Dataset Viewer
text
stringlengths 0
83
|
---|
@Switch01
|
A_Rog
|
Aakanksha Agrawal
|
Abhinav Sagar
|
ABHYUDAY PRATAP SINGH
|
abs51295
|
AceGentile
|
Adam Chainz
|
Adam Tse
|
Adam Wentz
|
admin
|
Adrien Morison
|
ahayrapetyan
|
Ahilya
|
AinsworthK
|
Akash Srivastava
|
Alan Yee
|
Albert Tugushev
|
Albert-Guan
|
albertg
|
Alberto Sottile
|
Aleks Bunin
|
Ales Erjavec
|
Alethea Flowers
|
Alex Gaynor
|
Alex Grönholm
|
Alex Hedges
|
Alex Loosley
|
Alex Morega
|
Alex Stachowiak
|
Alexander Shtyrov
|
Alexandre Conrad
|
Alexey Popravka
|
Aleš Erjavec
|
Alli
|
Ami Fischman
|
Ananya Maiti
|
Anatoly Techtonik
|
Anders Kaseorg
|
Andre Aguiar
|
Andreas Lutro
|
Andrei Geacar
|
Andrew Gaul
|
Andrew Shymanel
|
Andrey Bienkowski
|
Andrey Bulgakov
|
Andrés Delfino
|
Andy Freeland
|
Andy Kluger
|
Ani Hayrapetyan
|
Aniruddha Basak
|
Anish Tambe
|
Anrs Hu
|
Anthony Sottile
|
Antoine Musso
|
Anton Ovchinnikov
|
Anton Patrushev
|
Antonio Alvarado Hernandez
|
Antony Lee
|
Antti Kaihola
|
Anubhav Patel
|
Anudit Nagar
|
Anuj Godase
|
AQNOUCH Mohammed
|
AraHaan
|
Arindam Choudhury
|
Armin Ronacher
|
Artem
|
Arun Babu Neelicattu
|
Ashley Manton
|
Ashwin Ramaswami
|
atse
|
Atsushi Odagiri
|
Avinash Karhana
|
Avner Cohen
|
Awit (Ah-Wit) Ghirmai
|
Baptiste Mispelon
|
Barney Gale
|
barneygale
|
Bartek Ogryczak
|
Bastian Venthur
|
Ben Bodenmiller
|
Ben Darnell
|
Ben Hoyt
|
Ben Mares
|
Ben Rosser
|
Bence Nagy
|
Benjamin Peterson
|
Benjamin VanEvery
|
Benoit Pierre
|
Berker Peksag
|
Bernard
|
Bernard Tyers
|
Bernardo B. Marques
|
Bernhard M. Wiedemann
|
Bertil Hatt
|
Bhavam Vidyarthi
|
Blazej Michalik
|
Bogdan Opanchuk
|
BorisZZZ
|
End of preview. Expand
in Data Studio
nanoLLaVA - Sub 1B Vision-Language Model
Description
nanoLLaVA is a "small but mighty" 1B vision-language model designed to run efficiently on edge devices.
- Base LLM: Quyen-SE-v0.1 (Qwen1.5-0.5B)
- Vision Encoder: google/siglip-so400m-patch14-384
Model | VQA v2 | TextVQA | ScienceQA | POPE | MMMU (Test) | MMMU (Eval) | GQA | MM-VET |
---|---|---|---|---|---|---|---|---|
Score | 70.84 | 46.71 | 58.97 | 84.1 | 28.6 | 30.4 | 54.79 | 23.9 |
Training Data
Training Data will be released later as I am still writing a paper on this. Expect the final final to be much more powerful than the current one.
Finetuning Code
Coming Soon!!!
Usage
You can use with transformers
with the following script:
pip install -U transformers accelerate flash_attn
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings
# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')
# set device
torch.set_default_device('cuda') # or 'cpu'
# create model
model = AutoModelForCausalLM.from_pretrained(
'qnguyen3/nanoLLaVA',
torch_dtype=torch.float16,
device_map='auto',
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
'qnguyen3/nanoLLaVA',
trust_remote_code=True)
# text prompt
prompt = 'Describe this image in detail'
messages = [
{"role": "user", "content": f'<image>\n{prompt}'}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
print(text)
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
# image, sample images can be found in images folder
image = Image.open('/path/to/image.png')
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
# generate
output_ids = model.generate(
input_ids,
images=image_tensor,
max_new_tokens=2048,
use_cache=True)[0]
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
Prompt Format
The model follow the ChatML standard, however, without \n
at the end of <|im_end|>
:
<|im_start|>system
Answer the question<|im_end|><|im_start|>user
<image>
What is the picture about?<|im_end|><|im_start|>assistant
- Downloads last month
- 96