringclasses 4
values | pip
float64 0
1
| trait
stringclasses 259
values | label
bool 2
classes | maf
float64 0
0.5
| ld_score
float64 1.53
628
| consequence
stringclasses 16
values | tss_dist
int64 0
1.58M
| match_group
stringlengths 5
37
|
|---|---|---|---|---|---|---|---|---|---|---|---|
1
| 867,476
|
C
|
T
| 0.00156
| false
| 0.079465
| 44.053
|
non_coding_transcript_exon_variant
| 56,446
|
non_coding_transcript_exon_variant_0
|
|
1
| 868,052
|
T
|
C
| 0.001791
| false
| 0.077747
| 44.057
|
non_coding_transcript_exon_variant
| 55,870
|
non_coding_transcript_exon_variant_0
|
|
1
| 868,635
|
A
|
G
| 0.004349
| false
| 0.075255
| 43.639
|
non_coding_transcript_exon_variant
| 55,287
|
non_coding_transcript_exon_variant_0
|
|
1
| 870,176
|
T
|
A
| 0
| false
| 0.084371
| 37.271
|
non_coding_transcript_exon_variant
| 53,746
|
non_coding_transcript_exon_variant_0
|
|
1
| 1,052,930
|
A
|
G
| 0.001467
| false
| 0.058385
| 46.907
|
non_coding_transcript_exon_variant
| 18,823
|
non_coding_transcript_exon_variant_1
|
|
1
| 1,359,031
|
C
|
T
| 0.003126
| false
| 0.025499
| 89.382
|
PLS_flank
| 236
|
PLS_flank_0
|
|
1
| 1,704,180
|
T
|
C
| 0
| false
| 0.40899
| 97.129
|
non_coding_transcript_exon_variant
| 11,384
|
non_coding_transcript_exon_variant_2
|
|
1
| 1,989,803
|
A
|
G
| 0
| false
| 0.26523
| 45.391
|
dELS
| 1,125
|
dELS_3
|
|
1
| 2,293,397
|
G
|
A
| 0.999932
|
Height
| true
| 0.37057
| 32.302
|
dELS
| 65,077
|
dELS_0
|
1
| 2,299,360
|
T
|
C
| 0.002934
| false
| 0.3705
| 36.621
|
dELS
| 71,040
|
dELS_0
|
|
1
| 2,315,482
|
C
|
G
| 0
| false
| 0.010493
| 14.476
|
non_coding_transcript_exon_variant
| 72,854
|
non_coding_transcript_exon_variant_6
|
|
1
| 2,392,128
|
T
|
C
| 0.008659
| false
| 0.44831
| 48.579
|
PLS
| 237
|
PLS_4
|
|
1
| 2,409,065
|
C
|
T
| 0.003446
| false
| 0.31807
| 36.147
|
dELS
| 3,474
|
dELS_7
|
|
1
| 2,416,601
|
T
|
C
| 0.001064
| false
| 0.33711
| 36.202
|
dELS
| 2,803
|
dELS_7
|
|
1
| 2,869,701
|
G
|
T
| 0
| false
| 0.001792
| 4.8399
|
DNase-H3K4me3
| 68,007
|
DNase-H3K4me3_0
|
|
1
| 2,878,207
|
G
|
C
| 0
| false
| 0.001781
| 3.6632
|
DNase-H3K4me3
| 76,513
|
DNase-H3K4me3_0
|
|
1
| 3,079,632
|
C
|
G
| 0
| false
| 0.49644
| 35.326
|
dELS
| 10,420
|
dELS_9
|
|
1
| 3,080,038
|
T
|
C
| 0.999895
|
MCH,MCV,Plt,RBC
| true
| 0.23272
| 31.606
|
dELS
| 10,826
|
dELS_1
|
1
| 3,409,530
|
C
|
G
| 0.000537
| false
| 0.23433
| 33.908
|
dELS
| 13,038
|
dELS_1
|
|
1
| 3,409,624
|
A
|
G
| 0
| false
| 0.23428
| 33.922
|
dELS
| 13,132
|
dELS_1
|
|
1
| 3,431,704
|
G
|
C
| 0.000904
| false
| 0.2206
| 18.586
|
dELS
| 22,960
|
dELS_6
|
|
1
| 3,530,431
|
C
|
T
| 0.005246
| false
| 0.17759
| 35.05
|
pELS
| 991
|
pELS_4
|
|
1
| 3,543,648
|
G
|
T
| 0
| false
| 0.11245
| 14.434
|
dELS_flank
| 12,199
|
dELS_flank_9
|
|
1
| 3,658,759
|
T
|
C
| 0
| false
| 0.11229
| 17.07
|
dELS_flank
| 5,997
|
dELS_flank_9
|
|
1
| 3,690,596
|
G
|
A
| 0
| false
| 0.066949
| 26.88
|
PLS
| 75
|
PLS_2
|
|
1
| 3,718,901
|
G
|
C
| 0
| false
| 0.48348
| 35.17
|
dELS
| 20,842
|
dELS_9
|
|
1
| 3,774,964
|
A
|
G
| 0.999973
|
Hb,HbA1c,MCHC,RBC
| true
| 0.23057
| 95.317
|
dELS
| 2,138
|
dELS_2
|
1
| 3,840,004
|
C
|
T
| 0
| false
| 0.001743
| 6.7618
|
intron_variant
| 17,189
|
intron_variant_2
|
|
1
| 3,904,770
|
G
|
A
| 0
| false
| 0.27154
| 47.968
|
dELS
| 4,497
|
dELS_3
|
|
1
| 3,959,637
|
A
|
G
| 0
| false
| 0.37341
| 27.032
|
dELS
| 59,364
|
dELS_0
|
|
1
| 4,571,025
|
C
|
G
| 0
| false
| 0.077068
| 84.633
|
pELS
| 83,583
|
pELS_3
|
|
1
| 4,694,484
|
C
|
T
| 0
| false
| 0.34943
| 25.535
|
dELS_flank
| 39,751
|
dELS_flank_5
|
|
1
| 4,725,471
|
C
|
T
| 0
| false
| 0.006133
| 7.7017
|
DNase-H3K4me3
| 70,738
|
DNase-H3K4me3_0
|
|
1
| 5,460,017
|
C
|
G
| 0
| false
| 0.46288
| 37.6
|
dELS
| 530,909
|
dELS_12
|
|
1
| 5,486,106
|
T
|
C
| 0
| false
| 0.35941
| 42.571
|
dELS
| 504,820
|
dELS_12
|
|
1
| 6,058,884
|
T
|
C
| 0
| false
| 0.22973
| 92.037
|
dELS
| 6,868
|
dELS_2
|
|
1
| 6,100,503
|
A
|
G
| 0
| false
| 0.21939
| 48.859
|
3_prime_UTR_variant
| 6,268
|
3_prime_UTR_variant_1
|
|
1
| 6,100,638
|
A
|
G
| 0
| false
| 0.21997
| 48.887
|
3_prime_UTR_variant
| 6,133
|
3_prime_UTR_variant_1
|
|
1
| 6,100,816
|
A
|
G
| 0
| false
| 0.21939
| 48.836
|
3_prime_UTR_variant
| 5,955
|
3_prime_UTR_variant_1
|
|
1
| 6,100,898
|
A
|
G
| 0
| false
| 0.2197
| 48.831
|
3_prime_UTR_variant
| 5,873
|
3_prime_UTR_variant_1
|
|
1
| 6,104,620
|
C
|
A
| 0
| false
| 0.063585
| 21.243
|
3_prime_UTR_variant
| 2,151
|
3_prime_UTR_variant_3
|
|
1
| 6,104,626
|
C
|
A
| 0
| false
| 0.06176
| 22.678
|
3_prime_UTR_variant
| 2,145
|
3_prime_UTR_variant_3
|
|
1
| 6,236,178
|
T
|
G
| 0.001313
| false
| 0.44911
| 43.011
|
PLS
| 213
|
PLS_4
|
|
1
| 6,247,570
|
G
|
A
| 0
| false
| 0.043267
| 14.449
|
3_prime_UTR_variant
| 3,390
|
3_prime_UTR_variant_3
|
|
1
| 6,524,747
|
T
|
A
| 0
| false
| 0.099925
| 65.263
|
3_prime_UTR_variant
| 4,672
|
3_prime_UTR_variant_2
|
|
1
| 6,812,085
|
C
|
T
| 0
| false
| 0.008041
| 16.361
|
dELS_flank
| 26,553
|
dELS_flank_13
|
|
1
| 6,892,067
|
T
|
G
| 0
| false
| 0.15268
| 121.5
|
dELS
| 106,535
|
dELS_17
|
|
1
| 7,468,786
|
C
|
T
| 0.000526
| false
| 0.27177
| 36.888
|
dELS_flank
| 195,498
|
dELS_flank_12
|
|
1
| 7,469,958
|
T
|
G
| 0.000619
| false
| 0.2947
| 39.842
|
dELS_flank
| 194,326
|
dELS_flank_12
|
|
1
| 7,472,230
|
C
|
T
| 0.001635
| false
| 0.26527
| 37.012
|
dELS_flank
| 192,054
|
dELS_flank_12
|
|
1
| 7,506,006
|
G
|
A
| 0
| false
| 0.27659
| 31.236
|
dELS
| 158,278
|
dELS_27
|
|
1
| 7,509,847
|
C
|
A
| 0
| false
| 0.27276
| 30.199
|
dELS
| 154,437
|
dELS_27
|
|
1
| 7,509,946
|
C
|
A
| 0
| false
| 0.27727
| 30.38
|
dELS
| 154,338
|
dELS_27
|
|
1
| 7,510,343
|
T
|
C
| 0
| false
| 0.26775
| 27.871
|
dELS
| 153,941
|
dELS_27
|
|
1
| 7,905,951
|
C
|
T
| 0
| false
| 0.001823
| 6.9218
|
intergenic_variant
| 29,148
|
intergenic_variant_3
|
|
1
| 8,941,902
|
T
|
A
| 0
| false
| 0.14329
| 56.84
|
dELS
| 3,964
|
dELS_18
|
|
1
| 8,945,251
|
C
|
T
| 0.000528
| false
| 0.01779
| 14.655
|
pELS
| 615
|
pELS_1
|
|
1
| 9,042,898
|
C
|
T
| 0
| false
| 0.38311
| 86.804
|
dELS
| 16,474
|
dELS_10
|
|
1
| 9,062,449
|
G
|
A
| 0
| false
| 0.35391
| 82.624
|
dELS_flank
| 7,154
|
dELS_flank_8
|
|
1
| 9,180,545
|
C
|
T
| 0.000542
| false
| 0.060061
| 35.611
|
non_coding_transcript_exon_variant
| 51,442
|
non_coding_transcript_exon_variant_0
|
|
1
| 9,181,780
|
G
|
A
| 1
|
AST,Mono
| true
| 0.074322
| 35.472
|
non_coding_transcript_exon_variant
| 52,677
|
non_coding_transcript_exon_variant_0
|
1
| 9,295,877
|
G
|
T
| 0.993319
|
DVT
| true
| 0.26506
| 46.307
|
dELS
| 1,348
|
dELS_3
|
1
| 9,299,718
|
A
|
T
| 0.005775
| false
| 0.2667
| 48.34
|
dELS
| 5,189
|
dELS_3
|
|
1
| 9,315,952
|
G
|
A
| 0.002646
| false
| 0.45496
| 39.813
|
dELS
| 21,423
|
dELS_21
|
|
1
| 9,362,918
|
T
|
C
| 0.000513
| false
| 0.23307
| 34.994
|
dELS
| 7,210
|
dELS_1
|
|
1
| 9,364,340
|
A
|
G
| 0
| false
| 0.22994
| 35.367
|
dELS
| 8,632
|
dELS_1
|
|
1
| 9,433,231
|
C
|
T
| 0.00839
| false
| 0.073274
| 45.728
|
intron_variant
| 77,523
|
intron_variant_10
|
|
1
| 9,439,187
|
G
|
A
| 0
| false
| 0.17008
| 43.092
|
pELS
| 83,479
|
pELS_3
|
|
1
| 9,585,043
|
C
|
T
| 0
| false
| 0.054223
| 19.606
|
3_prime_UTR_variant
| 3,867
|
3_prime_UTR_variant_3
|
|
1
| 9,692,590
|
C
|
T
| 0
| false
| 0.41698
| 65.763
|
intron_variant
| 3,019
|
intron_variant_1
|
|
1
| 10,211,630
|
C
|
G
| 0.999686
|
Plt
| true
| 0.11408
| 123.87
|
5_prime_UTR_variant
| 13
|
5_prime_UTR_variant_0
|
1
| 10,403,534
|
T
|
G
| 0.000977
| false
| 0.026385
| 82.276
|
dELS_flank
| 3,901
|
dELS_flank_1
|
|
1
| 10,630,891
|
C
|
T
| 0.985187
|
eGFR
| true
| 0.059295
| 52.934
|
dELS
| 14,184
|
dELS_4
|
1
| 10,692,299
|
T
|
C
| 0.99998
|
eGFRcys
| true
| 0.2895
| 38.555
|
dELS_flank
| 47,222
|
dELS_flank_0
|
1
| 10,729,577
|
C
|
T
| 0.002886
| false
| 0.36561
| 37.956
|
dELS
| 67,068
|
dELS_0
|
|
1
| 10,729,640
|
T
|
C
| 0.001415
| false
| 0.36326
| 37.842
|
dELS
| 67,005
|
dELS_0
|
|
1
| 10,789,368
|
G
|
C
| 0.007112
| false
| 0.22561
| 32.86
|
dELS
| 7,277
|
dELS_1
|
|
1
| 10,805,966
|
C
|
T
| 0
| false
| 0.17489
| 17.134
|
intergenic_variant
| 9,315
|
intergenic_variant_8
|
|
1
| 10,805,973
|
A
|
T
| 0
| false
| 0.17584
| 17.108
|
intergenic_variant
| 9,322
|
intergenic_variant_8
|
|
1
| 10,810,992
|
A
|
C
| 0
| false
| 0.1796
| 17.659
|
intergenic_variant
| 14,341
|
intergenic_variant_8
|
|
1
| 10,994,429
|
C
|
A
| 0
| false
| 0.1753
| 19.471
|
intergenic_variant
| 12,352
|
intergenic_variant_8
|
|
1
| 11,651,348
|
G
|
A
| 0
| false
| 0.11644
| 12.609
|
dELS_flank
| 3,026
|
dELS_flank_9
|
|
1
| 11,664,035
|
G
|
C
| 0.000678
| false
| 0.47269
| 39.848
|
PLS
| 164
|
PLS_4
|
|
1
| 11,673,018
|
T
|
C
| 0
| false
| 0.2303
| 38.945
|
non_coding_transcript_exon_variant
| 4,321
|
non_coding_transcript_exon_variant_4
|
|
1
| 11,848,089
|
C
|
G
| 0.999999
|
MAP,SBP
| true
| 0.010641
| 47.372
|
5_prime_UTR_variant
| 255
|
5_prime_UTR_variant_1
|
1
| 11,876,856
|
C
|
T
| 0.000721
| false
| 0.41386
| 131.81
|
pELS
| 17,910
|
pELS_6
|
|
1
| 11,877,306
|
C
|
T
| 0.0005
| false
| 0.40983
| 134.9
|
pELS
| 18,360
|
pELS_6
|
|
1
| 12,039,288
|
A
|
G
| 1
|
Eosino
| true
| 0.099751
| 53.631
|
dELS
| 19,789
|
dELS_5
|
1
| 12,040,885
|
A
|
T
| 0
| false
| 0.088348
| 67.062
|
dELS
| 21,386
|
dELS_14
|
|
1
| 12,044,283
|
G
|
C
| 0
| false
| 0.088431
| 66.75
|
dELS
| 19,019
|
dELS_14
|
|
1
| 12,150,629
|
A
|
G
| 0.000784
| false
| 0.48917
| 37.025
|
dELS
| 16,361
|
dELS_9
|
|
1
| 12,158,564
|
G
|
A
| 0
| false
| 0.48127
| 34.973
|
dELS
| 8,426
|
dELS_9
|
|
1
| 12,186,118
|
C
|
T
| 0.999987
|
Eosino
| true
| 0.2179
| 17.311
|
dELS
| 19,114
|
dELS_6
|
1
| 12,218,875
|
A
|
G
| 0
| false
| 0.22412
| 16.868
|
dELS
| 11,154
|
dELS_6
|
|
1
| 12,601,409
|
G
|
C
| 0.914738
|
RBC
| true
| 0.32957
| 37.798
|
dELS
| 5,100
|
dELS_7
|
1
| 12,615,695
|
G
|
A
| 0
| false
| 0.32085
| 36.525
|
dELS
| 1,099
|
dELS_7
|
|
1
| 12,617,607
|
G
|
A
| 0
| false
| 0.009083
| 6.3441
|
5_prime_UTR_variant
| 602
|
5_prime_UTR_variant_3
|
|
1
| 12,618,735
|
C
|
T
| 0
| false
| 0.22592
| 21.571
|
non_coding_transcript_exon_variant
| 524
|
non_coding_transcript_exon_variant_4
|
|
1
| 12,758,908
|
A
|
G
| 0
| false
| 0.060271
| 51.889
|
dELS
| 12,482
|
dELS_4
|
|
1
| 13,832,260
|
T
|
G
| 0
| false
| 0.37317
| 36.572
|
dELS
| 60,531
|
dELS_0
|
🧬 TraitGym
Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics
🏆 Leaderboard: https://huggingface.co/spaces/songlab/TraitGym-leaderboard
⚡️ Quick start
- Load a dataset
from datasets import load_dataset dataset = load_dataset("songlab/TraitGym", "mendelian_traits", split="test") - Example notebook to run variant effect prediction with a gLM, runs in 5 min on Google Colab:
TraitGym.ipynb
🤗 Resources (https://huggingface.co/datasets/songlab/TraitGym)
- Datasets:
{dataset}/test.parquet - Subsets:
{dataset}/subset/{subset}.parquet - Features:
{dataset}/features/{features}.parquet - Predictions:
{dataset}/preds/{subset}/{model}.parquet - Metrics:
{dataset}/{metric}/{subset}/{model}.csv
dataset examples (load_dataset config name):
mendelian_traits_matched_9(mendelian_traits)complex_traits_matched_9(complex_traits)mendelian_traits_all(mendelian_traits_full)complex_traits_all(complex_traits_full)
subset examples:
all(default)3_prime_UTR_variantdiseaseBMI
features examples:
GPN-MSA_LLRGPN-MSA_InnerProductsBorzoi_L2
model examples:
GPN-MSA_LLR.minus.scoreGPN-MSA.LogisticRegression.chromCADD+GPN-MSA+Borzoi.LogisticRegression.chrom
metric examples:
AUPRC_by_chrom_weighted_average(main metric)AUPRC
💻 Code (https://github.com/songlab-cal/TraitGym)
- Tries to follow recommended Snakemake structure
- GPN-Promoter code is in the main GPN repo
Installation
First, clone the repo and cd into it.
Second, install the dependencies:
conda env create -f workflow/envs/general.yaml
conda activate TraitGym
Optionally, download precomputed datasets and predictions (6.7G):
mkdir -p results/dataset
huggingface-cli download songlab/TraitGym --repo-type dataset --local-dir results/dataset/
Running
To compute a specific result, specify its path:
snakemake --cores all <path>
Example paths (these are already computed):
# zero-shot LLR
results/dataset/complex_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_absLLR.plus.score.csv
# logistic regression/linear probing
results/dataset/complex_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA.LogisticRegression.chrom.csv
We recommend the following:
# Snakemake sometimes gets confused about which files it needs to rerun and this forces
# not to rerun any existing file
snakemake --cores all <path> --touch
# to output an execution plan
snakemake --cores all <path> --dry-run
To evaluate your own set of model features, place a dataframe of shape n_variants,n_features in results/dataset/{dataset}/features/{features}.parquet.
For zero-shot evaluation of column {feature} and sign {sign} (plus or minus), you would invoke:
snakemake --cores all results/dataset/{dataset}/{metric}/all/{features}.{sign}.{feature}.csv
To train and evaluate a logistic regression model, you would invoke:
snakemake --cores all results/dataset/{dataset}/{metric}/all/{feature_set}.LogisticRegression.chrom.csv
where {feature_set} should first be defined in feature_sets in config/config.yaml (this allows combining features defined in different files).
Citation
@article{traitgym,
title={Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics},
author={Benegas, Gonzalo and Eraslan, G{\"o}kcen and Song, Yun S},
journal={bioRxiv},
pages={2025--02},
year={2025},
publisher={Cold Spring Harbor Laboratory}
}
- Downloads last month
- 267