id
stringlengths
14
15
text
stringlengths
22
2.51k
source
stringlengths
61
154
9c0a702e9113-16
# First, try to split along class definitions "\nclass ", "\ndef ", "\n\tdef ", # Now split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.RST: return [ # Split along section titles "\n=+\n", "\n-+\n", "\n\*+\n", # Split along directive markers "\n\n.. *\n\n", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.RUBY: return [ # Split along method definitions "\ndef ", "\nclass ", # Split along control flow statements "\nif ", "\nunless ", "\nwhile ", "\nfor ", "\ndo ", "\nbegin ", "\nrescue ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.RUST: return [ # Split along function definitions "\nfn ", "\nconst ", "\nlet ", # Split along control flow statements "\nif ", "\nwhile ", "\nfor ", "\nloop ", "\nmatch ", "\nconst ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.SCALA: return [ # Split along class definitions
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-17
return [ # Split along class definitions "\nclass ", "\nobject ", # Split along method definitions "\ndef ", "\nval ", "\nvar ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\nmatch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.SWIFT: return [ # Split along function definitions "\nfunc ", # Split along class definitions "\nclass ", "\nstruct ", "\nenum ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\ndo ", "\nswitch ", "\ncase ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] elif language == Language.MARKDOWN: return [ # First, try to split along Markdown headings (starting with level 2) "\n#{1,6} ", # Note the alternative syntax for headings (below) is not handled here # Heading level 2 # --------------- # End of code block "```\n", # Horizontal lines "\n\*\*\*+\n", "\n---+\n", "\n___+\n", # Note that this splitter doesn't handle horizontal lines defined # by *three or more* of ***, ---, or ___, but this is not handled "\n\n",
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-18
"\n\n", "\n", " ", "", ] elif language == Language.LATEX: return [ # First, try to split along Latex sections "\n\\\chapter{", "\n\\\section{", "\n\\\subsection{", "\n\\\subsubsection{", # Now split by environments "\n\\\begin{enumerate}", "\n\\\begin{itemize}", "\n\\\begin{description}", "\n\\\begin{list}", "\n\\\begin{quote}", "\n\\\begin{quotation}", "\n\\\begin{verse}", "\n\\\begin{verbatim}", # Now split by math environments "\n\\\begin{align}", "$$", "$", # Now split by the normal type of lines " ", "", ] elif language == Language.HTML: return [ # First, try to split along HTML tags "<body", "<div", "<p", "<br", "<li", "<h1", "<h2", "<h3", "<h4", "<h5", "<h6", "<span", "<table", "<tr", "<td", "<th", "<ul", "<ol", "<header", "<footer", "<nav", # Head "<head", "<style", "<script", "<meta", "<title", "", ] elif language == Language.SOL: return [ # Split along compiler informations definitions
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-19
return [ # Split along compiler informations definitions "\npragma ", "\nusing ", # Split along contract definitions "\ncontract ", "\ninterface ", "\nlibrary ", # Split along method definitions "\nconstructor ", "\ntype ", "\nfunction ", "\nevent ", "\nmodifier ", "\nerror ", "\nstruct ", "\nenum ", # Split along control flow statements "\nif ", "\nfor ", "\nwhile ", "\ndo while ", "\nassembly ", # Split by the normal type of lines "\n\n", "\n", " ", "", ] else: raise ValueError( f"Language {language} is not supported! " f"Please choose from {list(Language)}" ) [docs]class NLTKTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using NLTK.""" def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None: """Initialize the NLTK splitter.""" super().__init__(**kwargs) try: from nltk.tokenize import sent_tokenize self._tokenizer = sent_tokenize except ImportError: raise ImportError( "NLTK is not installed, please install it with `pip install nltk`." ) self._separator = separator [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. splits = self._tokenizer(text)
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-20
splits = self._tokenizer(text) return self._merge_splits(splits, self._separator) [docs]class SpacyTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using Spacy.""" def __init__( self, separator: str = "\n\n", pipeline: str = "en_core_web_sm", **kwargs: Any ) -> None: """Initialize the spacy text splitter.""" super().__init__(**kwargs) try: import spacy except ImportError: raise ImportError( "Spacy is not installed, please install it with `pip install spacy`." ) self._tokenizer = spacy.load(pipeline) self._separator = separator [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" splits = (str(s) for s in self._tokenizer(text).sents) return self._merge_splits(splits, self._separator) # For backwards compatibility [docs]class PythonCodeTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Python syntax.""" def __init__(self, **kwargs: Any) -> None: """Initialize a PythonCodeTextSplitter.""" separators = self.get_separators_for_language(Language.PYTHON) super().__init__(separators=separators, **kwargs) [docs]class MarkdownTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Markdown-formatted headings.""" def __init__(self, **kwargs: Any) -> None: """Initialize a MarkdownTextSplitter.""" separators = self.get_separators_for_language(Language.MARKDOWN)
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
9c0a702e9113-21
separators = self.get_separators_for_language(Language.MARKDOWN) super().__init__(separators=separators, **kwargs) [docs]class LatexTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Latex-formatted layout elements.""" def __init__(self, **kwargs: Any) -> None: """Initialize a LatexTextSplitter.""" separators = self.get_separators_for_language(Language.LATEX) super().__init__(separators=separators, **kwargs)
https://api.python.langchain.com/en/latest/_modules/langchain/text_splitter.html
f1ea40e26720-0
Source code for langchain.cache """Beta Feature: base interface for cache.""" from __future__ import annotations import hashlib import inspect import json import logging from abc import ABC, abstractmethod from datetime import timedelta from typing import ( TYPE_CHECKING, Any, Callable, Dict, Optional, Sequence, Tuple, Type, Union, cast, ) from sqlalchemy import Column, Integer, String, create_engine, select from sqlalchemy.engine.base import Engine from sqlalchemy.orm import Session from langchain.utils import get_from_env try: from sqlalchemy.orm import declarative_base except ImportError: from sqlalchemy.ext.declarative import declarative_base from langchain.embeddings.base import Embeddings from langchain.load.dump import dumps from langchain.load.load import loads from langchain.schema import Generation from langchain.vectorstores.redis import Redis as RedisVectorstore logger = logging.getLogger(__file__) if TYPE_CHECKING: import momento RETURN_VAL_TYPE = Sequence[Generation] def _hash(_input: str) -> str: """Use a deterministic hashing approach.""" return hashlib.md5(_input.encode()).hexdigest() def _dump_generations_to_json(generations: RETURN_VAL_TYPE) -> str: """Dump generations to json. Args: generations (RETURN_VAL_TYPE): A list of language model generations. Returns: str: Json representing a list of generations. """ return json.dumps([generation.dict() for generation in generations]) def _load_generations_from_json(generations_json: str) -> RETURN_VAL_TYPE: """Load generations from json. Args: generations_json (str): A string of json representing a list of generations. Raises:
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
f1ea40e26720-1
Raises: ValueError: Could not decode json string to list of generations. Returns: RETURN_VAL_TYPE: A list of generations. """ try: results = json.loads(generations_json) return [Generation(**generation_dict) for generation_dict in results] except json.JSONDecodeError: raise ValueError( f"Could not decode json to list of generations: {generations_json}" ) [docs]class BaseCache(ABC): """Base interface for cache.""" [docs] @abstractmethod def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up based on prompt and llm_string.""" [docs] @abstractmethod def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None: """Update cache based on prompt and llm_string.""" [docs] @abstractmethod def clear(self, **kwargs: Any) -> None: """Clear cache that can take additional keyword arguments.""" [docs]class InMemoryCache(BaseCache): """Cache that stores things in memory.""" def __init__(self) -> None: """Initialize with empty cache.""" self._cache: Dict[Tuple[str, str], RETURN_VAL_TYPE] = {} [docs] def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up based on prompt and llm_string.""" return self._cache.get((prompt, llm_string), None) [docs] def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None: """Update cache based on prompt and llm_string."""
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
f1ea40e26720-2
"""Update cache based on prompt and llm_string.""" self._cache[(prompt, llm_string)] = return_val [docs] def clear(self, **kwargs: Any) -> None: """Clear cache.""" self._cache = {} Base = declarative_base() [docs]class FullLLMCache(Base): # type: ignore """SQLite table for full LLM Cache (all generations).""" __tablename__ = "full_llm_cache" prompt = Column(String, primary_key=True) llm = Column(String, primary_key=True) idx = Column(Integer, primary_key=True) response = Column(String) [docs]class SQLAlchemyCache(BaseCache): """Cache that uses SQAlchemy as a backend.""" def __init__(self, engine: Engine, cache_schema: Type[FullLLMCache] = FullLLMCache): """Initialize by creating all tables.""" self.engine = engine self.cache_schema = cache_schema self.cache_schema.metadata.create_all(self.engine) [docs] def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up based on prompt and llm_string.""" stmt = ( select(self.cache_schema.response) .where(self.cache_schema.prompt == prompt) # type: ignore .where(self.cache_schema.llm == llm_string) .order_by(self.cache_schema.idx) ) with Session(self.engine) as session: rows = session.execute(stmt).fetchall() if rows: try: return [loads(row[0]) for row in rows] except Exception: logger.warning( "Retrieving a cache value that could not be deserialized "
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
f1ea40e26720-3
logger.warning( "Retrieving a cache value that could not be deserialized " "properly. This is likely due to the cache being in an " "older format. Please recreate your cache to avoid this " "error." ) # In a previous life we stored the raw text directly # in the table, so assume it's in that format. return [Generation(text=row[0]) for row in rows] return None [docs] def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None: """Update based on prompt and llm_string.""" items = [ self.cache_schema(prompt=prompt, llm=llm_string, response=dumps(gen), idx=i) for i, gen in enumerate(return_val) ] with Session(self.engine) as session, session.begin(): for item in items: session.merge(item) [docs] def clear(self, **kwargs: Any) -> None: """Clear cache.""" with Session(self.engine) as session: session.query(self.cache_schema).delete() [docs]class SQLiteCache(SQLAlchemyCache): """Cache that uses SQLite as a backend.""" def __init__(self, database_path: str = ".langchain.db"): """Initialize by creating the engine and all tables.""" engine = create_engine(f"sqlite:///{database_path}") super().__init__(engine) [docs]class RedisCache(BaseCache): """Cache that uses Redis as a backend.""" # TODO - implement a TTL policy in Redis def __init__(self, redis_: Any): """Initialize by passing in Redis instance.""" try: from redis import Redis
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
f1ea40e26720-4
"""Initialize by passing in Redis instance.""" try: from redis import Redis except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis`." ) if not isinstance(redis_, Redis): raise ValueError("Please pass in Redis object.") self.redis = redis_ def _key(self, prompt: str, llm_string: str) -> str: """Compute key from prompt and llm_string""" return _hash(prompt + llm_string) [docs] def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up based on prompt and llm_string.""" generations = [] # Read from a Redis HASH results = self.redis.hgetall(self._key(prompt, llm_string)) if results: for _, text in results.items(): generations.append(Generation(text=text)) return generations if generations else None [docs] def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None: """Update cache based on prompt and llm_string.""" for gen in return_val: if not isinstance(gen, Generation): raise ValueError( "RedisCache only supports caching of normal LLM generations, " f"got {type(gen)}" ) # Write to a Redis HASH key = self._key(prompt, llm_string) self.redis.hset( key, mapping={ str(idx): generation.text for idx, generation in enumerate(return_val) }, ) [docs] def clear(self, **kwargs: Any) -> None:
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
f1ea40e26720-5
) [docs] def clear(self, **kwargs: Any) -> None: """Clear cache. If `asynchronous` is True, flush asynchronously.""" asynchronous = kwargs.get("asynchronous", False) self.redis.flushdb(asynchronous=asynchronous, **kwargs) [docs]class RedisSemanticCache(BaseCache): """Cache that uses Redis as a vector-store backend.""" # TODO - implement a TTL policy in Redis def __init__( self, redis_url: str, embedding: Embeddings, score_threshold: float = 0.2 ): """Initialize by passing in the `init` GPTCache func Args: redis_url (str): URL to connect to Redis. embedding (Embedding): Embedding provider for semantic encoding and search. score_threshold (float, 0.2): Example: .. code-block:: python import langchain from langchain.cache import RedisSemanticCache from langchain.embeddings import OpenAIEmbeddings langchain.llm_cache = RedisSemanticCache( redis_url="redis://localhost:6379", embedding=OpenAIEmbeddings() ) """ self._cache_dict: Dict[str, RedisVectorstore] = {} self.redis_url = redis_url self.embedding = embedding self.score_threshold = score_threshold def _index_name(self, llm_string: str) -> str: hashed_index = _hash(llm_string) return f"cache:{hashed_index}" def _get_llm_cache(self, llm_string: str) -> RedisVectorstore: index_name = self._index_name(llm_string) # return vectorstore client for the specific llm string
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
f1ea40e26720-6
# return vectorstore client for the specific llm string if index_name in self._cache_dict: return self._cache_dict[index_name] # create new vectorstore client for the specific llm string try: self._cache_dict[index_name] = RedisVectorstore.from_existing_index( embedding=self.embedding, index_name=index_name, redis_url=self.redis_url, ) except ValueError: redis = RedisVectorstore( embedding_function=self.embedding.embed_query, index_name=index_name, redis_url=self.redis_url, ) _embedding = self.embedding.embed_query(text="test") redis._create_index(dim=len(_embedding)) self._cache_dict[index_name] = redis return self._cache_dict[index_name] [docs] def clear(self, **kwargs: Any) -> None: """Clear semantic cache for a given llm_string.""" index_name = self._index_name(kwargs["llm_string"]) if index_name in self._cache_dict: self._cache_dict[index_name].drop_index( index_name=index_name, delete_documents=True, redis_url=self.redis_url ) del self._cache_dict[index_name] [docs] def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up based on prompt and llm_string.""" llm_cache = self._get_llm_cache(llm_string) generations = [] # Read from a Hash results = llm_cache.similarity_search_limit_score( query=prompt, k=1, score_threshold=self.score_threshold, ) if results: for document in results:
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
f1ea40e26720-7
) if results: for document in results: for text in document.metadata["return_val"]: generations.append(Generation(text=text)) return generations if generations else None [docs] def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None: """Update cache based on prompt and llm_string.""" for gen in return_val: if not isinstance(gen, Generation): raise ValueError( "RedisSemanticCache only supports caching of " f"normal LLM generations, got {type(gen)}" ) llm_cache = self._get_llm_cache(llm_string) # Write to vectorstore metadata = { "llm_string": llm_string, "prompt": prompt, "return_val": [generation.text for generation in return_val], } llm_cache.add_texts(texts=[prompt], metadatas=[metadata]) [docs]class GPTCache(BaseCache): """Cache that uses GPTCache as a backend.""" def __init__( self, init_func: Union[ Callable[[Any, str], None], Callable[[Any], None], None ] = None, ): """Initialize by passing in init function (default: `None`). Args: init_func (Optional[Callable[[Any], None]]): init `GPTCache` function (default: `None`) Example: .. code-block:: python # Initialize GPTCache with a custom init function import gptcache from gptcache.processor.pre import get_prompt from gptcache.manager.factory import get_data_manager # Avoid multiple caches using the same file,
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
f1ea40e26720-8
# Avoid multiple caches using the same file, causing different llm model caches to affect each other def init_gptcache(cache_obj: gptcache.Cache, llm str): cache_obj.init( pre_embedding_func=get_prompt, data_manager=manager_factory( manager="map", data_dir=f"map_cache_{llm}" ), ) langchain.llm_cache = GPTCache(init_gptcache) """ try: import gptcache # noqa: F401 except ImportError: raise ImportError( "Could not import gptcache python package. " "Please install it with `pip install gptcache`." ) self.init_gptcache_func: Union[ Callable[[Any, str], None], Callable[[Any], None], None ] = init_func self.gptcache_dict: Dict[str, Any] = {} def _new_gptcache(self, llm_string: str) -> Any: """New gptcache object""" from gptcache import Cache from gptcache.manager.factory import get_data_manager from gptcache.processor.pre import get_prompt _gptcache = Cache() if self.init_gptcache_func is not None: sig = inspect.signature(self.init_gptcache_func) if len(sig.parameters) == 2: self.init_gptcache_func(_gptcache, llm_string) # type: ignore[call-arg] else: self.init_gptcache_func(_gptcache) # type: ignore[call-arg] else: _gptcache.init( pre_embedding_func=get_prompt,
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
f1ea40e26720-9
else: _gptcache.init( pre_embedding_func=get_prompt, data_manager=get_data_manager(data_path=llm_string), ) self.gptcache_dict[llm_string] = _gptcache return _gptcache def _get_gptcache(self, llm_string: str) -> Any: """Get a cache object. When the corresponding llm model cache does not exist, it will be created.""" return self.gptcache_dict.get(llm_string, self._new_gptcache(llm_string)) [docs] def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up the cache data. First, retrieve the corresponding cache object using the `llm_string` parameter, and then retrieve the data from the cache based on the `prompt`. """ from gptcache.adapter.api import get _gptcache = self.gptcache_dict.get(llm_string, None) if _gptcache is None: return None res = get(prompt, cache_obj=_gptcache) if res: return [ Generation(**generation_dict) for generation_dict in json.loads(res) ] return None [docs] def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None: """Update cache. First, retrieve the corresponding cache object using the `llm_string` parameter, and then store the `prompt` and `return_val` in the cache object. """ for gen in return_val: if not isinstance(gen, Generation): raise ValueError(
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
f1ea40e26720-10
if not isinstance(gen, Generation): raise ValueError( "GPTCache only supports caching of normal LLM generations, " f"got {type(gen)}" ) from gptcache.adapter.api import put _gptcache = self._get_gptcache(llm_string) handled_data = json.dumps([generation.dict() for generation in return_val]) put(prompt, handled_data, cache_obj=_gptcache) return None [docs] def clear(self, **kwargs: Any) -> None: """Clear cache.""" from gptcache import Cache for gptcache_instance in self.gptcache_dict.values(): gptcache_instance = cast(Cache, gptcache_instance) gptcache_instance.flush() self.gptcache_dict.clear() def _ensure_cache_exists(cache_client: momento.CacheClient, cache_name: str) -> None: """Create cache if it doesn't exist. Raises: SdkException: Momento service or network error Exception: Unexpected response """ from momento.responses import CreateCache create_cache_response = cache_client.create_cache(cache_name) if isinstance(create_cache_response, CreateCache.Success) or isinstance( create_cache_response, CreateCache.CacheAlreadyExists ): return None elif isinstance(create_cache_response, CreateCache.Error): raise create_cache_response.inner_exception else: raise Exception(f"Unexpected response cache creation: {create_cache_response}") def _validate_ttl(ttl: Optional[timedelta]) -> None: if ttl is not None and ttl <= timedelta(seconds=0): raise ValueError(f"ttl must be positive but was {ttl}.") [docs]class MomentoCache(BaseCache):
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
f1ea40e26720-11
[docs]class MomentoCache(BaseCache): """Cache that uses Momento as a backend. See https://gomomento.com/""" def __init__( self, cache_client: momento.CacheClient, cache_name: str, *, ttl: Optional[timedelta] = None, ensure_cache_exists: bool = True, ): """Instantiate a prompt cache using Momento as a backend. Note: to instantiate the cache client passed to MomentoCache, you must have a Momento account. See https://gomomento.com/. Args: cache_client (CacheClient): The Momento cache client. cache_name (str): The name of the cache to use to store the data. ttl (Optional[timedelta], optional): The time to live for the cache items. Defaults to None, ie use the client default TTL. ensure_cache_exists (bool, optional): Create the cache if it doesn't exist. Defaults to True. Raises: ImportError: Momento python package is not installed. TypeError: cache_client is not of type momento.CacheClientObject ValueError: ttl is non-null and non-negative """ try: from momento import CacheClient except ImportError: raise ImportError( "Could not import momento python package. " "Please install it with `pip install momento`." ) if not isinstance(cache_client, CacheClient): raise TypeError("cache_client must be a momento.CacheClient object.") _validate_ttl(ttl) if ensure_cache_exists: _ensure_cache_exists(cache_client, cache_name) self.cache_client = cache_client self.cache_name = cache_name self.ttl = ttl
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
f1ea40e26720-12
self.cache_name = cache_name self.ttl = ttl [docs] @classmethod def from_client_params( cls, cache_name: str, ttl: timedelta, *, configuration: Optional[momento.config.Configuration] = None, auth_token: Optional[str] = None, **kwargs: Any, ) -> MomentoCache: """Construct cache from CacheClient parameters.""" try: from momento import CacheClient, Configurations, CredentialProvider except ImportError: raise ImportError( "Could not import momento python package. " "Please install it with `pip install momento`." ) if configuration is None: configuration = Configurations.Laptop.v1() auth_token = auth_token or get_from_env("auth_token", "MOMENTO_AUTH_TOKEN") credentials = CredentialProvider.from_string(auth_token) cache_client = CacheClient(configuration, credentials, default_ttl=ttl) return cls(cache_client, cache_name, ttl=ttl, **kwargs) def __key(self, prompt: str, llm_string: str) -> str: """Compute cache key from prompt and associated model and settings. Args: prompt (str): The prompt run through the language model. llm_string (str): The language model version and settings. Returns: str: The cache key. """ return _hash(prompt + llm_string) [docs] def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Lookup llm generations in cache by prompt and associated model and settings. Args: prompt (str): The prompt run through the language model.
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
f1ea40e26720-13
Args: prompt (str): The prompt run through the language model. llm_string (str): The language model version and settings. Raises: SdkException: Momento service or network error Returns: Optional[RETURN_VAL_TYPE]: A list of language model generations. """ from momento.responses import CacheGet generations: RETURN_VAL_TYPE = [] get_response = self.cache_client.get( self.cache_name, self.__key(prompt, llm_string) ) if isinstance(get_response, CacheGet.Hit): value = get_response.value_string generations = _load_generations_from_json(value) elif isinstance(get_response, CacheGet.Miss): pass elif isinstance(get_response, CacheGet.Error): raise get_response.inner_exception return generations if generations else None [docs] def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None: """Store llm generations in cache. Args: prompt (str): The prompt run through the language model. llm_string (str): The language model string. return_val (RETURN_VAL_TYPE): A list of language model generations. Raises: SdkException: Momento service or network error Exception: Unexpected response """ for gen in return_val: if not isinstance(gen, Generation): raise ValueError( "Momento only supports caching of normal LLM generations, " f"got {type(gen)}" ) key = self.__key(prompt, llm_string) value = _dump_generations_to_json(return_val) set_response = self.cache_client.set(self.cache_name, key, value, self.ttl)
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
f1ea40e26720-14
from momento.responses import CacheSet if isinstance(set_response, CacheSet.Success): pass elif isinstance(set_response, CacheSet.Error): raise set_response.inner_exception else: raise Exception(f"Unexpected response: {set_response}") [docs] def clear(self, **kwargs: Any) -> None: """Clear the cache. Raises: SdkException: Momento service or network error """ from momento.responses import CacheFlush flush_response = self.cache_client.flush_cache(self.cache_name) if isinstance(flush_response, CacheFlush.Success): pass elif isinstance(flush_response, CacheFlush.Error): raise flush_response.inner_exception
https://api.python.langchain.com/en/latest/_modules/langchain/cache.html
2a58acf5491c-0
Source code for langchain.math_utils """Math utils.""" from typing import List, Optional, Tuple, Union import numpy as np Matrix = Union[List[List[float]], List[np.ndarray], np.ndarray] [docs]def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray: """Row-wise cosine similarity between two equal-width matrices.""" if len(X) == 0 or len(Y) == 0: return np.array([]) X = np.array(X) Y = np.array(Y) if X.shape[1] != Y.shape[1]: raise ValueError( f"Number of columns in X and Y must be the same. X has shape {X.shape} " f"and Y has shape {Y.shape}." ) X_norm = np.linalg.norm(X, axis=1) Y_norm = np.linalg.norm(Y, axis=1) similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm) similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0 return similarity [docs]def cosine_similarity_top_k( X: Matrix, Y: Matrix, top_k: Optional[int] = 5, score_threshold: Optional[float] = None, ) -> Tuple[List[Tuple[int, int]], List[float]]: """Row-wise cosine similarity with optional top-k and score threshold filtering. Args: X: Matrix. Y: Matrix, same width as X. top_k: Max number of results to return. score_threshold: Minimum cosine similarity of results. Returns: Tuple of two lists. First contains two-tuples of indices (X_idx, Y_idx), second contains corresponding cosine similarities.
https://api.python.langchain.com/en/latest/_modules/langchain/math_utils.html
2a58acf5491c-1
second contains corresponding cosine similarities. """ if len(X) == 0 or len(Y) == 0: return [], [] score_array = cosine_similarity(X, Y) sorted_idxs = score_array.flatten().argsort()[::-1] top_k = top_k or len(sorted_idxs) top_idxs = sorted_idxs[:top_k] score_threshold = score_threshold or -1.0 top_idxs = top_idxs[score_array.flatten()[top_idxs] > score_threshold] ret_idxs = [(x // score_array.shape[1], x % score_array.shape[1]) for x in top_idxs] scores = score_array.flatten()[top_idxs].tolist() return ret_idxs, scores
https://api.python.langchain.com/en/latest/_modules/langchain/math_utils.html
7dd79e270ede-0
Source code for langchain.sql_database """SQLAlchemy wrapper around a database.""" from __future__ import annotations import warnings from typing import Any, Iterable, List, Optional import sqlalchemy from sqlalchemy import MetaData, Table, create_engine, inspect, select, text from sqlalchemy.engine import Engine from sqlalchemy.exc import ProgrammingError, SQLAlchemyError from sqlalchemy.schema import CreateTable from langchain import utils def _format_index(index: sqlalchemy.engine.interfaces.ReflectedIndex) -> str: return ( f'Name: {index["name"]}, Unique: {index["unique"]},' f' Columns: {str(index["column_names"])}' ) [docs]def truncate_word(content: Any, *, length: int, suffix: str = "...") -> str: """ Truncate a string to a certain number of words, based on the max string length. """ if not isinstance(content, str) or length <= 0: return content if len(content) <= length: return content return content[: length - len(suffix)].rsplit(" ", 1)[0] + suffix class SQLDatabase: """SQLAlchemy wrapper around a database.""" def __init__( self, engine: Engine, schema: Optional[str] = None, metadata: Optional[MetaData] = None, ignore_tables: Optional[List[str]] = None, include_tables: Optional[List[str]] = None, sample_rows_in_table_info: int = 3, indexes_in_table_info: bool = False, custom_table_info: Optional[dict] = None, view_support: bool = False, max_string_length: int = 300, ): """Create engine from database URI."""
https://api.python.langchain.com/en/latest/_modules/langchain/sql_database.html
7dd79e270ede-1
): """Create engine from database URI.""" self._engine = engine self._schema = schema if include_tables and ignore_tables: raise ValueError("Cannot specify both include_tables and ignore_tables") self._inspector = inspect(self._engine) # including view support by adding the views as well as tables to the all # tables list if view_support is True self._all_tables = set( self._inspector.get_table_names(schema=schema) + (self._inspector.get_view_names(schema=schema) if view_support else []) ) self._include_tables = set(include_tables) if include_tables else set() if self._include_tables: missing_tables = self._include_tables - self._all_tables if missing_tables: raise ValueError( f"include_tables {missing_tables} not found in database" ) self._ignore_tables = set(ignore_tables) if ignore_tables else set() if self._ignore_tables: missing_tables = self._ignore_tables - self._all_tables if missing_tables: raise ValueError( f"ignore_tables {missing_tables} not found in database" ) usable_tables = self.get_usable_table_names() self._usable_tables = set(usable_tables) if usable_tables else self._all_tables if not isinstance(sample_rows_in_table_info, int): raise TypeError("sample_rows_in_table_info must be an integer") self._sample_rows_in_table_info = sample_rows_in_table_info self._indexes_in_table_info = indexes_in_table_info self._custom_table_info = custom_table_info if self._custom_table_info: if not isinstance(self._custom_table_info, dict): raise TypeError(
https://api.python.langchain.com/en/latest/_modules/langchain/sql_database.html
7dd79e270ede-2
if not isinstance(self._custom_table_info, dict): raise TypeError( "table_info must be a dictionary with table names as keys and the " "desired table info as values" ) # only keep the tables that are also present in the database intersection = set(self._custom_table_info).intersection(self._all_tables) self._custom_table_info = dict( (table, self._custom_table_info[table]) for table in self._custom_table_info if table in intersection ) self._max_string_length = max_string_length self._metadata = metadata or MetaData() # including view support if view_support = true self._metadata.reflect( views=view_support, bind=self._engine, only=list(self._usable_tables), schema=self._schema, ) @classmethod def from_uri( cls, database_uri: str, engine_args: Optional[dict] = None, **kwargs: Any ) -> SQLDatabase: """Construct a SQLAlchemy engine from URI.""" _engine_args = engine_args or {} return cls(create_engine(database_uri, **_engine_args), **kwargs) @classmethod def from_databricks( cls, catalog: str, schema: str, host: Optional[str] = None, api_token: Optional[str] = None, warehouse_id: Optional[str] = None, cluster_id: Optional[str] = None, engine_args: Optional[dict] = None, **kwargs: Any, ) -> SQLDatabase: """ Class method to create an SQLDatabase instance from a Databricks connection.
https://api.python.langchain.com/en/latest/_modules/langchain/sql_database.html
7dd79e270ede-3
""" Class method to create an SQLDatabase instance from a Databricks connection. This method requires the 'databricks-sql-connector' package. If not installed, it can be added using `pip install databricks-sql-connector`. Args: catalog (str): The catalog name in the Databricks database. schema (str): The schema name in the catalog. host (Optional[str]): The Databricks workspace hostname, excluding 'https://' part. If not provided, it attempts to fetch from the environment variable 'DATABRICKS_HOST'. If still unavailable and if running in a Databricks notebook, it defaults to the current workspace hostname. Defaults to None. api_token (Optional[str]): The Databricks personal access token for accessing the Databricks SQL warehouse or the cluster. If not provided, it attempts to fetch from 'DATABRICKS_TOKEN'. If still unavailable and running in a Databricks notebook, a temporary token for the current user is generated. Defaults to None. warehouse_id (Optional[str]): The warehouse ID in the Databricks SQL. If provided, the method configures the connection to use this warehouse. Cannot be used with 'cluster_id'. Defaults to None. cluster_id (Optional[str]): The cluster ID in the Databricks Runtime. If provided, the method configures the connection to use this cluster. Cannot be used with 'warehouse_id'. If running in a Databricks notebook and both 'warehouse_id' and 'cluster_id' are None, it uses the ID of the cluster the notebook is attached to. Defaults to None. engine_args (Optional[dict]): The arguments to be used when connecting
https://api.python.langchain.com/en/latest/_modules/langchain/sql_database.html
7dd79e270ede-4
engine_args (Optional[dict]): The arguments to be used when connecting Databricks. Defaults to None. **kwargs (Any): Additional keyword arguments for the `from_uri` method. Returns: SQLDatabase: An instance of SQLDatabase configured with the provided Databricks connection details. Raises: ValueError: If 'databricks-sql-connector' is not found, or if both 'warehouse_id' and 'cluster_id' are provided, or if neither 'warehouse_id' nor 'cluster_id' are provided and it's not executing inside a Databricks notebook. """ try: from databricks import sql # noqa: F401 except ImportError: raise ValueError( "databricks-sql-connector package not found, please install with" " `pip install databricks-sql-connector`" ) context = None try: from dbruntime.databricks_repl_context import get_context context = get_context() except ImportError: pass default_host = context.browserHostName if context else None if host is None: host = utils.get_from_env("host", "DATABRICKS_HOST", default_host) default_api_token = context.apiToken if context else None if api_token is None: api_token = utils.get_from_env( "api_token", "DATABRICKS_TOKEN", default_api_token ) if warehouse_id is None and cluster_id is None: if context: cluster_id = context.clusterId else: raise ValueError( "Need to provide either 'warehouse_id' or 'cluster_id'." ) if warehouse_id and cluster_id:
https://api.python.langchain.com/en/latest/_modules/langchain/sql_database.html
7dd79e270ede-5
) if warehouse_id and cluster_id: raise ValueError("Can't have both 'warehouse_id' or 'cluster_id'.") if warehouse_id: http_path = f"/sql/1.0/warehouses/{warehouse_id}" else: http_path = f"/sql/protocolv1/o/0/{cluster_id}" uri = ( f"databricks://token:{api_token}@{host}?" f"http_path={http_path}&catalog={catalog}&schema={schema}" ) return cls.from_uri(database_uri=uri, engine_args=engine_args, **kwargs) @classmethod def from_cnosdb( cls, url: str = "127.0.0.1:8902", user: str = "root", password: str = "", tenant: str = "cnosdb", database: str = "public", ) -> SQLDatabase: """ Class method to create an SQLDatabase instance from a CnosDB connection. This method requires the 'cnos-connector' package. If not installed, it can be added using `pip install cnos-connector`. Args: url (str): The HTTP connection host name and port number of the CnosDB service, excluding "http://" or "https://", with a default value of "127.0.0.1:8902". user (str): The username used to connect to the CnosDB service, with a default value of "root". password (str): The password of the user connecting to the CnosDB service, with a default value of "".
https://api.python.langchain.com/en/latest/_modules/langchain/sql_database.html
7dd79e270ede-6
with a default value of "". tenant (str): The name of the tenant used to connect to the CnosDB service, with a default value of "cnosdb". database (str): The name of the database in the CnosDB tenant. Returns: SQLDatabase: An instance of SQLDatabase configured with the provided CnosDB connection details. """ try: from cnosdb_connector import make_cnosdb_langchain_uri uri = make_cnosdb_langchain_uri(url, user, password, tenant, database) return cls.from_uri(database_uri=uri) except ImportError: raise ValueError( "cnos-connector package not found, please install with" " `pip install cnos-connector`" ) @property def dialect(self) -> str: """Return string representation of dialect to use.""" return self._engine.dialect.name def get_usable_table_names(self) -> Iterable[str]: """Get names of tables available.""" if self._include_tables: return sorted(self._include_tables) return sorted(self._all_tables - self._ignore_tables) def get_table_names(self) -> Iterable[str]: """Get names of tables available.""" warnings.warn( "This method is deprecated - please use `get_usable_table_names`." ) return self.get_usable_table_names() @property def table_info(self) -> str: """Information about all tables in the database.""" return self.get_table_info() def get_table_info(self, table_names: Optional[List[str]] = None) -> str: """Get information about specified tables.
https://api.python.langchain.com/en/latest/_modules/langchain/sql_database.html
7dd79e270ede-7
"""Get information about specified tables. Follows best practices as specified in: Rajkumar et al, 2022 (https://arxiv.org/abs/2204.00498) If `sample_rows_in_table_info`, the specified number of sample rows will be appended to each table description. This can increase performance as demonstrated in the paper. """ all_table_names = self.get_usable_table_names() if table_names is not None: missing_tables = set(table_names).difference(all_table_names) if missing_tables: raise ValueError(f"table_names {missing_tables} not found in database") all_table_names = table_names meta_tables = [ tbl for tbl in self._metadata.sorted_tables if tbl.name in set(all_table_names) and not (self.dialect == "sqlite" and tbl.name.startswith("sqlite_")) ] tables = [] for table in meta_tables: if self._custom_table_info and table.name in self._custom_table_info: tables.append(self._custom_table_info[table.name]) continue # add create table command create_table = str(CreateTable(table).compile(self._engine)) table_info = f"{create_table.rstrip()}" has_extra_info = ( self._indexes_in_table_info or self._sample_rows_in_table_info ) if has_extra_info: table_info += "\n\n/*" if self._indexes_in_table_info: table_info += f"\n{self._get_table_indexes(table)}\n" if self._sample_rows_in_table_info: table_info += f"\n{self._get_sample_rows(table)}\n" if has_extra_info:
https://api.python.langchain.com/en/latest/_modules/langchain/sql_database.html
7dd79e270ede-8
if has_extra_info: table_info += "*/" tables.append(table_info) tables.sort() final_str = "\n\n".join(tables) return final_str def _get_table_indexes(self, table: Table) -> str: indexes = self._inspector.get_indexes(table.name) indexes_formatted = "\n".join(map(_format_index, indexes)) return f"Table Indexes:\n{indexes_formatted}" def _get_sample_rows(self, table: Table) -> str: # build the select command command = select(table).limit(self._sample_rows_in_table_info) # save the columns in string format columns_str = "\t".join([col.name for col in table.columns]) try: # get the sample rows with self._engine.connect() as connection: sample_rows_result = connection.execute(command) # type: ignore # shorten values in the sample rows sample_rows = list( map(lambda ls: [str(i)[:100] for i in ls], sample_rows_result) ) # save the sample rows in string format sample_rows_str = "\n".join(["\t".join(row) for row in sample_rows]) # in some dialects when there are no rows in the table a # 'ProgrammingError' is returned except ProgrammingError: sample_rows_str = "" return ( f"{self._sample_rows_in_table_info} rows from {table.name} table:\n" f"{columns_str}\n" f"{sample_rows_str}" ) def run(self, command: str, fetch: str = "all") -> str: """Execute a SQL command and return a string representing the results.
https://api.python.langchain.com/en/latest/_modules/langchain/sql_database.html
7dd79e270ede-9
"""Execute a SQL command and return a string representing the results. If the statement returns rows, a string of the results is returned. If the statement returns no rows, an empty string is returned. """ with self._engine.begin() as connection: if self._schema is not None: if self.dialect == "snowflake": connection.exec_driver_sql( f"ALTER SESSION SET search_path='{self._schema}'" ) elif self.dialect == "bigquery": connection.exec_driver_sql(f"SET @@dataset_id='{self._schema}'") else: connection.exec_driver_sql(f"SET search_path TO {self._schema}") cursor = connection.execute(text(command)) if cursor.returns_rows: if fetch == "all": result = cursor.fetchall() elif fetch == "one": result = cursor.fetchone() # type: ignore else: raise ValueError("Fetch parameter must be either 'one' or 'all'") # Convert columns values to string to avoid issues with sqlalchmey # trunacating text if isinstance(result, list): return str( [ tuple( truncate_word(c, length=self._max_string_length) for c in r ) for r in result ] ) return str( tuple( truncate_word(c, length=self._max_string_length) for c in result ) ) return "" def get_table_info_no_throw(self, table_names: Optional[List[str]] = None) -> str: """Get information about specified tables. Follows best practices as specified in: Rajkumar et al, 2022
https://api.python.langchain.com/en/latest/_modules/langchain/sql_database.html
7dd79e270ede-10
Follows best practices as specified in: Rajkumar et al, 2022 (https://arxiv.org/abs/2204.00498) If `sample_rows_in_table_info`, the specified number of sample rows will be appended to each table description. This can increase performance as demonstrated in the paper. """ try: return self.get_table_info(table_names) except ValueError as e: """Format the error message""" return f"Error: {e}" def run_no_throw(self, command: str, fetch: str = "all") -> str: """Execute a SQL command and return a string representing the results. If the statement returns rows, a string of the results is returned. If the statement returns no rows, an empty string is returned. If the statement throws an error, the error message is returned. """ try: return self.run(command, fetch) except SQLAlchemyError as e: """Format the error message""" return f"Error: {e}"
https://api.python.langchain.com/en/latest/_modules/langchain/sql_database.html
ad53f5087877-0
Source code for langchain.input """Handle chained inputs.""" from typing import Dict, List, Optional, TextIO _TEXT_COLOR_MAPPING = { "blue": "36;1", "yellow": "33;1", "pink": "38;5;200", "green": "32;1", "red": "31;1", } [docs]def get_color_mapping( items: List[str], excluded_colors: Optional[List] = None ) -> Dict[str, str]: """Get mapping for items to a support color.""" colors = list(_TEXT_COLOR_MAPPING.keys()) if excluded_colors is not None: colors = [c for c in colors if c not in excluded_colors] color_mapping = {item: colors[i % len(colors)] for i, item in enumerate(items)} return color_mapping [docs]def get_colored_text(text: str, color: str) -> str: """Get colored text.""" color_str = _TEXT_COLOR_MAPPING[color] return f"\u001b[{color_str}m\033[1;3m{text}\u001b[0m" [docs]def get_bolded_text(text: str) -> str: """Get bolded text.""" return f"\033[1m{text}\033[0m" [docs]def print_text( text: str, color: Optional[str] = None, end: str = "", file: Optional[TextIO] = None ) -> None: """Print text with highlighting and no end characters.""" text_to_print = get_colored_text(text, color) if color else text print(text_to_print, end=end, file=file) if file:
https://api.python.langchain.com/en/latest/_modules/langchain/input.html
ad53f5087877-1
print(text_to_print, end=end, file=file) if file: file.flush() # ensure all printed content are written to file
https://api.python.langchain.com/en/latest/_modules/langchain/input.html
168087c11ead-0
Source code for langchain.env import platform from functools import lru_cache [docs]@lru_cache(maxsize=1) def get_runtime_environment() -> dict: """Get information about the environment.""" # Lazy import to avoid circular imports from langchain import __version__ return { "library_version": __version__, "library": "langchain", "platform": platform.platform(), "runtime": "python", "runtime_version": platform.python_version(), }
https://api.python.langchain.com/en/latest/_modules/langchain/env.html
02050d9d0f21-0
Source code for langchain.example_generator """Utility functions for working with prompts.""" from typing import List from langchain.chains.llm import LLMChain from langchain.prompts.few_shot import FewShotPromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.schema.language_model import BaseLanguageModel TEST_GEN_TEMPLATE_SUFFIX = "Add another example." [docs]def generate_example( examples: List[dict], llm: BaseLanguageModel, prompt_template: PromptTemplate ) -> str: """Return another example given a list of examples for a prompt.""" prompt = FewShotPromptTemplate( examples=examples, suffix=TEST_GEN_TEMPLATE_SUFFIX, input_variables=[], example_prompt=prompt_template, ) chain = LLMChain(llm=llm, prompt=prompt) return chain.predict()
https://api.python.langchain.com/en/latest/_modules/langchain/example_generator.html
118827f75f18-0
Source code for langchain.embeddings.deepinfra from typing import Any, Dict, List, Mapping, Optional import requests from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env DEFAULT_MODEL_ID = "sentence-transformers/clip-ViT-B-32" [docs]class DeepInfraEmbeddings(BaseModel, Embeddings): """Wrapper around Deep Infra's embedding inference service. To use, you should have the environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. There are multiple embeddings models available, see https://deepinfra.com/models?type=embeddings. Example: .. code-block:: python from langchain.embeddings import DeepInfraEmbeddings deepinfra_emb = DeepInfraEmbeddings( model_id="sentence-transformers/clip-ViT-B-32", deepinfra_api_token="my-api-key" ) r1 = deepinfra_emb.embed_documents( [ "Alpha is the first letter of Greek alphabet", "Beta is the second letter of Greek alphabet", ] ) r2 = deepinfra_emb.embed_query( "What is the second letter of Greek alphabet" ) """ model_id: str = DEFAULT_MODEL_ID """Embeddings model to use.""" normalize: bool = False """whether to normalize the computed embeddings""" embed_instruction: str = "passage: " """Instruction used to embed documents.""" query_instruction: str = "query: " """Instruction used to embed the query.""" model_kwargs: Optional[dict] = None
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/deepinfra.html
118827f75f18-1
model_kwargs: Optional[dict] = None """Other model keyword args""" deepinfra_api_token: Optional[str] = None [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" deepinfra_api_token = get_from_dict_or_env( values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN" ) values["deepinfra_api_token"] = deepinfra_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {"model_id": self.model_id} def _embed(self, input: List[str]) -> List[List[float]]: _model_kwargs = self.model_kwargs or {} # HTTP headers for authorization headers = { "Authorization": f"bearer {self.deepinfra_api_token}", "Content-Type": "application/json", } # send request try: res = requests.post( f"https://api.deepinfra.com/v1/inference/{self.model_id}", headers=headers, json={"inputs": input, "normalize": self.normalize, **_model_kwargs}, ) except requests.exceptions.RequestException as e: raise ValueError(f"Error raised by inference endpoint: {e}") if res.status_code != 200: raise ValueError( "Error raised by inference API HTTP code: %s, %s" % (res.status_code, res.text) ) try: t = res.json()
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/deepinfra.html
118827f75f18-2
) try: t = res.json() embeddings = t["embeddings"] except requests.exceptions.JSONDecodeError as e: raise ValueError( f"Error raised by inference API: {e}.\nResponse: {res.text}" ) return embeddings [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed documents using a Deep Infra deployed embedding model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [f"{self.query_instruction}{text}" for text in texts] embeddings = self._embed(instruction_pairs) return embeddings [docs] def embed_query(self, text: str) -> List[float]: """Embed a query using a Deep Infra deployed embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = f"{self.query_instruction}{text}" embedding = self._embed([instruction_pair])[0] return embedding
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/deepinfra.html
5bf956fdef61-0
Source code for langchain.embeddings.sagemaker_endpoint """Wrapper around Sagemaker InvokeEndpoint API.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.llms.sagemaker_endpoint import ContentHandlerBase [docs]class EmbeddingsContentHandler(ContentHandlerBase[List[str], List[List[float]]]): """Content handler for LLM class.""" [docs]class SagemakerEndpointEmbeddings(BaseModel, Embeddings): """Wrapper around custom Sagemaker Inference Endpoints. To use, you must supply the endpoint name from your deployed Sagemaker model & the region where it is deployed. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Sagemaker endpoint. See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html """ """ Example: .. code-block:: python from langchain.embeddings import SagemakerEndpointEmbeddings endpoint_name = ( "my-endpoint-name" ) region_name = ( "us-west-2" ) credentials_profile_name = ( "default" ) se = SagemakerEndpointEmbeddings( endpoint_name=endpoint_name, region_name=region_name, credentials_profile_name=credentials_profile_name ) """
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
5bf956fdef61-1
credentials_profile_name=credentials_profile_name ) """ client: Any #: :meta private: endpoint_name: str = "" """The name of the endpoint from the deployed Sagemaker model. Must be unique within an AWS Region.""" region_name: str = "" """The aws region where the Sagemaker model is deployed, eg. `us-west-2`.""" credentials_profile_name: Optional[str] = None """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """ content_handler: EmbeddingsContentHandler """The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. """ """ Example: .. code-block:: python from langchain.embeddings.sagemaker_endpoint import EmbeddingsContentHandler class ContentHandler(EmbeddingsContentHandler): content_type = "application/json" accepts = "application/json" def transform_input(self, prompts: List[str], model_kwargs: Dict) -> bytes: input_str = json.dumps({prompts: prompts, **model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> List[List[float]]: response_json = json.loads(output.read().decode("utf-8")) return response_json["vectors"] """ # noqa: E501 model_kwargs: Optional[Dict] = None
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
5bf956fdef61-2
""" # noqa: E501 model_kwargs: Optional[Dict] = None """Key word arguments to pass to the model.""" endpoint_kwargs: Optional[Dict] = None """Optional attributes passed to the invoke_endpoint function. See `boto3`_. docs for more info. .. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html> """ [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True [docs] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that AWS credentials to and python package exists in environment.""" try: import boto3 try: if values["credentials_profile_name"] is not None: session = boto3.Session( profile_name=values["credentials_profile_name"] ) else: # use default credentials session = boto3.Session() values["client"] = session.client( "sagemaker-runtime", region_name=values["region_name"] ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e except ImportError: raise ValueError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) return values def _embedding_func(self, texts: List[str]) -> List[List[float]]: """Call out to SageMaker Inference embedding endpoint.""" # replace newlines, which can negatively affect performance.
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
5bf956fdef61-3
# replace newlines, which can negatively affect performance. texts = list(map(lambda x: x.replace("\n", " "), texts)) _model_kwargs = self.model_kwargs or {} _endpoint_kwargs = self.endpoint_kwargs or {} body = self.content_handler.transform_input(texts, _model_kwargs) content_type = self.content_handler.content_type accepts = self.content_handler.accepts # send request try: response = self.client.invoke_endpoint( EndpointName=self.endpoint_name, Body=body, ContentType=content_type, Accept=accepts, **_endpoint_kwargs, ) except Exception as e: raise ValueError(f"Error raised by inference endpoint: {e}") return self.content_handler.transform_output(response["Body"]) [docs] def embed_documents( self, texts: List[str], chunk_size: int = 64 ) -> List[List[float]]: """Compute doc embeddings using a SageMaker Inference Endpoint. Args: texts: The list of texts to embed. chunk_size: The chunk size defines how many input texts will be grouped together as request. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ results = [] _chunk_size = len(texts) if chunk_size > len(texts) else chunk_size for i in range(0, len(texts), _chunk_size): response = self._embedding_func(texts[i : i + _chunk_size]) results.extend(response) return results [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a SageMaker inference endpoint.
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
5bf956fdef61-4
"""Compute query embeddings using a SageMaker inference endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embedding_func([text])[0]
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
dd97fc1e26b4-0
Source code for langchain.embeddings.llamacpp """Wrapper around llama.cpp embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, Field, root_validator from langchain.embeddings.base import Embeddings [docs]class LlamaCppEmbeddings(BaseModel, Embeddings): """Wrapper around llama.cpp embedding models. To use, you should have the llama-cpp-python library installed, and provide the path to the Llama model as a named parameter to the constructor. Check out: https://github.com/abetlen/llama-cpp-python Example: .. code-block:: python from langchain.embeddings import LlamaCppEmbeddings llama = LlamaCppEmbeddings(model_path="/path/to/model.bin") """ client: Any #: :meta private: model_path: str n_ctx: int = Field(512, alias="n_ctx") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(-1, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights.""" use_mlock: bool = Field(False, alias="use_mlock")
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html
dd97fc1e26b4-1
use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" n_threads: Optional[int] = Field(None, alias="n_threads") """Number of threads to use. If None, the number of threads is automatically determined.""" n_batch: Optional[int] = Field(8, alias="n_batch") """Number of tokens to process in parallel. Should be a number between 1 and n_ctx.""" n_gpu_layers: Optional[int] = Field(None, alias="n_gpu_layers") """Number of layers to be loaded into gpu memory. Default None.""" [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that llama-cpp-python library is installed.""" model_path = values["model_path"] model_param_names = [ "n_ctx", "n_parts", "seed", "f16_kv", "logits_all", "vocab_only", "use_mlock", "n_threads", "n_batch", ] model_params = {k: values[k] for k in model_param_names} # For backwards compatibility, only include if non-null. if values["n_gpu_layers"] is not None: model_params["n_gpu_layers"] = values["n_gpu_layers"] try: from llama_cpp import Llama values["client"] = Llama(model_path, embedding=True, **model_params) except ImportError: raise ModuleNotFoundError( "Could not import llama-cpp-python library. "
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html
dd97fc1e26b4-2
raise ModuleNotFoundError( "Could not import llama-cpp-python library. " "Please install the llama-cpp-python library to " "use this embedding model: pip install llama-cpp-python" ) except Exception as e: raise ValueError( f"Could not load Llama model from path: {model_path}. " f"Received error {e}" ) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed a list of documents using the Llama model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = [self.client.embed(text) for text in texts] return [list(map(float, e)) for e in embeddings] [docs] def embed_query(self, text: str) -> List[float]: """Embed a query using the Llama model. Args: text: The text to embed. Returns: Embeddings for the text. """ embedding = self.client.embed(text) return list(map(float, embedding))
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html
e37f1cf7730b-0
Source code for langchain.embeddings.openai """Wrapper around OpenAI embedding models.""" from __future__ import annotations import logging from typing import ( Any, Callable, Dict, List, Literal, Optional, Sequence, Set, Tuple, Union, ) import numpy as np from pydantic import BaseModel, Extra, root_validator from tenacity import ( AsyncRetrying, before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]: import openai min_seconds = 4 max_seconds = 10 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(embeddings.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def _async_retry_decorator(embeddings: OpenAIEmbeddings) -> Any: import openai
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
e37f1cf7730b-1
import openai min_seconds = 4 max_seconds = 10 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards async_retrying = AsyncRetrying( reraise=True, stop=stop_after_attempt(embeddings.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def wrap(func: Callable) -> Callable: async def wrapped_f(*args: Any, **kwargs: Any) -> Callable: async for _ in async_retrying: return await func(*args, **kwargs) raise AssertionError("this is unreachable") return wrapped_f return wrap # https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings def _check_response(response: dict) -> dict: if any(len(d["embedding"]) == 1 for d in response["data"]): import openai raise openai.error.APIError("OpenAI API returned an empty embedding") return response [docs]def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any: """Use tenacity to retry the embedding call.""" retry_decorator = _create_retry_decorator(embeddings)
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
e37f1cf7730b-2
retry_decorator = _create_retry_decorator(embeddings) @retry_decorator def _embed_with_retry(**kwargs: Any) -> Any: response = embeddings.client.create(**kwargs) return _check_response(response) return _embed_with_retry(**kwargs) async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any: """Use tenacity to retry the embedding call.""" @_async_retry_decorator(embeddings) async def _async_embed_with_retry(**kwargs: Any) -> Any: response = await embeddings.client.acreate(**kwargs) return _check_response(response) return await _async_embed_with_retry(**kwargs) [docs]class OpenAIEmbeddings(BaseModel, Embeddings): """Wrapper around OpenAI embedding models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import OpenAIEmbeddings openai = OpenAIEmbeddings(openai_api_key="my-api-key") In order to use the library with Microsoft Azure endpoints, you need to set the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION. The OPENAI_API_TYPE must be set to 'azure' and the others correspond to the properties of your endpoint. In addition, the deployment name must be passed as the model parameter. Example: .. code-block:: python import os os.environ["OPENAI_API_TYPE"] = "azure"
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
e37f1cf7730b-3
import os os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/" os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key" os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview" os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080" from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings( deployment="your-embeddings-deployment-name", model="your-embeddings-model-name", openai_api_base="https://your-endpoint.openai.azure.com/", openai_api_type="azure", ) text = "This is a test query." query_result = embeddings.embed_query(text) """ client: Any #: :meta private: model: str = "text-embedding-ada-002" deployment: str = model # to support Azure OpenAI Service custom deployment names openai_api_version: Optional[str] = None # to support Azure OpenAI Service custom endpoints openai_api_base: Optional[str] = None # to support Azure OpenAI Service custom endpoints openai_api_type: Optional[str] = None # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None embedding_ctx_length: int = 8191 openai_api_key: Optional[str] = None openai_organization: Optional[str] = None allowed_special: Union[Literal["all"], Set[str]] = set() disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all"
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
e37f1cf7730b-4
chunk_size: int = 1000 """Maximum number of texts to embed in each batch""" max_retries: int = 6 """Maximum number of retries to make when generating.""" request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout in seconds for the OpenAPI request.""" headers: Any = None tiktoken_model_name: Optional[str] = None """The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here.""" show_progress_bar: bool = False """Whether to show a progress bar when embedding.""" [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_api_base"] = get_from_dict_or_env( values,
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
e37f1cf7730b-5
values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) if values["openai_api_type"] in ("azure", "azure_ad", "azuread"): default_api_version = "2022-12-01" else: default_api_version = "" values["openai_api_version"] = get_from_dict_or_env( values, "openai_api_version", "OPENAI_API_VERSION", default=default_api_version, ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai values["client"] = openai.Embedding except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) return values @property def _invocation_params(self) -> Dict: openai_args = { "engine": self.deployment, "request_timeout": self.request_timeout, "headers": self.headers, "api_key": self.openai_api_key, "organization": self.openai_organization,
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
e37f1cf7730b-6
"organization": self.openai_organization, "api_base": self.openai_api_base, "api_type": self.openai_api_type, "api_version": self.openai_api_version, } if self.openai_proxy: import openai openai.proxy = { "http": self.openai_proxy, "https": self.openai_proxy, } # type: ignore[assignment] # noqa: E501 return openai_args # please refer to # https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb def _get_len_safe_embeddings( self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None ) -> List[List[float]]: embeddings: List[List[float]] = [[] for _ in range(len(texts))] try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to for OpenAIEmbeddings. " "Please install it with `pip install tiktoken`." ) tokens = [] indices = [] model_name = self.tiktoken_model_name or self.model try: encoding = tiktoken.encoding_for_model(model_name) except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken.get_encoding(model) for i, text in enumerate(texts): if self.model.endswith("001"): # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
e37f1cf7730b-7
# replace newlines, which can negatively affect performance. text = text.replace("\n", " ") token = encoding.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, ) for j in range(0, len(token), self.embedding_ctx_length): tokens += [token[j : j + self.embedding_ctx_length]] indices += [i] batched_embeddings = [] _chunk_size = chunk_size or self.chunk_size if self.show_progress_bar: try: import tqdm _iter = tqdm.tqdm(range(0, len(tokens), _chunk_size)) except ImportError: _iter = range(0, len(tokens), _chunk_size) else: _iter = range(0, len(tokens), _chunk_size) for i in _iter: response = embed_with_retry( self, input=tokens[i : i + _chunk_size], **self._invocation_params, ) batched_embeddings += [r["embedding"] for r in response["data"]] results: List[List[List[float]]] = [[] for _ in range(len(texts))] num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))] for i in range(len(indices)): results[indices[i]].append(batched_embeddings[i]) num_tokens_in_batch[indices[i]].append(len(tokens[i])) for i in range(len(texts)): _result = results[i] if len(_result) == 0: average = embed_with_retry( self, input="", **self._invocation_params, )[ "data"
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
e37f1cf7730b-8
**self._invocation_params, )[ "data" ][0]["embedding"] else: average = np.average(_result, axis=0, weights=num_tokens_in_batch[i]) embeddings[i] = (average / np.linalg.norm(average)).tolist() return embeddings # please refer to # https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb async def _aget_len_safe_embeddings( self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None ) -> List[List[float]]: embeddings: List[List[float]] = [[] for _ in range(len(texts))] try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to for OpenAIEmbeddings. " "Please install it with `pip install tiktoken`." ) tokens = [] indices = [] model_name = self.tiktoken_model_name or self.model try: encoding = tiktoken.encoding_for_model(model_name) except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" encoding = tiktoken.get_encoding(model) for i, text in enumerate(texts): if self.model.endswith("001"): # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500 # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") token = encoding.encode( text, allowed_special=self.allowed_special,
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
e37f1cf7730b-9
token = encoding.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, ) for j in range(0, len(token), self.embedding_ctx_length): tokens += [token[j : j + self.embedding_ctx_length]] indices += [i] batched_embeddings = [] _chunk_size = chunk_size or self.chunk_size for i in range(0, len(tokens), _chunk_size): response = await async_embed_with_retry( self, input=tokens[i : i + _chunk_size], **self._invocation_params, ) batched_embeddings += [r["embedding"] for r in response["data"]] results: List[List[List[float]]] = [[] for _ in range(len(texts))] num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))] for i in range(len(indices)): results[indices[i]].append(batched_embeddings[i]) num_tokens_in_batch[indices[i]].append(len(tokens[i])) for i in range(len(texts)): _result = results[i] if len(_result) == 0: average = ( await async_embed_with_retry( self, input="", **self._invocation_params, ) )["data"][0]["embedding"] else: average = np.average(_result, axis=0, weights=num_tokens_in_batch[i]) embeddings[i] = (average / np.linalg.norm(average)).tolist() return embeddings def _embedding_func(self, text: str, *, engine: str) -> List[float]: """Call out to OpenAI's embedding endpoint.""" # handle large input text
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
e37f1cf7730b-10
"""Call out to OpenAI's embedding endpoint.""" # handle large input text if len(text) > self.embedding_ctx_length: return self._get_len_safe_embeddings([text], engine=engine)[0] else: if self.model.endswith("001"): # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500 # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") return embed_with_retry( self, input=[text], **self._invocation_params, )[ "data" ][0]["embedding"] async def _aembedding_func(self, text: str, *, engine: str) -> List[float]: """Call out to OpenAI's embedding endpoint.""" # handle large input text if len(text) > self.embedding_ctx_length: return (await self._aget_len_safe_embeddings([text], engine=engine))[0] else: if self.model.endswith("001"): # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500 # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") return ( await async_embed_with_retry( self, input=[text], **self._invocation_params, ) )["data"][0]["embedding"] [docs] def embed_documents( self, texts: List[str], chunk_size: Optional[int] = 0 ) -> List[List[float]]: """Call out to OpenAI's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed.
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
e37f1cf7730b-11
Args: texts: The list of texts to embed. chunk_size: The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ # NOTE: to keep things simple, we assume the list may contain texts longer # than the maximum context and use length-safe embedding function. return self._get_len_safe_embeddings(texts, engine=self.deployment) [docs] async def aembed_documents( self, texts: List[str], chunk_size: Optional[int] = 0 ) -> List[List[float]]: """Call out to OpenAI's embedding endpoint async for embedding search docs. Args: texts: The list of texts to embed. chunk_size: The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ # NOTE: to keep things simple, we assume the list may contain texts longer # than the maximum context and use length-safe embedding function. return await self._aget_len_safe_embeddings(texts, engine=self.deployment) [docs] def embed_query(self, text: str) -> List[float]: """Call out to OpenAI's embedding endpoint for embedding query text. Args: text: The text to embed. Returns: Embedding for the text. """ embedding = self._embedding_func(text, engine=self.deployment) return embedding [docs] async def aembed_query(self, text: str) -> List[float]: """Call out to OpenAI's embedding endpoint async for embedding query text. Args:
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
e37f1cf7730b-12
Args: text: The text to embed. Returns: Embedding for the text. """ embedding = await self._aembedding_func(text, engine=self.deployment) return embedding
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
8fa7e58f0592-0
Source code for langchain.embeddings.vertexai """Wrapper around Google VertexAI embedding models.""" from typing import Dict, List from pydantic import root_validator from langchain.embeddings.base import Embeddings from langchain.llms.vertexai import _VertexAICommon from langchain.utilities.vertexai import raise_vertex_import_error [docs]class VertexAIEmbeddings(_VertexAICommon, Embeddings): model_name: str = "textembedding-gecko" [docs] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validates that the python package exists in environment.""" cls._try_init_vertexai(values) try: from vertexai.preview.language_models import TextEmbeddingModel except ImportError: raise_vertex_import_error() values["client"] = TextEmbeddingModel.from_pretrained(values["model_name"]) return values [docs] def embed_documents( self, texts: List[str], batch_size: int = 5 ) -> List[List[float]]: """Embed a list of strings. Vertex AI currently sets a max batch size of 5 strings. Args: texts: List[str] The list of strings to embed. batch_size: [int] The batch size of embeddings to send to the model Returns: List of embeddings, one for each text. """ embeddings = [] for batch in range(0, len(texts), batch_size): text_batch = texts[batch : batch + batch_size] embeddings_batch = self.client.get_embeddings(text_batch) embeddings.extend([el.values for el in embeddings_batch]) return embeddings [docs] def embed_query(self, text: str) -> List[float]: """Embed a text.
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/vertexai.html
8fa7e58f0592-1
"""Embed a text. Args: text: The text to embed. Returns: Embedding for the text. """ embeddings = self.client.get_embeddings([text]) return embeddings[0].values
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/vertexai.html
a8e51979ae60-0
Source code for langchain.embeddings.huggingface_hub """Wrapper around HuggingFace Hub embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env DEFAULT_REPO_ID = "sentence-transformers/all-mpnet-base-v2" VALID_TASKS = ("feature-extraction",) [docs]class HuggingFaceHubEmbeddings(BaseModel, Embeddings): """Wrapper around HuggingFaceHub embedding models. To use, you should have the ``huggingface_hub`` python package installed, and the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import HuggingFaceHubEmbeddings repo_id = "sentence-transformers/all-mpnet-base-v2" hf = HuggingFaceHubEmbeddings( repo_id=repo_id, task="feature-extraction", huggingfacehub_api_token="my-api-key", ) """ client: Any #: :meta private: repo_id: str = DEFAULT_REPO_ID """Model name to use.""" task: Optional[str] = "feature-extraction" """Task to call the model with.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" huggingfacehub_api_token: Optional[str] = None [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] @root_validator()
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html
a8e51979ae60-1
extra = Extra.forbid [docs] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingfacehub_api_token = get_from_dict_or_env( values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" ) try: from huggingface_hub.inference_api import InferenceApi repo_id = values["repo_id"] if not repo_id.startswith("sentence-transformers"): raise ValueError( "Currently only 'sentence-transformers' embedding models " f"are supported. Got invalid 'repo_id' {repo_id}." ) client = InferenceApi( repo_id=repo_id, token=huggingfacehub_api_token, task=values.get("task"), ) if client.task not in VALID_TASKS: raise ValueError( f"Got invalid task {client.task}, " f"currently only {VALID_TASKS} are supported" ) values["client"] = client except ImportError: raise ValueError( "Could not import huggingface_hub python package. " "Please install it with `pip install huggingface_hub`." ) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to HuggingFaceHub's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ # replace newlines, which can negatively affect performance.
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html
a8e51979ae60-2
""" # replace newlines, which can negatively affect performance. texts = [text.replace("\n", " ") for text in texts] _model_kwargs = self.model_kwargs or {} responses = self.client(inputs=texts, params=_model_kwargs) return responses [docs] def embed_query(self, text: str) -> List[float]: """Call out to HuggingFaceHub's embedding endpoint for embedding query text. Args: text: The text to embed. Returns: Embeddings for the text. """ response = self.embed_documents([text])[0] return response
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html
6945f72787a3-0
Source code for langchain.embeddings.google_palm """Wrapper arround Google's PaLM Embeddings APIs.""" from __future__ import annotations import logging from typing import Any, Callable, Dict, List, Optional from pydantic import BaseModel, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def _create_retry_decorator() -> Callable[[Any], Any]: """Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions""" import google.api_core.exceptions multiplier = 2 min_seconds = 1 max_seconds = 60 max_retries = 10 return retry( reraise=True, stop=stop_after_attempt(max_retries), wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(google.api_core.exceptions.ResourceExhausted) | retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable) | retry_if_exception_type(google.api_core.exceptions.GoogleAPIError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) [docs]def embed_with_retry( embeddings: GooglePalmEmbeddings, *args: Any, **kwargs: Any ) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator() @retry_decorator def _embed_with_retry(*args: Any, **kwargs: Any) -> Any: return embeddings.client.generate_embeddings(*args, **kwargs)
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/google_palm.html
6945f72787a3-1
return embeddings.client.generate_embeddings(*args, **kwargs) return _embed_with_retry(*args, **kwargs) [docs]class GooglePalmEmbeddings(BaseModel, Embeddings): client: Any google_api_key: Optional[str] model_name: str = "models/embedding-gecko-001" """Model name to use.""" [docs] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate api key, python package exists.""" google_api_key = get_from_dict_or_env( values, "google_api_key", "GOOGLE_API_KEY" ) try: import google.generativeai as genai genai.configure(api_key=google_api_key) except ImportError: raise ImportError("Could not import google.generativeai python package.") values["client"] = genai return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: return [self.embed_query(text) for text in texts] [docs] def embed_query(self, text: str) -> List[float]: """Embed query text.""" embedding = embed_with_retry(self, self.model_name, text) return embedding["embedding"]
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/google_palm.html
529bc3adc71e-0
Source code for langchain.embeddings.clarifai """Wrapper around Clarifai embedding models.""" import logging from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class ClarifaiEmbeddings(BaseModel, Embeddings): """Wrapper around Clarifai embedding models. To use, you should have the ``clarifai`` python package installed, and the environment variable ``CLARIFAI_PAT`` set with your personal access token or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import ClarifaiEmbeddings clarifai = ClarifaiEmbeddings( model="embed-english-light-v2.0", clarifai_api_key="my-api-key" ) """ stub: Any #: :meta private: userDataObject: Any model_id: Optional[str] = None """Model id to use.""" model_version_id: Optional[str] = None """Model version id to use.""" app_id: Optional[str] = None """Clarifai application id to use.""" user_id: Optional[str] = None """Clarifai user id to use.""" pat: Optional[str] = None api_base: str = "https://api.clarifai.com" [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] @root_validator() def validate_environment(cls, values: Dict) -> Dict:
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/clarifai.html
529bc3adc71e-1
def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["pat"] = get_from_dict_or_env(values, "pat", "CLARIFAI_PAT") user_id = values.get("user_id") app_id = values.get("app_id") model_id = values.get("model_id") if values["pat"] is None: raise ValueError("Please provide a pat.") if user_id is None: raise ValueError("Please provide a user_id.") if app_id is None: raise ValueError("Please provide a app_id.") if model_id is None: raise ValueError("Please provide a model_id.") try: from clarifai.auth.helper import ClarifaiAuthHelper from clarifai.client import create_stub except ImportError: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) auth = ClarifaiAuthHelper( user_id=user_id, app_id=app_id, pat=values["pat"], base=values["api_base"], ) values["userDataObject"] = auth.get_user_app_id_proto() values["stub"] = create_stub(auth) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Clarifai's embedding models. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ try: from clarifai_grpc.grpc.api import ( resources_pb2,
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/clarifai.html
529bc3adc71e-2
from clarifai_grpc.grpc.api import ( resources_pb2, service_pb2, ) from clarifai_grpc.grpc.api.status import status_code_pb2 except ImportError: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) post_model_outputs_request = service_pb2.PostModelOutputsRequest( user_app_id=self.userDataObject, model_id=self.model_id, version_id=self.model_version_id, inputs=[ resources_pb2.Input( data=resources_pb2.Data(text=resources_pb2.Text(raw=t)) ) for t in texts ], ) post_model_outputs_response = self.stub.PostModelOutputs( post_model_outputs_request ) if post_model_outputs_response.status.code != status_code_pb2.SUCCESS: logger.error(post_model_outputs_response.status) first_output_failure = ( post_model_outputs_response.outputs[0].status if len(post_model_outputs_response.outputs[0]) else None ) raise Exception( f"Post model outputs failed, status: " f"{post_model_outputs_response.status}, first output failure: " f"{first_output_failure}" ) embeddings = [ list(o.data.embeddings[0].vector) for o in post_model_outputs_response.outputs ] return embeddings [docs] def embed_query(self, text: str) -> List[float]: """Call out to Clarifai's embedding models. Args: text: The text to embed. Returns: Embeddings for the text. """ try:
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/clarifai.html
529bc3adc71e-3
Returns: Embeddings for the text. """ try: from clarifai_grpc.grpc.api import ( resources_pb2, service_pb2, ) from clarifai_grpc.grpc.api.status import status_code_pb2 except ImportError: raise ImportError( "Could not import clarifai python package. " "Please install it with `pip install clarifai`." ) post_model_outputs_request = service_pb2.PostModelOutputsRequest( user_app_id=self.userDataObject, model_id=self.model_id, version_id=self.model_version_id, inputs=[ resources_pb2.Input( data=resources_pb2.Data(text=resources_pb2.Text(raw=text)) ) ], ) post_model_outputs_response = self.stub.PostModelOutputs( post_model_outputs_request ) if post_model_outputs_response.status.code != status_code_pb2.SUCCESS: logger.error(post_model_outputs_response.status) first_output_failure = ( post_model_outputs_response.outputs[0].status if len(post_model_outputs_response.outputs[0]) else None ) raise Exception( f"Post model outputs failed, status: " f"{post_model_outputs_response.status}, first output failure: " f"{first_output_failure}" ) embeddings = [ list(o.data.embeddings[0].vector) for o in post_model_outputs_response.outputs ] return embeddings[0]
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/clarifai.html
1e5a18d66200-0
Source code for langchain.embeddings.cohere """Wrapper around Cohere embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env [docs]class CohereEmbeddings(BaseModel, Embeddings): """Wrapper around Cohere embedding models. To use, you should have the ``cohere`` python package installed, and the environment variable ``COHERE_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import CohereEmbeddings cohere = CohereEmbeddings( model="embed-english-light-v2.0", cohere_api_key="my-api-key" ) """ client: Any #: :meta private: model: str = "embed-english-v2.0" """Model name to use.""" truncate: Optional[str] = None """Truncate embeddings that are too long from start or end ("NONE"|"START"|"END")""" cohere_api_key: Optional[str] = None [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" cohere_api_key = get_from_dict_or_env( values, "cohere_api_key", "COHERE_API_KEY" ) try: import cohere values["client"] = cohere.Client(cohere_api_key) except ImportError:
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/cohere.html
1e5a18d66200-1
values["client"] = cohere.Client(cohere_api_key) except ImportError: raise ValueError( "Could not import cohere python package. " "Please install it with `pip install cohere`." ) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Cohere's embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = self.client.embed( model=self.model, texts=texts, truncate=self.truncate ).embeddings return [list(map(float, e)) for e in embeddings] [docs] def embed_query(self, text: str) -> List[float]: """Call out to Cohere's embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ embedding = self.client.embed( model=self.model, texts=[text], truncate=self.truncate ).embeddings[0] return list(map(float, embedding))
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/cohere.html
d7d1c475e68a-0
Source code for langchain.embeddings.bedrock import json import os from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings [docs]class BedrockEmbeddings(BaseModel, Embeddings): """Embeddings provider to invoke Bedrock embedding models. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Bedrock service. """ """ Example: .. code-block:: python from langchain.bedrock_embeddings import BedrockEmbeddings region_name ="us-east-1" credentials_profile_name = "default" model_id = "amazon.titan-e1t-medium" be = BedrockEmbeddings( credentials_profile_name=credentials_profile_name, region_name=region_name, model_id=model_id ) """ client: Any #: :meta private: region_name: Optional[str] = None """The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config in case it is not provided here. """ credentials_profile_name: Optional[str] = None """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance,
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/bedrock.html
d7d1c475e68a-1
If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """ model_id: str = "amazon.titan-e1t-medium" """Id of the model to call, e.g., amazon.titan-e1t-medium, this is equivalent to the modelId property in the list-foundation-models api""" model_kwargs: Optional[Dict] = None """Key word arguments to pass to the model.""" [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that AWS credentials to and python package exists in environment.""" if values["client"] is not None: return values try: import boto3 if values["credentials_profile_name"] is not None: session = boto3.Session(profile_name=values["credentials_profile_name"]) else: # use default credentials session = boto3.Session() client_params = {} if values["region_name"]: client_params["region_name"] = values["region_name"] values["client"] = session.client("bedrock", **client_params) except ImportError: raise ModuleNotFoundError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid."
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/bedrock.html
d7d1c475e68a-2
"Please check that credentials in the specified " "profile name are valid." ) from e return values def _embedding_func(self, text: str) -> List[float]: """Call out to Bedrock embedding endpoint.""" # replace newlines, which can negatively affect performance. text = text.replace(os.linesep, " ") _model_kwargs = self.model_kwargs or {} input_body = {**_model_kwargs, "inputText": text} body = json.dumps(input_body) try: response = self.client.invoke_model( body=body, modelId=self.model_id, accept="application/json", contentType="application/json", ) response_body = json.loads(response.get("body").read()) return response_body.get("embedding") except Exception as e: raise ValueError(f"Error raised by inference endpoint: {e}") [docs] def embed_documents( self, texts: List[str], chunk_size: int = 1 ) -> List[List[float]]: """Compute doc embeddings using a Bedrock model. Args: texts: The list of texts to embed. chunk_size: Bedrock currently only allows single string inputs, so chunk size is always 1. This input is here only for compatibility with the embeddings interface. Returns: List of embeddings, one for each text. """ results = [] for text in texts: response = self._embedding_func(text) results.append(response) return results [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a Bedrock model. Args: text: The text to embed.
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/bedrock.html
d7d1c475e68a-3
Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embedding_func(text)
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/bedrock.html
943b8f632cea-0
Source code for langchain.embeddings.self_hosted_hugging_face """Wrapper around HuggingFace embedding models for self-hosted remote hardware.""" import importlib import logging from typing import Any, Callable, List, Optional from langchain.embeddings.self_hosted import SelfHostedEmbeddings DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large" DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: " DEFAULT_QUERY_INSTRUCTION = ( "Represent the question for retrieving supporting documents: " ) logger = logging.getLogger(__name__) def _embed_documents(client: Any, *args: Any, **kwargs: Any) -> List[List[float]]: """Inference function to send to the remote hardware. Accepts a sentence_transformer model_id and returns a list of embeddings for each document in the batch. """ return client.encode(*args, **kwargs) [docs]def load_embedding_model(model_id: str, instruct: bool = False, device: int = 0) -> Any: """Load the embedding model.""" if not instruct: import sentence_transformers client = sentence_transformers.SentenceTransformer(model_id) else: from InstructorEmbedding import INSTRUCTOR client = INSTRUCTOR(model_id) if importlib.util.find_spec("torch") is not None: import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" ) if device < 0 and cuda_device_count > 0:
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
943b8f632cea-1
) if device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for execution. deviceId is -1 for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) client = client.to(device) return client [docs]class SelfHostedHuggingFaceEmbeddings(SelfHostedEmbeddings): """Runs sentence_transformers embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Example: .. code-block:: python from langchain.embeddings import SelfHostedHuggingFaceEmbeddings import runhouse as rh model_name = "sentence-transformers/all-mpnet-base-v2" gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") hf = SelfHostedHuggingFaceEmbeddings(model_name=model_name, hardware=gpu) """ client: Any #: :meta private: model_id: str = DEFAULT_MODEL_NAME """Model name to use.""" model_reqs: List[str] = ["./", "sentence_transformers", "torch"] """Requirements to install on hardware to inference the model.""" hardware: Any """Remote hardware to send the inference function to.""" model_load_fn: Callable = load_embedding_model
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
943b8f632cea-2
model_load_fn: Callable = load_embedding_model """Function to load the model remotely on the server.""" load_fn_kwargs: Optional[dict] = None """Key word arguments to pass to the model load function.""" inference_fn: Callable = _embed_documents """Inference function to extract the embeddings.""" def __init__(self, **kwargs: Any): """Initialize the remote inference function.""" load_fn_kwargs = kwargs.pop("load_fn_kwargs", {}) load_fn_kwargs["model_id"] = load_fn_kwargs.get("model_id", DEFAULT_MODEL_NAME) load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", False) load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0) super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs) [docs]class SelfHostedHuggingFaceInstructEmbeddings(SelfHostedHuggingFaceEmbeddings): """Runs InstructorEmbedding embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Example: .. code-block:: python from langchain.embeddings import SelfHostedHuggingFaceInstructEmbeddings import runhouse as rh model_name = "hkunlp/instructor-large" gpu = rh.cluster(name='rh-a10x', instance_type='A100:1') hf = SelfHostedHuggingFaceInstructEmbeddings( model_name=model_name, hardware=gpu) """
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
943b8f632cea-3
model_name=model_name, hardware=gpu) """ model_id: str = DEFAULT_INSTRUCT_MODEL """Model name to use.""" embed_instruction: str = DEFAULT_EMBED_INSTRUCTION """Instruction to use for embedding documents.""" query_instruction: str = DEFAULT_QUERY_INSTRUCTION """Instruction to use for embedding query.""" model_reqs: List[str] = ["./", "InstructorEmbedding", "torch"] """Requirements to install on hardware to inference the model.""" def __init__(self, **kwargs: Any): """Initialize the remote inference function.""" load_fn_kwargs = kwargs.pop("load_fn_kwargs", {}) load_fn_kwargs["model_id"] = load_fn_kwargs.get( "model_id", DEFAULT_INSTRUCT_MODEL ) load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", True) load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0) super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs) [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace instruct model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [] for text in texts: instruction_pairs.append([self.embed_instruction, text]) embeddings = self.client(self.pipeline_ref, instruction_pairs) return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace instruct model. Args: text: The text to embed. Returns: Embeddings for the text.
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
943b8f632cea-4
Returns: Embeddings for the text. """ instruction_pair = [self.query_instruction, text] embedding = self.client(self.pipeline_ref, [instruction_pair])[0] return embedding.tolist()
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
a16b728dec6f-0
Source code for langchain.embeddings.base """Interface for embedding models.""" from abc import ABC, abstractmethod from typing import List [docs]class Embeddings(ABC): """Interface for embedding models.""" [docs] @abstractmethod def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed search docs.""" [docs] @abstractmethod def embed_query(self, text: str) -> List[float]: """Embed query text.""" [docs] async def aembed_documents(self, texts: List[str]) -> List[List[float]]: """Embed search docs.""" raise NotImplementedError [docs] async def aembed_query(self, text: str) -> List[float]: """Embed query text.""" raise NotImplementedError
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/base.html
95978c8df685-0
Source code for langchain.embeddings.tensorflow_hub """Wrapper around TensorflowHub embedding models.""" from typing import Any, List from pydantic import BaseModel, Extra from langchain.embeddings.base import Embeddings DEFAULT_MODEL_URL = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3" [docs]class TensorflowHubEmbeddings(BaseModel, Embeddings): """Wrapper around tensorflow_hub embedding models. To use, you should have the ``tensorflow_text`` python package installed. Example: .. code-block:: python from langchain.embeddings import TensorflowHubEmbeddings url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3" tf = TensorflowHubEmbeddings(model_url=url) """ embed: Any #: :meta private: model_url: str = DEFAULT_MODEL_URL """Model name to use.""" def __init__(self, **kwargs: Any): """Initialize the tensorflow_hub and tensorflow_text.""" super().__init__(**kwargs) try: import tensorflow_hub except ImportError: raise ImportError( "Could not import tensorflow-hub python package. " "Please install it with `pip install tensorflow-hub``." ) try: import tensorflow_text # noqa except ImportError: raise ImportError( "Could not import tensorflow_text python package. " "Please install it with `pip install tensorflow_text``." ) self.embed = tensorflow_hub.load(self.model_url) [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/tensorflow_hub.html
95978c8df685-1
"""Compute doc embeddings using a TensorflowHub embedding model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ texts = list(map(lambda x: x.replace("\n", " "), texts)) embeddings = self.embed(texts).numpy() return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a TensorflowHub embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") embedding = self.embed([text]).numpy()[0] return embedding.tolist()
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/tensorflow_hub.html
de5260d8c6e1-0
Source code for langchain.embeddings.spacy_embeddings import importlib.util from typing import Any, Dict, List from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings [docs]class SpacyEmbeddings(BaseModel, Embeddings): """ SpacyEmbeddings is a class for generating embeddings using the Spacy library. It only supports the 'en_core_web_sm' model. Attributes: nlp (Any): The Spacy model loaded into memory. Methods: embed_documents(texts: List[str]) -> List[List[float]]: Generates embeddings for a list of documents. embed_query(text: str) -> List[float]: Generates an embedding for a single piece of text. """ nlp: Any # The Spacy model loaded into memory [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid # Forbid extra attributes during model initialization [docs] @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """ Validates that the Spacy package and the 'en_core_web_sm' model are installed. Args: values (Dict): The values provided to the class constructor. Returns: The validated values. Raises: ValueError: If the Spacy package or the 'en_core_web_sm' model are not installed. """ # Check if the Spacy package is installed if importlib.util.find_spec("spacy") is None: raise ValueError( "Spacy package not found. " "Please install it with `pip install spacy`." ) try:
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/spacy_embeddings.html
de5260d8c6e1-1
) try: # Try to load the 'en_core_web_sm' Spacy model import spacy values["nlp"] = spacy.load("en_core_web_sm") except OSError: # If the model is not found, raise a ValueError raise ValueError( "Spacy model 'en_core_web_sm' not found. " "Please install it with" " `python -m spacy download en_core_web_sm`." ) return values # Return the validated values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """ Generates embeddings for a list of documents. Args: texts (List[str]): The documents to generate embeddings for. Returns: A list of embeddings, one for each document. """ return [self.nlp(text).vector.tolist() for text in texts] [docs] def embed_query(self, text: str) -> List[float]: """ Generates an embedding for a single piece of text. Args: text (str): The text to generate an embedding for. Returns: The embedding for the text. """ return self.nlp(text).vector.tolist() [docs] async def aembed_documents(self, texts: List[str]) -> List[List[float]]: """ Asynchronously generates embeddings for a list of documents. This method is not implemented and raises a NotImplementedError. Args: texts (List[str]): The documents to generate embeddings for. Raises: NotImplementedError: This method is not implemented. """ raise NotImplementedError("Asynchronous embedding generation is not supported.")
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/spacy_embeddings.html
de5260d8c6e1-2
""" raise NotImplementedError("Asynchronous embedding generation is not supported.") [docs] async def aembed_query(self, text: str) -> List[float]: """ Asynchronously generates an embedding for a single piece of text. This method is not implemented and raises a NotImplementedError. Args: text (str): The text to generate an embedding for. Raises: NotImplementedError: This method is not implemented. """ raise NotImplementedError("Asynchronous embedding generation is not supported.")
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/spacy_embeddings.html
b17c2e1e9477-0
Source code for langchain.embeddings.self_hosted """Running custom embedding models on self-hosted remote hardware.""" from typing import Any, Callable, List from pydantic import Extra from langchain.embeddings.base import Embeddings from langchain.llms import SelfHostedPipeline def _embed_documents(pipeline: Any, *args: Any, **kwargs: Any) -> List[List[float]]: """Inference function to send to the remote hardware. Accepts a sentence_transformer model_id and returns a list of embeddings for each document in the batch. """ return pipeline(*args, **kwargs) [docs]class SelfHostedEmbeddings(SelfHostedPipeline, Embeddings): """Runs custom embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Example using a model load function: .. code-block:: python from langchain.embeddings import SelfHostedEmbeddings from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import runhouse as rh gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") def get_pipeline(): model_id = "facebook/bart-large" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) return pipeline("feature-extraction", model=model, tokenizer=tokenizer) embeddings = SelfHostedEmbeddings( model_load_fn=get_pipeline, hardware=gpu
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted.html
b17c2e1e9477-1
model_load_fn=get_pipeline, hardware=gpu model_reqs=["./", "torch", "transformers"], ) Example passing in a pipeline path: .. code-block:: python from langchain.embeddings import SelfHostedHFEmbeddings import runhouse as rh from transformers import pipeline gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") pipeline = pipeline(model="bert-base-uncased", task="feature-extraction") rh.blob(pickle.dumps(pipeline), path="models/pipeline.pkl").save().to(gpu, path="models") embeddings = SelfHostedHFEmbeddings.from_pipeline( pipeline="models/pipeline.pkl", hardware=gpu, model_reqs=["./", "torch", "transformers"], ) """ inference_fn: Callable = _embed_documents """Inference function to extract the embeddings on the remote hardware.""" inference_kwargs: Any = None """Any kwargs to pass to the model's inference function.""" [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. Args: texts: The list of texts to embed.s Returns: List of embeddings, one for each text. """ texts = list(map(lambda x: x.replace("\n", " "), texts)) embeddings = self.client(self.pipeline_ref, texts) if not isinstance(embeddings, list): return embeddings.tolist() return embeddings
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted.html
b17c2e1e9477-2
if not isinstance(embeddings, list): return embeddings.tolist() return embeddings [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace transformer model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") embeddings = self.client(self.pipeline_ref, text) if not isinstance(embeddings, list): return embeddings.tolist() return embeddings
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted.html
511b4d66447b-0
Source code for langchain.embeddings.dashscope """Wrapper around DashScope embedding models.""" from __future__ import annotations import logging from typing import ( Any, Callable, Dict, List, Optional, ) from pydantic import BaseModel, Extra, root_validator from requests.exceptions import HTTPError from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def _create_retry_decorator(embeddings: DashScopeEmbeddings) -> Callable[[Any], Any]: multiplier = 1 min_seconds = 1 max_seconds = 4 # Wait 2^x * 1 second between each retry starting with # 1 seconds, then up to 4 seconds, then 4 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(embeddings.max_retries), wait=wait_exponential(multiplier, min=min_seconds, max=max_seconds), retry=(retry_if_exception_type(HTTPError)), before_sleep=before_sleep_log(logger, logging.WARNING), ) [docs]def embed_with_retry(embeddings: DashScopeEmbeddings, **kwargs: Any) -> Any: """Use tenacity to retry the embedding call.""" retry_decorator = _create_retry_decorator(embeddings) @retry_decorator def _embed_with_retry(**kwargs: Any) -> Any: resp = embeddings.client.call(**kwargs) if resp.status_code == 200: return resp.output["embeddings"] elif resp.status_code in [400, 401]:
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/dashscope.html
511b4d66447b-1
elif resp.status_code in [400, 401]: raise ValueError( f"status_code: {resp.status_code} \n " f"code: {resp.code} \n message: {resp.message}" ) else: raise HTTPError( f"HTTP error occurred: status_code: {resp.status_code} \n " f"code: {resp.code} \n message: {resp.message}" ) return _embed_with_retry(**kwargs) [docs]class DashScopeEmbeddings(BaseModel, Embeddings): """Wrapper around DashScope embedding models. To use, you should have the ``dashscope`` python package installed, and the environment variable ``DASHSCOPE_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import DashScopeEmbeddings embeddings = DashScopeEmbeddings(dashscope_api_key="my-api-key") Example: .. code-block:: python import os os.environ["DASHSCOPE_API_KEY"] = "your DashScope API KEY" from langchain.embeddings.dashscope import DashScopeEmbeddings embeddings = DashScopeEmbeddings( model="text-embedding-v1", ) text = "This is a test query." query_result = embeddings.embed_query(text) """ client: Any #: :meta private: model: str = "text-embedding-v1" dashscope_api_key: Optional[str] = None """Maximum number of retries to make when generating.""" max_retries: int = 5 [docs] class Config:
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/dashscope.html
511b4d66447b-2
max_retries: int = 5 [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] @root_validator() def validate_environment(cls, values: Dict) -> Dict: import dashscope """Validate that api key and python package exists in environment.""" values["dashscope_api_key"] = get_from_dict_or_env( values, "dashscope_api_key", "DASHSCOPE_API_KEY" ) dashscope.api_key = values["dashscope_api_key"] try: import dashscope values["client"] = dashscope.TextEmbedding except ImportError: raise ImportError( "Could not import dashscope python package. " "Please install it with `pip install dashscope`." ) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to DashScope's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. chunk_size: The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ embeddings = embed_with_retry( self, input=texts, text_type="document", model=self.model ) embedding_list = [item["embedding"] for item in embeddings] return embedding_list [docs] def embed_query(self, text: str) -> List[float]: """Call out to DashScope's embedding endpoint for embedding query text. Args: text: The text to embed. Returns: Embedding for the text. """
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/dashscope.html
511b4d66447b-3
Returns: Embedding for the text. """ embedding = embed_with_retry( self, input=text, text_type="query", model=self.model )[0]["embedding"] return embedding
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/dashscope.html
468d25d9526a-0
Source code for langchain.embeddings.octoai_embeddings """Module providing a wrapper around OctoAI Compute Service embedding models.""" from typing import Any, Dict, List, Mapping, Optional from pydantic import BaseModel, Extra, Field, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env DEFAULT_EMBED_INSTRUCTION = "Represent this input: " DEFAULT_QUERY_INSTRUCTION = "Represent the question for retrieving similar documents: " [docs]class OctoAIEmbeddings(BaseModel, Embeddings): """Wrapper around OctoAI Compute Service embedding models. The environment variable ``OCTOAI_API_TOKEN`` should be set with your API token, or it can be passed as a named parameter to the constructor. """ endpoint_url: Optional[str] = Field(None, description="Endpoint URL to use.") model_kwargs: Optional[dict] = Field( None, description="Keyword arguments to pass to the model." ) octoai_api_token: Optional[str] = Field(None, description="OCTOAI API Token") embed_instruction: str = Field( DEFAULT_EMBED_INSTRUCTION, description="Instruction to use for embedding documents.", ) query_instruction: str = Field( DEFAULT_QUERY_INSTRUCTION, description="Instruction to use for embedding query." ) [docs] class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] @root_validator(allow_reuse=True) def validate_environment(cls, values: Dict) -> Dict: """Ensure that the API key and python package exist in environment.""" values["octoai_api_token"] = get_from_dict_or_env(
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/octoai_embeddings.html
468d25d9526a-1
values["octoai_api_token"] = get_from_dict_or_env( values, "octoai_api_token", "OCTOAI_API_TOKEN" ) values["endpoint_url"] = get_from_dict_or_env( values, "endpoint_url", "ENDPOINT_URL" ) return values @property def _identifying_params(self) -> Mapping[str, Any]: """Return the identifying parameters.""" return { "endpoint_url": self.endpoint_url, "model_kwargs": self.model_kwargs or {}, } def _compute_embeddings( self, texts: List[str], instruction: str ) -> List[List[float]]: """Compute embeddings using an OctoAI instruct model.""" from octoai import client embeddings = [] octoai_client = client.Client(token=self.octoai_api_token) for text in texts: parameter_payload = { "sentence": str([text]), # for item in text]), "instruction": str([instruction]), # for item in text]), "parameters": self.model_kwargs or {}, } try: resp_json = octoai_client.infer(self.endpoint_url, parameter_payload) embedding = resp_json["embeddings"] except Exception as e: raise ValueError(f"Error raised by the inference endpoint: {e}") from e embeddings.append(embedding) return embeddings [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute document embeddings using an OctoAI instruct model.""" texts = list(map(lambda x: x.replace("\n", " "), texts)) return self._compute_embeddings(texts, self.embed_instruction)
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/octoai_embeddings.html
468d25d9526a-2
return self._compute_embeddings(texts, self.embed_instruction) [docs] def embed_query(self, text: str) -> List[float]: """Compute query embedding using an OctoAI instruct model.""" text = text.replace("\n", " ") return self._compute_embeddings([text], self.embed_instruction)[0]
https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/octoai_embeddings.html