Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
frame
int64
image_timestamp
int64
pos_x
float64
pos_y
float64
pos_z
float64
quat_x
float64
quat_y
float64
quat_z
float64
quat_w
float64
interpolated
bool
0
1,760,731,336,074,678,800
0.233617
0.015742
-0.046532
-0.004656
-0.044925
0.003607
0.998973
true
1
1,760,731,336,090,752,000
0.240926
0.014078
-0.053468
-0.004966
-0.046216
0.004059
0.998911
true
2
1,760,731,336,105,101,000
0.247452
0.012593
-0.05966
-0.005243
-0.047368
0.004463
0.998854
true
3
1,760,731,336,135,293,400
0.263158
0.017787
-0.05511
-0.004811
-0.045703
0.002894
0.998939
true
4
1,760,731,336,163,509,800
0.278673
0.026169
-0.043406
-0.003975
-0.042414
0.000401
0.999092
true
5
1,760,731,336,196,840,000
0.297001
0.036069
-0.029581
-0.002988
-0.038527
-0.002543
0.99925
true
6
1,760,731,336,228,889,000
0.314199
0.041087
-0.026051
-0.002726
-0.037173
-0.004366
0.999296
true
7
1,760,731,336,262,888,000
0.331891
0.04057
-0.034973
-0.003339
-0.038828
-0.004993
0.999228
true
8
1,760,731,336,304,239,000
0.353409
0.039941
-0.045825
-0.004085
-0.040841
-0.005755
0.999141
true
9
1,760,731,336,333,959,700
0.371313
0.043047
-0.04622
-0.00445
-0.040022
-0.00538
0.999174
true
10
1,760,731,336,372,563,000
0.396244
0.04953
-0.041644
-0.004805
-0.037401
-0.004258
0.99928
true
11
1,760,731,336,398,322,400
0.412879
0.053855
-0.038591
-0.005042
-0.035651
-0.003509
0.999345
true
12
1,760,731,336,434,770,000
0.436354
0.058621
-0.036893
-0.005421
-0.034954
-0.002484
0.999371
true
13
1,760,731,336,476,658,700
0.463269
0.062768
-0.03752
-0.005898
-0.035901
-0.00134
0.999337
true
14
1,760,731,336,499,786,200
0.47813
0.065057
-0.037867
-0.006162
-0.036424
-0.000708
0.999317
true
15
1,760,731,336,544,255,200
0.507805
0.054366
-0.043615
-0.006093
-0.03691
0.000697
0.9993
true
16
1,760,731,336,566,197,200
0.522672
0.046025
-0.047484
-0.005943
-0.037044
0.001428
0.999295
true
17
1,760,731,336,605,705,500
0.54944
0.031005
-0.054451
-0.005671
-0.037286
0.002746
0.999285
true
18
1,760,731,336,649,326,800
0.57048
0.035138
-0.049298
-0.004087
-0.035814
0.000985
0.99935
true
19
1,760,731,336,672,853,200
0.580485
0.040634
-0.044492
-0.00303
-0.034746
-0.000472
0.999391
true
20
1,760,731,336,706,002,700
0.594582
0.048378
-0.037722
-0.00154
-0.033241
-0.002524
0.999443
true
21
1,760,731,336,731,835,000
0.609859
0.046012
-0.036795
-0.001166
-0.033416
-0.002844
0.999437
true
22
1,760,731,336,761,803,000
0.630046
0.038443
-0.038216
-0.001182
-0.034392
-0.00248
0.999405
true
23
1,760,731,336,797,421,600
0.654038
0.029448
-0.039906
-0.001201
-0.035552
-0.002047
0.999365
true
24
1,760,731,336,833,660,000
0.676318
0.028558
-0.040837
-0.001864
-0.035238
-0.001624
0.999376
true
25
1,760,731,336,867,061,200
0.694997
0.03494
-0.041009
-0.003035
-0.033648
-0.00125
0.999428
true
26
1,760,731,336,895,290,600
0.710784
0.040334
-0.041154
-0.004025
-0.032304
-0.000934
0.99947
true
27
1,760,731,336,933,554,200
0.733896
0.043652
-0.043473
-0.004722
-0.031632
-0.000457
0.999488
true
28
1,760,731,336,964,978,000
0.755451
0.040379
-0.048563
-0.004327
-0.03281
0.000009
0.999452
true
29
1,760,731,336,997,346,000
0.777653
0.037007
-0.053806
-0.00392
-0.034022
0.000489
0.999413
true
30
1,760,731,337,034,923,000
0.799671
0.034417
-0.054549
-0.002968
-0.033656
0.000003
0.999429
true
31
1,760,731,337,067,169,300
0.815257
0.033361
-0.050482
-0.001729
-0.03178
-0.001332
0.999493
true
32
1,760,731,337,095,807,000
0.829099
0.032422
-0.046871
-0.000629
-0.030113
-0.002518
0.999543
true
33
1,760,731,337,132,780,300
0.851244
0.030348
-0.049683
-0.000379
-0.030619
-0.003795
0.999524
true
34
1,760,731,337,164,671,500
0.874314
0.027758
-0.059052
-0.001249
-0.033524
-0.004661
0.999426
true
35
1,760,731,337,195,417,900
0.896555
0.025261
-0.068084
-0.002089
-0.036324
-0.005497
0.999323
true
36
1,760,731,337,231,967,200
0.92224
0.023438
-0.071038
-0.002743
-0.037132
-0.004772
0.999295
true
37
1,760,731,337,270,549,500
0.948111
0.023397
-0.061337
-0.002867
-0.033833
-0.001178
0.999423
true
38
1,760,731,337,309,794,800
0.974427
0.023355
-0.051469
-0.002993
-0.030476
0.002478
0.999528
true
39
1,760,731,337,345,770,500
0.996632
0.020318
-0.050949
-0.003561
-0.030334
0.003421
0.999528
true
40
1,760,731,337,363,708,400
1.007561
0.018578
-0.051331
-0.003878
-0.030483
0.00371
0.999521
true
41
1,760,731,337,408,131,000
1.034624
0.014271
-0.052275
-0.004664
-0.030854
0.004427
0.999503
true
42
1,760,731,337,432,708,400
1.04663
0.012579
-0.052622
-0.004297
-0.030691
0.004555
0.999509
true
43
1,760,731,337,462,823,000
1.060048
0.010808
-0.05297
-0.003498
-0.03033
0.004596
0.999523
true
44
1,760,731,337,506,744,300
1.079617
0.008224
-0.053478
-0.002333
-0.029803
0.004655
0.999542
true
45
1,760,731,337,534,092,500
1.094552
0.007183
-0.057652
-0.001507
-0.030255
0.003567
0.999535
true
46
1,760,731,337,564,274,400
1.112242
0.006283
-0.063951
-0.000553
-0.031095
0.001873
0.999515
true
47
1,760,731,337,599,067,000
1.132633
0.005246
-0.071213
0.000548
-0.032064
-0.00008
0.999486
true
48
1,760,731,337,637,382,400
1.155493
0.004135
-0.069854
0.000801
-0.032986
-0.000253
0.999455
true
49
1,760,731,337,665,935,400
1.172732
0.003323
-0.064102
0.000504
-0.033599
0.00062
0.999435
true
50
1,760,731,337,698,380,500
1.192321
0.0024
-0.057567
0.000166
-0.034296
0.001611
0.99941
true
51
1,760,731,337,731,547,600
1.211444
0.001631
-0.055187
-0.000927
-0.03409
0.002197
0.999416
true
52
1,760,731,337,763,892,200
1.229232
0.001047
-0.056976
-0.002707
-0.033012
0.00236
0.999449
true
53
1,760,731,337,800,290,000
1.249248
0.00039
-0.058988
-0.00471
-0.031798
0.002544
0.99948
true
54
1,760,731,337,835,595,300
1.271473
-0.001088
-0.06045
-0.005129
-0.032367
0.002972
0.999458
true
55
1,760,731,337,865,460,500
1.291891
-0.002821
-0.061405
-0.004606
-0.033852
0.003477
0.99941
true
56
1,760,731,337,897,713,400
1.31394
-0.004693
-0.062436
-0.004042
-0.035456
0.004023
0.999355
true
57
1,760,731,337,932,064,000
1.332362
-0.002965
-0.063518
-0.002855
-0.035448
0.003197
0.999362
true
58
1,760,731,337,973,950,000
1.34892
0.003482
-0.06482
-0.000725
-0.033436
0.00055
0.99944
true
59
1,760,731,338,000,267,000
1.359324
0.007533
-0.065638
0.000614
-0.032172
-0.001113
0.999482
true
60
1,760,731,338,032,982,000
1.377032
0.008961
-0.067868
0.001415
-0.032701
-0.002461
0.999461
true
61
1,760,731,338,065,096,400
1.398033
0.007628
-0.070976
0.001548
-0.034812
-0.003239
0.999387
true
62
1,760,731,338,100,284,400
1.421043
0.006168
-0.074382
0.001694
-0.037125
-0.004092
0.999301
true
63
1,760,731,338,145,454,600
1.451167
0.003897
-0.074312
0.00092
-0.037
-0.002712
0.999311
true
64
1,760,731,338,181,652,700
1.475522
0.001931
-0.072619
-0.000054
-0.03576
-0.000694
0.99936
true
65
1,760,731,338,200,186,600
1.487993
0.000924
-0.071752
-0.000553
-0.035125
0.00034
0.999383
true
66
1,760,731,338,241,270,300
1.511039
0.000965
-0.066786
-0.001296
-0.034135
0.002048
0.999414
true
67
1,760,731,338,263,356,400
1.522018
0.001685
-0.063183
-0.001583
-0.033731
0.002787
0.999426
true
68
1,760,731,338,295,015,200
1.537754
0.002717
-0.058017
-0.001996
-0.033152
0.003847
0.999441
true
69
1,760,731,338,339,679,700
1.561752
0.00331
-0.057594
-0.001847
-0.033112
0.003353
0.999444
true
70
1,760,731,338,366,121,200
1.576786
0.003263
-0.06051
-0.001421
-0.033448
0.002145
0.999437
true
71
1,760,731,338,398,445,600
1.595165
0.003207
-0.064074
-0.000901
-0.033857
0.000667
0.999426
true
72
1,760,731,338,447,163,000
1.618151
0.002729
-0.065454
0.000783
-0.033255
-0.000935
0.999446
true
73
1,760,731,338,466,523,000
1.626205
0.00245
-0.065088
0.001659
-0.032736
-0.001428
0.999462
true
74
1,760,731,338,507,314,200
1.643175
0.001862
-0.064316
0.003505
-0.031642
-0.002468
0.99949
true
75
1,760,731,338,538,179,300
1.661767
0.000664
-0.066323
0.003131
-0.032845
-0.002558
0.999452
true
76
1,760,731,338,577,707,000
1.688263
-0.00122
-0.070104
0.001825
-0.035333
-0.002349
0.999371
true
77
1,760,731,338,600,339,000
1.703433
-0.002298
-0.072269
0.001077
-0.036757
-0.00223
0.999321
true
78
1,760,731,338,632,237,000
1.721249
-0.002906
-0.07163
0.00007
-0.037026
-0.00128
0.999313
true
79
1,760,731,338,665,895,700
1.736203
-0.002562
-0.06698
-0.000941
-0.035433
0.000565
0.999371
true
80
1,760,731,338,708,300,800
1.755044
-0.00213
-0.06112
-0.002215
-0.033427
0.002888
0.999435
true
81
1,760,731,338,743,057,700
1.775862
-0.000779
-0.060032
-0.001973
-0.033929
0.002979
0.999418
true
82
1,760,731,338,768,200,200
1.791908
0.000381
-0.059926
-0.001563
-0.034687
0.002711
0.999393
true
83
1,760,731,338,798,774,800
1.81142
0.001791
-0.059798
-0.001063
-0.035608
0.002386
0.999362
true
84
1,760,731,338,836,008,000
1.831981
0.003234
-0.060957
0.000111
-0.035303
0.001355
0.999376
true
85
1,760,731,338,871,220,200
1.849191
0.004405
-0.062971
0.001616
-0.034019
-0.000063
0.99942
true
86
1,760,731,338,911,522,600
1.868888
0.005746
-0.065276
0.003339
-0.032548
-0.001685
0.999463
true
87
1,760,731,338,950,162,700
1.893647
0.00368
-0.068896
0.001762
-0.034537
-0.002898
0.999398
true
88
1,760,731,338,967,912,700
1.905251
0.002599
-0.070615
0.00091
-0.035584
-0.003442
0.99936
true
89
1,760,731,338,999,039,500
1.925601
0.000704
-0.073628
-0.000583
-0.03742
-0.004395
0.99929
true
90
1,760,731,339,037,257,500
1.948057
-0.00016
-0.073877
-0.001363
-0.037578
-0.00424
0.999284
true
91
1,760,731,339,062,124,500
1.961328
0.000053
-0.072209
-0.001311
-0.036571
-0.003437
0.999324
true
92
1,760,731,339,097,367,000
1.980135
0.000356
-0.069846
-0.001238
-0.035143
-0.002299
0.999379
true
93
1,760,731,339,133,000,700
1.999591
0.002581
-0.067895
-0.001115
-0.034669
-0.001069
0.999398
true
94
1,760,731,339,165,755,600
2.017859
0.006298
-0.066484
-0.000959
-0.035079
0.000129
0.999384
true
95
1,760,731,339,198,478,600
2.036109
0.010012
-0.065074
-0.000803
-0.035489
0.001326
0.999369
true
96
1,760,731,339,235,247,400
2.054694
0.011174
-0.06487
-0.000387
-0.035302
0.001501
0.999375
true
97
1,760,731,339,265,411,800
2.068539
0.009935
-0.065708
0.000131
-0.034677
0.000792
0.999398
true
98
1,760,731,339,298,103,600
2.083545
0.008592
-0.066617
0.000692
-0.034
0.000024
0.999422
true
99
1,760,731,339,335,717,400
2.102154
0.00821
-0.066101
0.001637
-0.033554
-0.001442
0.999435
true
End of preview. Expand in Data Studio

This repo gives preprocessed dataset that contains front camera videos and groundtruth trajectories created based on our SLAM framework.

Downloads last month
412